12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508 |
- //===- BasicAliasAnalysis.cpp - Stateless Alias Analysis Impl -------------===//
- //
- // The LLVM Compiler Infrastructure
- //
- // This file is distributed under the University of Illinois Open Source
- // License. See LICENSE.TXT for details.
- //
- //===----------------------------------------------------------------------===//
- //
- // This file defines the primary stateless implementation of the
- // Alias Analysis interface that implements identities (two different
- // globals cannot alias, etc), but does no stateful analysis.
- //
- //===----------------------------------------------------------------------===//
- #include "llvm/Analysis/Passes.h"
- #include "llvm/ADT/SmallPtrSet.h"
- #include "llvm/ADT/SmallVector.h"
- #include "llvm/Analysis/AliasAnalysis.h"
- #include "llvm/Analysis/AssumptionCache.h"
- #include "llvm/Analysis/CFG.h"
- #include "llvm/Analysis/CaptureTracking.h"
- #include "llvm/Analysis/InstructionSimplify.h"
- #include "llvm/Analysis/LoopInfo.h"
- #include "llvm/Analysis/MemoryBuiltins.h"
- #include "llvm/Analysis/TargetLibraryInfo.h"
- #include "llvm/Analysis/ValueTracking.h"
- #include "llvm/IR/Constants.h"
- #include "llvm/IR/DataLayout.h"
- #include "llvm/IR/DerivedTypes.h"
- #include "llvm/IR/Dominators.h"
- #include "llvm/IR/Function.h"
- #include "llvm/IR/GetElementPtrTypeIterator.h"
- #include "llvm/IR/GlobalAlias.h"
- #include "llvm/IR/GlobalVariable.h"
- #include "llvm/IR/Instructions.h"
- #include "llvm/IR/IntrinsicInst.h"
- #include "llvm/IR/LLVMContext.h"
- #include "llvm/IR/Operator.h"
- #include "llvm/Pass.h"
- #include "llvm/Support/ErrorHandling.h"
- #include <algorithm>
- using namespace llvm;
- /// Cutoff after which to stop analysing a set of phi nodes potentially involved
- /// in a cycle. Because we are analysing 'through' phi nodes we need to be
- /// careful with value equivalence. We use reachability to make sure a value
- /// cannot be involved in a cycle.
- const unsigned MaxNumPhiBBsValueReachabilityCheck = 20;
- // The max limit of the search depth in DecomposeGEPExpression() and
- // GetUnderlyingObject(), both functions need to use the same search
- // depth otherwise the algorithm in aliasGEP will assert.
- static const unsigned MaxLookupSearchDepth = 6;
- //===----------------------------------------------------------------------===//
- // Useful predicates
- //===----------------------------------------------------------------------===//
- /// isNonEscapingLocalObject - Return true if the pointer is to a function-local
- /// object that never escapes from the function.
- static bool isNonEscapingLocalObject(const Value *V) {
- // If this is a local allocation, check to see if it escapes.
- if (isa<AllocaInst>(V) || isNoAliasCall(V))
- // Set StoreCaptures to True so that we can assume in our callers that the
- // pointer is not the result of a load instruction. Currently
- // PointerMayBeCaptured doesn't have any special analysis for the
- // StoreCaptures=false case; if it did, our callers could be refined to be
- // more precise.
- return !PointerMayBeCaptured(V, false, /*StoreCaptures=*/true);
- // If this is an argument that corresponds to a byval or noalias argument,
- // then it has not escaped before entering the function. Check if it escapes
- // inside the function.
- if (const Argument *A = dyn_cast<Argument>(V))
- if (A->hasByValAttr() || A->hasNoAliasAttr())
- // Note even if the argument is marked nocapture we still need to check
- // for copies made inside the function. The nocapture attribute only
- // specifies that there are no copies made that outlive the function.
- return !PointerMayBeCaptured(V, false, /*StoreCaptures=*/true);
- return false;
- }
- /// isEscapeSource - Return true if the pointer is one which would have
- /// been considered an escape by isNonEscapingLocalObject.
- static bool isEscapeSource(const Value *V) {
- if (isa<CallInst>(V) || isa<InvokeInst>(V) || isa<Argument>(V))
- return true;
- // The load case works because isNonEscapingLocalObject considers all
- // stores to be escapes (it passes true for the StoreCaptures argument
- // to PointerMayBeCaptured).
- if (isa<LoadInst>(V))
- return true;
- return false;
- }
- /// getObjectSize - Return the size of the object specified by V, or
- /// UnknownSize if unknown.
- static uint64_t getObjectSize(const Value *V, const DataLayout &DL,
- const TargetLibraryInfo &TLI,
- bool RoundToAlign = false) {
- uint64_t Size;
- if (getObjectSize(V, Size, DL, &TLI, RoundToAlign))
- return Size;
- return MemoryLocation::UnknownSize;
- }
- /// isObjectSmallerThan - Return true if we can prove that the object specified
- /// by V is smaller than Size.
- static bool isObjectSmallerThan(const Value *V, uint64_t Size,
- const DataLayout &DL,
- const TargetLibraryInfo &TLI) {
- // Note that the meanings of the "object" are slightly different in the
- // following contexts:
- // c1: llvm::getObjectSize()
- // c2: llvm.objectsize() intrinsic
- // c3: isObjectSmallerThan()
- // c1 and c2 share the same meaning; however, the meaning of "object" in c3
- // refers to the "entire object".
- //
- // Consider this example:
- // char *p = (char*)malloc(100)
- // char *q = p+80;
- //
- // In the context of c1 and c2, the "object" pointed by q refers to the
- // stretch of memory of q[0:19]. So, getObjectSize(q) should return 20.
- //
- // However, in the context of c3, the "object" refers to the chunk of memory
- // being allocated. So, the "object" has 100 bytes, and q points to the middle
- // the "object". In case q is passed to isObjectSmallerThan() as the 1st
- // parameter, before the llvm::getObjectSize() is called to get the size of
- // entire object, we should:
- // - either rewind the pointer q to the base-address of the object in
- // question (in this case rewind to p), or
- // - just give up. It is up to caller to make sure the pointer is pointing
- // to the base address the object.
- //
- // We go for 2nd option for simplicity.
- if (!isIdentifiedObject(V))
- return false;
- // This function needs to use the aligned object size because we allow
- // reads a bit past the end given sufficient alignment.
- uint64_t ObjectSize = getObjectSize(V, DL, TLI, /*RoundToAlign*/true);
- return ObjectSize != MemoryLocation::UnknownSize && ObjectSize < Size;
- }
- /// isObjectSize - Return true if we can prove that the object specified
- /// by V has size Size.
- static bool isObjectSize(const Value *V, uint64_t Size,
- const DataLayout &DL, const TargetLibraryInfo &TLI) {
- uint64_t ObjectSize = getObjectSize(V, DL, TLI);
- return ObjectSize != MemoryLocation::UnknownSize && ObjectSize == Size;
- }
- //===----------------------------------------------------------------------===//
- // GetElementPtr Instruction Decomposition and Analysis
- //===----------------------------------------------------------------------===//
- namespace {
- enum ExtensionKind {
- EK_NotExtended,
- EK_SignExt,
- EK_ZeroExt
- };
- struct VariableGEPIndex {
- const Value *V;
- ExtensionKind Extension;
- int64_t Scale;
- bool operator==(const VariableGEPIndex &Other) const {
- return V == Other.V && Extension == Other.Extension &&
- Scale == Other.Scale;
- }
- bool operator!=(const VariableGEPIndex &Other) const {
- return !operator==(Other);
- }
- };
- }
- /// GetLinearExpression - Analyze the specified value as a linear expression:
- /// "A*V + B", where A and B are constant integers. Return the scale and offset
- /// values as APInts and return V as a Value*, and return whether we looked
- /// through any sign or zero extends. The incoming Value is known to have
- /// IntegerType and it may already be sign or zero extended.
- ///
- /// Note that this looks through extends, so the high bits may not be
- /// represented in the result.
