tripcount_compute.ll 5.4 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193
  1. ; RUN: opt < %s -indvars -S | FileCheck %s
  2. ; These tests ensure that we can compute the trip count of various forms of
  3. ; loops. If the trip count of the loop is computable, then we will know what
  4. ; the exit value of the loop will be for some value, allowing us to substitute
  5. ; it directly into users outside of the loop, making the loop dead.
  6. ; CHECK-LABEL: @linear_setne(
  7. ; CHECK: ret i32 100
  8. define i32 @linear_setne() {
  9. entry:
  10. br label %loop
  11. loop: ; preds = %loop, %entry
  12. %i = phi i32 [ 0, %entry ], [ %i.next, %loop ] ; <i32> [#uses=3]
  13. %i.next = add i32 %i, 1 ; <i32> [#uses=1]
  14. %c = icmp ne i32 %i, 100 ; <i1> [#uses=1]
  15. br i1 %c, label %loop, label %loopexit
  16. loopexit: ; preds = %loop
  17. ret i32 %i
  18. }
  19. ; CHECK-LABEL: @linear_setne_2(
  20. ; CHECK: ret i32 100
  21. define i32 @linear_setne_2() {
  22. entry:
  23. br label %loop
  24. loop: ; preds = %loop, %entry
  25. %i = phi i32 [ 0, %entry ], [ %i.next, %loop ] ; <i32> [#uses=3]
  26. %i.next = add i32 %i, 2 ; <i32> [#uses=1]
  27. %c = icmp ne i32 %i, 100 ; <i1> [#uses=1]
  28. br i1 %c, label %loop, label %loopexit
  29. loopexit: ; preds = %loop
  30. ret i32 %i
  31. }
  32. ; CHECK-LABEL: @linear_setne_overflow(
  33. ; CHECK: ret i32 0
  34. define i32 @linear_setne_overflow() {
  35. entry:
  36. br label %loop
  37. loop: ; preds = %loop, %entry
  38. %i = phi i32 [ 1024, %entry ], [ %i.next, %loop ] ; <i32> [#uses=3]
  39. %i.next = add i32 %i, 1024 ; <i32> [#uses=1]
  40. %c = icmp ne i32 %i, 0 ; <i1> [#uses=1]
  41. br i1 %c, label %loop, label %loopexit
  42. loopexit: ; preds = %loop
  43. ret i32 %i
  44. }
  45. ; CHECK-LABEL: @linear_setlt(
  46. ; CHECK: ret i32 100
  47. define i32 @linear_setlt() {
  48. entry:
  49. br label %loop
  50. loop: ; preds = %loop, %entry
  51. %i = phi i32 [ 0, %entry ], [ %i.next, %loop ] ; <i32> [#uses=3]
  52. %i.next = add i32 %i, 1 ; <i32> [#uses=1]
  53. %c = icmp slt i32 %i, 100 ; <i1> [#uses=1]
  54. br i1 %c, label %loop, label %loopexit
  55. loopexit: ; preds = %loop
  56. ret i32 %i
  57. }
  58. ; CHECK-LABEL: @quadratic_setlt(
  59. ; CHECK: ret i32 34
  60. define i32 @quadratic_setlt() {
  61. entry:
  62. br label %loop
  63. loop: ; preds = %loop, %entry
  64. %i = phi i32 [ 7, %entry ], [ %i.next, %loop ] ; <i32> [#uses=4]
  65. %i.next = add i32 %i, 3 ; <i32> [#uses=1]
  66. %i2 = mul i32 %i, %i ; <i32> [#uses=1]
  67. %c = icmp slt i32 %i2, 1000 ; <i1> [#uses=1]
  68. br i1 %c, label %loop, label %loopexit
  69. loopexit: ; preds = %loop
  70. ret i32 %i
  71. }
  72. ; CHECK-LABEL: @chained(
  73. ; CHECK: ret i32 200
  74. define i32 @chained() {
  75. entry:
  76. br label %loop
  77. loop: ; preds = %loop, %entry
