| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779 |
- //===- EarlyCSE.cpp - Simple and fast CSE pass ----------------------------===//
- //
- // The LLVM Compiler Infrastructure
- //
- // This file is distributed under the University of Illinois Open Source
- // License. See LICENSE.TXT for details.
- //
- //===----------------------------------------------------------------------===//
- //
- // This pass performs a simple dominator tree walk that eliminates trivially
- // redundant instructions.
- //
- //===----------------------------------------------------------------------===//
- #include "llvm/Transforms/Scalar/EarlyCSE.h"
- #include "llvm/ADT/Hashing.h"
- #include "llvm/ADT/ScopedHashTable.h"
- #include "llvm/ADT/Statistic.h"
- #include "llvm/Analysis/AssumptionCache.h"
- #include "llvm/Analysis/InstructionSimplify.h"
- #include "llvm/Analysis/TargetLibraryInfo.h"
- #include "llvm/Analysis/TargetTransformInfo.h"
- #include "llvm/IR/DataLayout.h"
- #include "llvm/IR/Dominators.h"
- #include "llvm/IR/Instructions.h"
- #include "llvm/IR/IntrinsicInst.h"
- #include "llvm/IR/PatternMatch.h"
- #include "llvm/Pass.h"
- #include "llvm/Support/Debug.h"
- #include "llvm/Support/RecyclingAllocator.h"
- #include "llvm/Support/raw_ostream.h"
- #include "llvm/Transforms/Scalar.h"
- #include "llvm/Transforms/Utils/Local.h"
- #include <deque>
- using namespace llvm;
- using namespace llvm::PatternMatch;
- #define DEBUG_TYPE "early-cse"
- STATISTIC(NumSimplify, "Number of instructions simplified or DCE'd");
- STATISTIC(NumCSE, "Number of instructions CSE'd");
- STATISTIC(NumCSELoad, "Number of load instructions CSE'd");
- STATISTIC(NumCSECall, "Number of call instructions CSE'd");
- STATISTIC(NumDSE, "Number of trivial dead stores removed");
- //===----------------------------------------------------------------------===//
- // SimpleValue
- //===----------------------------------------------------------------------===//
- namespace {
- /// \brief Struct representing the available values in the scoped hash table.
- struct SimpleValue {
- Instruction *Inst;
- SimpleValue(Instruction *I) : Inst(I) {
- assert((isSentinel() || canHandle(I)) && "Inst can't be handled!");
- }
- bool isSentinel() const {
- return Inst == DenseMapInfo<Instruction *>::getEmptyKey() ||
- Inst == DenseMapInfo<Instruction *>::getTombstoneKey();
- }
- static bool canHandle(Instruction *Inst) {
- // This can only handle non-void readnone functions.
- if (CallInst *CI = dyn_cast<CallInst>(Inst))
- return CI->doesNotAccessMemory() && !CI->getType()->isVoidTy();
- return isa<CastInst>(Inst) || isa<BinaryOperator>(Inst) ||
- isa<GetElementPtrInst>(Inst) || isa<CmpInst>(Inst) ||
- isa<SelectInst>(Inst) || isa<ExtractElementInst>(Inst) ||
- isa<InsertElementInst>(Inst) || isa<ShuffleVectorInst>(Inst) ||
- isa<ExtractValueInst>(Inst) || isa<InsertValueInst>(Inst);
- }
- };
- }
- namespace llvm {
- template <> struct DenseMapInfo<SimpleValue> {
- static inline SimpleValue getEmptyKey() {
- return DenseMapInfo<Instruction *>::getEmptyKey();
- }
- static inline SimpleValue getTombstoneKey() {
- return DenseMapInfo<Instruction *>::getTombstoneKey();
- }
- static unsigned getHashValue(SimpleValue Val);
- static bool isEqual(SimpleValue LHS, SimpleValue RHS);
- };
- }
- unsigned DenseMapInfo<SimpleValue>::getHashValue(SimpleValue Val) {
- Instruction *Inst = Val.Inst;
- // Hash in all of the operands as pointers.
