| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854 |
- //===- TailRecursionElimination.cpp - Eliminate Tail Calls ----------------===//
- //
- // The LLVM Compiler Infrastructure
- //
- // This file is distributed under the University of Illinois Open Source
- // License. See LICENSE.TXT for details.
- //
- //===----------------------------------------------------------------------===//
- //
- // This file transforms calls of the current function (self recursion) followed
- // by a return instruction with a branch to the entry of the function, creating
- // a loop. This pass also implements the following extensions to the basic
- // algorithm:
- //
- // 1. Trivial instructions between the call and return do not prevent the
- // transformation from taking place, though currently the analysis cannot
- // support moving any really useful instructions (only dead ones).
- // 2. This pass transforms functions that are prevented from being tail
- // recursive by an associative and commutative expression to use an
- // accumulator variable, thus compiling the typical naive factorial or
- // 'fib' implementation into efficient code.
- // 3. TRE is performed if the function returns void, if the return
- // returns the result returned by the call, or if the function returns a
- // run-time constant on all exits from the function. It is possible, though
- // unlikely, that the return returns something else (like constant 0), and
- // can still be TRE'd. It can be TRE'd if ALL OTHER return instructions in
- // the function return the exact same value.
- // 4. If it can prove that callees do not access their caller stack frame,
- // they are marked as eligible for tail call elimination (by the code
- // generator).
- //
- // There are several improvements that could be made:
- //
- // 1. If the function has any alloca instructions, these instructions will be
- // moved out of the entry block of the function, causing them to be
- // evaluated each time through the tail recursion. Safely keeping allocas
- // in the entry block requires analysis to proves that the tail-called
- // function does not read or write the stack object.
- // 2. Tail recursion is only performed if the call immediately precedes the
- // return instruction. It's possible that there could be a jump between
- // the call and the return.
- // 3. There can be intervening operations between the call and the return that
- // prevent the TRE from occurring. For example, there could be GEP's and
- // stores to memory that will not be read or written by the call. This
- // requires some substantial analysis (such as with DSA) to prove safe to
- // move ahead of the call, but doing so could allow many more TREs to be
- // performed, for example in TreeAdd/TreeAlloc from the treeadd benchmark.
- // 4. The algorithm we use to detect if callees access their caller stack
- // frames is very primitive.
- //
- //===----------------------------------------------------------------------===//
- #include "llvm/Transforms/Scalar.h"
- #include "llvm/ADT/STLExtras.h"
- #include "llvm/ADT/SmallPtrSet.h"
- #include "llvm/ADT/Statistic.h"
- #include "llvm/Analysis/CFG.h"
- #include "llvm/Analysis/CaptureTracking.h"
- #include "llvm/Analysis/InlineCost.h"
- #include "llvm/Analysis/InstructionSimplify.h"
- #include "llvm/Analysis/Loads.h"
- #include "llvm/Analysis/TargetTransformInfo.h"
- #include "llvm/IR/CFG.h"
- #include "llvm/IR/CallSite.h"
- #include "llvm/IR/Constants.h"
- #include "llvm/IR/DataLayout.h"
- #include "llvm/IR/DerivedTypes.h"
- #include "llvm/IR/DiagnosticInfo.h"
- #include "llvm/IR/Function.h"
- #include "llvm/IR/Instructions.h"
- #include "llvm/IR/IntrinsicInst.h"
- #include "llvm/IR/Module.h"
- #include "llvm/IR/ValueHandle.h"
- #include "llvm/Pass.h"
- #include "llvm/Support/Debug.h"
- #include "llvm/Support/raw_ostream.h"
- #include "llvm/Transforms/Utils/BasicBlockUtils.h"
- #include "llvm/Transforms/Utils/Local.h"
- using namespace llvm;
- #define DEBUG_TYPE "tailcallelim"
- STATISTIC(NumEliminated, "Number of tail calls removed");
