| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546 |
- //===- NaryReassociate.cpp - Reassociate n-ary expressions ----------------===//
- //
- // The LLVM Compiler Infrastructure
- //
- // This file is distributed under the University of Illinois Open Source
- // License. See LICENSE.TXT for details.
- //
- //===----------------------------------------------------------------------===//
- //
- // This pass reassociates n-ary add expressions and eliminates the redundancy
- // exposed by the reassociation.
- //
- // A motivating example:
- //
- // void foo(int a, int b) {
- // bar(a + b);
- // bar((a + 2) + b);
- // }
- //
- // An ideal compiler should reassociate (a + 2) + b to (a + b) + 2 and simplify
- // the above code to
- //
- // int t = a + b;
- // bar(t);
- // bar(t + 2);
- //
- // However, the Reassociate pass is unable to do that because it processes each
- // instruction individually and believes (a + 2) + b is the best form according
- // to its rank system.
- //
- // To address this limitation, NaryReassociate reassociates an expression in a
- // form that reuses existing instructions. As a result, NaryReassociate can
- // reassociate (a + 2) + b in the example to (a + b) + 2 because it detects that
- // (a + b) is computed before.
- //
- // NaryReassociate works as follows. For every instruction in the form of (a +
- // b) + c, it checks whether a + c or b + c is already computed by a dominating
- // instruction. If so, it then reassociates (a + b) + c into (a + c) + b or (b +
- // c) + a and removes the redundancy accordingly. To efficiently look up whether
- // an expression is computed before, we store each instruction seen and its SCEV
- // into an SCEV-to-instruction map.
- //
- // Although the algorithm pattern-matches only ternary additions, it
- // automatically handles many >3-ary expressions by walking through the function
- // in the depth-first order. For example, given
- //
- // (a + c) + d
- // ((a + b) + c) + d
- //
- // NaryReassociate first rewrites (a + b) + c to (a + c) + b, and then rewrites
- // ((a + c) + b) + d into ((a + c) + d) + b.
- //
- // Finally, the above dominator-based algorithm may need to be run multiple
- // iterations before emitting optimal code. One source of this need is that we
- // only split an operand when it is used only once. The above algorithm can
- // eliminate an instruction and decrease the usage count of its operands. As a
- // result, an instruction that previously had multiple uses may become a
- // single-use instruction and thus eligible for split consideration. For
- // example,
- //
- // ac = a + c
- // ab = a + b
- // abc = ab + c
- // ab2 = ab + b
- // ab2c = ab2 + c
- //
- // In the first iteration, we cannot reassociate abc to ac+b because ab is used
- // twice. However, we can reassociate ab2c to abc+b in the first iteration. As a
- // result, ab2 becomes dead and ab will be used only once in the second
- // iteration.
- //
- // Limitations and TODO items:
- //
- // 1) We only considers n-ary adds for now. This should be extended and
- // generalized.
- //
- //===----------------------------------------------------------------------===//
- #include "llvm/Analysis/AssumptionCache.h"
- #include "llvm/Analysis/ScalarEvolution.h"
- #include "llvm/Analysis/TargetLibraryInfo.h"
- #include "llvm/Analysis/TargetTransformInfo.h"
- #include "llvm/Analysis/ValueTracking.h"
- #include "llvm/IR/Dominators.h"
- #include "llvm/IR/Module.h"
- #include "llvm/IR/PatternMatch.h"
- #include "llvm/Support/Debug.h"
- #include "llvm/Support/raw_ostream.h"
- #include "llvm/Transforms/Scalar.h"
- #include "llvm/Transforms/Utils/Local.h"
- using namespace llvm;
- using namespace PatternMatch;
- #define DEBUG_TYPE "nary-reassociate"
- namespace {
- class NaryReassociate : public FunctionPass {
- public:
- static char ID;
- NaryReassociate(): FunctionPass(ID) {
- initializeNaryReassociatePass(*PassRegistry::getPassRegistry());
- }
- bool doInitialization(Module &M) override {
- DL = &M.getDataLayout();
- return false;
- }
- bool runOnFunction(Function &F) override;
- void getAnalysisUsage(AnalysisUsage &AU) const override {
- AU.addPreserved<DominatorTreeWrapperPass>();
- AU.addPreserved<ScalarEvolution>();
- AU.addPreserved<TargetLibraryInfoWrapperPass>();
- AU.addRequired<AssumptionCacheTracker>();
- AU.addRequired<DominatorTreeWrapperPass>();
- AU.addRequired<ScalarEvolution>();
- AU.addRequired<TargetLibraryInfoWrapperPass>();
- AU.addRequired<TargetTransformInfoWrapperPass>();
- AU.setPreservesCFG();
- }
- private:
- // Runs only one iteration of the dominator-based algorithm. See the header
- // comments for why we need multiple iterations.
