| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278 |
- //===- PatternMatch.h - Match on the LLVM IR --------------------*- C++ -*-===//
- //
- // The LLVM Compiler Infrastructure
- //
- // This file is distributed under the University of Illinois Open Source
- // License. See LICENSE.TXT for details.
- //
- //===----------------------------------------------------------------------===//
- //
- // This file provides a simple and efficient mechanism for performing general
- // tree-based pattern matches on the LLVM IR. The power of these routines is
- // that it allows you to write concise patterns that are expressive and easy to
- // understand. The other major advantage of this is that it allows you to
- // trivially capture/bind elements in the pattern to variables. For example,
- // you can do something like this:
- //
- // Value *Exp = ...
- // Value *X, *Y; ConstantInt *C1, *C2; // (X & C1) | (Y & C2)
- // if (match(Exp, m_Or(m_And(m_Value(X), m_ConstantInt(C1)),
- // m_And(m_Value(Y), m_ConstantInt(C2))))) {
- // ... Pattern is matched and variables are bound ...
- // }
- //
- // This is primarily useful to things like the instruction combiner, but can
- // also be useful for static analysis tools or code generators.
- //
- //===----------------------------------------------------------------------===//
- #ifndef LLVM_IR_PATTERNMATCH_H
- #define LLVM_IR_PATTERNMATCH_H
- #include "llvm/IR/CallSite.h"
- #include "llvm/IR/Constants.h"
- #include "llvm/IR/Instructions.h"
- #include "llvm/IR/Intrinsics.h"
- #include "llvm/IR/Operator.h"
- namespace llvm {
- namespace PatternMatch {
- template <typename Val, typename Pattern> bool match(Val *V, const Pattern &P) {
- return const_cast<Pattern &>(P).match(V);
- }
- template <typename SubPattern_t> struct OneUse_match {
- SubPattern_t SubPattern;
- OneUse_match(const SubPattern_t &SP) : SubPattern(SP) {}
- template <typename OpTy> bool match(OpTy *V) {
- return V->hasOneUse() && SubPattern.match(V);
- }
- };
- template <typename T> inline OneUse_match<T> m_OneUse(const T &SubPattern) {
- return SubPattern;
- }
- template <typename Class> struct class_match {
- template <typename ITy> bool match(ITy *V) { return isa<Class>(V); }
- };
- /// \brief Match an arbitrary value and ignore it.
- inline class_match<Value> m_Value() { return class_match<Value>(); }
- /// \brief Match an arbitrary binary operation and ignore it.
- inline class_match<BinaryOperator> m_BinOp() {
- return class_match<BinaryOperator>();
- }
- /// \brief Matches any compare instruction and ignore it.
- inline class_match<CmpInst> m_Cmp() { return class_match<CmpInst>(); }
- /// \brief Match an arbitrary ConstantInt and ignore it.
- inline class_match<ConstantInt> m_ConstantInt() {
- return class_match<ConstantInt>();
- }
- /// \brief Match an arbitrary undef constant.
- inline class_match<UndefValue> m_Undef() { return class_match<UndefValue>(); }
- /// \brief Match an arbitrary Constant and ignore it.
- inline class_match<Constant> m_Constant() { return class_match<Constant>(); }
- /// Matching combinators
- template <typename LTy, typename RTy> struct match_combine_or {
- LTy L;
- RTy R;
- match_combine_or(const LTy &Left, const RTy &Right) : L(Left), R(Right) {}
- template <typename ITy> bool match(ITy *V) {
- if (L.match(V))
- return true;
- if (R.match(V))
- return true;
- return false;
- }
- };
- template <typename LTy, typename RTy> struct match_combine_and {
- LTy L;
- RTy R;
- match_combine_and(const LTy &Left, const RTy &Right) : L(Left), R(Right) {}
- template <typename ITy> bool match(ITy *V) {
- if (L.match(V))
- if (R.match(V))
- return true;
- return false;
- }
- };
- /// Combine two pattern matchers matching L || R
- template <typename LTy, typename RTy>
- inline match_combine_or<LTy, RTy> m_CombineOr(const LTy &L, const RTy &R) {
- return match_combine_or<LTy, RTy>(L, R);
- }
- /// Combine two pattern matchers matching L && R
- template <typename LTy, typename RTy>
- inline match_combine_and<LTy, RTy> m_CombineAnd(const LTy &L, const RTy &R) {
- return match_combine_and<LTy, RTy>(L, R);
- }
- struct match_zero {
- template <typename ITy> bool match(ITy *V) {
- if (const auto *C = dyn_cast<Constant>(V))
- return C->isNullValue();
- return false;
- }
- };
- /// \brief Match an arbitrary zero/null constant. This includes
- /// zero_initializer for vectors and ConstantPointerNull for pointers.
- inline match_zero m_Zero() { return match_zero(); }
- struct match_neg_zero {
- template <typename ITy> bool match(ITy *V) {
- if (const auto *C = dyn_cast<Constant>(V))
- return C->isNegativeZeroValue();
- return false;
- }
- };
- /// \brief Match an arbitrary zero/null constant. This includes
- /// zero_initializer for vectors and ConstantPointerNull for pointers. For
- /// floating point constants, this will match negative zero but not positive
- /// zero
- inline match_neg_zero m_NegZero() { return match_neg_zero(); }
- /// \brief - Match an arbitrary zero/null constant. This includes
- /// zero_initializer for vectors and ConstantPointerNull for pointers. For
- /// floating point constants, this will match negative zero and positive zero
- inline match_combine_or<match_zero, match_neg_zero> m_AnyZero() {
- return m_CombineOr(m_Zero(), m_NegZero());
- }
- struct apint_match {
- const APInt *&Res;
- apint_match(const APInt *&R) : Res(R) {}
- template <typename ITy> bool match(ITy *V) {
- if (auto *CI = dyn_cast<ConstantInt>(V)) {
- Res = &CI->getValue();
- return true;
- }
- if (V->getType()->isVectorTy())
- if (const auto *C = dyn_cast<Constant>(V))
- if (auto *CI = dyn_cast_or_null<ConstantInt>(C->getSplatValue())) {
- Res = &CI->getValue();
- return true;
- }
- return false;
- }
- };
- /// \brief Match a ConstantInt or splatted ConstantVector, binding the
- /// specified pointer to the contained APInt.
