123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234 |
- //===-- CFG.cpp - BasicBlock analysis --------------------------------------==//
- //
- // The LLVM Compiler Infrastructure
- //
- // This file is distributed under the University of Illinois Open Source
- // License. See LICENSE.TXT for details.
- //
- //===----------------------------------------------------------------------===//
- //
- // This family of functions performs analyses on basic blocks, and instructions
- // contained within basic blocks.
- //
- //===----------------------------------------------------------------------===//
- #include "llvm/Analysis/CFG.h"
- #include "llvm/ADT/SmallSet.h"
- #include "llvm/Analysis/LoopInfo.h"
- #include "llvm/IR/Dominators.h"
- using namespace llvm;
- /// FindFunctionBackedges - Analyze the specified function to find all of the
- /// loop backedges in the function and return them. This is a relatively cheap
- /// (compared to computing dominators and loop info) analysis.
- ///
- /// The output is added to Result, as pairs of <from,to> edge info.
- void llvm::FindFunctionBackedges(const Function &F,
- SmallVectorImpl<std::pair<const BasicBlock*,const BasicBlock*> > &Result) {
- const BasicBlock *BB = &F.getEntryBlock();
- if (succ_empty(BB))
- return;
- SmallPtrSet<const BasicBlock*, 8> Visited;
- SmallVector<std::pair<const BasicBlock*, succ_const_iterator>, 8> VisitStack;
- SmallPtrSet<const BasicBlock*, 8> InStack;
- Visited.insert(BB);
- VisitStack.push_back(std::make_pair(BB, succ_begin(BB)));
- InStack.insert(BB);
- do {
- std::pair<const BasicBlock*, succ_const_iterator> &Top = VisitStack.back();
- const BasicBlock *ParentBB = Top.first;
- succ_const_iterator &I = Top.second;
- bool FoundNew = false;
- while (I != succ_end(ParentBB)) {
- BB = *I++;
- if (Visited.insert(BB).second) {
- FoundNew = true;
- break;
- }
- // Successor is in VisitStack, it's a back edge.
- if (InStack.count(BB))
- Result.push_back(std::make_pair(ParentBB, BB));
- }
- if (FoundNew) {
- // Go down one level if there is a unvisited successor.
- InStack.insert(BB);
- VisitStack.push_back(std::make_pair(BB, succ_begin(BB)));
- } else {
- // Go up one level.
- InStack.erase(VisitStack.pop_back_val().first);
- }
- } while (!VisitStack.empty());
- }
- /// GetSuccessorNumber - Search for the specified successor of basic block BB
- /// and return its position in the terminator instruction's list of
- /// successors. It is an error to call this with a block that is not a
- /// successor.
- unsigned llvm::GetSuccessorNumber(BasicBlock *BB, BasicBlock *Succ) {
- TerminatorInst *Term = BB->getTerminator();
- #ifndef NDEBUG
- unsigned e = Term->getNumSuccessors();
- #endif
- for (unsigned i = 0; ; ++i) {
- assert(i != e && "Didn't find edge?");
- if (Term->getSuccessor(i) == Succ)
- return i;
- }
- }
- /// isCriticalEdge - Return true if the specified edge is a critical edge.
- /// Critical edges are edges from a block with multiple successors to a block
- /// with multiple predecessors.
- bool llvm::isCriticalEdge(const TerminatorInst *TI, unsigned SuccNum,
- bool AllowIdenticalEdges) {
- assert(SuccNum < TI->getNumSuccessors() && "Illegal edge specification!");
- if (TI->getNumSuccessors() == 1) return false;
- const BasicBlock *Dest = TI->getSuccessor(SuccNum);
- const_pred_iterator I = pred_begin(Dest), E = pred_end(Dest);
- // If there is more than one predecessor, this is a critical edge...
- assert(I != E && "No preds, but we have an edge to the block?");
- const BasicBlock *FirstPred = *I;
- ++I; // Skip one edge due to the incoming arc from TI.
- if (!AllowIdenticalEdges)
- return I != E;
- // If AllowIdenticalEdges is true, then we allow this edge to be considered
- // non-critical iff all preds come from TI's block.
- for (; I != E; ++I)
- if (*I != FirstPred)
- return true;
- return false;
- }
- // LoopInfo contains a mapping from basic block to the innermost loop. Find
- // the outermost loop in the loop nest that contains BB.
- static const Loop *getOutermostLoop(const LoopInfo *LI, const BasicBlock *BB) {
- const Loop *L = LI->getLoopFor(BB);
- if (L) {
- while (const Loop *Parent = L->getParentLoop())
- L = Parent;
- }
- return L;
- }
- // True if there is a loop which contains both BB1 and BB2.