- bool doOneIteration(Function &F);
- // Reassociates I for better CSE.
- Instruction *tryReassociate(Instruction *I);
- // Reassociate GEP for better CSE.
- Instruction *tryReassociateGEP(GetElementPtrInst *GEP);
- // Try splitting GEP at the I-th index and see whether either part can be
- // CSE'ed. This is a helper function for tryReassociateGEP.
- //
- // \p IndexedType The element type indexed by GEP's I-th index. This is
- // equivalent to
- // GEP->getIndexedType(GEP->getPointerOperand(), 0-th index,
- // ..., i-th index).
- GetElementPtrInst *tryReassociateGEPAtIndex(GetElementPtrInst *GEP,
- unsigned I, Type *IndexedType);
- // Given GEP's I-th index = LHS + RHS, see whether &Base[..][LHS][..] or
- // &Base[..][RHS][..] can be CSE'ed and rewrite GEP accordingly.
- GetElementPtrInst *tryReassociateGEPAtIndex(GetElementPtrInst *GEP,
- unsigned I, Value *LHS,
- Value *RHS, Type *IndexedType);
- // Reassociate Add for better CSE.
- Instruction *tryReassociateAdd(BinaryOperator *I);
- // A helper function for tryReassociateAdd. LHS and RHS are explicitly passed.
- Instruction *tryReassociateAdd(Value *LHS, Value *RHS, Instruction *I);
- // Rewrites I to LHS + RHS if LHS is computed already.
- Instruction *tryReassociatedAdd(const SCEV *LHS, Value *RHS, Instruction *I);
- // Returns the closest dominator of \c Dominatee that computes
- // \c CandidateExpr. Returns null if not found.
- Instruction *findClosestMatchingDominator(const SCEV *CandidateExpr,
- Instruction *Dominatee);
- // GetElementPtrInst implicitly sign-extends an index if the index is shorter
- // than the pointer size. This function returns whether Index is shorter than
- // GEP's pointer size, i.e., whether Index needs to be sign-extended in order
- // to be an index of GEP.
- bool requiresSignExtension(Value *Index, GetElementPtrInst *GEP);
- // Returns whether V is known to be non-negative at context \c Ctxt.
- bool isKnownNonNegative(Value *V, Instruction *Ctxt);
- // Returns whether AO may sign overflow at context \c Ctxt. It computes a
- // conservative result -- it answers true when not sure.
- bool maySignOverflow(AddOperator *AO, Instruction *Ctxt);
- AssumptionCache *AC;
- const DataLayout *DL;
- DominatorTree *DT;
- ScalarEvolution *SE;
- TargetLibraryInfo *TLI;
- TargetTransformInfo *TTI;
- // A lookup table quickly telling which instructions compute the given SCEV.