- static Value *GetLinearExpression(Value *V, APInt &Scale, APInt &Offset,
- ExtensionKind &Extension,
- const DataLayout &DL, unsigned Depth,
- AssumptionCache *AC, DominatorTree *DT) {
- assert(V->getType()->isIntegerTy() && "Not an integer value");
- // Limit our recursion depth.
- if (Depth == 6) {
- Scale = 1;
- Offset = 0;
- return V;
- }
- if (BinaryOperator *BOp = dyn_cast<BinaryOperator>(V)) {
- if (ConstantInt *RHSC = dyn_cast<ConstantInt>(BOp->getOperand(1))) {
- switch (BOp->getOpcode()) {
- default: break;
- case Instruction::Or:
- // X|C == X+C if all the bits in C are unset in X. Otherwise we can't
- // analyze it.
- if (!MaskedValueIsZero(BOp->getOperand(0), RHSC->getValue(), DL, 0, AC,
- BOp, DT))
- break;
- // FALL THROUGH.
- case Instruction::Add:
- V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, Extension,
- DL, Depth + 1, AC, DT);
- Offset += RHSC->getValue();
- return V;
- case Instruction::Mul:
- V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, Extension,
- DL, Depth + 1, AC, DT);
- Offset *= RHSC->getValue();
- Scale *= RHSC->getValue();
- return V;
- case Instruction::Shl:
- V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, Extension,
- DL, Depth + 1, AC, DT);
- Offset <<= RHSC->getValue().getLimitedValue();
- Scale <<= RHSC->getValue().getLimitedValue();
- return V;
- }
- }
- }
- // Since GEP indices are sign extended anyway, we don't care about the high
- // bits of a sign or zero extended value - just scales and offsets. The
- // extensions have to be consistent though.
- if ((isa<SExtInst>(V) && Extension != EK_ZeroExt) ||
- (isa<ZExtInst>(V) && Extension != EK_SignExt)) {
- Value *CastOp = cast<CastInst>(V)->getOperand(0);
- unsigned OldWidth = Scale.getBitWidth();
- unsigned SmallWidth = CastOp->getType()->getPrimitiveSizeInBits();
- Scale = Scale.trunc(SmallWidth);
- Offset = Offset.trunc(SmallWidth);
- Extension = isa<SExtInst>(V) ? EK_SignExt : EK_ZeroExt;
- Value *Result = GetLinearExpression(CastOp, Scale, Offset, Extension, DL,
- Depth + 1, AC, DT);
- Scale = Scale.zext(OldWidth);
- Offset = Offset.zext(OldWidth);
- return Result;
- }
- Scale = 1;
- Offset = 0;
- return V;
- }
- /// DecomposeGEPExpression - If V is a symbolic pointer expression, decompose it
- /// into a base pointer with a constant offset and a number of scaled symbolic
- /// offsets.
- ///
- /// The scaled symbolic offsets (represented by pairs of a Value* and a scale in
- /// the VarIndices vector) are Value*'s that are known to be scaled by the
- /// specified amount, but which may have other unrepresented high bits. As such,
- /// the gep cannot necessarily be reconstructed from its decomposed form.
- ///
- /// When DataLayout is around, this function is capable of analyzing everything
- /// that GetUnderlyingObject can look through. To be able to do that
- /// GetUnderlyingObject and DecomposeGEPExpression must use the same search
- /// depth (MaxLookupSearchDepth).
- /// When DataLayout not is around, it just looks through pointer casts.
- ///
- static const Value *
- DecomposeGEPExpression(const Value *V, int64_t &BaseOffs,
- SmallVectorImpl<VariableGEPIndex> &VarIndices,
- bool &MaxLookupReached, const DataLayout &DL,
- AssumptionCache *AC, DominatorTree *DT) {
- // Limit recursion depth to limit compile time in crazy cases.
- unsigned MaxLookup = MaxLookupSearchDepth;
- MaxLookupReached = false;
- BaseOffs = 0;
- do {
- // See if this is a bitcast or GEP.
- const Operator *Op = dyn_cast<Operator>(V);
- if (!Op) {
- // The only non-operator case we can handle are GlobalAliases.
- if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
- if (!GA->mayBeOverridden()) {
- V = GA->getAliasee();
- continue;
- }
- }
- return V;
- }
- if (Op->getOpcode() == Instruction::BitCast ||
- Op->getOpcode() == Instruction::AddrSpaceCast) {
- V = Op->getOperand(0);
- continue;
- }
- const GEPOperator *GEPOp = dyn_cast<GEPOperator>(Op);
- if (!GEPOp) {
- // If it's not a GEP, hand it off to SimplifyInstruction to see if it
- // can come up with something. This matches what GetUnderlyingObject does.
- if (const Instruction *I = dyn_cast<Instruction>(V))
- // TODO: Get a DominatorTree and AssumptionCache and use them here
- // (these are both now available in this function, but this should be
- // updated when GetUnderlyingObject is updated). TLI should be
- // provided also.
- if (const Value *Simplified =
- SimplifyInstruction(const_cast<Instruction *>(I), DL)) {
- V = Simplified;
- continue;
- }
- return V;
- }
- // Don't attempt to analyze GEPs over unsized objects.
- if (!GEPOp->getOperand(0)->getType()->getPointerElementType()->isSized())
- return V;
- unsigned AS = GEPOp->getPointerAddressSpace();
- // Walk the indices of the GEP, accumulating them into BaseOff/VarIndices.
- gep_type_iterator GTI = gep_type_begin(GEPOp);
- for (User::const_op_iterator I = GEPOp->op_begin()+1,
- E = GEPOp->op_end(); I != E; ++I) {
- Value *Index = *I;
- // Compute the (potentially symbolic) offset in bytes for this index.
- if (StructType *STy = dyn_cast<StructType>(*GTI++)) {
- // For a struct, add the member offset.
- unsigned FieldNo = cast<ConstantInt>(Index)->getZExtValue();
- if (FieldNo == 0) continue;
- BaseOffs += DL.getStructLayout(STy)->getElementOffset(FieldNo);
- continue;
- }
- // For an array/pointer, add the element offset, explicitly scaled.
- if (ConstantInt *CIdx = dyn_cast<ConstantInt>(Index)) {
- if (CIdx->isZero()) continue;
- BaseOffs += DL.getTypeAllocSize(*GTI) * CIdx->getSExtValue();
- continue;
- }
- uint64_t Scale = DL.getTypeAllocSize(*GTI);
- ExtensionKind Extension = EK_NotExtended;
- // If the integer type is smaller than the pointer size, it is implicitly
- // sign extended to pointer size.
- unsigned Width = Index->getType()->getIntegerBitWidth();
- if (DL.getPointerSizeInBits(AS) > Width)
- Extension = EK_SignExt;
- // Use GetLinearExpression to decompose the index into a C1*V+C2 form.
- APInt IndexScale(Width, 0), IndexOffset(Width, 0);
- Index = GetLinearExpression(Index, IndexScale, IndexOffset, Extension, DL,
- 0, AC, DT);
- // The GEP index scale ("Scale") scales C1*V+C2, yielding (C1*V+C2)*Scale.
- // This gives us an aggregate computation of (C1*Scale)*V + C2*Scale.
- BaseOffs += IndexOffset.getSExtValue()*Scale;
- Scale *= IndexScale.getSExtValue();
- // If we already had an occurrence of this index variable, merge this
- // scale into it. For example, we want to handle:
- // A[x][x] -> x*16 + x*4 -> x*20
- // This also ensures that 'x' only appears in the index list once.
- for (unsigned i = 0, e = VarIndices.size(); i != e; ++i) {
- if (VarIndices[i].V == Index &&
- VarIndices[i].Extension == Extension) {
- Scale += VarIndices[i].Scale;
- VarIndices.erase(VarIndices.begin()+i);
- break;
- }
- }
- // Make sure that we have a scale that makes sense for this target's
- // pointer size.
