123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182 |
- //===- CFLAliasAnalysis.cpp - CFL-Based Alias Analysis Implementation ------==//
- //
- // The LLVM Compiler Infrastructure
- //
- // This file is distributed under the University of Illinois Open Source
- // License. See LICENSE.TXT for details.
- //
- //===----------------------------------------------------------------------===//
- //
- // This file implements a CFL-based context-insensitive alias analysis
- // algorithm. It does not depend on types. The algorithm is a mixture of the one
- // described in "Demand-driven alias analysis for C" by Xin Zheng and Radu
- // Rugina, and "Fast algorithms for Dyck-CFL-reachability with applications to
- // Alias Analysis" by Zhang Q, Lyu M R, Yuan H, and Su Z. -- to summarize the
- // papers, we build a graph of the uses of a variable, where each node is a
- // memory location, and each edge is an action that happened on that memory
- // location. The "actions" can be one of Dereference, Reference, or Assign.
- //
- // Two variables are considered as aliasing iff you can reach one value's node
- // from the other value's node and the language formed by concatenating all of
- // the edge labels (actions) conforms to a context-free grammar.
- //
- // Because this algorithm requires a graph search on each query, we execute the
- // algorithm outlined in "Fast algorithms..." (mentioned above)
- // in order to transform the graph into sets of variables that may alias in
- // ~nlogn time (n = number of variables.), which makes queries take constant
- // time.
- //===----------------------------------------------------------------------===//
- #include "StratifiedSets.h"
- #include "llvm/ADT/BitVector.h"
- #include "llvm/ADT/DenseMap.h"
- #include "llvm/ADT/None.h"
- #include "llvm/ADT/Optional.h"
- #include "llvm/Analysis/AliasAnalysis.h"
- #include "llvm/Analysis/Passes.h"
- #include "llvm/IR/Constants.h"
- #include "llvm/IR/Function.h"
- #include "llvm/IR/InstVisitor.h"
- #include "llvm/IR/Instructions.h"
- #include "llvm/IR/ValueHandle.h"
- #include "llvm/Pass.h"
- #include "llvm/Support/Allocator.h"
- #include "llvm/Support/Compiler.h"
- #include "llvm/Support/Debug.h"
- #include "llvm/Support/ErrorHandling.h"
- #include "llvm/Support/raw_ostream.h"
- #include <algorithm>
- #include <cassert>
- #include <forward_list>
- #include <memory>
- #include <tuple>
- using namespace llvm;
- #define DEBUG_TYPE "cfl-aa"
- // Try to go from a Value* to a Function*. Never returns nullptr.
- static Optional<Function *> parentFunctionOfValue(Value *);
- // Returns possible functions called by the Inst* into the given
- // SmallVectorImpl. Returns true if targets found, false otherwise.
- // This is templated because InvokeInst/CallInst give us the same
- // set of functions that we care about, and I don't like repeating
- // myself.
- template <typename Inst>
- static bool getPossibleTargets(Inst *, SmallVectorImpl<Function *> &);
- // Some instructions need to have their users tracked. Instructions like
- // `add` require you to get the users of the Instruction* itself, other
- // instructions like `store` require you to get the users of the first
- // operand. This function gets the "proper" value to track for each
- // type of instruction we support.
- static Optional<Value *> getTargetValue(Instruction *);
- // There are certain instructions (i.e. FenceInst, etc.) that we ignore.
- // This notes that we should ignore those.
- static bool hasUsefulEdges(Instruction *);
- const StratifiedIndex StratifiedLink::SetSentinel =
- std::numeric_limits<StratifiedIndex>::max();
- namespace {
- // StratifiedInfo Attribute things.
- typedef unsigned StratifiedAttr;
- LLVM_CONSTEXPR unsigned MaxStratifiedAttrIndex = NumStratifiedAttrs;
- LLVM_CONSTEXPR unsigned AttrAllIndex = 0;
- LLVM_CONSTEXPR unsigned AttrGlobalIndex = 1;
- LLVM_CONSTEXPR unsigned AttrUnknownIndex = 2;
- LLVM_CONSTEXPR unsigned AttrFirstArgIndex = 3;
- LLVM_CONSTEXPR unsigned AttrLastArgIndex = MaxStratifiedAttrIndex;
- LLVM_CONSTEXPR unsigned AttrMaxNumArgs = AttrLastArgIndex - AttrFirstArgIndex;
- LLVM_CONSTEXPR StratifiedAttr AttrNone = 0;
- LLVM_CONSTEXPR StratifiedAttr AttrUnknown = 1 << AttrUnknownIndex;
- LLVM_CONSTEXPR StratifiedAttr AttrAll = ~AttrNone;
- // \brief StratifiedSets call for knowledge of "direction", so this is how we
- // represent that locally.