- // Note that there can be multiple instructions at different locations
- // computing to the same SCEV, so we map a SCEV to an instruction list. For
- // example,
- //
- // if (p1)
- // foo(a + b);
- // if (p2)
- // bar(a + b);
- DenseMap<const SCEV *, SmallVector<Instruction *, 2>> SeenExprs;
- };
- } // anonymous namespace
- char NaryReassociate::ID = 0;
- INITIALIZE_PASS_BEGIN(NaryReassociate, "nary-reassociate", "Nary reassociation",
- false, false)
- INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
- INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
- INITIALIZE_PASS_DEPENDENCY(ScalarEvolution)
- INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
- INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
- INITIALIZE_PASS_END(NaryReassociate, "nary-reassociate", "Nary reassociation",
- false, false)
- FunctionPass *llvm::createNaryReassociatePass() {
- return new NaryReassociate();
- }
- bool NaryReassociate::runOnFunction(Function &F) {
- if (skipOptnoneFunction(F))
- return false;
- AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
- DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
- SE = &getAnalysis<ScalarEvolution>();
- TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
- TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
- bool Changed = false, ChangedInThisIteration;
- do {
- ChangedInThisIteration = doOneIteration(F);
- Changed |= ChangedInThisIteration;
- } while (ChangedInThisIteration);
- return Changed;
- }
- // Whitelist the instruction types NaryReassociate handles for now.
- static bool isPotentiallyNaryReassociable(Instruction *I) {
- switch (I->getOpcode()) {
- case Instruction::Add:
- case Instruction::GetElementPtr:
- return true;
- default:
- return false;
- }
- }
- bool NaryReassociate::doOneIteration(Function &F) {
- bool Changed = false;
- SeenExprs.clear();
- // Process the basic blocks in pre-order of the dominator tree. This order
- // ensures that all bases of a candidate are in Candidates when we process it.
- for (auto Node = GraphTraits<DominatorTree *>::nodes_begin(DT);
- Node != GraphTraits<DominatorTree *>::nodes_end(DT); ++Node) {
- BasicBlock *BB = Node->getBlock();
- for (auto I = BB->begin(); I != BB->end(); ++I) {
- if (SE->isSCEVable(I->getType()) && isPotentiallyNaryReassociable(I)) {
- const SCEV *OldSCEV = SE->getSCEV(I);
- if (Instruction *NewI = tryReassociate(I)) {
- Changed = true;
- SE->forgetValue(I);
- I->replaceAllUsesWith(NewI);
- RecursivelyDeleteTriviallyDeadInstructions(I, TLI);
- I = NewI;
- }
- // Add the rewritten instruction to SeenExprs; the original instruction
- // is deleted.
- const SCEV *NewSCEV = SE->getSCEV(I);
- SeenExprs[NewSCEV].push_back(I);
- // Ideally, NewSCEV should equal OldSCEV because tryReassociate(I)
- // is equivalent to I. However, ScalarEvolution::getSCEV may
- // weaken nsw causing NewSCEV not to equal OldSCEV. For example, suppose
- // we reassociate
- // I = &a[sext(i +nsw j)] // assuming sizeof(a[0]) = 4
- // to
- // NewI = &a[sext(i)] + sext(j).
- //
- // ScalarEvolution computes
- // getSCEV(I) = a + 4 * sext(i + j)
- // getSCEV(newI) = a + 4 * sext(i) + 4 * sext(j)
- // which are different SCEVs.
- //
- // To alleviate this issue of ScalarEvolution not always capturing
- // equivalence, we add I to SeenExprs[OldSCEV] as well so that we can
- // map both SCEV before and after tryReassociate(I) to I.
- //
- // This improvement is exercised in @reassociate_gep_nsw in nary-gep.ll.
- if (NewSCEV != OldSCEV)
- SeenExprs[OldSCEV].push_back(I);
- }
- }
- }
- return Changed;
- }
- Instruction *NaryReassociate::tryReassociate(Instruction *I) {
- switch (I->getOpcode()) {
- case Instruction::Add:
- return tryReassociateAdd(cast<BinaryOperator>(I));
- case Instruction::GetElementPtr:
- return tryReassociateGEP(cast<GetElementPtrInst>(I));
- default:
- llvm_unreachable("should be filtered out by isPotentiallyNaryReassociable");
- }
- }
- // FIXME: extract this method into TTI->getGEPCost.