- if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Inst)) {
- Value *LHS = BinOp->getOperand(0);
- Value *RHS = BinOp->getOperand(1);
- if (BinOp->isCommutative() && BinOp->getOperand(0) > BinOp->getOperand(1))
- std::swap(LHS, RHS);
- if (isa<OverflowingBinaryOperator>(BinOp)) {
- // Hash the overflow behavior
- unsigned Overflow =
- BinOp->hasNoSignedWrap() * OverflowingBinaryOperator::NoSignedWrap |
- BinOp->hasNoUnsignedWrap() *
- OverflowingBinaryOperator::NoUnsignedWrap;
- return hash_combine(BinOp->getOpcode(), Overflow, LHS, RHS);
- }
- return hash_combine(BinOp->getOpcode(), LHS, RHS);
- }
- if (CmpInst *CI = dyn_cast<CmpInst>(Inst)) {
- Value *LHS = CI->getOperand(0);
- Value *RHS = CI->getOperand(1);
- CmpInst::Predicate Pred = CI->getPredicate();
- if (Inst->getOperand(0) > Inst->getOperand(1)) {
- std::swap(LHS, RHS);
- Pred = CI->getSwappedPredicate();
- }
- return hash_combine(Inst->getOpcode(), Pred, LHS, RHS);
- }
- if (CastInst *CI = dyn_cast<CastInst>(Inst))
- return hash_combine(CI->getOpcode(), CI->getType(), CI->getOperand(0));
- if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(Inst))
- return hash_combine(EVI->getOpcode(), EVI->getOperand(0),
- hash_combine_range(EVI->idx_begin(), EVI->idx_end()));
- if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(Inst))
- return hash_combine(IVI->getOpcode(), IVI->getOperand(0),
- IVI->getOperand(1),
- hash_combine_range(IVI->idx_begin(), IVI->idx_end()));
- assert((isa<CallInst>(Inst) || isa<BinaryOperator>(Inst) ||
- isa<GetElementPtrInst>(Inst) || isa<SelectInst>(Inst) ||
- isa<ExtractElementInst>(Inst) || isa<InsertElementInst>(Inst) ||
- isa<ShuffleVectorInst>(Inst)) &&
- "Invalid/unknown instruction");
- // Mix in the opcode.
- return hash_combine(
- Inst->getOpcode(),
- hash_combine_range(Inst->value_op_begin(), Inst->value_op_end()));
- }
- bool DenseMapInfo<SimpleValue>::isEqual(SimpleValue LHS, SimpleValue RHS) {
- Instruction *LHSI = LHS.Inst, *RHSI = RHS.Inst;
- if (LHS.isSentinel() || RHS.isSentinel())
- return LHSI == RHSI;
- if (LHSI->getOpcode() != RHSI->getOpcode())
- return false;
- if (LHSI->isIdenticalTo(RHSI))
- return true;
- // If we're not strictly identical, we still might be a commutable instruction
- if (BinaryOperator *LHSBinOp = dyn_cast<BinaryOperator>(LHSI)) {
- if (!LHSBinOp->isCommutative())
- return false;
- assert(isa<BinaryOperator>(RHSI) &&
- "same opcode, but different instruction type?");
- BinaryOperator *RHSBinOp = cast<BinaryOperator>(RHSI);
- // Check overflow attributes
- if (isa<OverflowingBinaryOperator>(LHSBinOp)) {
- assert(isa<OverflowingBinaryOperator>(RHSBinOp) &&
- "same opcode, but different operator type?");
- if (LHSBinOp->hasNoUnsignedWrap() != RHSBinOp->hasNoUnsignedWrap() ||
- LHSBinOp->hasNoSignedWrap() != RHSBinOp->hasNoSignedWrap())
- return false;
- }
- // Commuted equality
- return LHSBinOp->getOperand(0) == RHSBinOp->getOperand(1) &&
- LHSBinOp->getOperand(1) == RHSBinOp->getOperand(0);
- }
- if (CmpInst *LHSCmp = dyn_cast<CmpInst>(LHSI)) {
- assert(isa<CmpInst>(RHSI) &&
- "same opcode, but different instruction type?");
- CmpInst *RHSCmp = cast<CmpInst>(RHSI);
- // Commuted equality
- return LHSCmp->getOperand(0) == RHSCmp->getOperand(1) &&
- LHSCmp->getOperand(1) == RHSCmp->getOperand(0) &&
- LHSCmp->getSwappedPredicate() == RHSCmp->getPredicate();
- }
- return false;
- }
- //===----------------------------------------------------------------------===//
- // CallValue
- //===----------------------------------------------------------------------===//
- namespace {
- /// \brief Struct representing the available call values in the scoped hash
- /// table.