- STATISTIC(NumRetDuped, "Number of return duplicated");
- STATISTIC(NumAccumAdded, "Number of accumulators introduced");
- namespace {
- struct TailCallElim : public FunctionPass {
- const TargetTransformInfo *TTI;
- static char ID; // Pass identification, replacement for typeid
- TailCallElim() : FunctionPass(ID) {
- initializeTailCallElimPass(*PassRegistry::getPassRegistry());
- }
- void getAnalysisUsage(AnalysisUsage &AU) const override;
- bool runOnFunction(Function &F) override;
- private:
- bool runTRE(Function &F);
- bool markTails(Function &F, bool &AllCallsAreTailCalls);
- CallInst *FindTRECandidate(Instruction *I,
- bool CannotTailCallElimCallsMarkedTail);
- bool EliminateRecursiveTailCall(CallInst *CI, ReturnInst *Ret,
- BasicBlock *&OldEntry,
- bool &TailCallsAreMarkedTail,
- SmallVectorImpl<PHINode *> &ArgumentPHIs,
- bool CannotTailCallElimCallsMarkedTail);
- bool FoldReturnAndProcessPred(BasicBlock *BB,
- ReturnInst *Ret, BasicBlock *&OldEntry,
- bool &TailCallsAreMarkedTail,
- SmallVectorImpl<PHINode *> &ArgumentPHIs,
- bool CannotTailCallElimCallsMarkedTail);
- bool ProcessReturningBlock(ReturnInst *RI, BasicBlock *&OldEntry,
- bool &TailCallsAreMarkedTail,
- SmallVectorImpl<PHINode *> &ArgumentPHIs,
- bool CannotTailCallElimCallsMarkedTail);
- bool CanMoveAboveCall(Instruction *I, CallInst *CI);
- Value *CanTransformAccumulatorRecursion(Instruction *I, CallInst *CI);
- };
- }
- char TailCallElim::ID = 0;
- INITIALIZE_PASS_BEGIN(TailCallElim, "tailcallelim",
- "Tail Call Elimination", false, false)
- INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
- INITIALIZE_PASS_END(TailCallElim, "tailcallelim",
- "Tail Call Elimination", false, false)
- // Public interface to the TailCallElimination pass
- FunctionPass *llvm::createTailCallEliminationPass() {
- return new TailCallElim();
- }
- void TailCallElim::getAnalysisUsage(AnalysisUsage &AU) const {
- AU.addRequired<TargetTransformInfoWrapperPass>();
- }
- /// \brief Scan the specified function for alloca instructions.
- /// If it contains any dynamic allocas, returns false.
- static bool CanTRE(Function &F) {
- // Because of PR962, we don't TRE dynamic allocas.
- for (auto &BB : F) {
- for (auto &I : BB) {
- if (AllocaInst *AI = dyn_cast<AllocaInst>(&I)) {
- if (!AI->isStaticAlloca())
- return false;
- }
- }
- }
- return true;
- }
- bool TailCallElim::runOnFunction(Function &F) {
- if (skipOptnoneFunction(F))
- return false;
- if (F.getFnAttribute("disable-tail-calls").getValueAsString() == "true")
- return false;
- bool AllCallsAreTailCalls = false;
- bool Modified = markTails(F, AllCallsAreTailCalls);
- if (AllCallsAreTailCalls)
- Modified |= runTRE(F);
- return Modified;
- }
- namespace {
- struct AllocaDerivedValueTracker {
- // Start at a root value and walk its use-def chain to mark calls that use the
- // value or a derived value in AllocaUsers, and places where it may escape in
- // EscapePoints.
- void walk(Value *Root) {
- SmallVector<Use *, 32> Worklist;
- SmallPtrSet<Use *, 32> Visited;
- auto AddUsesToWorklist = [&](Value *V) {
- for (auto &U : V->uses()) {
- if (!Visited.insert(&U).second)
- continue;
- Worklist.push_back(&U);
- }
- };
- AddUsesToWorklist(Root);
- while (!Worklist.empty()) {
- Use *U = Worklist.pop_back_val();
- Instruction *I = cast<Instruction>(U->getUser());
- switch (I->getOpcode()) {
- case Instruction::Call:
- case Instruction::Invoke: {
- CallSite CS(I);
- bool IsNocapture = !CS.isCallee(U) &&
- CS.doesNotCapture(CS.getArgumentNo(U));
- callUsesLocalStack(CS, IsNocapture);
- if (IsNocapture) {
- // If the alloca-derived argument is passed in as nocapture, then it
- // can't propagate to the call's return. That would be capturing.
- continue;
- }
- break;
- }
- case Instruction::Load: {
- // The result of a load is not alloca-derived (unless an alloca has
- // otherwise escaped, but this is a local analysis).
- continue;
- }
- case Instruction::Store: {
- if (U->getOperandNo() == 0)
- EscapePoints.insert(I);
- continue; // Stores have no users to analyze.