- static bool isGEPFoldable(GetElementPtrInst *GEP,
- const TargetTransformInfo *TTI,
- const DataLayout *DL) {
- GlobalVariable *BaseGV = nullptr;
- int64_t BaseOffset = 0;
- bool HasBaseReg = false;
- int64_t Scale = 0;
- if (GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getPointerOperand()))
- BaseGV = GV;
- else
- HasBaseReg = true;
- gep_type_iterator GTI = gep_type_begin(GEP);
- for (auto I = GEP->idx_begin(); I != GEP->idx_end(); ++I, ++GTI) {
- if (isa<SequentialType>(*GTI)) {
- int64_t ElementSize = DL->getTypeAllocSize(GTI.getIndexedType());
- if (ConstantInt *ConstIdx = dyn_cast<ConstantInt>(*I)) {
- BaseOffset += ConstIdx->getSExtValue() * ElementSize;
- } else {
- // Needs scale register.
- if (Scale != 0) {
- // No addressing mode takes two scale registers.
- return false;
- }
- Scale = ElementSize;
- }
- } else {
- StructType *STy = cast<StructType>(*GTI);
- uint64_t Field = cast<ConstantInt>(*I)->getZExtValue();
- BaseOffset += DL->getStructLayout(STy)->getElementOffset(Field);
- }
- }
- unsigned AddrSpace = GEP->getPointerAddressSpace();
- return TTI->isLegalAddressingMode(GEP->getType()->getElementType(), BaseGV,
- BaseOffset, HasBaseReg, Scale, AddrSpace);
- }
- Instruction *NaryReassociate::tryReassociateGEP(GetElementPtrInst *GEP) {
- // Not worth reassociating GEP if it is foldable.
- if (isGEPFoldable(GEP, TTI, DL))
- return nullptr;
- gep_type_iterator GTI = gep_type_begin(*GEP);
- for (unsigned I = 1, E = GEP->getNumOperands(); I != E; ++I) {
- if (isa<SequentialType>(*GTI++)) {
- if (auto *NewGEP = tryReassociateGEPAtIndex(GEP, I - 1, *GTI)) {
- return NewGEP;
- }
- }
- }
- return nullptr;
- }
- bool NaryReassociate::requiresSignExtension(Value *Index,
- GetElementPtrInst *GEP) {
- unsigned PointerSizeInBits =
- DL->getPointerSizeInBits(GEP->getType()->getPointerAddressSpace());
- return cast<IntegerType>(Index->getType())->getBitWidth() < PointerSizeInBits;
- }
- bool NaryReassociate::isKnownNonNegative(Value *V, Instruction *Ctxt) {
- bool NonNegative, Negative;
- // TODO: ComputeSignBits is expensive. Consider caching the results.
- ComputeSignBit(V, NonNegative, Negative, *DL, 0, AC, Ctxt, DT);
- return NonNegative;
- }
- bool NaryReassociate::maySignOverflow(AddOperator *AO, Instruction *Ctxt) {
- if (AO->hasNoSignedWrap())
- return false;
- Value *LHS = AO->getOperand(0), *RHS = AO->getOperand(1);
- // If LHS or RHS has the same sign as the sum, AO doesn't sign overflow.
- // TODO: handle the negative case as well.
- if (isKnownNonNegative(AO, Ctxt) &&
- (isKnownNonNegative(LHS, Ctxt) || isKnownNonNegative(RHS, Ctxt)))
- return false;
- return true;
- }
- GetElementPtrInst *
- NaryReassociate::tryReassociateGEPAtIndex(GetElementPtrInst *GEP, unsigned I,
- Type *IndexedType) {
- Value *IndexToSplit = GEP->getOperand(I + 1);
- if (SExtInst *SExt = dyn_cast<SExtInst>(IndexToSplit)) {
- IndexToSplit = SExt->getOperand(0);
- } else if (ZExtInst *ZExt = dyn_cast<ZExtInst>(IndexToSplit)) {
- // zext can be treated as sext if the source is non-negative.
