| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128 |
- //===- TargetItinerary.td - Target Itinierary Description --*- tablegen -*-===//
- //
- // The LLVM Compiler Infrastructure
- //
- // This file is distributed under the University of Illinois Open Source
- // License. See LICENSE.TXT for details.
- //
- //===----------------------------------------------------------------------===//
- //
- // This file defines the target-independent scheduling interfaces
- // which should be implemented by each target that uses instruction
- // itineraries for scheduling. Itineraries are details reservation
- // tables for each instruction class. They are most appropriate for
- // in-order machine with complicated scheduling or bundling constraints.
- //
- //===----------------------------------------------------------------------===//
- class FuncUnit;
- //===----------------------------------------------------------------------===//
- // Pipeline bypass / forwarding - These values specifies the symbolic names of
- // pipeline bypasses which can be used to forward results of instructions
- // that are forwarded to uses.
- class Bypass;
- def NoBypass : Bypass;
- class ReservationKind<bits<1> val> {
- int Value = val;
- }
- def Required : ReservationKind<0>;
- def Reserved : ReservationKind<1>;
- //===----------------------------------------------------------------------===//
- // Instruction stage - These values represent a non-pipelined step in
- // the execution of an instruction. Cycles represents the number of
- // discrete time slots needed to complete the stage. Units represent
- // the choice of functional units that can be used to complete the
- // stage. Eg. IntUnit1, IntUnit2. NextCycles indicates how many
- // cycles should elapse from the start of this stage to the start of
- // the next stage in the itinerary. For example:
- //
- // A stage is specified in one of two ways:
- //
- // InstrStage<1, [FU_x, FU_y]> - TimeInc defaults to Cycles
- // InstrStage<1, [FU_x, FU_y], 0> - TimeInc explicit
- //
- class InstrStage<int cycles, list<FuncUnit> units,
- int timeinc = -1,
- ReservationKind kind = Required> {
- int Cycles = cycles; // length of stage in machine cycles
- list<FuncUnit> Units = units; // choice of functional units
- int TimeInc = timeinc; // cycles till start of next stage
- int Kind = kind.Value; // kind of FU reservation
- }
- //===----------------------------------------------------------------------===//
- // Instruction itinerary - An itinerary represents a sequential series of steps
- // required to complete an instruction. Itineraries are represented as lists of
- // instruction stages.
- //
- //===----------------------------------------------------------------------===//
- // Instruction itinerary classes - These values represent 'named' instruction
- // itinerary. Using named itineraries simplifies managing groups of
- // instructions across chip sets. An instruction uses the same itinerary class
- // across all chip sets. Thus a new chip set can be added without modifying
- // instruction information.
- //
- class InstrItinClass;
- def NoItinerary : InstrItinClass;
- //===----------------------------------------------------------------------===//
- // Instruction itinerary data - These values provide a runtime map of an
- // instruction itinerary class (name) to its itinerary data.
- //
- // NumMicroOps represents the number of micro-operations that each instruction
- // in the class are decoded to. If the number is zero, then it means the
- // instruction can decode into variable number of micro-ops and it must be
- // determined dynamically. This directly relates to the itineraries
- // global IssueWidth property, which constrains the number of microops
- // that can issue per cycle.
- //
- // OperandCycles are optional "cycle counts". They specify the cycle after
- // instruction issue the values which correspond to specific operand indices
- // are defined or read. Bypasses are optional "pipeline forwarding pathes", if
- // a def by an instruction is available on a specific bypass and the use can
- // read from the same bypass, then the operand use latency is reduced by one.
- //
- // InstrItinData<IIC_iLoad_i , [InstrStage<1, [A9_Pipe1]>,
- // InstrStage<1, [A9_AGU]>],
- // [3, 1], [A9_LdBypass]>,
- // InstrItinData<IIC_iMVNr , [InstrStage<1, [A9_Pipe0, A9_Pipe1]>],
- // [1, 1], [NoBypass, A9_LdBypass]>,
- //
- // In this example, the instruction of IIC_iLoadi reads its input on cycle 1
- // (after issue) and the result of the load is available on cycle 3. The result
- // is available via forwarding path A9_LdBypass. If it's used by the first
- // source operand of instructions of IIC_iMVNr class, then the operand latency
- // is reduced by 1.
- class InstrItinData<InstrItinClass Class, list<InstrStage> stages,
- list<int> operandcycles = [],
- list<Bypass> bypasses = [], int uops = 1> {
- InstrItinClass TheClass = Class;
- int NumMicroOps = uops;
- list<InstrStage> Stages = stages;
- list<int> OperandCycles = operandcycles;
- list<Bypass> Bypasses = bypasses;
- }
- //===----------------------------------------------------------------------===//
- // Processor itineraries - These values represent the set of all itinerary
- // classes for a given chip set.
- //
- // Set property values to -1 to use the default.
- // See InstrItineraryProps for comments and defaults.
- class ProcessorItineraries<list<FuncUnit> fu, list<Bypass> bp,
- list<InstrItinData> iid> {
- list<FuncUnit> FU = fu;
- list<Bypass> BP = bp;
- list<InstrItinData> IID = iid;
- }
- // NoItineraries - A marker that can be used by processors without schedule
- // info. Subtargets using NoItineraries can bypass the scheduler's
- // expensive HazardRecognizer because no reservation table is needed.
- def NoItineraries : ProcessorItineraries<[], [], []>;
|