- inline apint_match m_APInt(const APInt *&Res) { return Res; }
- template <int64_t Val> struct constantint_match {
- template <typename ITy> bool match(ITy *V) {
- if (const auto *CI = dyn_cast<ConstantInt>(V)) {
- const APInt &CIV = CI->getValue();
- if (Val >= 0)
- return CIV == static_cast<uint64_t>(Val);
- // If Val is negative, and CI is shorter than it, truncate to the right
- // number of bits. If it is larger, then we have to sign extend. Just
- // compare their negated values.
- return -CIV == -Val;
- }
- return false;
- }
- };
- /// \brief Match a ConstantInt with a specific value.
- template <int64_t Val> inline constantint_match<Val> m_ConstantInt() {
- return constantint_match<Val>();
- }
- /// \brief This helper class is used to match scalar and vector constants that
- /// satisfy a specified predicate.
- template <typename Predicate> struct cst_pred_ty : public Predicate {
- template <typename ITy> bool match(ITy *V) {
- if (const auto *CI = dyn_cast<ConstantInt>(V))
- return this->isValue(CI->getValue());
- if (V->getType()->isVectorTy())
- if (const auto *C = dyn_cast<Constant>(V))
- if (const auto *CI = dyn_cast_or_null<ConstantInt>(C->getSplatValue()))
- return this->isValue(CI->getValue());
- return false;
- }
- };
- /// \brief This helper class is used to match scalar and vector constants that
- /// satisfy a specified predicate, and bind them to an APInt.
- template <typename Predicate> struct api_pred_ty : public Predicate {
- const APInt *&Res;
- api_pred_ty(const APInt *&R) : Res(R) {}
- template <typename ITy> bool match(ITy *V) {
- if (const auto *CI = dyn_cast<ConstantInt>(V))
- if (this->isValue(CI->getValue())) {
- Res = &CI->getValue();
- return true;
- }
- if (V->getType()->isVectorTy())
- if (const auto *C = dyn_cast<Constant>(V))
- if (auto *CI = dyn_cast_or_null<ConstantInt>(C->getSplatValue()))
- if (this->isValue(CI->getValue())) {
- Res = &CI->getValue();
- return true;
- }
- return false;
- }
- };
- struct is_one {
- bool isValue(const APInt &C) { return C == 1; }
- };
- /// \brief Match an integer 1 or a vector with all elements equal to 1.
- inline cst_pred_ty<is_one> m_One() { return cst_pred_ty<is_one>(); }
- inline api_pred_ty<is_one> m_One(const APInt *&V) { return V; }
- struct is_all_ones {
- bool isValue(const APInt &C) { return C.isAllOnesValue(); }
- };
- /// \brief Match an integer or vector with all bits set to true.
- inline cst_pred_ty<is_all_ones> m_AllOnes() {
- return cst_pred_ty<is_all_ones>();
- }
- inline api_pred_ty<is_all_ones> m_AllOnes(const APInt *&V) { return V; }
- struct is_sign_bit {
- bool isValue(const APInt &C) { return C.isSignBit(); }
- };
- /// \brief Match an integer or vector with only the sign bit(s) set.
- inline cst_pred_ty<is_sign_bit> m_SignBit() {
- return cst_pred_ty<is_sign_bit>();
- }
- inline api_pred_ty<is_sign_bit> m_SignBit(const APInt *&V) { return V; }
- struct is_power2 {
- bool isValue(const APInt &C) { return C.isPowerOf2(); }
- };
- /// \brief Match an integer or vector power of 2.
- inline cst_pred_ty<is_power2> m_Power2() { return cst_pred_ty<is_power2>(); }
- inline api_pred_ty<is_power2> m_Power2(const APInt *&V) { return V; }
- struct is_maxsignedvalue {
- bool isValue(const APInt &C) { return C.isMaxSignedValue(); }
- };
- inline cst_pred_ty<is_maxsignedvalue> m_MaxSignedValue() { return cst_pred_ty<is_maxsignedvalue>(); }
- inline api_pred_ty<is_maxsignedvalue> m_MaxSignedValue(const APInt *&V) { return V; }
- template <typename Class> struct bind_ty {
- Class *&VR;
- bind_ty(Class *&V) : VR(V) {}
- template <typename ITy> bool match(ITy *V) {
- if (auto *CV = dyn_cast<Class>(V)) {
- VR = CV;
- return true;
- }
- return false;
- }
- };
- /// \brief Match a value, capturing it if we match.
- inline bind_ty<Value> m_Value(Value *&V) { return V; }
- /// \brief Match an instruction, capturing it if we match.
- inline bind_ty<Instruction> m_Instruction(Instruction *&I) { return I; }
- /// \brief Match a binary operator, capturing it if we match.
- inline bind_ty<BinaryOperator> m_BinOp(BinaryOperator *&I) { return I; }
- /// \brief Match a ConstantInt, capturing the value if we match.
- inline bind_ty<ConstantInt> m_ConstantInt(ConstantInt *&CI) { return CI; }
- /// \brief Match a Constant, capturing the value if we match.
- inline bind_ty<Constant> m_Constant(Constant *&C) { return C; }
- /// \brief Match a ConstantFP, capturing the value if we match.
- inline bind_ty<ConstantFP> m_ConstantFP(ConstantFP *&C) { return C; }
- /// \brief Match a specified Value*.
- struct specificval_ty {
- const Value *Val;
- specificval_ty(const Value *V) : Val(V) {}
- template <typename ITy> bool match(ITy *V) { return V == Val; }
- };
- /// \brief Match if we have a specific specified value.
- inline specificval_ty m_Specific(const Value *V) { return V; }
- /// \brief Match a specified floating point value or vector of all elements of
- /// that value.
- struct specific_fpval {
- double Val;
- specific_fpval(double V) : Val(V) {}
- template <typename ITy> bool match(ITy *V) {
- if (const auto *CFP = dyn_cast<ConstantFP>(V))
- return CFP->isExactlyValue(Val);
- if (V->getType()->isVectorTy())
- if (const auto *C = dyn_cast<Constant>(V))
- if (auto *CFP = dyn_cast_or_null<ConstantFP>(C->getSplatValue()))
- return CFP->isExactlyValue(Val);
- return false;
- }
- };
- /// \brief Match a specific floating point value or vector with all elements
- /// equal to the value.
- inline specific_fpval m_SpecificFP(double V) { return specific_fpval(V); }
- /// \brief Match a float 1.0 or vector with all elements equal to 1.0.
- inline specific_fpval m_FPOne() { return m_SpecificFP(1.0); }
- struct bind_const_intval_ty {
- uint64_t &VR;
- bind_const_intval_ty(uint64_t &V) : VR(V) {}
- template <typename ITy> bool match(ITy *V) {
- if (const auto *CV = dyn_cast<ConstantInt>(V))
- if (CV->getBitWidth() <= 64) {
- VR = CV->getZExtValue();
- return true;
- }
- return false;
- }
- };
- /// \brief Match a specified integer value or vector of all elements of that
- // value.