- static bool loopContainsBoth(const LoopInfo *LI,
- const BasicBlock *BB1, const BasicBlock *BB2) {
- const Loop *L1 = getOutermostLoop(LI, BB1);
- const Loop *L2 = getOutermostLoop(LI, BB2);
- return L1 != nullptr && L1 == L2;
- }
- bool llvm::isPotentiallyReachableFromMany(
- SmallVectorImpl<BasicBlock *> &Worklist, BasicBlock *StopBB,
- const DominatorTree *DT, const LoopInfo *LI) {
- // When the stop block is unreachable, it's dominated from everywhere,
- // regardless of whether there's a path between the two blocks.
- if (DT && !DT->isReachableFromEntry(StopBB))
- DT = nullptr;
- // Limit the number of blocks we visit. The goal is to avoid run-away compile
- // times on large CFGs without hampering sensible code. Arbitrarily chosen.
- unsigned Limit = 32;
- SmallSet<const BasicBlock*, 64> Visited;
- do {
- BasicBlock *BB = Worklist.pop_back_val();
- if (!Visited.insert(BB).second)
- continue;
- if (BB == StopBB)
- return true;
- if (DT && DT->dominates(BB, StopBB))
- return true;
- if (LI && loopContainsBoth(LI, BB, StopBB))
- return true;
- if (!--Limit) {
- // We haven't been able to prove it one way or the other. Conservatively
- // answer true -- that there is potentially a path.
- return true;
- }
- if (const Loop *Outer = LI ? getOutermostLoop(LI, BB) : nullptr) {
- // All blocks in a single loop are reachable from all other blocks. From
- // any of these blocks, we can skip directly to the exits of the loop,
- // ignoring any other blocks inside the loop body.
- Outer->getExitBlocks(Worklist);
- } else {
- Worklist.append(succ_begin(BB), succ_end(BB));
- }
- } while (!Worklist.empty());
- // We have exhausted all possible paths and are certain that 'To' can not be
- // reached from 'From'.
- return false;
- }
- bool llvm::isPotentiallyReachable(const BasicBlock *A, const BasicBlock *B,
- const DominatorTree *DT, const LoopInfo *LI) {
- assert(A->getParent() == B->getParent() &&
- "This analysis is function-local!");
- SmallVector<BasicBlock*, 32> Worklist;
- Worklist.push_back(const_cast<BasicBlock*>(A));
- return isPotentiallyReachableFromMany(Worklist, const_cast<BasicBlock *>(B),
- DT, LI);
- }
- bool llvm::isPotentiallyReachable(const Instruction *A, const Instruction *B,
- const DominatorTree *DT, const LoopInfo *LI) {
- assert(A->getParent()->getParent() == B->getParent()->getParent() &&
- "This analysis is function-local!");
- SmallVector<BasicBlock*, 32> Worklist;
- if (A->getParent() == B->getParent()) {
- // The same block case is special because it's the only time we're looking
- // within a single block to see which instruction comes first. Once we
- // start looking at multiple blocks, the first instruction of the block is
- // reachable, so we only need to determine reachability between whole
- // blocks.
- BasicBlock *BB = const_cast<BasicBlock *>(A->getParent());
- // If the block is in a loop then we can reach any instruction in the block
- // from any other instruction in the block by going around a backedge.
- if (LI && LI->getLoopFor(BB) != nullptr)
- return true;
- // Linear scan, start at 'A', see whether we hit 'B' or the end first.
- for (BasicBlock::const_iterator I = A, E = BB->end(); I != E; ++I) {
- if (&*I == B)
- return true;
- }
- // Can't be in a loop if it's the entry block -- the entry block may not
- // have predecessors.
- if (BB == &BB->getParent()->getEntryBlock())
- return false;
- // Otherwise, continue doing the normal per-BB CFG walk.
- Worklist.append(succ_begin(BB), succ_end(BB));
- if (Worklist.empty()) {
- // We've proven that there's no path!
- return false;
- }
- } else {
- Worklist.push_back(const_cast<BasicBlock*>(A->getParent()));
- }
- if (A->getParent() == &A->getParent()->getParent()->getEntryBlock())
- return true;
- if (B->getParent() == &A->getParent()->getParent()->getEntryBlock())
- return false;
- return isPotentiallyReachableFromMany(
- Worklist, const_cast<BasicBlock *>(B->getParent()), DT, LI);
- }
|