123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504 |
- //===- AliasAnalysis.cpp - Generic Alias Analysis Interface Implementation -==//
- //
- // The LLVM Compiler Infrastructure
- //
- // This file is distributed under the University of Illinois Open Source
- // License. See LICENSE.TXT for details.
- //
- //===----------------------------------------------------------------------===//
- //
- // This file implements the generic AliasAnalysis interface which is used as the
- // common interface used by all clients and implementations of alias analysis.
- //
- // This file also implements the default version of the AliasAnalysis interface
- // that is to be used when no other implementation is specified. This does some
- // simple tests that detect obvious cases: two different global pointers cannot
- // alias, a global cannot alias a malloc, two different mallocs cannot alias,
- // etc.
- //
- // This alias analysis implementation really isn't very good for anything, but
- // it is very fast, and makes a nice clean default implementation. Because it
- // handles lots of little corner cases, other, more complex, alias analysis
- // implementations may choose to rely on this pass to resolve these simple and
- // easy cases.
- //
- //===----------------------------------------------------------------------===//
- #include "llvm/Analysis/AliasAnalysis.h"
- #include "llvm/Analysis/CFG.h"
- #include "llvm/Analysis/CaptureTracking.h"
- #include "llvm/Analysis/TargetLibraryInfo.h"
- #include "llvm/Analysis/ValueTracking.h"
- #include "llvm/IR/BasicBlock.h"
- #include "llvm/IR/DataLayout.h"
- #include "llvm/IR/Dominators.h"
- #include "llvm/IR/Function.h"
- #include "llvm/IR/Instructions.h"
- #include "llvm/IR/IntrinsicInst.h"
- #include "llvm/IR/LLVMContext.h"
- #include "llvm/IR/Type.h"
- #include "llvm/Pass.h"
- using namespace llvm;
- // Register the AliasAnalysis interface, providing a nice name to refer to.
- INITIALIZE_ANALYSIS_GROUP(AliasAnalysis, "Alias Analysis", NoAA)
- char AliasAnalysis::ID = 0;
- //===----------------------------------------------------------------------===//
- // Default chaining methods
- //===----------------------------------------------------------------------===//
- AliasResult AliasAnalysis::alias(const MemoryLocation &LocA,
- const MemoryLocation &LocB) {
- assert(AA && "AA didn't call InitializeAliasAnalysis in its run method!");
- return AA->alias(LocA, LocB);
- }
- bool AliasAnalysis::pointsToConstantMemory(const MemoryLocation &Loc,
- bool OrLocal) {
- assert(AA && "AA didn't call InitializeAliasAnalysis in its run method!");
- return AA->pointsToConstantMemory(Loc, OrLocal);
- }
- AliasAnalysis::ModRefResult
- AliasAnalysis::getArgModRefInfo(ImmutableCallSite CS, unsigned ArgIdx) {
- assert(AA && "AA didn't call InitializeAliasAnalysis in its run method!");
- return AA->getArgModRefInfo(CS, ArgIdx);
- }
- void AliasAnalysis::deleteValue(Value *V) {
- assert(AA && "AA didn't call InitializeAliasAnalysis in its run method!");
- AA->deleteValue(V);
- }
- void AliasAnalysis::addEscapingUse(Use &U) {
- assert(AA && "AA didn't call InitializeAliasAnalysis in its run method!");
- AA->addEscapingUse(U);
- }
- AliasAnalysis::ModRefResult
- AliasAnalysis::getModRefInfo(Instruction *I, ImmutableCallSite Call) {
- // We may have two calls
- if (auto CS = ImmutableCallSite(I)) {
- // Check if the two calls modify the same memory
- return getModRefInfo(Call, CS);
- } else {
- // Otherwise, check if the call modifies or references the
- // location this memory access defines. The best we can say
- // is that if the call references what this instruction
- // defines, it must be clobbered by this location.