- struct specific_intval {
- uint64_t Val;
- specific_intval(uint64_t V) : Val(V) {}
- template <typename ITy> bool match(ITy *V) {
- const auto *CI = dyn_cast<ConstantInt>(V);
- if (!CI && V->getType()->isVectorTy())
- if (const auto *C = dyn_cast<Constant>(V))
- CI = dyn_cast_or_null<ConstantInt>(C->getSplatValue());
- if (CI && CI->getBitWidth() <= 64)
- return CI->getZExtValue() == Val;
- return false;
- }
- };
- /// \brief Match a specific integer value or vector with all elements equal to
- /// the value.
- inline specific_intval m_SpecificInt(uint64_t V) { return specific_intval(V); }
- /// \brief Match a ConstantInt and bind to its value. This does not match
- /// ConstantInts wider than 64-bits.
- inline bind_const_intval_ty m_ConstantInt(uint64_t &V) { return V; }
- //===----------------------------------------------------------------------===//
- // Matcher for any binary operator.
- //
- template <typename LHS_t, typename RHS_t> struct AnyBinaryOp_match {
- LHS_t L;
- RHS_t R;
- AnyBinaryOp_match(const LHS_t &LHS, const RHS_t &RHS) : L(LHS), R(RHS) {}
- template <typename OpTy> bool match(OpTy *V) {
- if (auto *I = dyn_cast<BinaryOperator>(V))
- return L.match(I->getOperand(0)) && R.match(I->getOperand(1));
- return false;
- }
- };
- template <typename LHS, typename RHS>
- inline AnyBinaryOp_match<LHS, RHS> m_BinOp(const LHS &L, const RHS &R) {
- return AnyBinaryOp_match<LHS, RHS>(L, R);
- }
- //===----------------------------------------------------------------------===//
- // Matchers for specific binary operators.
- //
- template <typename LHS_t, typename RHS_t, unsigned Opcode>
- struct BinaryOp_match {
- LHS_t L;
- RHS_t R;
- BinaryOp_match(const LHS_t &LHS, const RHS_t &RHS) : L(LHS), R(RHS) {}
- template <typename OpTy> bool match(OpTy *V) {
- if (V->getValueID() == Value::InstructionVal + Opcode) {
- auto *I = cast<BinaryOperator>(V);
- return L.match(I->getOperand(0)) && R.match(I->getOperand(1));
- }
- if (auto *CE = dyn_cast<ConstantExpr>(V))
- return CE->getOpcode() == Opcode && L.match(CE->getOperand(0)) &&
- R.match(CE->getOperand(1));
- return false;
- }
- };
- template <typename LHS, typename RHS>
- inline BinaryOp_match<LHS, RHS, Instruction::Add> m_Add(const LHS &L,
- const RHS &R) {
- return BinaryOp_match<LHS, RHS, Instruction::Add>(L, R);
- }
- template <typename LHS, typename RHS>
- inline BinaryOp_match<LHS, RHS, Instruction::FAdd> m_FAdd(const LHS &L,
- const RHS &R) {
- return BinaryOp_match<LHS, RHS, Instruction::FAdd>(L, R);
- }
- template <typename LHS, typename RHS>
- inline BinaryOp_match<LHS, RHS, Instruction::Sub> m_Sub(const LHS &L,
- const RHS &R) {
- return BinaryOp_match<LHS, RHS, Instruction::Sub>(L, R);
- }
- template <typename LHS, typename RHS>
- inline BinaryOp_match<LHS, RHS, Instruction::FSub> m_FSub(const LHS &L,
- const RHS &R) {
- return BinaryOp_match<LHS, RHS, Instruction::FSub>(L, R);
- }
- template <typename LHS, typename RHS>
- inline BinaryOp_match<LHS, RHS, Instruction::Mul> m_Mul(const LHS &L,
- const RHS &R) {
- return BinaryOp_match<LHS, RHS, Instruction::Mul>(L, R);
- }
- template <typename LHS, typename RHS>
- inline BinaryOp_match<LHS, RHS, Instruction::FMul> m_FMul(const LHS &L,
- const RHS &R) {
- return BinaryOp_match<LHS, RHS, Instruction::FMul>(L, R);
- }
- template <typename LHS, typename RHS>
- inline BinaryOp_match<LHS, RHS, Instruction::UDiv> m_UDiv(const LHS &L,
- const RHS &R) {
- return BinaryOp_match<LHS, RHS, Instruction::UDiv>(L, R);
- }
- template <typename LHS, typename RHS>
- inline BinaryOp_match<LHS, RHS, Instruction::SDiv> m_SDiv(const LHS &L,
- const RHS &R) {
- return BinaryOp_match<LHS, RHS, Instruction::SDiv>(L, R);
- }
- template <typename LHS, typename RHS>
- inline BinaryOp_match<LHS, RHS, Instruction::FDiv> m_FDiv(const LHS &L,
- const RHS &R) {
- return BinaryOp_match<LHS, RHS, Instruction::FDiv>(L, R);
- }
- template <typename LHS, typename RHS>
- inline BinaryOp_match<LHS, RHS, Instruction::URem> m_URem(const LHS &L,
- const RHS &R) {
- return BinaryOp_match<LHS, RHS, Instruction::URem>(L, R);
- }
- template <typename LHS, typename RHS>
- inline BinaryOp_match<LHS, RHS, Instruction::SRem> m_SRem(const LHS &L,
- const RHS &R) {
- return BinaryOp_match<LHS, RHS, Instruction::SRem>(L, R);
- }
- template <typename LHS, typename RHS>
- inline BinaryOp_match<LHS, RHS, Instruction::FRem> m_FRem(const LHS &L,
- const RHS &R) {
- return BinaryOp_match<LHS, RHS, Instruction::FRem>(L, R);
- }
- template <typename LHS, typename RHS>
- inline BinaryOp_match<LHS, RHS, Instruction::And> m_And(const LHS &L,
- const RHS &R) {
- return BinaryOp_match<LHS, RHS, Instruction::And>(L, R);
- }
- template <typename LHS, typename RHS>
- inline BinaryOp_match<LHS, RHS, Instruction::Or> m_Or(const LHS &L,
- const RHS &R) {
- return BinaryOp_match<LHS, RHS, Instruction::Or>(L, R);
- }
- template <typename LHS, typename RHS>
- inline BinaryOp_match<LHS, RHS, Instruction::Xor> m_Xor(const LHS &L,
- const RHS &R) {
- return BinaryOp_match<LHS, RHS, Instruction::Xor>(L, R);
- }
- template <typename LHS, typename RHS>
