| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613 |
- //===- LoopRotation.cpp - Loop Rotation Pass ------------------------------===//
- //
- // The LLVM Compiler Infrastructure
- //
- // This file is distributed under the University of Illinois Open Source
- // License. See LICENSE.TXT for details.
- //
- //===----------------------------------------------------------------------===//
- //
- // This file implements Loop Rotation Pass.
- //
- //===----------------------------------------------------------------------===//
- #include "llvm/Transforms/Scalar.h"
- #include "llvm/ADT/Statistic.h"
- #include "llvm/Analysis/AssumptionCache.h"
- #include "llvm/Analysis/CodeMetrics.h"
- #include "llvm/Analysis/InstructionSimplify.h"
- #include "llvm/Analysis/LoopPass.h"
- #include "llvm/Analysis/ScalarEvolution.h"
- #include "llvm/Analysis/TargetTransformInfo.h"
- #include "llvm/Analysis/ValueTracking.h"
- #include "llvm/IR/CFG.h"
- #include "llvm/IR/Dominators.h"
- #include "llvm/IR/Function.h"
- #include "llvm/IR/IntrinsicInst.h"
- #include "llvm/IR/Module.h"
- #include "llvm/Support/CommandLine.h"
- #include "llvm/Support/Debug.h"
- #include "llvm/Support/raw_ostream.h"
- #include "llvm/Transforms/Utils/BasicBlockUtils.h"
- #include "llvm/Transforms/Utils/Local.h"
- #include "llvm/Transforms/Utils/SSAUpdater.h"
- #include "llvm/Transforms/Utils/ValueMapper.h"
- using namespace llvm;
- #define DEBUG_TYPE "loop-rotate"
- #if 0 // HLSL Change Starts - option pending
- static cl::opt<unsigned>
- DefaultRotationThreshold("rotation-max-header-size", cl::init(16), cl::Hidden,
- cl::desc("The default maximum header size for automatic loop rotation"));
- #else
- static const unsigned DefaultRotationThreshold = 16;
- #endif // HLSL Change Ends
- STATISTIC(NumRotated, "Number of loops rotated");
- namespace {
- class LoopRotate : public LoopPass {
- public:
- static char ID; // Pass ID, replacement for typeid
- LoopRotate(int SpecifiedMaxHeaderSize = -1) : LoopPass(ID) {
- initializeLoopRotatePass(*PassRegistry::getPassRegistry());
- if (SpecifiedMaxHeaderSize == -1)
- MaxHeaderSize = DefaultRotationThreshold;
- else
- MaxHeaderSize = unsigned(SpecifiedMaxHeaderSize);
- }
- // LCSSA form makes instruction renaming easier.
- void getAnalysisUsage(AnalysisUsage &AU) const override {
- AU.addRequired<AssumptionCacheTracker>();
- AU.addPreserved<DominatorTreeWrapperPass>();
- AU.addRequired<LoopInfoWrapperPass>();
- AU.addPreserved<LoopInfoWrapperPass>();
- AU.addRequiredID(LoopSimplifyID);
- AU.addPreservedID(LoopSimplifyID);
- AU.addRequiredID(LCSSAID);
- AU.addPreservedID(LCSSAID);
- AU.addPreserved<ScalarEvolution>();
- AU.addRequired<TargetTransformInfoWrapperPass>();
- }
- bool runOnLoop(Loop *L, LPPassManager &LPM) override;
- bool simplifyLoopLatch(Loop *L);
- bool rotateLoop(Loop *L, bool SimplifiedLatch);
- private:
- unsigned MaxHeaderSize;
- LoopInfo *LI;
- const TargetTransformInfo *TTI;
- AssumptionCache *AC;
- DominatorTree *DT;
- };
- }
- char LoopRotate::ID = 0;
- INITIALIZE_PASS_BEGIN(LoopRotate, "loop-rotate", "Rotate Loops", false, false)
- INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
- INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
- INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
- INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
- INITIALIZE_PASS_DEPENDENCY(LCSSA)
- INITIALIZE_PASS_END(LoopRotate, "loop-rotate", "Rotate Loops", false, false)
- Pass *llvm::createLoopRotatePass(int MaxHeaderSize) {
- return new LoopRotate(MaxHeaderSize);
- }
- /// Rotate Loop L as many times as possible. Return true if
- /// the loop is rotated at least once.