- }
- case Instruction::BitCast:
- case Instruction::GetElementPtr:
- case Instruction::PHI:
- case Instruction::Select:
- case Instruction::AddrSpaceCast:
- break;
- default:
- EscapePoints.insert(I);
- break;
- }
- AddUsesToWorklist(I);
- }
- }
- void callUsesLocalStack(CallSite CS, bool IsNocapture) {
- // Add it to the list of alloca users.
- AllocaUsers.insert(CS.getInstruction());
- // If it's nocapture then it can't capture this alloca.
- if (IsNocapture)
- return;
- // If it can write to memory, it can leak the alloca value.
- if (!CS.onlyReadsMemory())
- EscapePoints.insert(CS.getInstruction());
- }
- SmallPtrSet<Instruction *, 32> AllocaUsers;
- SmallPtrSet<Instruction *, 32> EscapePoints;
- };
- }
- bool TailCallElim::markTails(Function &F, bool &AllCallsAreTailCalls) {
- if (F.callsFunctionThatReturnsTwice())
- return false;
- AllCallsAreTailCalls = true;
- // The local stack holds all alloca instructions and all byval arguments.
- AllocaDerivedValueTracker Tracker;
- for (Argument &Arg : F.args()) {
- if (Arg.hasByValAttr())
- Tracker.walk(&Arg);
- }
- for (auto &BB : F) {
- for (auto &I : BB)
- if (AllocaInst *AI = dyn_cast<AllocaInst>(&I))
- Tracker.walk(AI);
- }
- bool Modified = false;
- // Track whether a block is reachable after an alloca has escaped. Blocks that
- // contain the escaping instruction will be marked as being visited without an
- // escaped alloca, since that is how the block began.
- enum VisitType {
- UNVISITED,
- UNESCAPED,
- ESCAPED
- };
- DenseMap<BasicBlock *, VisitType> Visited;
- // We propagate the fact that an alloca has escaped from block to successor.
- // Visit the blocks that are propagating the escapedness first. To do this, we
- // maintain two worklists.
- SmallVector<BasicBlock *, 32> WorklistUnescaped, WorklistEscaped;
- // We may enter a block and visit it thinking that no alloca has escaped yet,
- // then see an escape point and go back around a loop edge and come back to
- // the same block twice. Because of this, we defer setting tail on calls when
- // we first encounter them in a block. Every entry in this list does not
- // statically use an alloca via use-def chain analysis, but may find an alloca
- // through other means if the block turns out to be reachable after an escape
- // point.
- SmallVector<CallInst *, 32> DeferredTails;
- BasicBlock *BB = &F.getEntryBlock();
- VisitType Escaped = UNESCAPED;
- do {
- for (auto &I : *BB) {
- if (Tracker.EscapePoints.count(&I))
- Escaped = ESCAPED;
- CallInst *CI = dyn_cast<CallInst>(&I);
- if (!CI || CI->isTailCall())
- continue;
- if (CI->doesNotAccessMemory()) {
- // A call to a readnone function whose arguments are all things computed
- // outside this function can be marked tail. Even if you stored the
- // alloca address into a global, a readnone function can't load the
- // global anyhow.
- //
- // Note that this runs whether we know an alloca has escaped or not. If
- // it has, then we can't trust Tracker.AllocaUsers to be accurate.
- bool SafeToTail = true;
- for (auto &Arg : CI->arg_operands()) {
- if (isa<Constant>(Arg.getUser()))
- continue;
- if (Argument *A = dyn_cast<Argument>(Arg.getUser()))
- if (!A->hasByValAttr())
- continue;
- SafeToTail = false;
- break;
- }
- if (SafeToTail) {
- emitOptimizationRemark(
- F.getContext(), "tailcallelim", F, CI->getDebugLoc(),
- "marked this readnone call a tail call candidate");
- CI->setTailCall();
- Modified = true;
- continue;
- }
- }
- if (Escaped == UNESCAPED && !Tracker.AllocaUsers.count(CI)) {
- DeferredTails.push_back(CI);
- } else {
- AllCallsAreTailCalls = false;
- }
- }
- for (auto *SuccBB : make_range(succ_begin(BB), succ_end(BB))) {
- auto &State = Visited[SuccBB];
- if (State < Escaped) {
- State = Escaped;
- if (State == ESCAPED)
- WorklistEscaped.push_back(SuccBB);
- else
- WorklistUnescaped.push_back(SuccBB);
- }
- }
- if (!WorklistEscaped.empty()) {
- BB = WorklistEscaped.pop_back_val();
- Escaped = ESCAPED;
- } else {
- BB = nullptr;
- while (!WorklistUnescaped.empty()) {
- auto *NextBB = WorklistUnescaped.pop_back_val();
- if (Visited[NextBB] == UNESCAPED) {
- BB = NextBB;
- Escaped = UNESCAPED;
- break;
- }
- }
- }
- } while (BB);
- for (CallInst *CI : DeferredTails) {
- if (Visited[CI->getParent()] != ESCAPED) {
- // If the escape point was part way through the block, calls after the
- // escape point wouldn't have been put into DeferredTails.