- if (unsigned ShiftBits = 64 - DL.getPointerSizeInBits(AS)) {
- Scale <<= ShiftBits;
- Scale = (int64_t)Scale >> ShiftBits;
- }
- if (Scale) {
- VariableGEPIndex Entry = {Index, Extension,
- static_cast<int64_t>(Scale)};
- VarIndices.push_back(Entry);
- }
- }
- // Analyze the base pointer next.
- V = GEPOp->getOperand(0);
- } while (--MaxLookup);
- // If the chain of expressions is too deep, just return early.
- MaxLookupReached = true;
- return V;
- }
- //===----------------------------------------------------------------------===//
- // BasicAliasAnalysis Pass
- //===----------------------------------------------------------------------===//
- #ifndef NDEBUG
- static const Function *getParent(const Value *V) {
- if (const Instruction *inst = dyn_cast<Instruction>(V))
- return inst->getParent()->getParent();
- if (const Argument *arg = dyn_cast<Argument>(V))
- return arg->getParent();
- return nullptr;
- }
- static bool notDifferentParent(const Value *O1, const Value *O2) {
- const Function *F1 = getParent(O1);
- const Function *F2 = getParent(O2);
- return !F1 || !F2 || F1 == F2;
- }
- #endif
- namespace {
- /// BasicAliasAnalysis - This is the primary alias analysis implementation.
- struct BasicAliasAnalysis : public ImmutablePass, public AliasAnalysis {
- static char ID; // Class identification, replacement for typeinfo
- BasicAliasAnalysis() : ImmutablePass(ID) {
- initializeBasicAliasAnalysisPass(*PassRegistry::getPassRegistry());
- }
- bool doInitialization(Module &M) override;
- void getAnalysisUsage(AnalysisUsage &AU) const override {
- AU.addRequired<AliasAnalysis>();
- AU.addRequired<AssumptionCacheTracker>();
- AU.addRequired<TargetLibraryInfoWrapperPass>();
- }
- AliasResult alias(const MemoryLocation &LocA,
- const MemoryLocation &LocB) override {
- assert(AliasCache.empty() && "AliasCache must be cleared after use!");
- assert(notDifferentParent(LocA.Ptr, LocB.Ptr) &&
- "BasicAliasAnalysis doesn't support interprocedural queries.");
- AliasResult Alias = aliasCheck(LocA.Ptr, LocA.Size, LocA.AATags,
- LocB.Ptr, LocB.Size, LocB.AATags);
- // AliasCache rarely has more than 1 or 2 elements, always use
- // shrink_and_clear so it quickly returns to the inline capacity of the
- // SmallDenseMap if it ever grows larger.
- // FIXME: This should really be shrink_to_inline_capacity_and_clear().
- AliasCache.shrink_and_clear();
- VisitedPhiBBs.clear();
- return Alias;
- }
- ModRefResult getModRefInfo(ImmutableCallSite CS,
- const MemoryLocation &Loc) override;
- ModRefResult getModRefInfo(ImmutableCallSite CS1,
- ImmutableCallSite CS2) override;
- /// pointsToConstantMemory - Chase pointers until we find a (constant
- /// global) or not.
- bool pointsToConstantMemory(const MemoryLocation &Loc,
- bool OrLocal) override;
- /// Get the location associated with a pointer argument of a callsite.
- ModRefResult getArgModRefInfo(ImmutableCallSite CS,
- unsigned ArgIdx) override;
- /// getModRefBehavior - Return the behavior when calling the given
- /// call site.
- ModRefBehavior getModRefBehavior(ImmutableCallSite CS) override;
- /// getModRefBehavior - Return the behavior when calling the given function.
- /// For use when the call site is not known.
- ModRefBehavior getModRefBehavior(const Function *F) override;
- /// getAdjustedAnalysisPointer - This method is used when a pass implements
- /// an analysis interface through multiple inheritance. If needed, it
- /// should override this to adjust the this pointer as needed for the
- /// specified pass info.
- void *getAdjustedAnalysisPointer(const void *ID) override {
- if (ID == &AliasAnalysis::ID)
- return (AliasAnalysis*)this;
- return this;
- }
- private:
- // AliasCache - Track alias queries to guard against recursion.
- typedef std::pair<MemoryLocation, MemoryLocation> LocPair;
- typedef SmallDenseMap<LocPair, AliasResult, 8> AliasCacheTy;
- AliasCacheTy AliasCache;
- /// \brief Track phi nodes we have visited. When interpret "Value" pointer
- /// equality as value equality we need to make sure that the "Value" is not
- /// part of a cycle. Otherwise, two uses could come from different
- /// "iterations" of a cycle and see different values for the same "Value"
- /// pointer.
- /// The following example shows the problem:
- /// %p = phi(%alloca1, %addr2)
- /// %l = load %ptr
- /// %addr1 = gep, %alloca2, 0, %l
- /// %addr2 = gep %alloca2, 0, (%l + 1)
- /// alias(%p, %addr1) -> MayAlias !
- /// store %l, ...
- SmallPtrSet<const BasicBlock*, 8> VisitedPhiBBs;
- // Visited - Track instructions visited by pointsToConstantMemory.
- SmallPtrSet<const Value*, 16> Visited;
- /// \brief Check whether two Values can be considered equivalent.
- ///
- /// In addition to pointer equivalence of \p V1 and \p V2 this checks
- /// whether they can not be part of a cycle in the value graph by looking at
- /// all visited phi nodes an making sure that the phis cannot reach the
- /// value. We have to do this because we are looking through phi nodes (That
- /// is we say noalias(V, phi(VA, VB)) if noalias(V, VA) and noalias(V, VB).
- bool isValueEqualInPotentialCycles(const Value *V1, const Value *V2);
- /// \brief Dest and Src are the variable indices from two decomposed
- /// GetElementPtr instructions GEP1 and GEP2 which have common base
- /// pointers. Subtract the GEP2 indices from GEP1 to find the symbolic
- /// difference between the two pointers.
- void GetIndexDifference(SmallVectorImpl<VariableGEPIndex> &Dest,
- const SmallVectorImpl<VariableGEPIndex> &Src);
- // aliasGEP - Provide a bunch of ad-hoc rules to disambiguate a GEP
- // instruction against another.
- AliasResult aliasGEP(const GEPOperator *V1, uint64_t V1Size,
- const AAMDNodes &V1AAInfo,
- const Value *V2, uint64_t V2Size,
- const AAMDNodes &V2AAInfo,
- const Value *UnderlyingV1, const Value *UnderlyingV2);
- // aliasPHI - Provide a bunch of ad-hoc rules to disambiguate a PHI
- // instruction against another.
- AliasResult aliasPHI(const PHINode *PN, uint64_t PNSize,
- const AAMDNodes &PNAAInfo,
- const Value *V2, uint64_t V2Size,
- const AAMDNodes &V2AAInfo);
- /// aliasSelect - Disambiguate a Select instruction against another value.
- AliasResult aliasSelect(const SelectInst *SI, uint64_t SISize,
- const AAMDNodes &SIAAInfo,
- const Value *V2, uint64_t V2Size,
- const AAMDNodes &V2AAInfo);
- AliasResult aliasCheck(const Value *V1, uint64_t V1Size,
- AAMDNodes V1AATag,
- const Value *V2, uint64_t V2Size,
- AAMDNodes V2AATag);
- };
- } // End of anonymous namespace
- // Register this pass...
- char BasicAliasAnalysis::ID = 0;
- INITIALIZE_AG_PASS_BEGIN(BasicAliasAnalysis, AliasAnalysis, "basicaa",
- "Basic Alias Analysis (stateless AA impl)",
- false, true, false)
- INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
- INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
- INITIALIZE_AG_PASS_END(BasicAliasAnalysis, AliasAnalysis, "basicaa",
- "Basic Alias Analysis (stateless AA impl)",
- false, true, false)
- ImmutablePass *llvm::createBasicAliasAnalysisPass() {
- return new BasicAliasAnalysis();
- }
- /// pointsToConstantMemory - Returns whether the given pointer value
- /// points to memory that is local to the function, with global constants being
- /// considered local to all functions.