- struct CallValue {
- Instruction *Inst;
- CallValue(Instruction *I) : Inst(I) {
- assert((isSentinel() || canHandle(I)) && "Inst can't be handled!");
- }
- bool isSentinel() const {
- return Inst == DenseMapInfo<Instruction *>::getEmptyKey() ||
- Inst == DenseMapInfo<Instruction *>::getTombstoneKey();
- }
- static bool canHandle(Instruction *Inst) {
- // Don't value number anything that returns void.
- if (Inst->getType()->isVoidTy())
- return false;
- CallInst *CI = dyn_cast<CallInst>(Inst);
- if (!CI || !CI->onlyReadsMemory())
- return false;
- return true;
- }
- };
- }
- namespace llvm {
- template <> struct DenseMapInfo<CallValue> {
- static inline CallValue getEmptyKey() {
- return DenseMapInfo<Instruction *>::getEmptyKey();
- }
- static inline CallValue getTombstoneKey() {
- return DenseMapInfo<Instruction *>::getTombstoneKey();
- }
- static unsigned getHashValue(CallValue Val);
- static bool isEqual(CallValue LHS, CallValue RHS);
- };
- }
- unsigned DenseMapInfo<CallValue>::getHashValue(CallValue Val) {
- Instruction *Inst = Val.Inst;
- // Hash all of the operands as pointers and mix in the opcode.
- return hash_combine(
- Inst->getOpcode(),
- hash_combine_range(Inst->value_op_begin(), Inst->value_op_end()));
- }
- bool DenseMapInfo<CallValue>::isEqual(CallValue LHS, CallValue RHS) {
- Instruction *LHSI = LHS.Inst, *RHSI = RHS.Inst;
- if (LHS.isSentinel() || RHS.isSentinel())
- return LHSI == RHSI;
- return LHSI->isIdenticalTo(RHSI);
- }
- //===----------------------------------------------------------------------===//
- // EarlyCSE implementation
- //===----------------------------------------------------------------------===//
- namespace {
- /// \brief A simple and fast domtree-based CSE pass.
- ///
- /// This pass does a simple depth-first walk over the dominator tree,
- /// eliminating trivially redundant instructions and using instsimplify to
- /// canonicalize things as it goes. It is intended to be fast and catch obvious
- /// cases so that instcombine and other passes are more effective. It is
- /// expected that a later pass of GVN will catch the interesting/hard cases.
- class EarlyCSE {
- public:
- Function &F;
- const TargetLibraryInfo &TLI;
- const TargetTransformInfo &TTI;
- DominatorTree &DT;
- AssumptionCache &AC;
- typedef RecyclingAllocator<
- BumpPtrAllocator, ScopedHashTableVal<SimpleValue, Value *>> AllocatorTy;
- typedef ScopedHashTable<SimpleValue, Value *, DenseMapInfo<SimpleValue>,
- AllocatorTy> ScopedHTType;
- /// \brief A scoped hash table of the current values of all of our simple
- /// scalar expressions.
- ///
- /// As we walk down the domtree, we look to see if instructions are in this:
- /// if so, we replace them with what we find, otherwise we insert them so
- /// that dominated values can succeed in their lookup.