- const MemoryLocation DefLoc = MemoryLocation::get(I);
- if (getModRefInfo(Call, DefLoc) != AliasAnalysis::NoModRef)
- return AliasAnalysis::ModRef;
- }
- return AliasAnalysis::NoModRef;
- }
- AliasAnalysis::ModRefResult
- AliasAnalysis::getModRefInfo(ImmutableCallSite CS, const MemoryLocation &Loc) {
- assert(AA && "AA didn't call InitializeAliasAnalysis in its run method!");
- ModRefBehavior MRB = getModRefBehavior(CS);
- if (MRB == DoesNotAccessMemory)
- return NoModRef;
- ModRefResult Mask = ModRef;
- if (onlyReadsMemory(MRB))
- Mask = Ref;
- if (onlyAccessesArgPointees(MRB)) {
- bool doesAlias = false;
- ModRefResult AllArgsMask = NoModRef;
- if (doesAccessArgPointees(MRB)) {
- for (ImmutableCallSite::arg_iterator AI = CS.arg_begin(), AE = CS.arg_end();
- AI != AE; ++AI) {
- const Value *Arg = *AI;
- if (!Arg->getType()->isPointerTy())
- continue;
- unsigned ArgIdx = std::distance(CS.arg_begin(), AI);
- MemoryLocation ArgLoc =
- MemoryLocation::getForArgument(CS, ArgIdx, *TLI);
- if (!isNoAlias(ArgLoc, Loc)) {
- ModRefResult ArgMask = getArgModRefInfo(CS, ArgIdx);
- doesAlias = true;
- AllArgsMask = ModRefResult(AllArgsMask | ArgMask);
- }
- }
- }
- if (!doesAlias)
- return NoModRef;
- Mask = ModRefResult(Mask & AllArgsMask);
- }
- // If Loc is a constant memory location, the call definitely could not
- // modify the memory location.
- if ((Mask & Mod) && pointsToConstantMemory(Loc))
- Mask = ModRefResult(Mask & ~Mod);
- // If this is the end of the chain, don't forward.
- if (!AA) return Mask;
- // Otherwise, fall back to the next AA in the chain. But we can merge
- // in any mask we've managed to compute.
- return ModRefResult(AA->getModRefInfo(CS, Loc) & Mask);
- }
- AliasAnalysis::ModRefResult
- AliasAnalysis::getModRefInfo(ImmutableCallSite CS1, ImmutableCallSite CS2) {
- assert(AA && "AA didn't call InitializeAliasAnalysis in its run method!");
- // If CS1 or CS2 are readnone, they don't interact.
- ModRefBehavior CS1B = getModRefBehavior(CS1);
- if (CS1B == DoesNotAccessMemory) return NoModRef;
- ModRefBehavior CS2B = getModRefBehavior(CS2);
- if (CS2B == DoesNotAccessMemory) return NoModRef;
- // If they both only read from memory, there is no dependence.
- if (onlyReadsMemory(CS1B) && onlyReadsMemory(CS2B))
- return NoModRef;
- AliasAnalysis::ModRefResult Mask = ModRef;
- // If CS1 only reads memory, the only dependence on CS2 can be
- // from CS1 reading memory written by CS2.
- if (onlyReadsMemory(CS1B))
- Mask = ModRefResult(Mask & Ref);
- // If CS2 only access memory through arguments, accumulate the mod/ref
- // information from CS1's references to the memory referenced by
- // CS2's arguments.
- if (onlyAccessesArgPointees(CS2B)) {
- AliasAnalysis::ModRefResult R = NoModRef;
- if (doesAccessArgPointees(CS2B)) {
- for (ImmutableCallSite::arg_iterator
- I = CS2.arg_begin(), E = CS2.arg_end(); I != E; ++I) {
- const Value *Arg = *I;
- if (!Arg->getType()->isPointerTy())
- continue;
- unsigned CS2ArgIdx = std::distance(CS2.arg_begin(), I);
- auto CS2ArgLoc = MemoryLocation::getForArgument(CS2, CS2ArgIdx, *TLI);
- // ArgMask indicates what CS2 might do to CS2ArgLoc, and the dependence of
- // CS1 on that location is the inverse.
- ModRefResult ArgMask = getArgModRefInfo(CS2, CS2ArgIdx);
- if (ArgMask == Mod)
- ArgMask = ModRef;
- else if (ArgMask == Ref)
- ArgMask = Mod;
- R = ModRefResult((R | (getModRefInfo(CS1, CS2ArgLoc) & ArgMask)) & Mask);
- if (R == Mask)
- break;
- }
- }
- return R;
- }
- // If CS1 only accesses memory through arguments, check if CS2 references
- // any of the memory referenced by CS1's arguments. If not, return NoModRef.