- bool LoopRotate::runOnLoop(Loop *L, LPPassManager &LPM) {
- if (skipOptnoneFunction(L))
- return false;
- // Save the loop metadata.
- MDNode *LoopMD = L->getLoopID();
- Function &F = *L->getHeader()->getParent();
- LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
- TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
- AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
- auto *DTWP = getAnalysisIfAvailable<DominatorTreeWrapperPass>();
- DT = DTWP ? &DTWP->getDomTree() : nullptr;
- // Simplify the loop latch before attempting to rotate the header
- // upward. Rotation may not be needed if the loop tail can be folded into the
- // loop exit.
- bool SimplifiedLatch = simplifyLoopLatch(L);
- // One loop can be rotated multiple times.
- bool MadeChange = false;
- while (rotateLoop(L, SimplifiedLatch)) {
- MadeChange = true;
- SimplifiedLatch = false;
- }
- // Restore the loop metadata.
- // NB! We presume LoopRotation DOESN'T ADD its own metadata.
- if ((MadeChange || SimplifiedLatch) && LoopMD)
- L->setLoopID(LoopMD);
- return MadeChange;
- }
- /// RewriteUsesOfClonedInstructions - We just cloned the instructions from the
- /// old header into the preheader. If there were uses of the values produced by
- /// these instruction that were outside of the loop, we have to insert PHI nodes
- /// to merge the two values. Do this now.
- static void RewriteUsesOfClonedInstructions(BasicBlock *OrigHeader,
- BasicBlock *OrigPreheader,
- ValueToValueMapTy &ValueMap) {
- // Remove PHI node entries that are no longer live.
- BasicBlock::iterator I, E = OrigHeader->end();
- for (I = OrigHeader->begin(); PHINode *PN = dyn_cast<PHINode>(I); ++I)
- PN->removeIncomingValue(PN->getBasicBlockIndex(OrigPreheader));
- // Now fix up users of the instructions in OrigHeader, inserting PHI nodes
- // as necessary.
- SSAUpdater SSA;
- for (I = OrigHeader->begin(); I != E; ++I) {
- Value *OrigHeaderVal = I;
- // If there are no uses of the value (e.g. because it returns void), there
- // is nothing to rewrite.
- if (OrigHeaderVal->use_empty())
- continue;
- Value *OrigPreHeaderVal = ValueMap[OrigHeaderVal];
- // The value now exits in two versions: the initial value in the preheader
- // and the loop "next" value in the original header.
- SSA.Initialize(OrigHeaderVal->getType(), OrigHeaderVal->getName());
- SSA.AddAvailableValue(OrigHeader, OrigHeaderVal);
- SSA.AddAvailableValue(OrigPreheader, OrigPreHeaderVal);
- // Visit each use of the OrigHeader instruction.
- for (Value::use_iterator UI = OrigHeaderVal->use_begin(),
- UE = OrigHeaderVal->use_end(); UI != UE; ) {
- // Grab the use before incrementing the iterator.
- Use &U = *UI;
- // Increment the iterator before removing the use from the list.
- ++UI;
- // SSAUpdater can't handle a non-PHI use in the same block as an
- // earlier def. We can easily handle those cases manually.
- Instruction *UserInst = cast<Instruction>(U.getUser());
- if (!isa<PHINode>(UserInst)) {
- BasicBlock *UserBB = UserInst->getParent();
- // The original users in the OrigHeader are already using the
- // original definitions.
- if (UserBB == OrigHeader)
- continue;
- // Users in the OrigPreHeader need to use the value to which the
- // original definitions are mapped.
- if (UserBB == OrigPreheader) {
- U = OrigPreHeaderVal;
- continue;
- }
- }
- // Anything else can be handled by SSAUpdater.
- SSA.RewriteUse(U);
- }
- }
- }
- /// Determine whether the instructions in this range may be safely and cheaply
- /// speculated. This is not an important enough situation to develop complex
- /// heuristics. We handle a single arithmetic instruction along with any type
- /// conversions.