- ScopedHTType AvailableValues;
- /// \brief A scoped hash table of the current values of loads.
- ///
- /// This allows us to get efficient access to dominating loads when we have
- /// a fully redundant load. In addition to the most recent load, we keep
- /// track of a generation count of the read, which is compared against the
- /// current generation count. The current generation count is incremented
- /// after every possibly writing memory operation, which ensures that we only
- /// CSE loads with other loads that have no intervening store.
- typedef RecyclingAllocator<
- BumpPtrAllocator,
- ScopedHashTableVal<Value *, std::pair<Value *, unsigned>>>
- LoadMapAllocator;
- typedef ScopedHashTable<Value *, std::pair<Value *, unsigned>,
- DenseMapInfo<Value *>, LoadMapAllocator> LoadHTType;
- LoadHTType AvailableLoads;
- /// \brief A scoped hash table of the current values of read-only call
- /// values.
- ///
- /// It uses the same generation count as loads.
- typedef ScopedHashTable<CallValue, std::pair<Value *, unsigned>> CallHTType;
- CallHTType AvailableCalls;
- /// \brief This is the current generation of the memory value.
- unsigned CurrentGeneration;
- /// \brief Set up the EarlyCSE runner for a particular function.
- EarlyCSE(Function &F, const TargetLibraryInfo &TLI,
- const TargetTransformInfo &TTI, DominatorTree &DT,
- AssumptionCache &AC)
- : F(F), TLI(TLI), TTI(TTI), DT(DT), AC(AC), CurrentGeneration(0) {}
- bool run();
- private:
- // Almost a POD, but needs to call the constructors for the scoped hash
- // tables so that a new scope gets pushed on. These are RAII so that the
- // scope gets popped when the NodeScope is destroyed.
- class NodeScope {
- public:
- NodeScope(ScopedHTType &AvailableValues, LoadHTType &AvailableLoads,
- CallHTType &AvailableCalls)
- : Scope(AvailableValues), LoadScope(AvailableLoads),
- CallScope(AvailableCalls) {}
- private:
- NodeScope(const NodeScope &) = delete;
- void operator=(const NodeScope &) = delete;
- ScopedHTType::ScopeTy Scope;
- LoadHTType::ScopeTy LoadScope;
- CallHTType::ScopeTy CallScope;
- };
- // Contains all the needed information to create a stack for doing a depth
- // first tranversal of the tree. This includes scopes for values, loads, and
- // calls as well as the generation. There is a child iterator so that the
- // children do not need to be store spearately.
- class StackNode {
- public:
- StackNode(ScopedHTType &AvailableValues, LoadHTType &AvailableLoads,
- CallHTType &AvailableCalls, unsigned cg, DomTreeNode *n,
- DomTreeNode::iterator child, DomTreeNode::iterator end)
- : CurrentGeneration(cg), ChildGeneration(cg), Node(n), ChildIter(child),
- EndIter(end), Scopes(AvailableValues, AvailableLoads, AvailableCalls),
- Processed(false) {}
- // Accessors.
- unsigned currentGeneration() { return CurrentGeneration; }
- unsigned childGeneration() { return ChildGeneration; }
- void childGeneration(unsigned generation) { ChildGeneration = generation; }
- DomTreeNode *node() { return Node; }
- DomTreeNode::iterator childIter() { return ChildIter; }
- DomTreeNode *nextChild() {
- DomTreeNode *child = *ChildIter;
- ++ChildIter;
- return child;
- }
- DomTreeNode::iterator end() { return EndIter; }
- bool isProcessed() { return Processed; }
- void process() { Processed = true; }
- private:
- StackNode(const StackNode &) = delete;
- void operator=(const StackNode &) = delete;
- // Members.