- emitOptimizationRemark(F.getContext(), "tailcallelim", F,
- CI->getDebugLoc(),
- "marked this call a tail call candidate");
- CI->setTailCall();
- Modified = true;
- } else {
- AllCallsAreTailCalls = false;
- }
- }
- return Modified;
- }
- bool TailCallElim::runTRE(Function &F) {
- // If this function is a varargs function, we won't be able to PHI the args
- // right, so don't even try to convert it...
- if (F.getFunctionType()->isVarArg()) return false;
- TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
- BasicBlock *OldEntry = nullptr;
- bool TailCallsAreMarkedTail = false;
- SmallVector<PHINode*, 8> ArgumentPHIs;
- bool MadeChange = false;
- // If false, we cannot perform TRE on tail calls marked with the 'tail'
- // attribute, because doing so would cause the stack size to increase (real
- // TRE would deallocate variable sized allocas, TRE doesn't).
- bool CanTRETailMarkedCall = CanTRE(F);
- // Change any tail recursive calls to loops.
- //
- // FIXME: The code generator produces really bad code when an 'escaping
- // alloca' is changed from being a static alloca to being a dynamic alloca.
- // Until this is resolved, disable this transformation if that would ever
- // happen. This bug is PR962.
- for (Function::iterator BBI = F.begin(), E = F.end(); BBI != E; /*in loop*/) {
- BasicBlock *BB = BBI++; // FoldReturnAndProcessPred may delete BB.
- if (ReturnInst *Ret = dyn_cast<ReturnInst>(BB->getTerminator())) {
- bool Change = ProcessReturningBlock(Ret, OldEntry, TailCallsAreMarkedTail,
- ArgumentPHIs, !CanTRETailMarkedCall);
- if (!Change && BB->getFirstNonPHIOrDbg() == Ret)
- Change = FoldReturnAndProcessPred(BB, Ret, OldEntry,
- TailCallsAreMarkedTail, ArgumentPHIs,
- !CanTRETailMarkedCall);
- MadeChange |= Change;
- }
- }
- // If we eliminated any tail recursions, it's possible that we inserted some
- // silly PHI nodes which just merge an initial value (the incoming operand)
- // with themselves. Check to see if we did and clean up our mess if so. This
- // occurs when a function passes an argument straight through to its tail
- // call.
- for (unsigned i = 0, e = ArgumentPHIs.size(); i != e; ++i) {
- PHINode *PN = ArgumentPHIs[i];
- // If the PHI Node is a dynamic constant, replace it with the value it is.
- if (Value *PNV = SimplifyInstruction(PN, F.getParent()->getDataLayout())) {
- PN->replaceAllUsesWith(PNV);
- PN->eraseFromParent();
- }
- }
- return MadeChange;
- }
- /// Return true if it is safe to move the specified
- /// instruction from after the call to before the call, assuming that all
- /// instructions between the call and this instruction are movable.
- ///
- bool TailCallElim::CanMoveAboveCall(Instruction *I, CallInst *CI) {
- // FIXME: We can move load/store/call/free instructions above the call if the
- // call does not mod/ref the memory location being processed.
- if (I->mayHaveSideEffects()) // This also handles volatile loads.
- return false;
- if (LoadInst *L = dyn_cast<LoadInst>(I)) {
- // Loads may always be moved above calls without side effects.
- if (CI->mayHaveSideEffects()) {
- // Non-volatile loads may be moved above a call with side effects if it
- // does not write to memory and the load provably won't trap.
- // FIXME: Writes to memory only matter if they may alias the pointer
- // being loaded from.
