123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349 |
- //===--- AlignmentSizeCalculator.cpp -- Alignemnt And Size Calc --*- C++ -*-==//
- //
- // The LLVM Compiler Infrastructure
- //
- // This file is distributed under the University of Illinois Open Source
- // License. See LICENSE.TXT for details.
- //
- //===----------------------------------------------------------------------===//
- #include "AlignmentSizeCalculator.h"
- #include "clang/AST/Attr.h"
- #include "clang/SPIRV/AstTypeProbe.h"
- namespace {
- /// The alignment for 4-component float vectors.
- constexpr uint32_t kStd140Vec4Alignment = 16u;
- /// Rounds the given value up to the given power of 2.
- inline uint32_t roundToPow2(uint32_t val, uint32_t pow2) {
- assert(pow2 != 0);
- return (val + pow2 - 1) & ~(pow2 - 1);
- }
- /// Returns true if the given vector type (of the given size) crosses the
- /// 4-component vector boundary if placed at the given offset.
- bool improperStraddle(clang::QualType type, int size, int offset) {
- assert(clang::spirv::isVectorType(type));
- return size <= 16 ? offset / 16 != (offset + size - 1) / 16
- : offset % 16 != 0;
- }
- } // end anonymous namespace
- namespace clang {
- namespace spirv {
- void AlignmentSizeCalculator::alignUsingHLSLRelaxedLayout(
- QualType fieldType, uint32_t fieldSize, uint32_t fieldAlignment,
- uint32_t *currentOffset) {
- QualType vecElemType = {};
- const bool fieldIsVecType = isVectorType(fieldType, &vecElemType);
- // Adjust according to HLSL relaxed layout rules.
- // Aligning vectors as their element types so that we can pack a float
- // and a float3 tightly together.
- if (fieldIsVecType) {
- uint32_t scalarAlignment = 0;
- std::tie(scalarAlignment, std::ignore) = getAlignmentAndSize(
- vecElemType, SpirvLayoutRule::Void, /*isRowMajor*/ llvm::None, nullptr);
- if (scalarAlignment <= 4)
- fieldAlignment = scalarAlignment;
- }
- *currentOffset = roundToPow2(*currentOffset, fieldAlignment);
- // Adjust according to HLSL relaxed layout rules.
- // Bump to 4-component vector alignment if there is a bad straddle
- if (fieldIsVecType &&
- improperStraddle(fieldType, fieldSize, *currentOffset)) {
- fieldAlignment = kStd140Vec4Alignment;
- *currentOffset = roundToPow2(*currentOffset, fieldAlignment);
- }
- }
- std::pair<uint32_t, uint32_t> AlignmentSizeCalculator::getAlignmentAndSize(
- QualType type, SpirvLayoutRule rule, llvm::Optional<bool> isRowMajor,
- uint32_t *stride) {
- // std140 layout rules:
- // 1. If the member is a scalar consuming N basic machine units, the base
- // alignment is N.
- //
- // 2. If the member is a two- or four-component vector with components
- // consuming N basic machine units, the base alignment is 2N or 4N,
- // respectively.
- //
- // 3. If the member is a three-component vector with components consuming N
- // basic machine units, the base alignment is 4N.
- //
- // 4. If the member is an array of scalars or vectors, the base alignment and
- // array stride are set to match the base alignment of a single array
- // element, according to rules (1), (2), and (3), and rounded up to the
- // base alignment of a vec4. The array may have padding at the end; the
- // base offset of the member following the array is rounded up to the next
- // multiple of the base alignment.
- //
- // 5. If the member is a column-major matrix with C columns and R rows, the
- // matrix is stored identically to an array of C column vectors with R
- // components each, according to rule (4).
- //
- // 6. If the member is an array of S column-major matrices with C columns and
- // R rows, the matrix is stored identically to a row of S X C column
- // vectors with R components each, according to rule (4).
- //
- // 7. If the member is a row-major matrix with C columns and R rows, the
- // matrix is stored identically to an array of R row vectors with C
- // components each, according to rule (4).
- //
- // 8. If the member is an array of S row-major matrices with C columns and R
- // rows, the matrix is stored identically to a row of S X R row vectors
- // with C components each, according to rule (4).
- //
- // 9. If the member is a structure, the base alignment of the structure is N,
- // where N is the largest base alignment value of any of its members, and
- // rounded up to the base alignment of a vec4. The individual members of
- // this substructure are then assigned offsets by applying this set of
- // rules recursively, where the base offset of the first member of the
- // sub-structure is equal to the aligned offset of the structure. The
- // structure may have padding at the end; the base offset of the member
- // following the sub-structure is rounded up to the next multiple of the
- // base alignment of the structure.