- static bool shouldSpeculateInstrs(BasicBlock::iterator Begin,
- BasicBlock::iterator End, Loop *L) {
- bool seenIncrement = false;
- bool MultiExitLoop = false;
- if (!L->getExitingBlock())
- MultiExitLoop = true;
- for (BasicBlock::iterator I = Begin; I != End; ++I) {
- if (!isSafeToSpeculativelyExecute(I))
- return false;
- if (isa<DbgInfoIntrinsic>(I))
- continue;
- switch (I->getOpcode()) {
- default:
- return false;
- case Instruction::GetElementPtr:
- // GEPs are cheap if all indices are constant.
- if (!cast<GEPOperator>(I)->hasAllConstantIndices())
- return false;
- // fall-thru to increment case
- case Instruction::Add:
- case Instruction::Sub:
- case Instruction::And:
- case Instruction::Or:
- case Instruction::Xor:
- case Instruction::Shl:
- case Instruction::LShr:
- case Instruction::AShr: {
- Value *IVOpnd = !isa<Constant>(I->getOperand(0))
- ? I->getOperand(0)
- : !isa<Constant>(I->getOperand(1))
- ? I->getOperand(1)
- : nullptr;
- if (!IVOpnd)
- return false;
- // If increment operand is used outside of the loop, this speculation
- // could cause extra live range interference.
- if (MultiExitLoop) {
- for (User *UseI : IVOpnd->users()) {
- auto *UserInst = cast<Instruction>(UseI);
- if (!L->contains(UserInst))
- return false;
- }
- }
- if (seenIncrement)
- return false;
- seenIncrement = true;
- break;
- }
- case Instruction::Trunc:
- case Instruction::ZExt:
- case Instruction::SExt:
- // ignore type conversions
- break;
- }
- }
- return true;
- }
- /// Fold the loop tail into the loop exit by speculating the loop tail
- /// instructions. Typically, this is a single post-increment. In the case of a
- /// simple 2-block loop, hoisting the increment can be much better than
- /// duplicating the entire loop header. In the case of loops with early exits,
- /// rotation will not work anyway, but simplifyLoopLatch will put the loop in
- /// canonical form so downstream passes can handle it.
- ///
- /// I don't believe this invalidates SCEV.
- bool LoopRotate::simplifyLoopLatch(Loop *L) {
- BasicBlock *Latch = L->getLoopLatch();
- if (!Latch || Latch->hasAddressTaken())
- return false;
- BranchInst *Jmp = dyn_cast<BranchInst>(Latch->getTerminator());
- if (!Jmp || !Jmp->isUnconditional())
- return false;
- BasicBlock *LastExit = Latch->getSinglePredecessor();
- if (!LastExit || !L->isLoopExiting(LastExit))
- return false;
- BranchInst *BI = dyn_cast<BranchInst>(LastExit->getTerminator());
- if (!BI)
- return false;
- if (!shouldSpeculateInstrs(Latch->begin(), Jmp, L))
- return false;
- DEBUG(dbgs() << "Folding loop latch " << Latch->getName() << " into "
- << LastExit->getName() << "\n");
- // Hoist the instructions from Latch into LastExit.
- LastExit->getInstList().splice(BI, Latch->getInstList(), Latch->begin(), Jmp);
- unsigned FallThruPath = BI->getSuccessor(0) == Latch ? 0 : 1;
- BasicBlock *Header = Jmp->getSuccessor(0);
- assert(Header == L->getHeader() && "expected a backward branch");
- // Remove Latch from the CFG so that LastExit becomes the new Latch.
- BI->setSuccessor(FallThruPath, Header);
- Latch->replaceSuccessorsPhiUsesWith(LastExit);
- Jmp->eraseFromParent();
- // Nuke the Latch block.
- assert(Latch->empty() && "unable to evacuate Latch");
- LI->removeBlock(Latch);
- if (DT)
- DT->eraseNode(Latch);
- Latch->eraseFromParent();
- return true;
- }
- /// Rotate loop LP. Return true if the loop is rotated.
- ///
- /// \param SimplifiedLatch is true if the latch was just folded into the final
- /// loop exit. In this case we may want to rotate even though the new latch is
- /// now an exiting branch. This rotation would have happened had the latch not
- /// been simplified. However, if SimplifiedLatch is false, then we avoid
- /// rotating loops in which the latch exits to avoid excessive or endless
- /// rotation. LoopRotate should be repeatable and converge to a canonical
- /// form. This property is satisfied because simplifying the loop latch can only
- /// happen once across multiple invocations of the LoopRotate pass.