- if (CI->mayWriteToMemory() ||
- !isSafeToLoadUnconditionally(L->getPointerOperand(), L,
- L->getAlignment()))
- return false;
- }
- }
- // Otherwise, if this is a side-effect free instruction, check to make sure
- // that it does not use the return value of the call. If it doesn't use the
- // return value of the call, it must only use things that are defined before
- // the call, or movable instructions between the call and the instruction
- // itself.
- for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
- if (I->getOperand(i) == CI)
- return false;
- return true;
- }
- /// Return true if the specified value is the same when the return would exit
- /// as it was when the initial iteration of the recursive function was executed.
- ///
- /// We currently handle static constants and arguments that are not modified as
- /// part of the recursion.
- static bool isDynamicConstant(Value *V, CallInst *CI, ReturnInst *RI) {
- if (isa<Constant>(V)) return true; // Static constants are always dyn consts
- // Check to see if this is an immutable argument, if so, the value
- // will be available to initialize the accumulator.
- if (Argument *Arg = dyn_cast<Argument>(V)) {
- // Figure out which argument number this is...
- unsigned ArgNo = 0;
- Function *F = CI->getParent()->getParent();
- for (Function::arg_iterator AI = F->arg_begin(); &*AI != Arg; ++AI)
- ++ArgNo;
- // If we are passing this argument into call as the corresponding
- // argument operand, then the argument is dynamically constant.
- // Otherwise, we cannot transform this function safely.
- if (CI->getArgOperand(ArgNo) == Arg)
- return true;
- }
- // Switch cases are always constant integers. If the value is being switched
- // on and the return is only reachable from one of its cases, it's
- // effectively constant.
- if (BasicBlock *UniquePred = RI->getParent()->getUniquePredecessor())
- if (SwitchInst *SI = dyn_cast<SwitchInst>(UniquePred->getTerminator()))
- if (SI->getCondition() == V)
- return SI->getDefaultDest() != RI->getParent();
- // Not a constant or immutable argument, we can't safely transform.
- return false;
- }
- /// Check to see if the function containing the specified tail call consistently
- /// returns the same runtime-constant value at all exit points except for
- /// IgnoreRI. If so, return the returned value.
- static Value *getCommonReturnValue(ReturnInst *IgnoreRI, CallInst *CI) {
- Function *F = CI->getParent()->getParent();
- Value *ReturnedValue = nullptr;
- for (Function::iterator BBI = F->begin(), E = F->end(); BBI != E; ++BBI) {
- ReturnInst *RI = dyn_cast<ReturnInst>(BBI->getTerminator());
- if (RI == nullptr || RI == IgnoreRI) continue;
- // We can only perform this transformation if the value returned is
- // evaluatable at the start of the initial invocation of the function,
- // instead of at the end of the evaluation.
- //
- Value *RetOp = RI->getOperand(0);
- if (!isDynamicConstant(RetOp, CI, RI))
- return nullptr;
- if (ReturnedValue && RetOp != ReturnedValue)
- return nullptr; // Cannot transform if differing values are returned.
- ReturnedValue = RetOp;
- }
- return ReturnedValue;
- }
- /// If the specified instruction can be transformed using accumulator recursion
- /// elimination, return the constant which is the start of the accumulator
- /// value. Otherwise return null.
- Value *TailCallElim::CanTransformAccumulatorRecursion(Instruction *I,
- CallInst *CI) {
- if (!I->isAssociative() || !I->isCommutative()) return nullptr;
- assert(I->getNumOperands() == 2 &&
- "Associative/commutative operations should have 2 args!");
- // Exactly one operand should be the result of the call instruction.
- if ((I->getOperand(0) == CI && I->getOperand(1) == CI) ||
- (I->getOperand(0) != CI && I->getOperand(1) != CI))
- return nullptr;
- // The only user of this instruction we allow is a single return instruction.
- if (!I->hasOneUse() || !isa<ReturnInst>(I->user_back()))
- return nullptr;
- // Ok, now we have to check all of the other return instructions in this
- // function. If they return non-constants or differing values, then we cannot
- // transform the function safely.
- return getCommonReturnValue(cast<ReturnInst>(I->user_back()), CI);
- }
- static Instruction *FirstNonDbg(BasicBlock::iterator I) {
- while (isa<DbgInfoIntrinsic>(I))
- ++I;
- return &*I;
- }
- CallInst*
- TailCallElim::FindTRECandidate(Instruction *TI,
- bool CannotTailCallElimCallsMarkedTail) {
- BasicBlock *BB = TI->getParent();
- Function *F = BB->getParent();
- if (&BB->front() == TI) // Make sure there is something before the terminator.