- inline BinaryOp_match<LHS, RHS, Instruction::Shl> m_Shl(const LHS &L,
- const RHS &R) {
- return BinaryOp_match<LHS, RHS, Instruction::Shl>(L, R);
- }
- template <typename LHS, typename RHS>
- inline BinaryOp_match<LHS, RHS, Instruction::LShr> m_LShr(const LHS &L,
- const RHS &R) {
- return BinaryOp_match<LHS, RHS, Instruction::LShr>(L, R);
- }
- template <typename LHS, typename RHS>
- inline BinaryOp_match<LHS, RHS, Instruction::AShr> m_AShr(const LHS &L,
- const RHS &R) {
- return BinaryOp_match<LHS, RHS, Instruction::AShr>(L, R);
- }
- template <typename LHS_t, typename RHS_t, unsigned Opcode,
- unsigned WrapFlags = 0>
- struct OverflowingBinaryOp_match {
- LHS_t L;
- RHS_t R;
- OverflowingBinaryOp_match(const LHS_t &LHS, const RHS_t &RHS)
- : L(LHS), R(RHS) {}
- template <typename OpTy> bool match(OpTy *V) {
- if (auto *Op = dyn_cast<OverflowingBinaryOperator>(V)) {
- if (Op->getOpcode() != Opcode)
- return false;
- if (WrapFlags & OverflowingBinaryOperator::NoUnsignedWrap &&
- !Op->hasNoUnsignedWrap())
- return false;
- if (WrapFlags & OverflowingBinaryOperator::NoSignedWrap &&
- !Op->hasNoSignedWrap())
- return false;
- return L.match(Op->getOperand(0)) && R.match(Op->getOperand(1));
- }
- return false;
- }
- };
- template <typename LHS, typename RHS>
- inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Add,
- OverflowingBinaryOperator::NoSignedWrap>
- m_NSWAdd(const LHS &L, const RHS &R) {
- return OverflowingBinaryOp_match<LHS, RHS, Instruction::Add,
- OverflowingBinaryOperator::NoSignedWrap>(
- L, R);
- }
- template <typename LHS, typename RHS>
- inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Sub,
- OverflowingBinaryOperator::NoSignedWrap>
- m_NSWSub(const LHS &L, const RHS &R) {
- return OverflowingBinaryOp_match<LHS, RHS, Instruction::Sub,
- OverflowingBinaryOperator::NoSignedWrap>(
- L, R);
- }
- template <typename LHS, typename RHS>
- inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Mul,
- OverflowingBinaryOperator::NoSignedWrap>
- m_NSWMul(const LHS &L, const RHS &R) {
- return OverflowingBinaryOp_match<LHS, RHS, Instruction::Mul,
- OverflowingBinaryOperator::NoSignedWrap>(
- L, R);
- }
- template <typename LHS, typename RHS>
- inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Shl,
- OverflowingBinaryOperator::NoSignedWrap>
- m_NSWShl(const LHS &L, const RHS &R) {
- return OverflowingBinaryOp_match<LHS, RHS, Instruction::Shl,
- OverflowingBinaryOperator::NoSignedWrap>(
- L, R);
- }
- template <typename LHS, typename RHS>
- inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Add,
- OverflowingBinaryOperator::NoUnsignedWrap>
- m_NUWAdd(const LHS &L, const RHS &R) {
- return OverflowingBinaryOp_match<LHS, RHS, Instruction::Add,
- OverflowingBinaryOperator::NoUnsignedWrap>(
- L, R);
- }
- template <typename LHS, typename RHS>
- inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Sub,
- OverflowingBinaryOperator::NoUnsignedWrap>
- m_NUWSub(const LHS &L, const RHS &R) {
- return OverflowingBinaryOp_match<LHS, RHS, Instruction::Sub,
- OverflowingBinaryOperator::NoUnsignedWrap>(
- L, R);
- }
- template <typename LHS, typename RHS>
- inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Mul,
- OverflowingBinaryOperator::NoUnsignedWrap>
- m_NUWMul(const LHS &L, const RHS &R) {
- return OverflowingBinaryOp_match<LHS, RHS, Instruction::Mul,
- OverflowingBinaryOperator::NoUnsignedWrap>(
- L, R);
- }
- template <typename LHS, typename RHS>
- inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Shl,
- OverflowingBinaryOperator::NoUnsignedWrap>
- m_NUWShl(const LHS &L, const RHS &R) {
- return OverflowingBinaryOp_match<LHS, RHS, Instruction::Shl,
- OverflowingBinaryOperator::NoUnsignedWrap>(
- L, R);
- }
- //===----------------------------------------------------------------------===//
- // Class that matches two different binary ops.
- //
- template <typename LHS_t, typename RHS_t, unsigned Opc1, unsigned Opc2>
- struct BinOp2_match {
- LHS_t L;
- RHS_t R;
- BinOp2_match(const LHS_t &LHS, const RHS_t &RHS) : L(LHS), R(RHS) {}
- template <typename OpTy> bool match(OpTy *V) {
- if (V->getValueID() == Value::InstructionVal + Opc1 ||
- V->getValueID() == Value::InstructionVal + Opc2) {
- auto *I = cast<BinaryOperator>(V);
- return L.match(I->getOperand(0)) && R.match(I->getOperand(1));
- }
- if (auto *CE = dyn_cast<ConstantExpr>(V))
- return (CE->getOpcode() == Opc1 || CE->getOpcode() == Opc2) &&
- L.match(CE->getOperand(0)) && R.match(CE->getOperand(1));
- return false;
- }
- };
- /// \brief Matches LShr or AShr.
- template <typename LHS, typename RHS>
- inline BinOp2_match<LHS, RHS, Instruction::LShr, Instruction::AShr>
- m_Shr(const LHS &L, const RHS &R) {
- return BinOp2_match<LHS, RHS, Instruction::LShr, Instruction::AShr>(L, R);
- }
- /// \brief Matches LShr or Shl.
- template <typename LHS, typename RHS>
- inline BinOp2_match<LHS, RHS, Instruction::LShr, Instruction::Shl>
- m_LogicalShift(const LHS &L, const RHS &R) {
- return BinOp2_match<LHS, RHS, Instruction::LShr, Instruction::Shl>(L, R);
- }
- /// \brief Matches UDiv and SDiv.