- bool BasicAliasAnalysis::pointsToConstantMemory(const MemoryLocation &Loc,
- bool OrLocal) {
- assert(Visited.empty() && "Visited must be cleared after use!");
- unsigned MaxLookup = 8;
- SmallVector<const Value *, 16> Worklist;
- Worklist.push_back(Loc.Ptr);
- do {
- const Value *V = GetUnderlyingObject(Worklist.pop_back_val(), *DL);
- if (!Visited.insert(V).second) {
- Visited.clear();
- return AliasAnalysis::pointsToConstantMemory(Loc, OrLocal);
- }
- // An alloca instruction defines local memory.
- if (OrLocal && isa<AllocaInst>(V))
- continue;
- // A global constant counts as local memory for our purposes.
- if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(V)) {
- // Note: this doesn't require GV to be "ODR" because it isn't legal for a
- // global to be marked constant in some modules and non-constant in
- // others. GV may even be a declaration, not a definition.
- if (!GV->isConstant()) {
- Visited.clear();
- return AliasAnalysis::pointsToConstantMemory(Loc, OrLocal);
- }
- continue;
- }
- // If both select values point to local memory, then so does the select.
- if (const SelectInst *SI = dyn_cast<SelectInst>(V)) {
- Worklist.push_back(SI->getTrueValue());
- Worklist.push_back(SI->getFalseValue());
- continue;
- }
- // If all values incoming to a phi node point to local memory, then so does
- // the phi.
- if (const PHINode *PN = dyn_cast<PHINode>(V)) {
- // Don't bother inspecting phi nodes with many operands.
- if (PN->getNumIncomingValues() > MaxLookup) {
- Visited.clear();
- return AliasAnalysis::pointsToConstantMemory(Loc, OrLocal);
- }
- for (Value *IncValue : PN->incoming_values())
- Worklist.push_back(IncValue);
- continue;
- }
- // Otherwise be conservative.
- Visited.clear();
- return AliasAnalysis::pointsToConstantMemory(Loc, OrLocal);
- } while (!Worklist.empty() && --MaxLookup);
- Visited.clear();
- return Worklist.empty();
- }
- // FIXME: This code is duplicated with MemoryLocation and should be hoisted to
- // some common utility location.
- static bool isMemsetPattern16(const Function *MS,
- const TargetLibraryInfo &TLI) {
- if (TLI.has(LibFunc::memset_pattern16) &&
- MS->getName() == "memset_pattern16") {
- FunctionType *MemsetType = MS->getFunctionType();
- if (!MemsetType->isVarArg() && MemsetType->getNumParams() == 3 &&
- isa<PointerType>(MemsetType->getParamType(0)) &&
- isa<PointerType>(MemsetType->getParamType(1)) &&
- isa<IntegerType>(MemsetType->getParamType(2)))
- return true;
- }
- return false;
- }
- /// getModRefBehavior - Return the behavior when calling the given call site.
- AliasAnalysis::ModRefBehavior
- BasicAliasAnalysis::getModRefBehavior(ImmutableCallSite CS) {
- if (CS.doesNotAccessMemory())
- // Can't do better than this.
- return DoesNotAccessMemory;
- ModRefBehavior Min = UnknownModRefBehavior;
- // If the callsite knows it only reads memory, don't return worse
- // than that.
- if (CS.onlyReadsMemory())
- Min = OnlyReadsMemory;
- if (CS.onlyAccessesArgMemory())
- Min = ModRefBehavior(Min & OnlyAccessesArgumentPointees);
- // The AliasAnalysis base class has some smarts, lets use them.
- return ModRefBehavior(AliasAnalysis::getModRefBehavior(CS) & Min);
- }
- /// getModRefBehavior - Return the behavior when calling the given function.
- /// For use when the call site is not known.
- AliasAnalysis::ModRefBehavior
- BasicAliasAnalysis::getModRefBehavior(const Function *F) {
- // If the function declares it doesn't access memory, we can't do better.
- if (F->doesNotAccessMemory())
- return DoesNotAccessMemory;
- // For intrinsics, we can check the table.
- if (Intrinsic::ID iid = F->getIntrinsicID()) {
- #define GET_INTRINSIC_MODREF_BEHAVIOR
- #include "llvm/IR/Intrinsics.gen"
- #undef GET_INTRINSIC_MODREF_BEHAVIOR
- }
- ModRefBehavior Min = UnknownModRefBehavior;
- // If the function declares it only reads memory, go with that.
- if (F->onlyReadsMemory())
- Min = OnlyReadsMemory;
- if (F->onlyAccessesArgMemory())
- Min = ModRefBehavior(Min & OnlyAccessesArgumentPointees);
- const TargetLibraryInfo &TLI =
- getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
- if (isMemsetPattern16(F, TLI))
- Min = OnlyAccessesArgumentPointees;
- // Otherwise be conservative.
- return ModRefBehavior(AliasAnalysis::getModRefBehavior(F) & Min);
- }
- AliasAnalysis::ModRefResult
- BasicAliasAnalysis::getArgModRefInfo(ImmutableCallSite CS, unsigned ArgIdx) {
- if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(CS.getInstruction()))
- switch (II->getIntrinsicID()) {
- default:
- break;
- case Intrinsic::memset:
- case Intrinsic::memcpy:
- case Intrinsic::memmove:
- assert((ArgIdx == 0 || ArgIdx == 1) &&
- "Invalid argument index for memory intrinsic");
- return ArgIdx ? Ref : Mod;
- }
- // We can bound the aliasing properties of memset_pattern16 just as we can
- // for memcpy/memset. This is particularly important because the
- // LoopIdiomRecognizer likes to turn loops into calls to memset_pattern16
- // whenever possible.
- if (CS.getCalledFunction() &&
- isMemsetPattern16(CS.getCalledFunction(), *TLI)) {
- assert((ArgIdx == 0 || ArgIdx == 1) &&
- "Invalid argument index for memset_pattern16");
- return ArgIdx ? Ref : Mod;
- }
- // FIXME: Handle memset_pattern4 and memset_pattern8 also.
- return AliasAnalysis::getArgModRefInfo(CS, ArgIdx);
- }
- static bool isAssumeIntrinsic(ImmutableCallSite CS) {
- const IntrinsicInst *II = dyn_cast<IntrinsicInst>(CS.getInstruction());
- if (II && II->getIntrinsicID() == Intrinsic::assume)
- return true;
- return false;
- }
- bool BasicAliasAnalysis::doInitialization(Module &M) {
- InitializeAliasAnalysis(this, &M.getDataLayout());
- return true;
- }
- /// getModRefInfo - Check to see if the specified callsite can clobber the
- /// specified memory object. Since we only look at local properties of this
- /// function, we really can't say much about this query. We do, however, use
- /// simple "address taken" analysis on local objects.
- AliasAnalysis::ModRefResult
- BasicAliasAnalysis::getModRefInfo(ImmutableCallSite CS,
- const MemoryLocation &Loc) {
- assert(notDifferentParent(CS.getInstruction(), Loc.Ptr) &&
- "AliasAnalysis query involving multiple functions!");
- const Value *Object = GetUnderlyingObject(Loc.Ptr, *DL);
- // If this is a tail call and Loc.Ptr points to a stack location, we know that
- // the tail call cannot access or modify the local stack.
- // We cannot exclude byval arguments here; these belong to the caller of
- // the current function not to the current function, and a tail callee
- // may reference them.
- if (isa<AllocaInst>(Object))
- if (const CallInst *CI = dyn_cast<CallInst>(CS.getInstruction()))
- if (CI->isTailCall())
- return NoModRef;
- // If the pointer is to a locally allocated object that does not escape,
- // then the call can not mod/ref the pointer unless the call takes the pointer
- // as an argument, and itself doesn't capture it.
- if (!isa<Constant>(Object) && CS.getInstruction() != Object &&
- isNonEscapingLocalObject(Object)) {
- bool PassedAsArg = false;
- unsigned ArgNo = 0;
- for (ImmutableCallSite::arg_iterator CI = CS.arg_begin(), CE = CS.arg_end();
- CI != CE; ++CI, ++ArgNo) {
- // Only look at the no-capture or byval pointer arguments. If this
- // pointer were passed to arguments that were neither of these, then it
- // couldn't be no-capture.