- return nullptr;
- // Scan backwards from the return, checking to see if there is a tail call in
- // this block. If so, set CI to it.
- CallInst *CI = nullptr;
- BasicBlock::iterator BBI = TI;
- while (true) {
- CI = dyn_cast<CallInst>(BBI);
- if (CI && CI->getCalledFunction() == F)
- break;
- if (BBI == BB->begin())
- return nullptr; // Didn't find a potential tail call.
- --BBI;
- }
- // If this call is marked as a tail call, and if there are dynamic allocas in
- // the function, we cannot perform this optimization.
- if (CI->isTailCall() && CannotTailCallElimCallsMarkedTail)
- return nullptr;
- // As a special case, detect code like this:
- // double fabs(double f) { return __builtin_fabs(f); } // a 'fabs' call
- // and disable this xform in this case, because the code generator will
- // lower the call to fabs into inline code.
- if (BB == &F->getEntryBlock() &&
- FirstNonDbg(BB->front()) == CI &&
- FirstNonDbg(std::next(BB->begin())) == TI &&
- CI->getCalledFunction() &&
- !TTI->isLoweredToCall(CI->getCalledFunction())) {
- // A single-block function with just a call and a return. Check that
- // the arguments match.
- CallSite::arg_iterator I = CallSite(CI).arg_begin(),
- E = CallSite(CI).arg_end();
- Function::arg_iterator FI = F->arg_begin(),
- FE = F->arg_end();
- for (; I != E && FI != FE; ++I, ++FI)
- if (*I != &*FI) break;
- if (I == E && FI == FE)
- return nullptr;
- }
- return CI;
- }
- bool TailCallElim::EliminateRecursiveTailCall(CallInst *CI, ReturnInst *Ret,
- BasicBlock *&OldEntry,
- bool &TailCallsAreMarkedTail,
- SmallVectorImpl<PHINode *> &ArgumentPHIs,
- bool CannotTailCallElimCallsMarkedTail) {
- // If we are introducing accumulator recursion to eliminate operations after
- // the call instruction that are both associative and commutative, the initial
- // value for the accumulator is placed in this variable. If this value is set
- // then we actually perform accumulator recursion elimination instead of
- // simple tail recursion elimination. If the operation is an LLVM instruction
- // (eg: "add") then it is recorded in AccumulatorRecursionInstr. If not, then
- // we are handling the case when the return instruction returns a constant C
- // which is different to the constant returned by other return instructions
- // (which is recorded in AccumulatorRecursionEliminationInitVal). This is a
- // special case of accumulator recursion, the operation being "return C".
- Value *AccumulatorRecursionEliminationInitVal = nullptr;
- Instruction *AccumulatorRecursionInstr = nullptr;
- // Ok, we found a potential tail call. We can currently only transform the
- // tail call if all of the instructions between the call and the return are
- // movable to above the call itself, leaving the call next to the return.
- // Check that this is the case now.
- BasicBlock::iterator BBI = CI;
- for (++BBI; &*BBI != Ret; ++BBI) {
- if (CanMoveAboveCall(BBI, CI)) continue;
- // If we can't move the instruction above the call, it might be because it
- // is an associative and commutative operation that could be transformed
- // using accumulator recursion elimination. Check to see if this is the
- // case, and if so, remember the initial accumulator value for later.
- if ((AccumulatorRecursionEliminationInitVal =
- CanTransformAccumulatorRecursion(BBI, CI))) {
- // Yes, this is accumulator recursion. Remember which instruction
- // accumulates.
- AccumulatorRecursionInstr = BBI;
- } else {
- return false; // Otherwise, we cannot eliminate the tail recursion!
- }
- }
- // We can only transform call/return pairs that either ignore the return value
- // of the call and return void, ignore the value of the call and return a
- // constant, return the value returned by the tail call, or that are being
- // accumulator recursion variable eliminated.
- if (Ret->getNumOperands() == 1 && Ret->getReturnValue() != CI &&
- !isa<UndefValue>(Ret->getReturnValue()) &&
- AccumulatorRecursionEliminationInitVal == nullptr &&
- !getCommonReturnValue(nullptr, CI)) {
- // One case remains that we are able to handle: the current return
- // instruction returns a constant, and all other return instructions
- // return a different constant.