- template <typename LHS, typename RHS>
- inline BinOp2_match<LHS, RHS, Instruction::SDiv, Instruction::UDiv>
- m_IDiv(const LHS &L, const RHS &R) {
- return BinOp2_match<LHS, RHS, Instruction::SDiv, Instruction::UDiv>(L, R);
- }
- //===----------------------------------------------------------------------===//
- // Class that matches exact binary ops.
- //
- template <typename SubPattern_t> struct Exact_match {
- SubPattern_t SubPattern;
- Exact_match(const SubPattern_t &SP) : SubPattern(SP) {}
- template <typename OpTy> bool match(OpTy *V) {
- if (PossiblyExactOperator *PEO = dyn_cast<PossiblyExactOperator>(V))
- return PEO->isExact() && SubPattern.match(V);
- return false;
- }
- };
- template <typename T> inline Exact_match<T> m_Exact(const T &SubPattern) {
- return SubPattern;
- }
- //===----------------------------------------------------------------------===//
- // Matchers for CmpInst classes
- //
- template <typename LHS_t, typename RHS_t, typename Class, typename PredicateTy>
- struct CmpClass_match {
- PredicateTy &Predicate;
- LHS_t L;
- RHS_t R;
- CmpClass_match(PredicateTy &Pred, const LHS_t &LHS, const RHS_t &RHS)
- : Predicate(Pred), L(LHS), R(RHS) {}
- template <typename OpTy> bool match(OpTy *V) {
- if (Class *I = dyn_cast<Class>(V))
- if (L.match(I->getOperand(0)) && R.match(I->getOperand(1))) {
- Predicate = I->getPredicate();
- return true;
- }
- return false;
- }
- };
- template <typename LHS, typename RHS>
- inline CmpClass_match<LHS, RHS, CmpInst, CmpInst::Predicate>
- m_Cmp(CmpInst::Predicate &Pred, const LHS &L, const RHS &R) {
- return CmpClass_match<LHS, RHS, CmpInst, CmpInst::Predicate>(Pred, L, R);
- }
- template <typename LHS, typename RHS>
- inline CmpClass_match<LHS, RHS, ICmpInst, ICmpInst::Predicate>
- m_ICmp(ICmpInst::Predicate &Pred, const LHS &L, const RHS &R) {
- return CmpClass_match<LHS, RHS, ICmpInst, ICmpInst::Predicate>(Pred, L, R);
- }
- template <typename LHS, typename RHS>
- inline CmpClass_match<LHS, RHS, FCmpInst, FCmpInst::Predicate>
- m_FCmp(FCmpInst::Predicate &Pred, const LHS &L, const RHS &R) {
- return CmpClass_match<LHS, RHS, FCmpInst, FCmpInst::Predicate>(Pred, L, R);
- }
- //===----------------------------------------------------------------------===//
- // Matchers for SelectInst classes
- //
- template <typename Cond_t, typename LHS_t, typename RHS_t>
- struct SelectClass_match {
- Cond_t C;
- LHS_t L;
- RHS_t R;
- SelectClass_match(const Cond_t &Cond, const LHS_t &LHS, const RHS_t &RHS)
- : C(Cond), L(LHS), R(RHS) {}
- template <typename OpTy> bool match(OpTy *V) {
- if (auto *I = dyn_cast<SelectInst>(V))
- return C.match(I->getOperand(0)) && L.match(I->getOperand(1)) &&
- R.match(I->getOperand(2));
- return false;
- }
- };
- template <typename Cond, typename LHS, typename RHS>
- inline SelectClass_match<Cond, LHS, RHS> m_Select(const Cond &C, const LHS &L,
- const RHS &R) {
- return SelectClass_match<Cond, LHS, RHS>(C, L, R);
- }
- /// \brief This matches a select of two constants, e.g.:
- /// m_SelectCst<-1, 0>(m_Value(V))
- template <int64_t L, int64_t R, typename Cond>
- inline SelectClass_match<Cond, constantint_match<L>, constantint_match<R>>
- m_SelectCst(const Cond &C) {
- return m_Select(C, m_ConstantInt<L>(), m_ConstantInt<R>());
- }
- //===----------------------------------------------------------------------===//
- // Matchers for CastInst classes
- //
- template <typename Op_t, unsigned Opcode> struct CastClass_match {
- Op_t Op;
- CastClass_match(const Op_t &OpMatch) : Op(OpMatch) {}
- template <typename OpTy> bool match(OpTy *V) {
- if (auto *O = dyn_cast<Operator>(V))
- return O->getOpcode() == Opcode && Op.match(O->getOperand(0));
- return false;
- }
- };
- /// \brief Matches BitCast.
- template <typename OpTy>
- inline CastClass_match<OpTy, Instruction::BitCast> m_BitCast(const OpTy &Op) {
- return CastClass_match<OpTy, Instruction::BitCast>(Op);
- }
- /// \brief Matches PtrToInt.
- template <typename OpTy>
- inline CastClass_match<OpTy, Instruction::PtrToInt> m_PtrToInt(const OpTy &Op) {
- return CastClass_match<OpTy, Instruction::PtrToInt>(Op);
- }
- /// \brief Matches Trunc.
- template <typename OpTy>
- inline CastClass_match<OpTy, Instruction::Trunc> m_Trunc(const OpTy &Op) {
- return CastClass_match<OpTy, Instruction::Trunc>(Op);
- }
- /// \brief Matches SExt.
- template <typename OpTy>
- inline CastClass_match<OpTy, Instruction::SExt> m_SExt(const OpTy &Op) {
- return CastClass_match<OpTy, Instruction::SExt>(Op);
- }
- /// \brief Matches ZExt.
- template <typename OpTy>
- inline CastClass_match<OpTy, Instruction::ZExt> m_ZExt(const OpTy &Op) {
- return CastClass_match<OpTy, Instruction::ZExt>(Op);
- }
- /// \brief Matches UIToFP.
- template <typename OpTy>
- inline CastClass_match<OpTy, Instruction::UIToFP> m_UIToFP(const OpTy &Op) {
- return CastClass_match<OpTy, Instruction::UIToFP>(Op);
- }
- /// \brief Matches SIToFP.