  78. %i = phi i32 [ 0, %entry ], [ %i.next, %loop ] ; <i32> [#uses=3]
  79. %i.next = add i32 %i, 1 ; <i32> [#uses=1]
  80. %c = icmp ne i32 %i, 100 ; <i1> [#uses=1]
  81. br i1 %c, label %loop, label %loopexit
  82. loopexit: ; preds = %loop
  83. br label %loop2
  84. loop2: ; preds = %loop2, %loopexit
  85. %j = phi i32 [ %i, %loopexit ], [ %j.next, %loop2 ] ; <i32> [#uses=3]
  86. %j.next = add i32 %j, 1 ; <i32> [#uses=1]
  87. %c2 = icmp ne i32 %j, 200 ; <i1> [#uses=1]
  88. br i1 %c2, label %loop2, label %loopexit2
  89. loopexit2: ; preds = %loop2
  90. ret i32 %j
  91. }
  92. ; CHECK-LABEL: @chained4(
  93. ; CHECK: ret i32 400
  94. define i32 @chained4() {
  95. entry:
  96. br label %loop
  97. loop: ; preds = %loop, %entry
  98. %i = phi i32 [ 0, %entry ], [ %i.next, %loop ] ; <i32> [#uses=3]
  99. %i.next = add i32 %i, 1 ; <i32> [#uses=1]
  100. %c = icmp ne i32 %i.next, 100 ; <i1> [#uses=1]
  101. br i1 %c, label %loop, label %loopexit
  102. loopexit: ; preds = %loop
  103. br label %loop2
  104. loop2: ; preds = %loop2, %loopexit
  105. %j = phi i32 [ %i.next, %loopexit ], [ %j.next, %loop2 ] ; <i32> [#uses=3]
  106. %j.next = add i32 %j, 1 ; <i32> [#uses=1]
  107. %c2 = icmp ne i32 %j.next, 200 ; <i1> [#uses=1]
  108. br i1 %c2, label %loop2, label %loopexit2
  109. loopexit2: ; preds = %loop
  110. br label %loop8
  111. loop8: ; preds = %loop2, %loopexit
  112. %k = phi i32 [ %j.next, %loopexit2 ], [ %k.next, %loop8 ] ; <i32> [#uses=3]
  113. %k.next = add i32 %k, 1 ; <i32> [#uses=1]
  114. %c8 = icmp ne i32 %k.next, 300 ; <i1> [#uses=1]
  115. br i1 %c8, label %loop8, label %loopexit8
  116. loopexit8: ; preds = %loop2
  117. br label %loop9
  118. loop9: ; preds = %loop2, %loopexit
  119. %l = phi i32 [ %k.next, %loopexit8 ], [ %l.next, %loop9 ] ; <i32> [#uses=3]
  120. %l.next = add i32 %l, 1 ; <i32> [#uses=1]
  121. %c9 = icmp ne i32 %l.next, 400 ; <i1> [#uses=1]
  122. br i1 %c9, label %loop9, label %loopexit9
  123. loopexit9: ; preds = %loop2
  124. ret i32 %l.next
  125. }
  126. ; PR18449. Check that the early exit is reduced to never taken.
  127. ;
  128. ; CHECK-LABEL: @twoexit
  129. ; CHECK-LABEL: loop:
  130. ; CHECK: phi
  131. ; CHECK: br i1 false
  132. ; CHECK: br
  133. ; CHECK: ret
  134. define void @twoexit() {
  135. "function top level":
  136. br label %loop
  137. loop: ; preds = %body, %"function top level"
  138. %0 = phi i64 [ 0, %"function top level" ], [ %2, %body ]
  139. %1 = icmp ugt i64 %0, 2
  140. br i1 %1, label %fail, label %body
  141. fail: ; preds = %loop
  142. tail call void @bounds_fail()
  143. unreachable
  144. body: ; preds = %loop
  145. %2 = add i64 %0, 1
  146. %3 = icmp slt i64 %2, 3
  147. br i1 %3, label %loop, label %out
  148. out: ; preds = %body
  149. ret void
  150. }
  151. declare void @bounds_fail()