- //
- // 10. If the member is an array of S structures, the S elements of the array
- // are laid out in order, according to rule (9).
- //
- // This method supports multiple layout rules, all of them modifying the
- // std140 rules listed above:
- //
- // std430:
- // - Array base alignment and stride does not need to be rounded up to a
- // multiple of 16.
- // - Struct base alignment does not need to be rounded up to a multiple of 16.
- //
- // Relaxed std140/std430:
- // - Vector base alignment is set as its element type's base alignment.
- //
- // FxcCTBuffer:
- // - Vector base alignment is set as its element type's base alignment.
- // - Arrays/structs do not need to have padding at the end; arrays/structs do
- // not affect the base offset of the member following them.
- //
- // FxcSBuffer:
- // - Vector/matrix/array base alignment is set as its element type's base
- // alignment.
- // - Arrays/structs do not need to have padding at the end; arrays/structs do
- // not affect the base offset of the member following them.
- // - Struct base alignment does not need to be rounded up to a multiple of 16.
- const auto desugaredType = desugarType(type, &isRowMajor);
- if (desugaredType != type) {
- auto result = getAlignmentAndSize(desugaredType, rule, isRowMajor, stride);
- return result;
- }
- { // Rule 1
- QualType ty = {};
- if (isScalarType(type, &ty))
- if (const auto *builtinType = ty->getAs<BuiltinType>())
- switch (builtinType->getKind()) {
- case BuiltinType::Bool:
- case BuiltinType::Int:
- case BuiltinType::UInt:
- case BuiltinType::Float:
- return {4, 4};
- case BuiltinType::Double:
- case BuiltinType::LongLong:
- case BuiltinType::ULongLong:
- return {8, 8};
- case BuiltinType::Min12Int:
- case BuiltinType::Min16Int:
- case BuiltinType::Min16UInt:
- case BuiltinType::Min16Float:
- case BuiltinType::Min10Float: {
- if (spvOptions.enable16BitTypes)
- return {2, 2};
- else
- return {4, 4};
- }
- // the 'Half' enum always represents 16-bit floats.
- // int16_t and uint16_t map to Short and UShort.
- case BuiltinType::Short:
- case BuiltinType::UShort:
- case BuiltinType::Half:
- return {2, 2};
- // 'HalfFloat' always represents 32-bit floats.
- case BuiltinType::HalfFloat:
- return {4, 4};
- default:
- emitError("alignment and size calculation for type %0 unimplemented")
- << type;
- return {0, 0};
- }
- }
- { // Rule 2 and 3
- QualType elemType = {};
- uint32_t elemCount = {};
- if (isVectorType(type, &elemType, &elemCount)) {
- uint32_t alignment = 0, size = 0;
- std::tie(alignment, size) =
- getAlignmentAndSize(elemType, rule, isRowMajor, stride);
- // Use element alignment for fxc rules and VK_EXT_scalar_block_layout
- if (rule != SpirvLayoutRule::FxcCTBuffer &&
- rule != SpirvLayoutRule::FxcSBuffer &&
- rule != SpirvLayoutRule::Scalar)
- alignment = (elemCount == 3 ? 4 : elemCount) * size;
- return {alignment, elemCount * size};
- }
- }
- { // Rule 5 and 7
- QualType elemType = {};
- uint32_t rowCount = 0, colCount = 0;
- if (isMxNMatrix(type, &elemType, &rowCount, &colCount)) {
- uint32_t alignment = 0, size = 0;
- std::tie(alignment, size) =
- getAlignmentAndSize(elemType, rule, isRowMajor, stride);
- // Matrices are treated as arrays of vectors:
- // The base alignment and array stride are set to match the base alignment
- // of a single array element, according to rules 1, 2, and 3, and rounded
- // up to the base alignment of a vec4.
- bool rowMajor = isRowMajor.hasValue()
- ? isRowMajor.getValue()
- : isRowMajorMatrix(spvOptions, type);
- const uint32_t vecStorageSize = rowMajor ? rowCount : colCount;
- if (rule == SpirvLayoutRule::FxcSBuffer ||
- rule == SpirvLayoutRule::Scalar) {
- *stride = vecStorageSize * size;
- // Use element alignment for fxc structured buffers and
- // VK_EXT_scalar_block_layout
- return {alignment, rowCount * colCount * size};
- }
- alignment *= (vecStorageSize == 3 ? 4 : vecStorageSize);
- if (rule == SpirvLayoutRule::GLSLStd140 ||
- rule == SpirvLayoutRule::RelaxedGLSLStd140 ||
- rule == SpirvLayoutRule::FxcCTBuffer) {
- alignment = roundToPow2(alignment, kStd140Vec4Alignment);
- }
- *stride = alignment;
- size = (rowMajor ? colCount : rowCount) * alignment;
- return {alignment, size};
- }
- }
- // Rule 9
- if (const auto *structType = type->getAs<RecordType>()) {
- // Special case for handling empty structs, whose size is 0 and has no
- // requirement over alignment (thus 1).