- if (onlyAccessesArgPointees(CS1B)) {
- AliasAnalysis::ModRefResult R = NoModRef;
- if (doesAccessArgPointees(CS1B)) {
- for (ImmutableCallSite::arg_iterator
- I = CS1.arg_begin(), E = CS1.arg_end(); I != E; ++I) {
- const Value *Arg = *I;
- if (!Arg->getType()->isPointerTy())
- continue;
- unsigned CS1ArgIdx = std::distance(CS1.arg_begin(), I);
- auto CS1ArgLoc = MemoryLocation::getForArgument(CS1, CS1ArgIdx, *TLI);
- // ArgMask indicates what CS1 might do to CS1ArgLoc; if CS1 might Mod
- // CS1ArgLoc, then we care about either a Mod or a Ref by CS2. If CS1
- // might Ref, then we care only about a Mod by CS2.
- ModRefResult ArgMask = getArgModRefInfo(CS1, CS1ArgIdx);
- ModRefResult ArgR = getModRefInfo(CS2, CS1ArgLoc);
- if (((ArgMask & Mod) != NoModRef && (ArgR & ModRef) != NoModRef) ||
- ((ArgMask & Ref) != NoModRef && (ArgR & Mod) != NoModRef))
- R = ModRefResult((R | ArgMask) & Mask);
- if (R == Mask)
- break;
- }
- }
- return R;
- }
- // If this is the end of the chain, don't forward.
- if (!AA) return Mask;
- // Otherwise, fall back to the next AA in the chain. But we can merge
- // in any mask we've managed to compute.
- return ModRefResult(AA->getModRefInfo(CS1, CS2) & Mask);
- }
- AliasAnalysis::ModRefBehavior
- AliasAnalysis::getModRefBehavior(ImmutableCallSite CS) {
- assert(AA && "AA didn't call InitializeAliasAnalysis in its run method!");
- ModRefBehavior Min = UnknownModRefBehavior;
- // Call back into the alias analysis with the other form of getModRefBehavior
- // to see if it can give a better response.
- if (const Function *F = CS.getCalledFunction())
- Min = getModRefBehavior(F);
- // If this is the end of the chain, don't forward.
- if (!AA) return Min;
- // Otherwise, fall back to the next AA in the chain. But we can merge
- // in any result we've managed to compute.
- return ModRefBehavior(AA->getModRefBehavior(CS) & Min);
- }
- AliasAnalysis::ModRefBehavior
- AliasAnalysis::getModRefBehavior(const Function *F) {
- assert(AA && "AA didn't call InitializeAliasAnalysis in its run method!");
- return AA->getModRefBehavior(F);
- }
- //===----------------------------------------------------------------------===//
- // AliasAnalysis non-virtual helper method implementation
- //===----------------------------------------------------------------------===//
- AliasAnalysis::ModRefResult
- AliasAnalysis::getModRefInfo(const LoadInst *L, const MemoryLocation &Loc) {
- // Be conservative in the face of volatile/atomic.
- if (!L->isUnordered())
- return ModRef;
- // If the load address doesn't alias the given address, it doesn't read
- // or write the specified memory.
- if (Loc.Ptr && !alias(MemoryLocation::get(L), Loc))
- return NoModRef;
- // Otherwise, a load just reads.
- return Ref;
- }
- AliasAnalysis::ModRefResult
- AliasAnalysis::getModRefInfo(const StoreInst *S, const MemoryLocation &Loc) {
- // Be conservative in the face of volatile/atomic.
- if (!S->isUnordered())
- return ModRef;
- if (Loc.Ptr) {
- // If the store address cannot alias the pointer in question, then the
- // specified memory cannot be modified by the store.
- if (!alias(MemoryLocation::get(S), Loc))
- return NoModRef;
- // If the pointer is a pointer to constant memory, then it could not have
- // been modified by this store.
- if (pointsToConstantMemory(Loc))
- return NoModRef;
- }
- // Otherwise, a store just writes.