- if (!isDynamicConstant(Ret->getReturnValue(), CI, Ret))
- return false; // Current return instruction does not return a constant.
- // Check that all other return instructions return a common constant. If
- // so, record it in AccumulatorRecursionEliminationInitVal.
- AccumulatorRecursionEliminationInitVal = getCommonReturnValue(Ret, CI);
- if (!AccumulatorRecursionEliminationInitVal)
- return false;
- }
- BasicBlock *BB = Ret->getParent();
- Function *F = BB->getParent();
- emitOptimizationRemark(F->getContext(), "tailcallelim", *F, CI->getDebugLoc(),
- "transforming tail recursion to loop");
- // OK! We can transform this tail call. If this is the first one found,
- // create the new entry block, allowing us to branch back to the old entry.
- if (!OldEntry) {
- OldEntry = &F->getEntryBlock();
- BasicBlock *NewEntry = BasicBlock::Create(F->getContext(), "", F, OldEntry);
- NewEntry->takeName(OldEntry);
- OldEntry->setName("tailrecurse");
- BranchInst::Create(OldEntry, NewEntry);
- // If this tail call is marked 'tail' and if there are any allocas in the
- // entry block, move them up to the new entry block.
- TailCallsAreMarkedTail = CI->isTailCall();
- if (TailCallsAreMarkedTail)
- // Move all fixed sized allocas from OldEntry to NewEntry.
- for (BasicBlock::iterator OEBI = OldEntry->begin(), E = OldEntry->end(),
- NEBI = NewEntry->begin(); OEBI != E; )
- if (AllocaInst *AI = dyn_cast<AllocaInst>(OEBI++))
- if (isa<ConstantInt>(AI->getArraySize()))
- AI->moveBefore(NEBI);
- // Now that we have created a new block, which jumps to the entry
- // block, insert a PHI node for each argument of the function.
- // For now, we initialize each PHI to only have the real arguments
- // which are passed in.
- Instruction *InsertPos = OldEntry->begin();
- for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end();
- I != E; ++I) {
- PHINode *PN = PHINode::Create(I->getType(), 2,
- I->getName() + ".tr", InsertPos);
- I->replaceAllUsesWith(PN); // Everyone use the PHI node now!
- PN->addIncoming(I, NewEntry);
- ArgumentPHIs.push_back(PN);
- }
- }
- // If this function has self recursive calls in the tail position where some
- // are marked tail and some are not, only transform one flavor or another. We
- // have to choose whether we move allocas in the entry block to the new entry
- // block or not, so we can't make a good choice for both. NOTE: We could do
- // slightly better here in the case that the function has no entry block
- // allocas.
- if (TailCallsAreMarkedTail && !CI->isTailCall())
- return false;
- // Ok, now that we know we have a pseudo-entry block WITH all of the
- // required PHI nodes, add entries into the PHI node for the actual
- // parameters passed into the tail-recursive call.
- for (unsigned i = 0, e = CI->getNumArgOperands(); i != e; ++i)
- ArgumentPHIs[i]->addIncoming(CI->getArgOperand(i), BB);
- // If we are introducing an accumulator variable to eliminate the recursion,
- // do so now. Note that we _know_ that no subsequent tail recursion
- // eliminations will happen on this function because of the way the
- // accumulator recursion predicate is set up.
- //
- if (AccumulatorRecursionEliminationInitVal) {
- Instruction *AccRecInstr = AccumulatorRecursionInstr;
- // Start by inserting a new PHI node for the accumulator.
- pred_iterator PB = pred_begin(OldEntry), PE = pred_end(OldEntry);
- PHINode *AccPN =
- PHINode::Create(AccumulatorRecursionEliminationInitVal->getType(),
- std::distance(PB, PE) + 1,
- "accumulator.tr", OldEntry->begin());
- // Loop over all of the predecessors of the tail recursion block. For the
- // real entry into the function we seed the PHI with the initial value,
- // computed earlier. For any other existing branches to this block (due to
- // other tail recursions eliminated) the accumulator is not modified.
- // Because we haven't added the branch in the current block to OldEntry yet,
- // it will not show up as a predecessor.