- if (structType->getDecl()->field_empty())
- return {1, 0};
- uint32_t maxAlignment = 0;
- uint32_t structSize = 0;
- for (const auto *field : structType->getDecl()->fields()) {
- uint32_t memberAlignment = 0, memberSize = 0;
- std::tie(memberAlignment, memberSize) =
- getAlignmentAndSize(field->getType(), rule, isRowMajor, stride);
- if (rule == SpirvLayoutRule::RelaxedGLSLStd140 ||
- rule == SpirvLayoutRule::RelaxedGLSLStd430 ||
- rule == SpirvLayoutRule::FxcCTBuffer) {
- alignUsingHLSLRelaxedLayout(field->getType(), memberSize,
- memberAlignment, &structSize);
- } else {
- structSize = roundToPow2(structSize, memberAlignment);
- }
- // Reset the current offset to the one specified in the source code
- // if exists. It's debatable whether we should do sanity check here.
- // If the developers want manually control the layout, we leave
- // everything to them.
- if (const auto *offsetAttr = field->getAttr<VKOffsetAttr>()) {
- structSize = offsetAttr->getOffset();
- }
- // The base alignment of the structure is N, where N is the largest
- // base alignment value of any of its members...
- maxAlignment = std::max(maxAlignment, memberAlignment);
- structSize += memberSize;
- }
- if (rule == SpirvLayoutRule::Scalar) {
- // A structure has a scalar alignment equal to the largest scalar
- // alignment of any of its members in VK_EXT_scalar_block_layout.
- return {maxAlignment, structSize};
- }
- if (rule == SpirvLayoutRule::GLSLStd140 ||
- rule == SpirvLayoutRule::RelaxedGLSLStd140 ||
- rule == SpirvLayoutRule::FxcCTBuffer) {
- // ... and rounded up to the base alignment of a vec4.
- maxAlignment = roundToPow2(maxAlignment, kStd140Vec4Alignment);
- }
- if (rule != SpirvLayoutRule::FxcCTBuffer &&
- rule != SpirvLayoutRule::FxcSBuffer) {
- // The base offset of the member following the sub-structure is rounded up
- // to the next multiple of the base alignment of the structure.
- structSize = roundToPow2(structSize, maxAlignment);
- }
- return {maxAlignment, structSize};
- }
- // Rule 4, 6, 8, and 10
- if (const auto *arrayType = astContext.getAsConstantArrayType(type)) {
- const auto elemCount = arrayType->getSize().getZExtValue();
- uint32_t alignment = 0, size = 0;
- std::tie(alignment, size) = getAlignmentAndSize(arrayType->getElementType(),
- rule, isRowMajor, stride);
- if (rule == SpirvLayoutRule::FxcSBuffer ||
- rule == SpirvLayoutRule::Scalar) {
- *stride = size;
- // Use element alignment for fxc structured buffers and
- // VK_EXT_scalar_block_layout
- return {alignment, size * elemCount};
- }
- if (rule == SpirvLayoutRule::GLSLStd140 ||
- rule == SpirvLayoutRule::RelaxedGLSLStd140 ||
- rule == SpirvLayoutRule::FxcCTBuffer) {
- // The base alignment and array stride are set to match the base alignment
- // of a single array element, according to rules 1, 2, and 3, and rounded
- // up to the base alignment of a vec4.
- alignment = roundToPow2(alignment, kStd140Vec4Alignment);
- }
- if (rule == SpirvLayoutRule::FxcCTBuffer) {
- // In fxc cbuffer/tbuffer packing rules, arrays does not affect the data
- // packing after it. But we still need to make sure paddings are inserted
- // internally if necessary.
- *stride = roundToPow2(size, alignment);
- size += *stride * (elemCount - 1);
- } else {
- // Need to round size up considering stride for scalar types
- size = roundToPow2(size, alignment);
- *stride = size; // Use size instead of alignment here for Rule 10
- size *= elemCount;
- // The base offset of the member following the array is rounded up to the
- // next multiple of the base alignment.
- size = roundToPow2(size, alignment);
- }
- return {alignment, size};
- }
- emitError("alignment and size calculation for type %0 unimplemented") << type;
- return {0, 0};
- }
- } // namespace spirv
- } // namespace clang
|