- if (!(*CI)->getType()->isPointerTy() ||
- (!CS.doesNotCapture(ArgNo) && !CS.isByValArgument(ArgNo)))
- continue;
- // If this is a no-capture pointer argument, see if we can tell that it
- // is impossible to alias the pointer we're checking. If not, we have to
- // assume that the call could touch the pointer, even though it doesn't
- // escape.
- if (!isNoAlias(MemoryLocation(*CI), MemoryLocation(Object))) {
- PassedAsArg = true;
- break;
- }
- }
- if (!PassedAsArg)
- return NoModRef;
- }
- // While the assume intrinsic is marked as arbitrarily writing so that
- // proper control dependencies will be maintained, it never aliases any
- // particular memory location.
- if (isAssumeIntrinsic(CS))
- return NoModRef;
- // The AliasAnalysis base class has some smarts, lets use them.
- return AliasAnalysis::getModRefInfo(CS, Loc);
- }
- AliasAnalysis::ModRefResult
- BasicAliasAnalysis::getModRefInfo(ImmutableCallSite CS1,
- ImmutableCallSite CS2) {
- // While the assume intrinsic is marked as arbitrarily writing so that
- // proper control dependencies will be maintained, it never aliases any
- // particular memory location.
- if (isAssumeIntrinsic(CS1) || isAssumeIntrinsic(CS2))
- return NoModRef;
- // The AliasAnalysis base class has some smarts, lets use them.
- return AliasAnalysis::getModRefInfo(CS1, CS2);
- }
- /// \brief Provide ad-hoc rules to disambiguate accesses through two GEP
- /// operators, both having the exact same pointer operand.
- static AliasResult aliasSameBasePointerGEPs(const GEPOperator *GEP1,
- uint64_t V1Size,
- const GEPOperator *GEP2,
- uint64_t V2Size,
- const DataLayout &DL) {
- assert(GEP1->getPointerOperand() == GEP2->getPointerOperand() &&
- "Expected GEPs with the same pointer operand");
- // Try to determine whether GEP1 and GEP2 index through arrays, into structs,
- // such that the struct field accesses provably cannot alias.
- // We also need at least two indices (the pointer, and the struct field).
- if (GEP1->getNumIndices() != GEP2->getNumIndices() ||
- GEP1->getNumIndices() < 2)
- return MayAlias;
- // If we don't know the size of the accesses through both GEPs, we can't
- // determine whether the struct fields accessed can't alias.
- if (V1Size == MemoryLocation::UnknownSize ||
- V2Size == MemoryLocation::UnknownSize)
- return MayAlias;
- ConstantInt *C1 =
- dyn_cast<ConstantInt>(GEP1->getOperand(GEP1->getNumOperands() - 1));
- ConstantInt *C2 =
- dyn_cast<ConstantInt>(GEP2->getOperand(GEP2->getNumOperands() - 1));
- // If the last (struct) indices aren't constants, we can't say anything.
- // If they're identical, the other indices might be also be dynamically
- // equal, so the GEPs can alias.
- if (!C1 || !C2 || C1 == C2)
- return MayAlias;
- // Find the last-indexed type of the GEP, i.e., the type you'd get if
- // you stripped the last index.
- // On the way, look at each indexed type. If there's something other
- // than an array, different indices can lead to different final types.
- SmallVector<Value *, 8> IntermediateIndices;
- // Insert the first index; we don't need to check the type indexed
- // through it as it only drops the pointer indirection.
- assert(GEP1->getNumIndices() > 1 && "Not enough GEP indices to examine");
- IntermediateIndices.push_back(GEP1->getOperand(1));
- // Insert all the remaining indices but the last one.
- // Also, check that they all index through arrays.
- for (unsigned i = 1, e = GEP1->getNumIndices() - 1; i != e; ++i) {
- if (!isa<ArrayType>(GetElementPtrInst::getIndexedType(
- GEP1->getSourceElementType(), IntermediateIndices)))
- return MayAlias;
- IntermediateIndices.push_back(GEP1->getOperand(i + 1));
- }
- StructType *LastIndexedStruct =
- dyn_cast<StructType>(GetElementPtrInst::getIndexedType(
- GEP1->getSourceElementType(), IntermediateIndices));
- if (!LastIndexedStruct)
- return MayAlias;
- // We know that:
- // - both GEPs begin indexing from the exact same pointer;
- // - the last indices in both GEPs are constants, indexing into a struct;
- // - said indices are different, hence, the pointed-to fields are different;
- // - both GEPs only index through arrays prior to that.
- //
- // This lets us determine that the struct that GEP1 indexes into and the
- // struct that GEP2 indexes into must either precisely overlap or be
- // completely disjoint. Because they cannot partially overlap, indexing into
- // different non-overlapping fields of the struct will never alias.
- // Therefore, the only remaining thing needed to show that both GEPs can't
- // alias is that the fields are not overlapping.
- const StructLayout *SL = DL.getStructLayout(LastIndexedStruct);
- const uint64_t StructSize = SL->getSizeInBytes();
- const uint64_t V1Off = SL->getElementOffset(C1->getZExtValue());
- const uint64_t V2Off = SL->getElementOffset(C2->getZExtValue());
- auto EltsDontOverlap = [StructSize](uint64_t V1Off, uint64_t V1Size,
- uint64_t V2Off, uint64_t V2Size) {
- return V1Off < V2Off && V1Off + V1Size <= V2Off &&
- ((V2Off + V2Size <= StructSize) ||
- (V2Off + V2Size - StructSize <= V1Off));
- };
- if (EltsDontOverlap(V1Off, V1Size, V2Off, V2Size) ||
- EltsDontOverlap(V2Off, V2Size, V1Off, V1Size))
- return NoAlias;
- return MayAlias;
- }
- /// aliasGEP - Provide a bunch of ad-hoc rules to disambiguate a GEP instruction
- /// against another pointer. We know that V1 is a GEP, but we don't know
- /// anything about V2. UnderlyingV1 is GetUnderlyingObject(GEP1, DL),
- /// UnderlyingV2 is the same for V2.
- ///
- AliasResult BasicAliasAnalysis::aliasGEP(
- const GEPOperator *GEP1, uint64_t V1Size, const AAMDNodes &V1AAInfo,
- const Value *V2, uint64_t V2Size, const AAMDNodes &V2AAInfo,
- const Value *UnderlyingV1, const Value *UnderlyingV2) {
- int64_t GEP1BaseOffset;
- bool GEP1MaxLookupReached;
- SmallVector<VariableGEPIndex, 4> GEP1VariableIndices;
- // We have to get two AssumptionCaches here because GEP1 and V2 may be from
- // different functions.
- // FIXME: This really doesn't make any sense. We get a dominator tree below
- // that can only refer to a single function. But this function (aliasGEP) is
- // a method on an immutable pass that can be called when there *isn't*
- // a single function. The old pass management layer makes this "work", but
- // this isn't really a clean solution.
- AssumptionCacheTracker &ACT = getAnalysis<AssumptionCacheTracker>();
- AssumptionCache *AC1 = nullptr, *AC2 = nullptr;
- if (auto *GEP1I = dyn_cast<Instruction>(GEP1))
- AC1 = &ACT.getAssumptionCache(
- const_cast<Function &>(*GEP1I->getParent()->getParent()));
- if (auto *I2 = dyn_cast<Instruction>(V2))
- AC2 = &ACT.getAssumptionCache(
- const_cast<Function &>(*I2->getParent()->getParent()));
- DominatorTreeWrapperPass *DTWP =
- getAnalysisIfAvailable<DominatorTreeWrapperPass>();
- DominatorTree *DT = DTWP ? &DTWP->getDomTree() : nullptr;
- // If we have two gep instructions with must-alias or not-alias'ing base
- // pointers, figure out if the indexes to the GEP tell us anything about the
- // derived pointer.