- return Mod;
- }
- AliasAnalysis::ModRefResult
- AliasAnalysis::getModRefInfo(const VAArgInst *V, const MemoryLocation &Loc) {
- if (Loc.Ptr) {
- // If the va_arg address cannot alias the pointer in question, then the
- // specified memory cannot be accessed by the va_arg.
- if (!alias(MemoryLocation::get(V), Loc))
- return NoModRef;
- // If the pointer is a pointer to constant memory, then it could not have
- // been modified by this va_arg.
- if (pointsToConstantMemory(Loc))
- return NoModRef;
- }
- // Otherwise, a va_arg reads and writes.
- return ModRef;
- }
- AliasAnalysis::ModRefResult
- AliasAnalysis::getModRefInfo(const AtomicCmpXchgInst *CX,
- const MemoryLocation &Loc) {
- // Acquire/Release cmpxchg has properties that matter for arbitrary addresses.
- if (CX->getSuccessOrdering() > Monotonic)
- return ModRef;
- // If the cmpxchg address does not alias the location, it does not access it.
- if (Loc.Ptr && !alias(MemoryLocation::get(CX), Loc))
- return NoModRef;
- return ModRef;
- }
- AliasAnalysis::ModRefResult
- AliasAnalysis::getModRefInfo(const AtomicRMWInst *RMW,
- const MemoryLocation &Loc) {
- // Acquire/Release atomicrmw has properties that matter for arbitrary addresses.
- if (RMW->getOrdering() > Monotonic)
- return ModRef;
- // If the atomicrmw address does not alias the location, it does not access it.
- if (Loc.Ptr && !alias(MemoryLocation::get(RMW), Loc))
- return NoModRef;
- return ModRef;
- }
- // FIXME: this is really just shoring-up a deficiency in alias analysis.
- // BasicAA isn't willing to spend linear time determining whether an alloca
- // was captured before or after this particular call, while we are. However,
- // with a smarter AA in place, this test is just wasting compile time.
- AliasAnalysis::ModRefResult AliasAnalysis::callCapturesBefore(
- const Instruction *I, const MemoryLocation &MemLoc, DominatorTree *DT) {
- if (!DT)
- return AliasAnalysis::ModRef;
- const Value *Object = GetUnderlyingObject(MemLoc.Ptr, *DL);
- if (!isIdentifiedObject(Object) || isa<GlobalValue>(Object) ||
- isa<Constant>(Object))
- return AliasAnalysis::ModRef;
- ImmutableCallSite CS(I);
- if (!CS.getInstruction() || CS.getInstruction() == Object)
- return AliasAnalysis::ModRef;
- if (llvm::PointerMayBeCapturedBefore(Object, /* ReturnCaptures */ true,
- /* StoreCaptures */ true, I, DT,
- /* include Object */ true))
- return AliasAnalysis::ModRef;
- unsigned ArgNo = 0;
- AliasAnalysis::ModRefResult R = AliasAnalysis::NoModRef;
- for (ImmutableCallSite::arg_iterator CI = CS.arg_begin(), CE = CS.arg_end();
- CI != CE; ++CI, ++ArgNo) {
- // Only look at the no-capture or byval pointer arguments. If this
- // pointer were passed to arguments that were neither of these, then it
- // couldn't be no-capture.
- if (!(*CI)->getType()->isPointerTy() ||
- (!CS.doesNotCapture(ArgNo) && !CS.isByValArgument(ArgNo)))
- continue;
- // If this is a no-capture pointer argument, see if we can tell that it
- // is impossible to alias the pointer we're checking. If not, we have to
- // assume that the call could touch the pointer, even though it doesn't
- // escape.
- if (isNoAlias(MemoryLocation(*CI), MemoryLocation(Object)))
- continue;
- if (CS.doesNotAccessMemory(ArgNo))
- continue;
- if (CS.onlyReadsMemory(ArgNo)) {
- R = AliasAnalysis::Ref;
- continue;
- }
- return AliasAnalysis::ModRef;
- }
- return R;
- }
- // AliasAnalysis destructor: DO NOT move this to the header file for
- // AliasAnalysis or else clients of the AliasAnalysis class may not depend on
- // the AliasAnalysis.o file in the current .a file, causing alias analysis
- // support to not be included in the tool correctly!