- if (isKnownNonNegative(ZExt->getOperand(0), GEP))
- IndexToSplit = ZExt->getOperand(0);
- }
- if (AddOperator *AO = dyn_cast<AddOperator>(IndexToSplit)) {
- // If the I-th index needs sext and the underlying add is not equipped with
- // nsw, we cannot split the add because
- // sext(LHS + RHS) != sext(LHS) + sext(RHS).
- if (requiresSignExtension(IndexToSplit, GEP) && maySignOverflow(AO, GEP))
- return nullptr;
- Value *LHS = AO->getOperand(0), *RHS = AO->getOperand(1);
- // IndexToSplit = LHS + RHS.
- if (auto *NewGEP = tryReassociateGEPAtIndex(GEP, I, LHS, RHS, IndexedType))
- return NewGEP;
- // Symmetrically, try IndexToSplit = RHS + LHS.
- if (LHS != RHS) {
- if (auto *NewGEP =
- tryReassociateGEPAtIndex(GEP, I, RHS, LHS, IndexedType))
- return NewGEP;
- }
- }
- return nullptr;
- }
- GetElementPtrInst *NaryReassociate::tryReassociateGEPAtIndex(
- GetElementPtrInst *GEP, unsigned I, Value *LHS, Value *RHS,
- Type *IndexedType) {
- // Look for GEP's closest dominator that has the same SCEV as GEP except that
- // the I-th index is replaced with LHS.
- SmallVector<const SCEV *, 4> IndexExprs;
- for (auto Index = GEP->idx_begin(); Index != GEP->idx_end(); ++Index)
- IndexExprs.push_back(SE->getSCEV(*Index));
- // Replace the I-th index with LHS.
- IndexExprs[I] = SE->getSCEV(LHS);
- if (isKnownNonNegative(LHS, GEP) &&
- DL->getTypeSizeInBits(LHS->getType()) <
- DL->getTypeSizeInBits(GEP->getOperand(I)->getType())) {
- // Zero-extend LHS if it is non-negative. InstCombine canonicalizes sext to
- // zext if the source operand is proved non-negative. We should do that
- // consistently so that CandidateExpr more likely appears before. See
- // @reassociate_gep_assume for an example of this canonicalization.
- IndexExprs[I] =
- SE->getZeroExtendExpr(IndexExprs[I], GEP->getOperand(I)->getType());
- }
- const SCEV *CandidateExpr = SE->getGEPExpr(
- GEP->getSourceElementType(), SE->getSCEV(GEP->getPointerOperand()),
- IndexExprs, GEP->isInBounds());
- auto *Candidate = findClosestMatchingDominator(CandidateExpr, GEP);
- if (Candidate == nullptr)
- return nullptr;
- PointerType *TypeOfCandidate = dyn_cast<PointerType>(Candidate->getType());
- // Pretty rare but theoretically possible when a numeric value happens to
- // share CandidateExpr.
- if (TypeOfCandidate == nullptr)
- return nullptr;
- // NewGEP = (char *)Candidate + RHS * sizeof(IndexedType)
- uint64_t IndexedSize = DL->getTypeAllocSize(IndexedType);
- Type *ElementType = TypeOfCandidate->getElementType();
- uint64_t ElementSize = DL->getTypeAllocSize(ElementType);
- // Another less rare case: because I is not necessarily the last index of the
- // GEP, the size of the type at the I-th index (IndexedSize) is not
- // necessarily divisible by ElementSize. For example,
- //
- // #pragma pack(1)
- // struct S {
- // int a[3];
- // int64 b[8];
- // };
- // #pragma pack()
- //
- // sizeof(S) = 100 is indivisible by sizeof(int64) = 8.