- if (const GEPOperator *GEP2 = dyn_cast<GEPOperator>(V2)) {
- // Do the base pointers alias?
- AliasResult BaseAlias =
- aliasCheck(UnderlyingV1, MemoryLocation::UnknownSize, AAMDNodes(),
- UnderlyingV2, MemoryLocation::UnknownSize, AAMDNodes());
- // Check for geps of non-aliasing underlying pointers where the offsets are
- // identical.
- if ((BaseAlias == MayAlias) && V1Size == V2Size) {
- // Do the base pointers alias assuming type and size.
- AliasResult PreciseBaseAlias = aliasCheck(UnderlyingV1, V1Size,
- V1AAInfo, UnderlyingV2,
- V2Size, V2AAInfo);
- if (PreciseBaseAlias == NoAlias) {
- // See if the computed offset from the common pointer tells us about the
- // relation of the resulting pointer.
- int64_t GEP2BaseOffset;
- bool GEP2MaxLookupReached;
- SmallVector<VariableGEPIndex, 4> GEP2VariableIndices;
- const Value *GEP2BasePtr =
- DecomposeGEPExpression(GEP2, GEP2BaseOffset, GEP2VariableIndices,
- GEP2MaxLookupReached, *DL, AC2, DT);
- const Value *GEP1BasePtr =
- DecomposeGEPExpression(GEP1, GEP1BaseOffset, GEP1VariableIndices,
- GEP1MaxLookupReached, *DL, AC1, DT);
- // DecomposeGEPExpression and GetUnderlyingObject should return the
- // same result except when DecomposeGEPExpression has no DataLayout.
- if (GEP1BasePtr != UnderlyingV1 || GEP2BasePtr != UnderlyingV2) {
- assert(!DL &&
- "DecomposeGEPExpression and GetUnderlyingObject disagree!");
- return MayAlias;
- }
- // If the max search depth is reached the result is undefined
- if (GEP2MaxLookupReached || GEP1MaxLookupReached)
- return MayAlias;
- // Same offsets.
- if (GEP1BaseOffset == GEP2BaseOffset &&
- GEP1VariableIndices == GEP2VariableIndices)
- return NoAlias;
- GEP1VariableIndices.clear();
- }
- }
- // If we get a No or May, then return it immediately, no amount of analysis
- // will improve this situation.
- if (BaseAlias != MustAlias) return BaseAlias;
- // Otherwise, we have a MustAlias. Since the base pointers alias each other
- // exactly, see if the computed offset from the common pointer tells us
- // about the relation of the resulting pointer.
- const Value *GEP1BasePtr =
- DecomposeGEPExpression(GEP1, GEP1BaseOffset, GEP1VariableIndices,
- GEP1MaxLookupReached, *DL, AC1, DT);
- int64_t GEP2BaseOffset;
- bool GEP2MaxLookupReached;
- SmallVector<VariableGEPIndex, 4> GEP2VariableIndices;
- const Value *GEP2BasePtr =
- DecomposeGEPExpression(GEP2, GEP2BaseOffset, GEP2VariableIndices,
- GEP2MaxLookupReached, *DL, AC2, DT);
- // DecomposeGEPExpression and GetUnderlyingObject should return the
- // same result except when DecomposeGEPExpression has no DataLayout.
- if (GEP1BasePtr != UnderlyingV1 || GEP2BasePtr != UnderlyingV2) {
- assert(!DL &&
- "DecomposeGEPExpression and GetUnderlyingObject disagree!");
- return MayAlias;
- }
- // If we know the two GEPs are based off of the exact same pointer (and not
- // just the same underlying object), see if that tells us anything about
- // the resulting pointers.
- if (DL && GEP1->getPointerOperand() == GEP2->getPointerOperand()) {
- AliasResult R = aliasSameBasePointerGEPs(GEP1, V1Size, GEP2, V2Size, *DL);
- // If we couldn't find anything interesting, don't abandon just yet.
- if (R != MayAlias)
- return R;
- }
- // If the max search depth is reached the result is undefined
- if (GEP2MaxLookupReached || GEP1MaxLookupReached)
- return MayAlias;
- // Subtract the GEP2 pointer from the GEP1 pointer to find out their
- // symbolic difference.
- GEP1BaseOffset -= GEP2BaseOffset;
- GetIndexDifference(GEP1VariableIndices, GEP2VariableIndices);
- } else {
- // Check to see if these two pointers are related by the getelementptr
- // instruction. If one pointer is a GEP with a non-zero index of the other
- // pointer, we know they cannot alias.
- // If both accesses are unknown size, we can't do anything useful here.
- if (V1Size == MemoryLocation::UnknownSize &&
- V2Size == MemoryLocation::UnknownSize)
- return MayAlias;
- AliasResult R = aliasCheck(UnderlyingV1, MemoryLocation::UnknownSize,
- AAMDNodes(), V2, V2Size, V2AAInfo);
- if (R != MustAlias)
- // If V2 may alias GEP base pointer, conservatively returns MayAlias.
- // If V2 is known not to alias GEP base pointer, then the two values
- // cannot alias per GEP semantics: "A pointer value formed from a
- // getelementptr instruction is associated with the addresses associated
- // with the first operand of the getelementptr".
- return R;
- const Value *GEP1BasePtr =
- DecomposeGEPExpression(GEP1, GEP1BaseOffset, GEP1VariableIndices,
- GEP1MaxLookupReached, *DL, AC1, DT);
- // DecomposeGEPExpression and GetUnderlyingObject should return the
- // same result except when DecomposeGEPExpression has no DataLayout.
- if (GEP1BasePtr != UnderlyingV1) {
- assert(!DL &&
- "DecomposeGEPExpression and GetUnderlyingObject disagree!");
- return MayAlias;
- }
- // If the max search depth is reached the result is undefined
- if (GEP1MaxLookupReached)
- return MayAlias;
- }
- // In the two GEP Case, if there is no difference in the offsets of the
- // computed pointers, the resultant pointers are a must alias. This
- // hapens when we have two lexically identical GEP's (for example).
- //
- // In the other case, if we have getelementptr <ptr>, 0, 0, 0, 0, ... and V2
- // must aliases the GEP, the end result is a must alias also.
- if (GEP1BaseOffset == 0 && GEP1VariableIndices.empty())
- return MustAlias;
- // If there is a constant difference between the pointers, but the difference
- // is less than the size of the associated memory object, then we know
- // that the objects are partially overlapping. If the difference is
- // greater, we know they do not overlap.
- if (GEP1BaseOffset != 0 && GEP1VariableIndices.empty()) {
- if (GEP1BaseOffset >= 0) {
- if (V2Size != MemoryLocation::UnknownSize) {
- if ((uint64_t)GEP1BaseOffset < V2Size)
- return PartialAlias;
- return NoAlias;
- }
- } else {
- // We have the situation where:
- // + +
- // | BaseOffset |
- // ---------------->|
- // |-->V1Size |-------> V2Size
- // GEP1 V2
- // We need to know that V2Size is not unknown, otherwise we might have
- // stripped a gep with negative index ('gep <ptr>, -1, ...).
- if (V1Size != MemoryLocation::UnknownSize &&
- V2Size != MemoryLocation::UnknownSize) {
- if (-(uint64_t)GEP1BaseOffset < V1Size)
- return PartialAlias;
- return NoAlias;
- }
- }
- }
- // Try to distinguish something like &A[i][1] against &A[42][0].
- // Grab the least significant bit set in any of the scales.
- if (!GEP1VariableIndices.empty()) {
- uint64_t Modulo = 0;
- for (unsigned i = 0, e = GEP1VariableIndices.size(); i != e; ++i)
- Modulo |= (uint64_t) GEP1VariableIndices[i].Scale;
- Modulo = Modulo ^ (Modulo & (Modulo - 1));
- // We can compute the difference between the two addresses
- // mod Modulo. Check whether that difference guarantees that the
- // two locations do not alias.