- bool LoopRotate::rotateLoop(Loop *L, bool SimplifiedLatch) {
- // If the loop has only one block then there is not much to rotate.
- if (L->getBlocks().size() == 1)
- return false;
- BasicBlock *OrigHeader = L->getHeader();
- BasicBlock *OrigLatch = L->getLoopLatch();
- BranchInst *BI = dyn_cast<BranchInst>(OrigHeader->getTerminator());
- if (!BI || BI->isUnconditional())
- return false;
- // If the loop header is not one of the loop exiting blocks then
- // either this loop is already rotated or it is not
- // suitable for loop rotation transformations.
- if (!L->isLoopExiting(OrigHeader))
- return false;
- // If the loop latch already contains a branch that leaves the loop then the
- // loop is already rotated.
- if (!OrigLatch)
- return false;
- // Rotate if either the loop latch does *not* exit the loop, or if the loop
- // latch was just simplified.
- if (L->isLoopExiting(OrigLatch) && !SimplifiedLatch)
- return false;
- // Check size of original header and reject loop if it is very big or we can't
- // duplicate blocks inside it.
- {
- SmallPtrSet<const Value *, 32> EphValues;
- CodeMetrics::collectEphemeralValues(L, AC, EphValues);
- CodeMetrics Metrics;
- Metrics.analyzeBasicBlock(OrigHeader, *TTI, EphValues);
- if (Metrics.notDuplicatable) {
- DEBUG(dbgs() << "LoopRotation: NOT rotating - contains non-duplicatable"
- << " instructions: "; L->dump());
- return false;
- }
- if (Metrics.NumInsts > MaxHeaderSize)
- return false;
- }
- // Now, this loop is suitable for rotation.
- BasicBlock *OrigPreheader = L->getLoopPreheader();
- // If the loop could not be converted to canonical form, it must have an
- // indirectbr in it, just give up.
- if (!OrigPreheader)
- return false;
- // Anything ScalarEvolution may know about this loop or the PHI nodes
- // in its header will soon be invalidated.
- if (ScalarEvolution *SE = getAnalysisIfAvailable<ScalarEvolution>())
- SE->forgetLoop(L);
- DEBUG(dbgs() << "LoopRotation: rotating "; L->dump());
- // Find new Loop header. NewHeader is a Header's one and only successor
- // that is inside loop. Header's other successor is outside the
- // loop. Otherwise loop is not suitable for rotation.
- BasicBlock *Exit = BI->getSuccessor(0);
- BasicBlock *NewHeader = BI->getSuccessor(1);
- if (L->contains(Exit))
- std::swap(Exit, NewHeader);
- assert(NewHeader && "Unable to determine new loop header");
- assert(L->contains(NewHeader) && !L->contains(Exit) &&
- "Unable to determine loop header and exit blocks");
- // This code assumes that the new header has exactly one predecessor.
- // Remove any single-entry PHI nodes in it.
- assert(NewHeader->getSinglePredecessor() &&
- "New header doesn't have one pred!");
- FoldSingleEntryPHINodes(NewHeader);
- // Begin by walking OrigHeader and populating ValueMap with an entry for
- // each Instruction.
- BasicBlock::iterator I = OrigHeader->begin(), E = OrigHeader->end();
- ValueToValueMapTy ValueMap;
- // For PHI nodes, the value available in OldPreHeader is just the
- // incoming value from OldPreHeader.
- for (; PHINode *PN = dyn_cast<PHINode>(I); ++I)
- ValueMap[PN] = PN->getIncomingValueForBlock(OrigPreheader);
- const DataLayout &DL = L->getHeader()->getModule()->getDataLayout();
- // For the rest of the instructions, either hoist to the OrigPreheader if
- // possible or create a clone in the OldPreHeader if not.
- TerminatorInst *LoopEntryBranch = OrigPreheader->getTerminator();
- while (I != E) {
- Instruction *Inst = I++;
- // If the instruction's operands are invariant and it doesn't read or write
- // memory, then it is safe to hoist. Doing this doesn't change the order of
- // execution in the preheader, but does prevent the instruction from
- // executing in each iteration of the loop. This means it is safe to hoist
- // something that might trap, but isn't safe to hoist something that reads
- // memory (without proving that the loop doesn't write).