- unsigned CurrentGeneration;
- unsigned ChildGeneration;
- DomTreeNode *Node;
- DomTreeNode::iterator ChildIter;
- DomTreeNode::iterator EndIter;
- NodeScope Scopes;
- bool Processed;
- };
- /// \brief Wrapper class to handle memory instructions, including loads,
- /// stores and intrinsic loads and stores defined by the target.
- class ParseMemoryInst {
- public:
- ParseMemoryInst(Instruction *Inst, const TargetTransformInfo &TTI)
- : Load(false), Store(false), Vol(false), MayReadFromMemory(false),
- MayWriteToMemory(false), MatchingId(-1), Ptr(nullptr) {
- MayReadFromMemory = Inst->mayReadFromMemory();
- MayWriteToMemory = Inst->mayWriteToMemory();
- if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
- MemIntrinsicInfo Info;
- if (!TTI.getTgtMemIntrinsic(II, Info))
- return;
- if (Info.NumMemRefs == 1) {
- Store = Info.WriteMem;
- Load = Info.ReadMem;
- MatchingId = Info.MatchingId;
- MayReadFromMemory = Info.ReadMem;
- MayWriteToMemory = Info.WriteMem;
- Vol = Info.Vol;
- Ptr = Info.PtrVal;
- }
- } else if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) {
- Load = true;
- Vol = !LI->isSimple();
- Ptr = LI->getPointerOperand();
- } else if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
- Store = true;
- Vol = !SI->isSimple();
- Ptr = SI->getPointerOperand();
- }
- }
- bool isLoad() { return Load; }
- bool isStore() { return Store; }
- bool isVolatile() { return Vol; }
- bool isMatchingMemLoc(const ParseMemoryInst &Inst) {
- return Ptr == Inst.Ptr && MatchingId == Inst.MatchingId;
- }
- bool isValid() { return Ptr != nullptr; }
- int getMatchingId() { return MatchingId; }
- Value *getPtr() { return Ptr; }
- bool mayReadFromMemory() { return MayReadFromMemory; }
- bool mayWriteToMemory() { return MayWriteToMemory; }
- private:
- bool Load;
- bool Store;
- bool Vol;
- bool MayReadFromMemory;
- bool MayWriteToMemory;
- // For regular (non-intrinsic) loads/stores, this is set to -1. For
- // intrinsic loads/stores, the id is retrieved from the corresponding
- // field in the MemIntrinsicInfo structure. That field contains
- // non-negative values only.
- int MatchingId;
- Value *Ptr;
- };
- bool processNode(DomTreeNode *Node);
- Value *getOrCreateResult(Value *Inst, Type *ExpectedType) const {
- if (LoadInst *LI = dyn_cast<LoadInst>(Inst))
- return LI;
- else if (StoreInst *SI = dyn_cast<StoreInst>(Inst))
- return SI->getValueOperand();
- assert(isa<IntrinsicInst>(Inst) && "Instruction not supported");
- return TTI.getOrCreateResultFromMemIntrinsic(cast<IntrinsicInst>(Inst),
- ExpectedType);
- }
- };
- }
- bool EarlyCSE::processNode(DomTreeNode *Node) {
- BasicBlock *BB = Node->getBlock();
- // If this block has a single predecessor, then the predecessor is the parent
- // of the domtree node and all of the live out memory values are still current
- // in this block. If this block has multiple predecessors, then they could
- // have invalidated the live-out memory values of our parent value. For now,
- // just be conservative and invalidate memory if this block has multiple
- // predecessors.
- if (!BB->getSinglePredecessor())
- ++CurrentGeneration;
- // If this node has a single predecessor which ends in a conditional branch,
- // we can infer the value of the branch condition given that we took this
- // path. We need the single predeccesor to ensure there's not another path
- // which reaches this block where the condition might hold a different
- // value. Since we're adding this to the scoped hash table (like any other
- // def), it will have been popped if we encounter a future merge block.