- enum class Level { Same, Above, Below };
- // \brief Edges can be one of four "weights" -- each weight must have an inverse
- // weight (Assign has Assign; Reference has Dereference).
- enum class EdgeType {
- // The weight assigned when assigning from or to a value. For example, in:
- // %b = getelementptr %a, 0
- // ...The relationships are %b assign %a, and %a assign %b. This used to be
- // two edges, but having a distinction bought us nothing.
- Assign,
- // The edge used when we have an edge going from some handle to a Value.
- // Examples of this include:
- // %b = load %a (%b Dereference %a)
- // %b = extractelement %a, 0 (%a Dereference %b)
- Dereference,
- // The edge used when our edge goes from a value to a handle that may have
- // contained it at some point. Examples:
- // %b = load %a (%a Reference %b)
- // %b = extractelement %a, 0 (%b Reference %a)
- Reference
- };
- // \brief Encodes the notion of a "use"
- struct Edge {
- // \brief Which value the edge is coming from
- Value *From;
- // \brief Which value the edge is pointing to
- Value *To;
- // \brief Edge weight
- EdgeType Weight;
- // \brief Whether we aliased any external values along the way that may be
- // invisible to the analysis (i.e. landingpad for exceptions, calls for
- // interprocedural analysis, etc.)
- StratifiedAttrs AdditionalAttrs;
- Edge(Value *From, Value *To, EdgeType W, StratifiedAttrs A)
- : From(From), To(To), Weight(W), AdditionalAttrs(A) {}
- };
- // \brief Information we have about a function and would like to keep around
- struct FunctionInfo {
- StratifiedSets<Value *> Sets;
- // Lots of functions have < 4 returns. Adjust as necessary.
- SmallVector<Value *, 4> ReturnedValues;
- FunctionInfo(StratifiedSets<Value *> &&S, SmallVector<Value *, 4> &&RV)
- : Sets(std::move(S)), ReturnedValues(std::move(RV)) {}
- };
- struct CFLAliasAnalysis;
- struct FunctionHandle : public CallbackVH {
- FunctionHandle(Function *Fn, CFLAliasAnalysis *CFLAA)
- : CallbackVH(Fn), CFLAA(CFLAA) {
- assert(Fn != nullptr);
- assert(CFLAA != nullptr);
- }
- ~FunctionHandle() override {}
- void deleted() override { removeSelfFromCache(); }
- void allUsesReplacedWith(Value *) override { removeSelfFromCache(); }
- private:
- CFLAliasAnalysis *CFLAA;
- void removeSelfFromCache();
- };
- struct CFLAliasAnalysis : public ImmutablePass, public AliasAnalysis {
- private:
- /// \brief Cached mapping of Functions to their StratifiedSets.
- /// If a function's sets are currently being built, it is marked
- /// in the cache as an Optional without a value. This way, if we
- /// have any kind of recursion, it is discernable from a function
- /// that simply has empty sets.
- DenseMap<Function *, Optional<FunctionInfo>> Cache;
- std::forward_list<FunctionHandle> Handles;
- public:
- static char ID;
- CFLAliasAnalysis() : ImmutablePass(ID) {
- initializeCFLAliasAnalysisPass(*PassRegistry::getPassRegistry());
- }
- ~CFLAliasAnalysis() override {}
- void getAnalysisUsage(AnalysisUsage &AU) const override {
- AliasAnalysis::getAnalysisUsage(AU);
- }
- void *getAdjustedAnalysisPointer(const void *ID) override {
- if (ID == &AliasAnalysis::ID)
- return (AliasAnalysis *)this;
- return this;
- }
- /// \brief Inserts the given Function into the cache.
- void scan(Function *Fn);
- void evict(Function *Fn) { Cache.erase(Fn); }
- /// \brief Ensures that the given function is available in the cache.
- /// Returns the appropriate entry from the cache.
- const Optional<FunctionInfo> &ensureCached(Function *Fn) {
- auto Iter = Cache.find(Fn);
- if (Iter == Cache.end()) {
- scan(Fn);
- Iter = Cache.find(Fn);
- assert(Iter != Cache.end());
- assert(Iter->second.hasValue());
- }
- return Iter->second;
- }
- AliasResult query(const MemoryLocation &LocA, const MemoryLocation &LocB);
- AliasResult alias(const MemoryLocation &LocA,
- const MemoryLocation &LocB) override {
- if (LocA.Ptr == LocB.Ptr) {
- if (LocA.Size == LocB.Size) {
- return MustAlias;
- } else {
- return PartialAlias;
- }
- }
- // Comparisons between global variables and other constants should be
- // handled by BasicAA.