- if (L->hasLoopInvariantOperands(Inst) &&
- !Inst->mayReadFromMemory() && !Inst->mayWriteToMemory() &&
- !isa<TerminatorInst>(Inst) && !isa<DbgInfoIntrinsic>(Inst) &&
- !isa<AllocaInst>(Inst)) {
- Inst->moveBefore(LoopEntryBranch);
- continue;
- }
- // Otherwise, create a duplicate of the instruction.
- Instruction *C = Inst->clone();
- // Eagerly remap the operands of the instruction.
- RemapInstruction(C, ValueMap,
- RF_NoModuleLevelChanges|RF_IgnoreMissingEntries);
- // With the operands remapped, see if the instruction constant folds or is
- // otherwise simplifyable. This commonly occurs because the entry from PHI
- // nodes allows icmps and other instructions to fold.
- // FIXME: Provide TLI, DT, AC to SimplifyInstruction.
- Value *V = SimplifyInstruction(C, DL);
- if (V && LI->replacementPreservesLCSSAForm(C, V)) {
- // If so, then delete the temporary instruction and stick the folded value
- // in the map.
- delete C;
- ValueMap[Inst] = V;
- } else {
- // Otherwise, stick the new instruction into the new block!
- C->setName(Inst->getName());
- C->insertBefore(LoopEntryBranch);
- ValueMap[Inst] = C;
- }
- }
- // Along with all the other instructions, we just cloned OrigHeader's
- // terminator into OrigPreHeader. Fix up the PHI nodes in each of OrigHeader's
- // successors by duplicating their incoming values for OrigHeader.
- TerminatorInst *TI = OrigHeader->getTerminator();
- for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i)
- for (BasicBlock::iterator BI = TI->getSuccessor(i)->begin();
- PHINode *PN = dyn_cast<PHINode>(BI); ++BI)
- PN->addIncoming(PN->getIncomingValueForBlock(OrigHeader), OrigPreheader);
- // Now that OrigPreHeader has a clone of OrigHeader's terminator, remove
- // OrigPreHeader's old terminator (the original branch into the loop), and
- // remove the corresponding incoming values from the PHI nodes in OrigHeader.
- LoopEntryBranch->eraseFromParent();
- // If there were any uses of instructions in the duplicated block outside the
- // loop, update them, inserting PHI nodes as required
- RewriteUsesOfClonedInstructions(OrigHeader, OrigPreheader, ValueMap);
- // NewHeader is now the header of the loop.
- L->moveToHeader(NewHeader);
- assert(L->getHeader() == NewHeader && "Latch block is our new header");
- // At this point, we've finished our major CFG changes. As part of cloning
- // the loop into the preheader we've simplified instructions and the
- // duplicated conditional branch may now be branching on a constant. If it is
- // branching on a constant and if that constant means that we enter the loop,
- // then we fold away the cond branch to an uncond branch. This simplifies the
- // loop in cases important for nested loops, and it also means we don't have
- // to split as many edges.
- BranchInst *PHBI = cast<BranchInst>(OrigPreheader->getTerminator());
- assert(PHBI->isConditional() && "Should be clone of BI condbr!");
- if (!isa<ConstantInt>(PHBI->getCondition()) ||
- PHBI->getSuccessor(cast<ConstantInt>(PHBI->getCondition())->isZero())
- != NewHeader) {
- // The conditional branch can't be folded, handle the general case.
- // Update DominatorTree to reflect the CFG change we just made. Then split
- // edges as necessary to preserve LoopSimplify form.
- if (DT) {
- // Everything that was dominated by the old loop header is now dominated
- // by the original loop preheader. Conceptually the header was merged
- // into the preheader, even though we reuse the actual block as a new
- // loop latch.
- DomTreeNode *OrigHeaderNode = DT->getNode(OrigHeader);
- SmallVector<DomTreeNode *, 8> HeaderChildren(OrigHeaderNode->begin(),
- OrigHeaderNode->end());
- DomTreeNode *OrigPreheaderNode = DT->getNode(OrigPreheader);
- for (unsigned I = 0, E = HeaderChildren.size(); I != E; ++I)
- DT->changeImmediateDominator(HeaderChildren[I], OrigPreheaderNode);
- assert(DT->getNode(Exit)->getIDom() == OrigPreheaderNode);
- assert(DT->getNode(NewHeader)->getIDom() == OrigPreheaderNode);
- // Update OrigHeader to be dominated by the new header block.