- template <typename OpTy>
- inline CastClass_match<OpTy, Instruction::SIToFP> m_SIToFP(const OpTy &Op) {
- return CastClass_match<OpTy, Instruction::SIToFP>(Op);
- }
- //===----------------------------------------------------------------------===//
- // Matchers for unary operators
- //
- template <typename LHS_t> struct not_match {
- LHS_t L;
- not_match(const LHS_t &LHS) : L(LHS) {}
- template <typename OpTy> bool match(OpTy *V) {
- if (auto *O = dyn_cast<Operator>(V))
- if (O->getOpcode() == Instruction::Xor)
- return matchIfNot(O->getOperand(0), O->getOperand(1));
- return false;
- }
- private:
- bool matchIfNot(Value *LHS, Value *RHS) {
- return (isa<ConstantInt>(RHS) || isa<ConstantDataVector>(RHS) ||
- // FIXME: Remove CV.
- isa<ConstantVector>(RHS)) &&
- cast<Constant>(RHS)->isAllOnesValue() && L.match(LHS);
- }
- };
- template <typename LHS> inline not_match<LHS> m_Not(const LHS &L) { return L; }
- template <typename LHS_t> struct neg_match {
- LHS_t L;
- neg_match(const LHS_t &LHS) : L(LHS) {}
- template <typename OpTy> bool match(OpTy *V) {
- if (auto *O = dyn_cast<Operator>(V))
- if (O->getOpcode() == Instruction::Sub)
- return matchIfNeg(O->getOperand(0), O->getOperand(1));
- return false;
- }
- private:
- bool matchIfNeg(Value *LHS, Value *RHS) {
- return ((isa<ConstantInt>(LHS) && cast<ConstantInt>(LHS)->isZero()) ||
- isa<ConstantAggregateZero>(LHS)) &&
- L.match(RHS);
- }
- };
- /// \brief Match an integer negate.
- template <typename LHS> inline neg_match<LHS> m_Neg(const LHS &L) { return L; }
- template <typename LHS_t> struct fneg_match {
- LHS_t L;
- fneg_match(const LHS_t &LHS) : L(LHS) {}
- template <typename OpTy> bool match(OpTy *V) {
- if (auto *O = dyn_cast<Operator>(V))
- if (O->getOpcode() == Instruction::FSub)
- return matchIfFNeg(O->getOperand(0), O->getOperand(1));
- return false;
- }
- private:
- bool matchIfFNeg(Value *LHS, Value *RHS) {
- if (const auto *C = dyn_cast<ConstantFP>(LHS))
- return C->isNegativeZeroValue() && L.match(RHS);
- return false;
- }
- };
- /// \brief Match a floating point negate.
- template <typename LHS> inline fneg_match<LHS> m_FNeg(const LHS &L) {
- return L;
- }
- //===----------------------------------------------------------------------===//
- // Matchers for control flow.
- //
- struct br_match {
- BasicBlock *&Succ;
- br_match(BasicBlock *&Succ) : Succ(Succ) {}
- template <typename OpTy> bool match(OpTy *V) {
- if (auto *BI = dyn_cast<BranchInst>(V))
- if (BI->isUnconditional()) {
- Succ = BI->getSuccessor(0);
- return true;
- }
- return false;
- }
- };
- inline br_match m_UnconditionalBr(BasicBlock *&Succ) { return br_match(Succ); }
- template <typename Cond_t> struct brc_match {
- Cond_t Cond;
- BasicBlock *&T, *&F;
- brc_match(const Cond_t &C, BasicBlock *&t, BasicBlock *&f)
- : Cond(C), T(t), F(f) {}
- template <typename OpTy> bool match(OpTy *V) {
- if (auto *BI = dyn_cast<BranchInst>(V))
- if (BI->isConditional() && Cond.match(BI->getCondition())) {
- T = BI->getSuccessor(0);
- F = BI->getSuccessor(1);
- return true;
- }
- return false;
- }
- };
- template <typename Cond_t>
- inline brc_match<Cond_t> m_Br(const Cond_t &C, BasicBlock *&T, BasicBlock *&F) {
- return brc_match<Cond_t>(C, T, F);
- }
- //===----------------------------------------------------------------------===//
- // Matchers for max/min idioms, eg: "select (sgt x, y), x, y" -> smax(x,y).
- //
- template <typename CmpInst_t, typename LHS_t, typename RHS_t, typename Pred_t>
- struct MaxMin_match {
- LHS_t L;
- RHS_t R;
- MaxMin_match(const LHS_t &LHS, const RHS_t &RHS) : L(LHS), R(RHS) {}
- template <typename OpTy> bool match(OpTy *V) {
- // Look for "(x pred y) ? x : y" or "(x pred y) ? y : x".
- auto *SI = dyn_cast<SelectInst>(V);
- if (!SI)
- return false;
- auto *Cmp = dyn_cast<CmpInst_t>(SI->getCondition());
- if (!Cmp)
- return false;
- // At this point we have a select conditioned on a comparison. Check that
- // it is the values returned by the select that are being compared.
- Value *TrueVal = SI->getTrueValue();
- Value *FalseVal = SI->getFalseValue();
- Value *LHS = Cmp->getOperand(0);
- Value *RHS = Cmp->getOperand(1);
- if ((TrueVal != LHS || FalseVal != RHS) &&
- (TrueVal != RHS || FalseVal != LHS))
- return false;
- typename CmpInst_t::Predicate Pred =
- LHS == TrueVal ? Cmp->getPredicate() : Cmp->getSwappedPredicate();
- // Does "(x pred y) ? x : y" represent the desired max/min operation?
- if (!Pred_t::match(Pred))
- return false;
- // It does! Bind the operands.
- return L.match(LHS) && R.match(RHS);
- }
- };
- /// \brief Helper class for identifying signed max predicates.
- struct smax_pred_ty {
- static bool match(ICmpInst::Predicate Pred) {
- return Pred == CmpInst::ICMP_SGT || Pred == CmpInst::ICMP_SGE;
- }
- };
- /// \brief Helper class for identifying signed min predicates.
- struct smin_pred_ty {
- static bool match(ICmpInst::Predicate Pred) {
- return Pred == CmpInst::ICMP_SLT || Pred == CmpInst::ICMP_SLE;
- }
- };
- /// \brief Helper class for identifying unsigned max predicates.
- struct umax_pred_ty {
- static bool match(ICmpInst::Predicate Pred) {
- return Pred == CmpInst::ICMP_UGT || Pred == CmpInst::ICMP_UGE;
- }
- };
- /// \brief Helper class for identifying unsigned min predicates.
- struct umin_pred_ty {
- static bool match(ICmpInst::Predicate Pred) {
- return Pred == CmpInst::ICMP_ULT || Pred == CmpInst::ICMP_ULE;
- }
- };
- /// \brief Helper class for identifying ordered max predicates.