- //
- // TODO: bail out on this case for now. We could emit uglygep.
- if (IndexedSize % ElementSize != 0)
- return nullptr;
- // NewGEP = &Candidate[RHS * (sizeof(IndexedType) / sizeof(Candidate[0])));
- IRBuilder<> Builder(GEP);
- Type *IntPtrTy = DL->getIntPtrType(TypeOfCandidate);
- if (RHS->getType() != IntPtrTy)
- RHS = Builder.CreateSExtOrTrunc(RHS, IntPtrTy);
- if (IndexedSize != ElementSize) {
- RHS = Builder.CreateMul(
- RHS, ConstantInt::get(IntPtrTy, IndexedSize / ElementSize));
- }
- GetElementPtrInst *NewGEP =
- cast<GetElementPtrInst>(Builder.CreateGEP(Candidate, RHS));
- NewGEP->setIsInBounds(GEP->isInBounds());
- NewGEP->takeName(GEP);
- return NewGEP;
- }
- Instruction *NaryReassociate::tryReassociateAdd(BinaryOperator *I) {
- Value *LHS = I->getOperand(0), *RHS = I->getOperand(1);
- if (auto *NewI = tryReassociateAdd(LHS, RHS, I))
- return NewI;
- if (auto *NewI = tryReassociateAdd(RHS, LHS, I))
- return NewI;
- return nullptr;
- }
- Instruction *NaryReassociate::tryReassociateAdd(Value *LHS, Value *RHS,
- Instruction *I) {
- Value *A = nullptr, *B = nullptr;
- // To be conservative, we reassociate I only when it is the only user of A+B.
- if (LHS->hasOneUse() && match(LHS, m_Add(m_Value(A), m_Value(B)))) {
- // I = (A + B) + RHS
- // = (A + RHS) + B or (B + RHS) + A
- const SCEV *AExpr = SE->getSCEV(A), *BExpr = SE->getSCEV(B);
- const SCEV *RHSExpr = SE->getSCEV(RHS);
- if (BExpr != RHSExpr) {
- if (auto *NewI = tryReassociatedAdd(SE->getAddExpr(AExpr, RHSExpr), B, I))
- return NewI;
- }
- if (AExpr != RHSExpr) {
- if (auto *NewI = tryReassociatedAdd(SE->getAddExpr(BExpr, RHSExpr), A, I))
- return NewI;
- }
- }
- return nullptr;
- }
- Instruction *NaryReassociate::tryReassociatedAdd(const SCEV *LHSExpr,
- Value *RHS, Instruction *I) {
- auto Pos = SeenExprs.find(LHSExpr);
- // Bail out if LHSExpr is not previously seen.
- if (Pos == SeenExprs.end())
- return nullptr;
- // Look for the closest dominator LHS of I that computes LHSExpr, and replace
- // I with LHS + RHS.
- auto *LHS = findClosestMatchingDominator(LHSExpr, I);
- if (LHS == nullptr)
- return nullptr;
- Instruction *NewI = BinaryOperator::CreateAdd(LHS, RHS, "", I);
- NewI->takeName(I);
- return NewI;
- }
- Instruction *
- NaryReassociate::findClosestMatchingDominator(const SCEV *CandidateExpr,
- Instruction *Dominatee) {
- auto Pos = SeenExprs.find(CandidateExpr);
- if (Pos == SeenExprs.end())
- return nullptr;
- auto &Candidates = Pos->second;
- // Because we process the basic blocks in pre-order of the dominator tree, a
- // candidate that doesn't dominate the current instruction won't dominate any
- // future instruction either. Therefore, we pop it out of the stack. This
- // optimization makes the algorithm O(n).
- while (!Candidates.empty()) {
- Instruction *Candidate = Candidates.back();
- if (DT->dominates(Candidate, Dominatee))
- return Candidate;
- Candidates.pop_back();
- }
- return nullptr;
- }
|