- uint64_t ModOffset = (uint64_t)GEP1BaseOffset & (Modulo - 1);
- if (V1Size != MemoryLocation::UnknownSize &&
- V2Size != MemoryLocation::UnknownSize && ModOffset >= V2Size &&
- V1Size <= Modulo - ModOffset)
- return NoAlias;
- }
- // Statically, we can see that the base objects are the same, but the
- // pointers have dynamic offsets which we can't resolve. And none of our
- // little tricks above worked.
- //
- // TODO: Returning PartialAlias instead of MayAlias is a mild hack; the
- // practical effect of this is protecting TBAA in the case of dynamic
- // indices into arrays of unions or malloc'd memory.
- return PartialAlias;
- }
- static AliasResult MergeAliasResults(AliasResult A, AliasResult B) {
- // If the results agree, take it.
- if (A == B)
- return A;
- // A mix of PartialAlias and MustAlias is PartialAlias.
- if ((A == PartialAlias && B == MustAlias) ||
- (B == PartialAlias && A == MustAlias))
- return PartialAlias;
- // Otherwise, we don't know anything.
- return MayAlias;
- }
- /// aliasSelect - Provide a bunch of ad-hoc rules to disambiguate a Select
- /// instruction against another.
- AliasResult BasicAliasAnalysis::aliasSelect(const SelectInst *SI,
- uint64_t SISize,
- const AAMDNodes &SIAAInfo,
- const Value *V2, uint64_t V2Size,
- const AAMDNodes &V2AAInfo) {
- // If the values are Selects with the same condition, we can do a more precise
- // check: just check for aliases between the values on corresponding arms.
- if (const SelectInst *SI2 = dyn_cast<SelectInst>(V2))
- if (SI->getCondition() == SI2->getCondition()) {
- AliasResult Alias =
- aliasCheck(SI->getTrueValue(), SISize, SIAAInfo,
- SI2->getTrueValue(), V2Size, V2AAInfo);
- if (Alias == MayAlias)
- return MayAlias;
- AliasResult ThisAlias =
- aliasCheck(SI->getFalseValue(), SISize, SIAAInfo,
- SI2->getFalseValue(), V2Size, V2AAInfo);
- return MergeAliasResults(ThisAlias, Alias);
- }
- // If both arms of the Select node NoAlias or MustAlias V2, then returns
- // NoAlias / MustAlias. Otherwise, returns MayAlias.
- AliasResult Alias =
- aliasCheck(V2, V2Size, V2AAInfo, SI->getTrueValue(), SISize, SIAAInfo);
- if (Alias == MayAlias)
- return MayAlias;
- AliasResult ThisAlias =
- aliasCheck(V2, V2Size, V2AAInfo, SI->getFalseValue(), SISize, SIAAInfo);
- return MergeAliasResults(ThisAlias, Alias);
- }
- // aliasPHI - Provide a bunch of ad-hoc rules to disambiguate a PHI instruction
- // against another.
- AliasResult BasicAliasAnalysis::aliasPHI(const PHINode *PN, uint64_t PNSize,
- const AAMDNodes &PNAAInfo,
- const Value *V2, uint64_t V2Size,
- const AAMDNodes &V2AAInfo) {
- // Track phi nodes we have visited. We use this information when we determine
- // value equivalence.
- VisitedPhiBBs.insert(PN->getParent());
- // If the values are PHIs in the same block, we can do a more precise
- // as well as efficient check: just check for aliases between the values
- // on corresponding edges.
- if (const PHINode *PN2 = dyn_cast<PHINode>(V2))
- if (PN2->getParent() == PN->getParent()) {
- LocPair Locs(MemoryLocation(PN, PNSize, PNAAInfo),
- MemoryLocation(V2, V2Size, V2AAInfo));
- if (PN > V2)
- std::swap(Locs.first, Locs.second);
- // Analyse the PHIs' inputs under the assumption that the PHIs are
- // NoAlias.
- // If the PHIs are May/MustAlias there must be (recursively) an input
- // operand from outside the PHIs' cycle that is MayAlias/MustAlias or
- // there must be an operation on the PHIs within the PHIs' value cycle
- // that causes a MayAlias.
- // Pretend the phis do not alias.
- AliasResult Alias = NoAlias;
- assert(AliasCache.count(Locs) &&
- "There must exist an entry for the phi node");
- AliasResult OrigAliasResult = AliasCache[Locs];
- AliasCache[Locs] = NoAlias;
- for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
- AliasResult ThisAlias =
- aliasCheck(PN->getIncomingValue(i), PNSize, PNAAInfo,
- PN2->getIncomingValueForBlock(PN->getIncomingBlock(i)),
- V2Size, V2AAInfo);
- Alias = MergeAliasResults(ThisAlias, Alias);
- if (Alias == MayAlias)
- break;
- }
- // Reset if speculation failed.
- if (Alias != NoAlias)
- AliasCache[Locs] = OrigAliasResult;
- return Alias;
- }
- SmallPtrSet<Value*, 4> UniqueSrc;
- SmallVector<Value*, 4> V1Srcs;
- for (Value *PV1 : PN->incoming_values()) {
- if (isa<PHINode>(PV1))
- // If any of the source itself is a PHI, return MayAlias conservatively
- // to avoid compile time explosion. The worst possible case is if both
- // sides are PHI nodes. In which case, this is O(m x n) time where 'm'
- // and 'n' are the number of PHI sources.
- return MayAlias;
- if (UniqueSrc.insert(PV1).second)
- V1Srcs.push_back(PV1);
- }
- AliasResult Alias = aliasCheck(V2, V2Size, V2AAInfo,
- V1Srcs[0], PNSize, PNAAInfo);
- // Early exit if the check of the first PHI source against V2 is MayAlias.
- // Other results are not possible.
- if (Alias == MayAlias)
- return MayAlias;
- // If all sources of the PHI node NoAlias or MustAlias V2, then returns
- // NoAlias / MustAlias. Otherwise, returns MayAlias.
- for (unsigned i = 1, e = V1Srcs.size(); i != e; ++i) {
- Value *V = V1Srcs[i];
- AliasResult ThisAlias = aliasCheck(V2, V2Size, V2AAInfo,
- V, PNSize, PNAAInfo);
- Alias = MergeAliasResults(ThisAlias, Alias);
- if (Alias == MayAlias)
- break;
- }
- return Alias;
- }
- // aliasCheck - Provide a bunch of ad-hoc rules to disambiguate in common cases,
- // such as array references.
- //
- AliasResult BasicAliasAnalysis::aliasCheck(const Value *V1, uint64_t V1Size,
- AAMDNodes V1AAInfo, const Value *V2,
- uint64_t V2Size,
- AAMDNodes V2AAInfo) {
- // If either of the memory references is empty, it doesn't matter what the
- // pointer values are.
- if (V1Size == 0 || V2Size == 0)
- return NoAlias;
- // Strip off any casts if they exist.
- V1 = V1->stripPointerCasts();
- V2 = V2->stripPointerCasts();
- // If V1 or V2 is undef, the result is NoAlias because we can always pick a
- // value for undef that aliases nothing in the program.
- if (isa<UndefValue>(V1) || isa<UndefValue>(V2))
- return NoAlias;
- // Are we checking for alias of the same value?
- // Because we look 'through' phi nodes we could look at "Value" pointers from
- // different iterations. We must therefore make sure that this is not the
- // case. The function isValueEqualInPotentialCycles ensures that this cannot
- // happen by looking at the visited phi nodes and making sure they cannot
- // reach the value.
- if (isValueEqualInPotentialCycles(V1, V2))
- return MustAlias;
- if (!V1->getType()->isPointerTy() || !V2->getType()->isPointerTy())
- return NoAlias; // Scalars cannot alias each other
- // Figure out what objects these things are pointing to if we can.
- const Value *O1 = GetUnderlyingObject(V1, *DL, MaxLookupSearchDepth);
- const Value *O2 = GetUnderlyingObject(V2, *DL, MaxLookupSearchDepth);
- // Null values in the default address space don't point to any object, so they
- // don't alias any other pointer.