- struct ofmax_pred_ty {
- static bool match(FCmpInst::Predicate Pred) {
- return Pred == CmpInst::FCMP_OGT || Pred == CmpInst::FCMP_OGE;
- }
- };
- /// \brief Helper class for identifying ordered min predicates.
- struct ofmin_pred_ty {
- static bool match(FCmpInst::Predicate Pred) {
- return Pred == CmpInst::FCMP_OLT || Pred == CmpInst::FCMP_OLE;
- }
- };
- /// \brief Helper class for identifying unordered max predicates.
- struct ufmax_pred_ty {
- static bool match(FCmpInst::Predicate Pred) {
- return Pred == CmpInst::FCMP_UGT || Pred == CmpInst::FCMP_UGE;
- }
- };
- /// \brief Helper class for identifying unordered min predicates.
- struct ufmin_pred_ty {
- static bool match(FCmpInst::Predicate Pred) {
- return Pred == CmpInst::FCMP_ULT || Pred == CmpInst::FCMP_ULE;
- }
- };
- template <typename LHS, typename RHS>
- inline MaxMin_match<ICmpInst, LHS, RHS, smax_pred_ty> m_SMax(const LHS &L,
- const RHS &R) {
- return MaxMin_match<ICmpInst, LHS, RHS, smax_pred_ty>(L, R);
- }
- template <typename LHS, typename RHS>
- inline MaxMin_match<ICmpInst, LHS, RHS, smin_pred_ty> m_SMin(const LHS &L,
- const RHS &R) {
- return MaxMin_match<ICmpInst, LHS, RHS, smin_pred_ty>(L, R);
- }
- template <typename LHS, typename RHS>
- inline MaxMin_match<ICmpInst, LHS, RHS, umax_pred_ty> m_UMax(const LHS &L,
- const RHS &R) {
- return MaxMin_match<ICmpInst, LHS, RHS, umax_pred_ty>(L, R);
- }
- template <typename LHS, typename RHS>
- inline MaxMin_match<ICmpInst, LHS, RHS, umin_pred_ty> m_UMin(const LHS &L,
- const RHS &R) {
- return MaxMin_match<ICmpInst, LHS, RHS, umin_pred_ty>(L, R);
- }
- /// \brief Match an 'ordered' floating point maximum function.
- /// Floating point has one special value 'NaN'. Therefore, there is no total
- /// order. However, if we can ignore the 'NaN' value (for example, because of a
- /// 'no-nans-float-math' flag) a combination of a fcmp and select has 'maximum'
- /// semantics. In the presence of 'NaN' we have to preserve the original
- /// select(fcmp(ogt/ge, L, R), L, R) semantics matched by this predicate.
- ///
- /// max(L, R) iff L and R are not NaN
- /// m_OrdFMax(L, R) = R iff L or R are NaN
- template <typename LHS, typename RHS>
- inline MaxMin_match<FCmpInst, LHS, RHS, ofmax_pred_ty> m_OrdFMax(const LHS &L,
- const RHS &R) {
- return MaxMin_match<FCmpInst, LHS, RHS, ofmax_pred_ty>(L, R);
- }
- /// \brief Match an 'ordered' floating point minimum function.
- /// Floating point has one special value 'NaN'. Therefore, there is no total
- /// order. However, if we can ignore the 'NaN' value (for example, because of a
- /// 'no-nans-float-math' flag) a combination of a fcmp and select has 'minimum'
- /// semantics. In the presence of 'NaN' we have to preserve the original
- /// select(fcmp(olt/le, L, R), L, R) semantics matched by this predicate.
- ///
- /// max(L, R) iff L and R are not NaN
- /// m_OrdFMin(L, R) = R iff L or R are NaN
- template <typename LHS, typename RHS>
- inline MaxMin_match<FCmpInst, LHS, RHS, ofmin_pred_ty> m_OrdFMin(const LHS &L,
- const RHS &R) {
- return MaxMin_match<FCmpInst, LHS, RHS, ofmin_pred_ty>(L, R);
- }
- /// \brief Match an 'unordered' floating point maximum function.
- /// Floating point has one special value 'NaN'. Therefore, there is no total
- /// order. However, if we can ignore the 'NaN' value (for example, because of a
- /// 'no-nans-float-math' flag) a combination of a fcmp and select has 'maximum'
- /// semantics. In the presence of 'NaN' we have to preserve the original
- /// select(fcmp(ugt/ge, L, R), L, R) semantics matched by this predicate.
- ///
- /// max(L, R) iff L and R are not NaN
- /// m_UnordFMin(L, R) = L iff L or R are NaN
- template <typename LHS, typename RHS>
- inline MaxMin_match<FCmpInst, LHS, RHS, ufmax_pred_ty>
- m_UnordFMax(const LHS &L, const RHS &R) {
- return MaxMin_match<FCmpInst, LHS, RHS, ufmax_pred_ty>(L, R);
- }
- // //
- ///////////////////////////////////////////////////////////////////////////////
- // Matchers for overflow check patterns: e.g. (a + b) u< a
- //
- template <typename LHS_t, typename RHS_t, typename Sum_t>
- struct UAddWithOverflow_match {
- LHS_t L;
- RHS_t R;
- Sum_t S;
- UAddWithOverflow_match(const LHS_t &L, const RHS_t &R, const Sum_t &S)
- : L(L), R(R), S(S) {}
- template <typename OpTy> bool match(OpTy *V) {
- Value *ICmpLHS, *ICmpRHS;
- ICmpInst::Predicate Pred;
- if (!m_ICmp(Pred, m_Value(ICmpLHS), m_Value(ICmpRHS)).match(V))
- return false;
- Value *AddLHS, *AddRHS;
- auto AddExpr = m_Add(m_Value(AddLHS), m_Value(AddRHS));
- // (a + b) u< a, (a + b) u< b
- if (Pred == ICmpInst::ICMP_ULT)
- if (AddExpr.match(ICmpLHS) && (ICmpRHS == AddLHS || ICmpRHS == AddRHS))
- return L.match(AddLHS) && R.match(AddRHS) && S.match(ICmpLHS);
- // a >u (a + b), b >u (a + b)
- if (Pred == ICmpInst::ICMP_UGT)
- if (AddExpr.match(ICmpRHS) && (ICmpLHS == AddLHS || ICmpLHS == AddRHS))
- return L.match(AddLHS) && R.match(AddRHS) && S.match(ICmpRHS);
- return false;
- }
- };
- /// \brief Match an icmp instruction checking for unsigned overflow on addition.