- if (BasicBlock *Pred = BB->getSinglePredecessor())
- if (auto *BI = dyn_cast<BranchInst>(Pred->getTerminator()))
- if (BI->isConditional())
- if (auto *CondInst = dyn_cast<Instruction>(BI->getCondition()))
- if (SimpleValue::canHandle(CondInst)) {
- assert(BI->getSuccessor(0) == BB || BI->getSuccessor(1) == BB);
- auto *ConditionalConstant = (BI->getSuccessor(0) == BB) ?
- ConstantInt::getTrue(BB->getContext()) :
- ConstantInt::getFalse(BB->getContext());
- AvailableValues.insert(CondInst, ConditionalConstant);
- DEBUG(dbgs() << "EarlyCSE CVP: Add conditional value for '"
- << CondInst->getName() << "' as " << *ConditionalConstant
- << " in " << BB->getName() << "\n");
- // Replace all dominated uses with the known value
- replaceDominatedUsesWith(CondInst, ConditionalConstant, DT,
- BasicBlockEdge(Pred, BB));
- }
- /// LastStore - Keep track of the last non-volatile store that we saw... for
- /// as long as there in no instruction that reads memory. If we see a store
- /// to the same location, we delete the dead store. This zaps trivial dead
- /// stores which can occur in bitfield code among other things.
- Instruction *LastStore = nullptr;
- bool Changed = false;
- const DataLayout &DL = BB->getModule()->getDataLayout();
- // See if any instructions in the block can be eliminated. If so, do it. If
- // not, add them to AvailableValues.
- for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) {
- Instruction *Inst = I++;
- // Dead instructions should just be removed.
- if (isInstructionTriviallyDead(Inst, &TLI)) {
- DEBUG(dbgs() << "EarlyCSE DCE: " << *Inst << '\n');
- Inst->eraseFromParent();
- Changed = true;
- ++NumSimplify;
- continue;
- }
- // Skip assume intrinsics, they don't really have side effects (although
- // they're marked as such to ensure preservation of control dependencies),
- // and this pass will not disturb any of the assumption's control
- // dependencies.
- if (match(Inst, m_Intrinsic<Intrinsic::assume>())) {
- DEBUG(dbgs() << "EarlyCSE skipping assumption: " << *Inst << '\n');
- continue;
- }
- // If the instruction can be simplified (e.g. X+0 = X) then replace it with
- // its simpler value.
- if (Value *V = SimplifyInstruction(Inst, DL, &TLI, &DT, &AC)) {
- DEBUG(dbgs() << "EarlyCSE Simplify: " << *Inst << " to: " << *V << '\n');
- Inst->replaceAllUsesWith(V);
- Inst->eraseFromParent();
- Changed = true;
- ++NumSimplify;
- continue;
- }
- // If this is a simple instruction that we can value number, process it.
- if (SimpleValue::canHandle(Inst)) {
- // See if the instruction has an available value. If so, use it.
- if (Value *V = AvailableValues.lookup(Inst)) {
- DEBUG(dbgs() << "EarlyCSE CSE: " << *Inst << " to: " << *V << '\n');
- Inst->replaceAllUsesWith(V);
- Inst->eraseFromParent();
- Changed = true;
- ++NumCSE;
- continue;
- }
- // Otherwise, just remember that this value is available.
- AvailableValues.insert(Inst, Inst);
- continue;
- }
- ParseMemoryInst MemInst(Inst, TTI);
- // If this is a non-volatile load, process it.
- if (MemInst.isValid() && MemInst.isLoad()) {
- // Ignore volatile loads.
- if (MemInst.isVolatile()) {
- LastStore = nullptr;
- // Don't CSE across synchronization boundaries.
- if (Inst->mayWriteToMemory())
- ++CurrentGeneration;
- continue;
- }
- // If we have an available version of this load, and if it is the right
- // generation, replace this instruction.