- DT->changeImmediateDominator(OrigHeader, OrigLatch);
- }
- // Right now OrigPreHeader has two successors, NewHeader and ExitBlock, and
- // thus is not a preheader anymore.
- // Split the edge to form a real preheader.
- BasicBlock *NewPH = SplitCriticalEdge(
- OrigPreheader, NewHeader,
- CriticalEdgeSplittingOptions(DT, LI).setPreserveLCSSA());
- NewPH->setName(NewHeader->getName() + ".lr.ph");
- // Preserve canonical loop form, which means that 'Exit' should have only
- // one predecessor. Note that Exit could be an exit block for multiple
- // nested loops, causing both of the edges to now be critical and need to
- // be split.
- SmallVector<BasicBlock *, 4> ExitPreds(pred_begin(Exit), pred_end(Exit));
- bool SplitLatchEdge = false;
- for (SmallVectorImpl<BasicBlock *>::iterator PI = ExitPreds.begin(),
- PE = ExitPreds.end();
- PI != PE; ++PI) {
- // We only need to split loop exit edges.
- Loop *PredLoop = LI->getLoopFor(*PI);
- if (!PredLoop || PredLoop->contains(Exit))
- continue;
- if (isa<IndirectBrInst>((*PI)->getTerminator()))
- continue;
- SplitLatchEdge |= L->getLoopLatch() == *PI;
- BasicBlock *ExitSplit = SplitCriticalEdge(
- *PI, Exit, CriticalEdgeSplittingOptions(DT, LI).setPreserveLCSSA());
- ExitSplit->moveBefore(Exit);
- }
- assert(SplitLatchEdge &&
- "Despite splitting all preds, failed to split latch exit?");
- } else {
- // We can fold the conditional branch in the preheader, this makes things
- // simpler. The first step is to remove the extra edge to the Exit block.
- Exit->removePredecessor(OrigPreheader, true /*preserve LCSSA*/);
- BranchInst *NewBI = BranchInst::Create(NewHeader, PHBI);
- NewBI->setDebugLoc(PHBI->getDebugLoc());
- PHBI->eraseFromParent();
- // With our CFG finalized, update DomTree if it is available.
- if (DT) {
- // Update OrigHeader to be dominated by the new header block.
- DT->changeImmediateDominator(NewHeader, OrigPreheader);
- DT->changeImmediateDominator(OrigHeader, OrigLatch);
- // Brute force incremental dominator tree update. Call
- // findNearestCommonDominator on all CFG predecessors of each child of the
- // original header.
- DomTreeNode *OrigHeaderNode = DT->getNode(OrigHeader);
- SmallVector<DomTreeNode *, 8> HeaderChildren(OrigHeaderNode->begin(),
- OrigHeaderNode->end());
- bool Changed;
- do {
- Changed = false;
- for (unsigned I = 0, E = HeaderChildren.size(); I != E; ++I) {
- DomTreeNode *Node = HeaderChildren[I];
- BasicBlock *BB = Node->getBlock();
- pred_iterator PI = pred_begin(BB);
- BasicBlock *NearestDom = *PI;
- for (pred_iterator PE = pred_end(BB); PI != PE; ++PI)
- NearestDom = DT->findNearestCommonDominator(NearestDom, *PI);
- // Remember if this changes the DomTree.
- if (Node->getIDom()->getBlock() != NearestDom) {
- DT->changeImmediateDominator(BB, NearestDom);
- Changed = true;
- }
- }
- // If the dominator changed, this may have an effect on other
- // predecessors, continue until we reach a fixpoint.
- } while (Changed);
- }
- }
- assert(L->getLoopPreheader() && "Invalid loop preheader after loop rotation");
- assert(L->getLoopLatch() && "Invalid loop latch after loop rotation");
- // Now that the CFG and DomTree are in a consistent state again, try to merge
- // the OrigHeader block into OrigLatch. This will succeed if they are
- // connected by an unconditional branch. This is just a cleanup so the
- // emitted code isn't too gross in this common case.
- MergeBlockIntoPredecessor(OrigHeader, DT, LI);
- DEBUG(dbgs() << "LoopRotation: into "; L->dump());
- ++NumRotated;
- return true;
- }
|