- ///
- /// S is matched to the addition whose result is being checked for overflow, and
- /// L and R are matched to the LHS and RHS of S.
- template <typename LHS_t, typename RHS_t, typename Sum_t>
- UAddWithOverflow_match<LHS_t, RHS_t, Sum_t>
- m_UAddWithOverflow(const LHS_t &L, const RHS_t &R, const Sum_t &S) {
- return UAddWithOverflow_match<LHS_t, RHS_t, Sum_t>(L, R, S);
- }
- /// \brief Match an 'unordered' floating point minimum function.
- /// Floating point has one special value 'NaN'. Therefore, there is no total
- /// order. However, if we can ignore the 'NaN' value (for example, because of a
- /// 'no-nans-float-math' flag) a combination of a fcmp and select has 'minimum'
- /// semantics. In the presence of 'NaN' we have to preserve the original
- /// select(fcmp(ult/le, L, R), L, R) semantics matched by this predicate.
- ///
- /// max(L, R) iff L and R are not NaN
- /// m_UnordFMin(L, R) = L iff L or R are NaN
- template <typename LHS, typename RHS>
- inline MaxMin_match<FCmpInst, LHS, RHS, ufmin_pred_ty>
- m_UnordFMin(const LHS &L, const RHS &R) {
- return MaxMin_match<FCmpInst, LHS, RHS, ufmin_pred_ty>(L, R);
- }
- template <typename Opnd_t> struct Argument_match {
- unsigned OpI;
- Opnd_t Val;
- Argument_match(unsigned OpIdx, const Opnd_t &V) : OpI(OpIdx), Val(V) {}
- template <typename OpTy> bool match(OpTy *V) {
- CallSite CS(V);
- return CS.isCall() && Val.match(CS.getArgument(OpI));
- }
- };
- /// \brief Match an argument.
- template <unsigned OpI, typename Opnd_t>
- inline Argument_match<Opnd_t> m_Argument(const Opnd_t &Op) {
- return Argument_match<Opnd_t>(OpI, Op);
- }
- /// \brief Intrinsic matchers.
- struct IntrinsicID_match {
- unsigned ID;
- IntrinsicID_match(Intrinsic::ID IntrID) : ID(IntrID) {}
- template <typename OpTy> bool match(OpTy *V) {
- if (const auto *CI = dyn_cast<CallInst>(V))
- if (const auto *F = CI->getCalledFunction())
- return F->getIntrinsicID() == ID;
- return false;
- }
- };
- /// Intrinsic matches are combinations of ID matchers, and argument
- /// matchers. Higher arity matcher are defined recursively in terms of and-ing
- /// them with lower arity matchers. Here's some convenient typedefs for up to
- /// several arguments, and more can be added as needed
- template <typename T0 = void, typename T1 = void, typename T2 = void,
- typename T3 = void, typename T4 = void, typename T5 = void,
- typename T6 = void, typename T7 = void, typename T8 = void,
- typename T9 = void, typename T10 = void>
- struct m_Intrinsic_Ty;
- template <typename T0> struct m_Intrinsic_Ty<T0> {
- typedef match_combine_and<IntrinsicID_match, Argument_match<T0>> Ty;
- };
- template <typename T0, typename T1> struct m_Intrinsic_Ty<T0, T1> {
- typedef match_combine_and<typename m_Intrinsic_Ty<T0>::Ty, Argument_match<T1>>
- Ty;
- };
- template <typename T0, typename T1, typename T2>
- struct m_Intrinsic_Ty<T0, T1, T2> {
- typedef match_combine_and<typename m_Intrinsic_Ty<T0, T1>::Ty,
- Argument_match<T2>> Ty;
- };
- template <typename T0, typename T1, typename T2, typename T3>
- struct m_Intrinsic_Ty<T0, T1, T2, T3> {
- typedef match_combine_and<typename m_Intrinsic_Ty<T0, T1, T2>::Ty,
- Argument_match<T3>> Ty;
- };
- /// \brief Match intrinsic calls like this:
- /// m_Intrinsic<Intrinsic::fabs>(m_Value(X))
- template <Intrinsic::ID IntrID> inline IntrinsicID_match m_Intrinsic() {
- return IntrinsicID_match(IntrID);
- }
- template <Intrinsic::ID IntrID, typename T0>
- inline typename m_Intrinsic_Ty<T0>::Ty m_Intrinsic(const T0 &Op0) {
- return m_CombineAnd(m_Intrinsic<IntrID>(), m_Argument<0>(Op0));
- }
- template <Intrinsic::ID IntrID, typename T0, typename T1>
- inline typename m_Intrinsic_Ty<T0, T1>::Ty m_Intrinsic(const T0 &Op0,
- const T1 &Op1) {
- return m_CombineAnd(m_Intrinsic<IntrID>(Op0), m_Argument<1>(Op1));
- }
- template <Intrinsic::ID IntrID, typename T0, typename T1, typename T2>
- inline typename m_Intrinsic_Ty<T0, T1, T2>::Ty
- m_Intrinsic(const T0 &Op0, const T1 &Op1, const T2 &Op2) {
- return m_CombineAnd(m_Intrinsic<IntrID>(Op0, Op1), m_Argument<2>(Op2));
- }
- template <Intrinsic::ID IntrID, typename T0, typename T1, typename T2,
- typename T3>
- inline typename m_Intrinsic_Ty<T0, T1, T2, T3>::Ty
- m_Intrinsic(const T0 &Op0, const T1 &Op1, const T2 &Op2, const T3 &Op3) {
- return m_CombineAnd(m_Intrinsic<IntrID>(Op0, Op1, Op2), m_Argument<3>(Op3));
- }
- // Helper intrinsic matching specializations.
- template <typename Opnd0>
- inline typename m_Intrinsic_Ty<Opnd0>::Ty m_BSwap(const Opnd0 &Op0) {
- return m_Intrinsic<Intrinsic::bswap>(Op0);
- }
- template <typename Opnd0, typename Opnd1>
- inline typename m_Intrinsic_Ty<Opnd0, Opnd1>::Ty m_FMin(const Opnd0 &Op0,
- const Opnd1 &Op1) {
- return m_Intrinsic<Intrinsic::minnum>(Op0, Op1);
- }
- template <typename Opnd0, typename Opnd1>
- inline typename m_Intrinsic_Ty<Opnd0, Opnd1>::Ty m_FMax(const Opnd0 &Op0,
- const Opnd1 &Op1) {
- return m_Intrinsic<Intrinsic::maxnum>(Op0, Op1);
- }
- } // end namespace PatternMatch
- } // end namespace llvm
- #endif
|