- std::pair<Value *, unsigned> InVal =
- AvailableLoads.lookup(MemInst.getPtr());
- if (InVal.first != nullptr && InVal.second == CurrentGeneration) {
- Value *Op = getOrCreateResult(InVal.first, Inst->getType());
- if (Op != nullptr) {
- DEBUG(dbgs() << "EarlyCSE CSE LOAD: " << *Inst
- << " to: " << *InVal.first << '\n');
- if (!Inst->use_empty())
- Inst->replaceAllUsesWith(Op);
- Inst->eraseFromParent();
- Changed = true;
- ++NumCSELoad;
- continue;
- }
- }
- // Otherwise, remember that we have this instruction.
- AvailableLoads.insert(MemInst.getPtr(), std::pair<Value *, unsigned>(
- Inst, CurrentGeneration));
- LastStore = nullptr;
- continue;
- }
- // If this instruction may read from memory, forget LastStore.
- // Load/store intrinsics will indicate both a read and a write to
- // memory. The target may override this (e.g. so that a store intrinsic
- // does not read from memory, and thus will be treated the same as a
- // regular store for commoning purposes).
- if (Inst->mayReadFromMemory() &&
- !(MemInst.isValid() && !MemInst.mayReadFromMemory()))
- LastStore = nullptr;
- // If this is a read-only call, process it.
- if (CallValue::canHandle(Inst)) {
- // If we have an available version of this call, and if it is the right
- // generation, replace this instruction.
- std::pair<Value *, unsigned> InVal = AvailableCalls.lookup(Inst);
- if (InVal.first != nullptr && InVal.second == CurrentGeneration) {
- DEBUG(dbgs() << "EarlyCSE CSE CALL: " << *Inst
- << " to: " << *InVal.first << '\n');
- if (!Inst->use_empty())
- Inst->replaceAllUsesWith(InVal.first);
- Inst->eraseFromParent();
- Changed = true;
- ++NumCSECall;
- continue;
- }
- // Otherwise, remember that we have this instruction.
- AvailableCalls.insert(
- Inst, std::pair<Value *, unsigned>(Inst, CurrentGeneration));
- continue;
- }
- // Okay, this isn't something we can CSE at all. Check to see if it is
- // something that could modify memory. If so, our available memory values
- // cannot be used so bump the generation count.
- if (Inst->mayWriteToMemory()) {
- ++CurrentGeneration;
- if (MemInst.isValid() && MemInst.isStore()) {
- // We do a trivial form of DSE if there are two stores to the same
- // location with no intervening loads. Delete the earlier store.
- if (LastStore) {
- ParseMemoryInst LastStoreMemInst(LastStore, TTI);
- if (LastStoreMemInst.isMatchingMemLoc(MemInst)) {
- DEBUG(dbgs() << "EarlyCSE DEAD STORE: " << *LastStore
- << " due to: " << *Inst << '\n');
- LastStore->eraseFromParent();
- Changed = true;
- ++NumDSE;
- LastStore = nullptr;
- }
- // fallthrough - we can exploit information about this store
- }
- // Okay, we just invalidated anything we knew about loaded values. Try
- // to salvage *something* by remembering that the stored value is a live
- // version of the pointer. It is safe to forward from volatile stores
- // to non-volatile loads, so we don't have to check for volatility of
- // the store.
- AvailableLoads.insert(MemInst.getPtr(), std::pair<Value *, unsigned>(
- Inst, CurrentGeneration));
- // Remember that this was the last store we saw for DSE.
- if (!MemInst.isVolatile())
- LastStore = Inst;
- }
- }
- }
- return Changed;
- }
- bool EarlyCSE::run() {
- // Note, deque is being used here because there is significant performance
- // gains over vector when the container becomes very large due to the
- // specific access patterns. For more information see the mailing list
- // discussion on this:
- // http://lists.llvm.org/pipermail/llvm-commits/Week-of-Mon-20120116/135228.html
- std::deque<StackNode *> nodesToProcess;
- bool Changed = false;
- // Process the root node.
- nodesToProcess.push_back(new StackNode(
- AvailableValues, AvailableLoads, AvailableCalls, CurrentGeneration,
- DT.getRootNode(), DT.getRootNode()->begin(), DT.getRootNode()->end()));
- // Save the current generation.