- if (const ConstantPointerNull *CPN = dyn_cast<ConstantPointerNull>(O1))
- if (CPN->getType()->getAddressSpace() == 0)
- return NoAlias;
- if (const ConstantPointerNull *CPN = dyn_cast<ConstantPointerNull>(O2))
- if (CPN->getType()->getAddressSpace() == 0)
- return NoAlias;
- if (O1 != O2) {
- // If V1/V2 point to two different objects we know that we have no alias.
- if (isIdentifiedObject(O1) && isIdentifiedObject(O2))
- return NoAlias;
- // Constant pointers can't alias with non-const isIdentifiedObject objects.
- if ((isa<Constant>(O1) && isIdentifiedObject(O2) && !isa<Constant>(O2)) ||
- (isa<Constant>(O2) && isIdentifiedObject(O1) && !isa<Constant>(O1)))
- return NoAlias;
- // Function arguments can't alias with things that are known to be
- // unambigously identified at the function level.
- if ((isa<Argument>(O1) && isIdentifiedFunctionLocal(O2)) ||
- (isa<Argument>(O2) && isIdentifiedFunctionLocal(O1)))
- return NoAlias;
- // Most objects can't alias null.
- if ((isa<ConstantPointerNull>(O2) && isKnownNonNull(O1)) ||
- (isa<ConstantPointerNull>(O1) && isKnownNonNull(O2)))
- return NoAlias;
- // If one pointer is the result of a call/invoke or load and the other is a
- // non-escaping local object within the same function, then we know the
- // object couldn't escape to a point where the call could return it.
- //
- // Note that if the pointers are in different functions, there are a
- // variety of complications. A call with a nocapture argument may still
- // temporary store the nocapture argument's value in a temporary memory
- // location if that memory location doesn't escape. Or it may pass a
- // nocapture value to other functions as long as they don't capture it.
- if (isEscapeSource(O1) && isNonEscapingLocalObject(O2))
- return NoAlias;
- if (isEscapeSource(O2) && isNonEscapingLocalObject(O1))
- return NoAlias;
- }
- // If the size of one access is larger than the entire object on the other
- // side, then we know such behavior is undefined and can assume no alias.
- if (DL)
- if ((V1Size != MemoryLocation::UnknownSize &&
- isObjectSmallerThan(O2, V1Size, *DL, *TLI)) ||
- (V2Size != MemoryLocation::UnknownSize &&
- isObjectSmallerThan(O1, V2Size, *DL, *TLI)))
- return NoAlias;
- // Check the cache before climbing up use-def chains. This also terminates
- // otherwise infinitely recursive queries.
- LocPair Locs(MemoryLocation(V1, V1Size, V1AAInfo),
- MemoryLocation(V2, V2Size, V2AAInfo));
- if (V1 > V2)
- std::swap(Locs.first, Locs.second);
- std::pair<AliasCacheTy::iterator, bool> Pair =
- AliasCache.insert(std::make_pair(Locs, MayAlias));
- if (!Pair.second)
- return Pair.first->second;
- // FIXME: This isn't aggressively handling alias(GEP, PHI) for example: if the
- // GEP can't simplify, we don't even look at the PHI cases.
- if (!isa<GEPOperator>(V1) && isa<GEPOperator>(V2)) {
- std::swap(V1, V2);
- std::swap(V1Size, V2Size);
- std::swap(O1, O2);
- std::swap(V1AAInfo, V2AAInfo);
- }
- if (const GEPOperator *GV1 = dyn_cast<GEPOperator>(V1)) {
- AliasResult Result = aliasGEP(GV1, V1Size, V1AAInfo, V2, V2Size, V2AAInfo, O1, O2);
- if (Result != MayAlias) return AliasCache[Locs] = Result;
- }
- if (isa<PHINode>(V2) && !isa<PHINode>(V1)) {
- std::swap(V1, V2);
- std::swap(V1Size, V2Size);
- std::swap(V1AAInfo, V2AAInfo);
- }
- if (const PHINode *PN = dyn_cast<PHINode>(V1)) {
- AliasResult Result = aliasPHI(PN, V1Size, V1AAInfo,
- V2, V2Size, V2AAInfo);
- if (Result != MayAlias) return AliasCache[Locs] = Result;
- }
- if (isa<SelectInst>(V2) && !isa<SelectInst>(V1)) {
- std::swap(V1, V2);
- std::swap(V1Size, V2Size);
- std::swap(V1AAInfo, V2AAInfo);
- }
- if (const SelectInst *S1 = dyn_cast<SelectInst>(V1)) {
- AliasResult Result = aliasSelect(S1, V1Size, V1AAInfo,
- V2, V2Size, V2AAInfo);
- if (Result != MayAlias) return AliasCache[Locs] = Result;
- }
- // If both pointers are pointing into the same object and one of them
- // accesses is accessing the entire object, then the accesses must
- // overlap in some way.
- if (DL && O1 == O2)
- if ((V1Size != MemoryLocation::UnknownSize &&
- isObjectSize(O1, V1Size, *DL, *TLI)) ||
- (V2Size != MemoryLocation::UnknownSize &&
- isObjectSize(O2, V2Size, *DL, *TLI)))
- return AliasCache[Locs] = PartialAlias;
- AliasResult Result =
- AliasAnalysis::alias(MemoryLocation(V1, V1Size, V1AAInfo),
- MemoryLocation(V2, V2Size, V2AAInfo));
- return AliasCache[Locs] = Result;
- }
- bool BasicAliasAnalysis::isValueEqualInPotentialCycles(const Value *V,
- const Value *V2) {
- if (V != V2)
- return false;
- const Instruction *Inst = dyn_cast<Instruction>(V);
- if (!Inst)
- return true;
- if (VisitedPhiBBs.empty())
- return true;
- if (VisitedPhiBBs.size() > MaxNumPhiBBsValueReachabilityCheck)
- return false;
- // Use dominance or loop info if available.
- DominatorTreeWrapperPass *DTWP =
- getAnalysisIfAvailable<DominatorTreeWrapperPass>();
- DominatorTree *DT = DTWP ? &DTWP->getDomTree() : nullptr;
- auto *LIWP = getAnalysisIfAvailable<LoopInfoWrapperPass>();
- LoopInfo *LI = LIWP ? &LIWP->getLoopInfo() : nullptr;
- // Make sure that the visited phis cannot reach the Value. This ensures that
- // the Values cannot come from different iterations of a potential cycle the
- // phi nodes could be involved in.
- for (auto *P : VisitedPhiBBs)
- if (isPotentiallyReachable(P->begin(), Inst, DT, LI))
- return false;
- return true;
- }
- /// GetIndexDifference - Dest and Src are the variable indices from two
- /// decomposed GetElementPtr instructions GEP1 and GEP2 which have common base
- /// pointers. Subtract the GEP2 indices from GEP1 to find the symbolic
- /// difference between the two pointers.
- void BasicAliasAnalysis::GetIndexDifference(
- SmallVectorImpl<VariableGEPIndex> &Dest,
- const SmallVectorImpl<VariableGEPIndex> &Src) {
- if (Src.empty())
- return;
- for (unsigned i = 0, e = Src.size(); i != e; ++i) {
- const Value *V = Src[i].V;
- ExtensionKind Extension = Src[i].Extension;
- int64_t Scale = Src[i].Scale;
- // Find V in Dest. This is N^2, but pointer indices almost never have more
- // than a few variable indexes.
- for (unsigned j = 0, e = Dest.size(); j != e; ++j) {
- if (!isValueEqualInPotentialCycles(Dest[j].V, V) ||
- Dest[j].Extension != Extension)
- continue;
- // If we found it, subtract off Scale V's from the entry in Dest. If it
- // goes to zero, remove the entry.
- if (Dest[j].Scale != Scale)
- Dest[j].Scale -= Scale;
- else
- Dest.erase(Dest.begin() + j);
- Scale = 0;
- break;
- }
- // If we didn't consume this entry, add it to the end of the Dest list.
- if (Scale) {
- VariableGEPIndex Entry = { V, Extension, -Scale };
- Dest.push_back(Entry);
- }
- }
- }
|