- //
- AliasAnalysis::~AliasAnalysis() {}
- /// InitializeAliasAnalysis - Subclasses must call this method to initialize the
- /// AliasAnalysis interface before any other methods are called.
- ///
- void AliasAnalysis::InitializeAliasAnalysis(Pass *P, const DataLayout *NewDL) {
- DL = NewDL;
- auto *TLIP = P->getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>();
- TLI = TLIP ? &TLIP->getTLI() : nullptr;
- AA = &P->getAnalysis<AliasAnalysis>();
- }
- // getAnalysisUsage - All alias analysis implementations should invoke this
- // directly (using AliasAnalysis::getAnalysisUsage(AU)).
- void AliasAnalysis::getAnalysisUsage(AnalysisUsage &AU) const {
- AU.addRequired<AliasAnalysis>(); // All AA's chain
- }
- /// getTypeStoreSize - Return the DataLayout store size for the given type,
- /// if known, or a conservative value otherwise.
- ///
- uint64_t AliasAnalysis::getTypeStoreSize(Type *Ty) {
- return DL ? DL->getTypeStoreSize(Ty) : MemoryLocation::UnknownSize;
- }
- /// canBasicBlockModify - Return true if it is possible for execution of the
- /// specified basic block to modify the location Loc.
- ///
- bool AliasAnalysis::canBasicBlockModify(const BasicBlock &BB,
- const MemoryLocation &Loc) {
- return canInstructionRangeModRef(BB.front(), BB.back(), Loc, Mod);
- }
- /// canInstructionRangeModRef - Return true if it is possible for the
- /// execution of the specified instructions to mod\ref (according to the
- /// mode) the location Loc. The instructions to consider are all
- /// of the instructions in the range of [I1,I2] INCLUSIVE.
- /// I1 and I2 must be in the same basic block.
- bool AliasAnalysis::canInstructionRangeModRef(const Instruction &I1,
- const Instruction &I2,
- const MemoryLocation &Loc,
- const ModRefResult Mode) {
- assert(I1.getParent() == I2.getParent() &&
- "Instructions not in same basic block!");
- BasicBlock::const_iterator I = &I1;
- BasicBlock::const_iterator E = &I2;
- ++E; // Convert from inclusive to exclusive range.
- for (; I != E; ++I) // Check every instruction in range
- if (getModRefInfo(I, Loc) & Mode)
- return true;
- return false;
- }
- /// isNoAliasCall - Return true if this pointer is returned by a noalias
- /// function.
- bool llvm::isNoAliasCall(const Value *V) {
- if (isa<CallInst>(V) || isa<InvokeInst>(V))
- return ImmutableCallSite(cast<Instruction>(V))
- .paramHasAttr(0, Attribute::NoAlias);
- return false;
- }
- /// isNoAliasArgument - Return true if this is an argument with the noalias
- /// attribute.
- bool llvm::isNoAliasArgument(const Value *V)
- {
- if (const Argument *A = dyn_cast<Argument>(V))
- return A->hasNoAliasAttr();
- return false;
- }
- /// isIdentifiedObject - Return true if this pointer refers to a distinct and
- /// identifiable object. This returns true for:
- /// Global Variables and Functions (but not Global Aliases)
- /// Allocas and Mallocs
- /// ByVal and NoAlias Arguments
- /// NoAlias returns
- ///
- bool llvm::isIdentifiedObject(const Value *V) {
- if (isa<AllocaInst>(V))
- return true;
- if (isa<GlobalValue>(V) && !isa<GlobalAlias>(V))
- return true;
- if (isNoAliasCall(V))
- return true;
- if (const Argument *A = dyn_cast<Argument>(V))
- return A->hasNoAliasAttr() || A->hasByValAttr();
- return false;
- }
- /// isIdentifiedFunctionLocal - Return true if V is umabigously identified
- /// at the function-level. Different IdentifiedFunctionLocals can't alias.
- /// Further, an IdentifiedFunctionLocal can not alias with any function
- /// arguments other than itself, which is not necessarily true for
- /// IdentifiedObjects.
- bool llvm::isIdentifiedFunctionLocal(const Value *V)
- {
- return isa<AllocaInst>(V) || isNoAliasCall(V) || isNoAliasArgument(V);
- }
|