- unsigned LiveOutGeneration = CurrentGeneration;
- // Process the stack.
- while (!nodesToProcess.empty()) {
- // Grab the first item off the stack. Set the current generation, remove
- // the node from the stack, and process it.
- StackNode *NodeToProcess = nodesToProcess.back();
- // Initialize class members.
- CurrentGeneration = NodeToProcess->currentGeneration();
- // Check if the node needs to be processed.
- if (!NodeToProcess->isProcessed()) {
- // Process the node.
- Changed |= processNode(NodeToProcess->node());
- NodeToProcess->childGeneration(CurrentGeneration);
- NodeToProcess->process();
- } else if (NodeToProcess->childIter() != NodeToProcess->end()) {
- // Push the next child onto the stack.
- DomTreeNode *child = NodeToProcess->nextChild();
- nodesToProcess.push_back(
- new StackNode(AvailableValues, AvailableLoads, AvailableCalls,
- NodeToProcess->childGeneration(), child, child->begin(),
- child->end()));
- } else {
- // It has been processed, and there are no more children to process,
- // so delete it and pop it off the stack.
- delete NodeToProcess;
- nodesToProcess.pop_back();
- }
- } // while (!nodes...)
- // Reset the current generation.
- CurrentGeneration = LiveOutGeneration;
- return Changed;
- }
- PreservedAnalyses EarlyCSEPass::run(Function &F,
- AnalysisManager<Function> *AM) {
- auto &TLI = AM->getResult<TargetLibraryAnalysis>(F);
- auto &TTI = AM->getResult<TargetIRAnalysis>(F);
- auto &DT = AM->getResult<DominatorTreeAnalysis>(F);
- auto &AC = AM->getResult<AssumptionAnalysis>(F);
- EarlyCSE CSE(F, TLI, TTI, DT, AC);
- if (!CSE.run())
- return PreservedAnalyses::all();
- // CSE preserves the dominator tree because it doesn't mutate the CFG.
- // FIXME: Bundle this with other CFG-preservation.
- PreservedAnalyses PA;
- PA.preserve<DominatorTreeAnalysis>();
- return PA;
- }
- namespace {
- /// \brief A simple and fast domtree-based CSE pass.
- ///
- /// This pass does a simple depth-first walk over the dominator tree,
- /// eliminating trivially redundant instructions and using instsimplify to
- /// canonicalize things as it goes. It is intended to be fast and catch obvious
- /// cases so that instcombine and other passes are more effective. It is
- /// expected that a later pass of GVN will catch the interesting/hard cases.
- class EarlyCSELegacyPass : public FunctionPass {
- public:
- static char ID;
- EarlyCSELegacyPass() : FunctionPass(ID) {
- initializeEarlyCSELegacyPassPass(*PassRegistry::getPassRegistry());
- }
- bool runOnFunction(Function &F) override {
- if (skipOptnoneFunction(F))
- return false;
- auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
- auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
- auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
- auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
- EarlyCSE CSE(F, TLI, TTI, DT, AC);
- return CSE.run();
- }
- void getAnalysisUsage(AnalysisUsage &AU) const override {
- AU.addRequired<AssumptionCacheTracker>();
- AU.addRequired<DominatorTreeWrapperPass>();
- AU.addRequired<TargetLibraryInfoWrapperPass>();
- AU.addRequired<TargetTransformInfoWrapperPass>();
- AU.setPreservesCFG();
- }
- };
- }
- char EarlyCSELegacyPass::ID = 0;
- FunctionPass *llvm::createEarlyCSEPass() { return new EarlyCSELegacyPass(); }
- INITIALIZE_PASS_BEGIN(EarlyCSELegacyPass, "early-cse", "Early CSE", false,
- false)
- INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
- INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
- INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
- INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
- INITIALIZE_PASS_END(EarlyCSELegacyPass, "early-cse", "Early CSE", false, false)
|