- for (pred_iterator PI = PB; PI != PE; ++PI) {
- BasicBlock *P = *PI;
- if (P == &F->getEntryBlock())
- AccPN->addIncoming(AccumulatorRecursionEliminationInitVal, P);
- else
- AccPN->addIncoming(AccPN, P);
- }
- if (AccRecInstr) {
- // Add an incoming argument for the current block, which is computed by
- // our associative and commutative accumulator instruction.
- AccPN->addIncoming(AccRecInstr, BB);
- // Next, rewrite the accumulator recursion instruction so that it does not
- // use the result of the call anymore, instead, use the PHI node we just
- // inserted.
- AccRecInstr->setOperand(AccRecInstr->getOperand(0) != CI, AccPN);
- } else {
- // Add an incoming argument for the current block, which is just the
- // constant returned by the current return instruction.
- AccPN->addIncoming(Ret->getReturnValue(), BB);
- }
- // Finally, rewrite any return instructions in the program to return the PHI
- // node instead of the "initval" that they do currently. This loop will
- // actually rewrite the return value we are destroying, but that's ok.
- for (Function::iterator BBI = F->begin(), E = F->end(); BBI != E; ++BBI)
- if (ReturnInst *RI = dyn_cast<ReturnInst>(BBI->getTerminator()))
- RI->setOperand(0, AccPN);
- ++NumAccumAdded;
- }
- // Now that all of the PHI nodes are in place, remove the call and
- // ret instructions, replacing them with an unconditional branch.
- BranchInst *NewBI = BranchInst::Create(OldEntry, Ret);
- NewBI->setDebugLoc(CI->getDebugLoc());
- BB->getInstList().erase(Ret); // Remove return.
- BB->getInstList().erase(CI); // Remove call.
- ++NumEliminated;
- return true;
- }
- bool TailCallElim::FoldReturnAndProcessPred(BasicBlock *BB,
- ReturnInst *Ret, BasicBlock *&OldEntry,
- bool &TailCallsAreMarkedTail,
- SmallVectorImpl<PHINode *> &ArgumentPHIs,
- bool CannotTailCallElimCallsMarkedTail) {
- bool Change = false;
- // If the return block contains nothing but the return and PHI's,
- // there might be an opportunity to duplicate the return in its
- // predecessors and perform TRC there. Look for predecessors that end
- // in unconditional branch and recursive call(s).
- SmallVector<BranchInst*, 8> UncondBranchPreds;
- for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
- BasicBlock *Pred = *PI;
- TerminatorInst *PTI = Pred->getTerminator();
- if (BranchInst *BI = dyn_cast<BranchInst>(PTI))
- if (BI->isUnconditional())
- UncondBranchPreds.push_back(BI);
- }
- while (!UncondBranchPreds.empty()) {
- BranchInst *BI = UncondBranchPreds.pop_back_val();
- BasicBlock *Pred = BI->getParent();
- if (CallInst *CI = FindTRECandidate(BI, CannotTailCallElimCallsMarkedTail)){
- DEBUG(dbgs() << "FOLDING: " << *BB
- << "INTO UNCOND BRANCH PRED: " << *Pred);
- ReturnInst *RI = FoldReturnIntoUncondBranch(Ret, BB, Pred);
- // Cleanup: if all predecessors of BB have been eliminated by
- // FoldReturnIntoUncondBranch, delete it. It is important to empty it,
- // because the ret instruction in there is still using a value which
- // EliminateRecursiveTailCall will attempt to remove.
- if (!BB->hasAddressTaken() && pred_begin(BB) == pred_end(BB))
- BB->eraseFromParent();
- EliminateRecursiveTailCall(CI, RI, OldEntry, TailCallsAreMarkedTail,
- ArgumentPHIs,
- CannotTailCallElimCallsMarkedTail);
- ++NumRetDuped;
- Change = true;
- }
- }
- return Change;
- }
- bool
- TailCallElim::ProcessReturningBlock(ReturnInst *Ret, BasicBlock *&OldEntry,
- bool &TailCallsAreMarkedTail,
- SmallVectorImpl<PHINode *> &ArgumentPHIs,
- bool CannotTailCallElimCallsMarkedTail) {
- CallInst *CI = FindTRECandidate(Ret, CannotTailCallElimCallsMarkedTail);
- if (!CI)
- return false;
- return EliminateRecursiveTailCall(CI, Ret, OldEntry, TailCallsAreMarkedTail,
- ArgumentPHIs,
- CannotTailCallElimCallsMarkedTail);
- }
|