- // TODO: ConstantExpr handling -- CFLAA may report NoAlias when comparing
- // a GlobalValue and ConstantExpr, but every query needs to have at least
- // one Value tied to a Function, and neither GlobalValues nor ConstantExprs
- // are.
- if (isa<Constant>(LocA.Ptr) && isa<Constant>(LocB.Ptr)) {
- return AliasAnalysis::alias(LocA, LocB);
- }
- AliasResult QueryResult = query(LocA, LocB);
- if (QueryResult == MayAlias)
- return AliasAnalysis::alias(LocA, LocB);
- return QueryResult;
- }
- bool doInitialization(Module &M) override;
- };
- void FunctionHandle::removeSelfFromCache() {
- assert(CFLAA != nullptr);
- auto *Val = getValPtr();
- CFLAA->evict(cast<Function>(Val));
- setValPtr(nullptr);
- }
- // \brief Gets the edges our graph should have, based on an Instruction*
- class GetEdgesVisitor : public InstVisitor<GetEdgesVisitor, void> {
- CFLAliasAnalysis &AA;
- SmallVectorImpl<Edge> &Output;
- public:
- GetEdgesVisitor(CFLAliasAnalysis &AA, SmallVectorImpl<Edge> &Output)
- : AA(AA), Output(Output) {}
- void visitInstruction(Instruction &) {
- llvm_unreachable("Unsupported instruction encountered");
- }
- void visitPtrToIntInst(PtrToIntInst &Inst) {
- auto *Ptr = Inst.getOperand(0);
- Output.push_back(Edge(Ptr, Ptr, EdgeType::Assign, AttrUnknown));
- }
- void visitIntToPtrInst(IntToPtrInst &Inst) {
- auto *Ptr = &Inst;
- Output.push_back(Edge(Ptr, Ptr, EdgeType::Assign, AttrUnknown));
- }
- void visitCastInst(CastInst &Inst) {
- Output.push_back(
- Edge(&Inst, Inst.getOperand(0), EdgeType::Assign, AttrNone));
- }
- void visitBinaryOperator(BinaryOperator &Inst) {
- auto *Op1 = Inst.getOperand(0);
- auto *Op2 = Inst.getOperand(1);
- Output.push_back(Edge(&Inst, Op1, EdgeType::Assign, AttrNone));
- Output.push_back(Edge(&Inst, Op2, EdgeType::Assign, AttrNone));
- }
- void visitAtomicCmpXchgInst(AtomicCmpXchgInst &Inst) {
- auto *Ptr = Inst.getPointerOperand();
- auto *Val = Inst.getNewValOperand();
- Output.push_back(Edge(Ptr, Val, EdgeType::Dereference, AttrNone));
- }
- void visitAtomicRMWInst(AtomicRMWInst &Inst) {
- auto *Ptr = Inst.getPointerOperand();
- auto *Val = Inst.getValOperand();
- Output.push_back(Edge(Ptr, Val, EdgeType::Dereference, AttrNone));
- }
- void visitPHINode(PHINode &Inst) {
- for (Value *Val : Inst.incoming_values()) {
- Output.push_back(Edge(&Inst, Val, EdgeType::Assign, AttrNone));
- }
- }
- void visitGetElementPtrInst(GetElementPtrInst &Inst) {
- auto *Op = Inst.getPointerOperand();
- Output.push_back(Edge(&Inst, Op, EdgeType::Assign, AttrNone));
- for (auto I = Inst.idx_begin(), E = Inst.idx_end(); I != E; ++I)
- Output.push_back(Edge(&Inst, *I, EdgeType::Assign, AttrNone));
- }
- void visitSelectInst(SelectInst &Inst) {
- // Condition is not processed here (The actual statement producing
- // the condition result is processed elsewhere). For select, the
- // condition is evaluated, but not loaded, stored, or assigned
- // simply as a result of being the condition of a select.
- auto *TrueVal = Inst.getTrueValue();
- Output.push_back(Edge(&Inst, TrueVal, EdgeType::Assign, AttrNone));
- auto *FalseVal = Inst.getFalseValue();
- Output.push_back(Edge(&Inst, FalseVal, EdgeType::Assign, AttrNone));
- }
- void visitAllocaInst(AllocaInst &) {}
- void visitLoadInst(LoadInst &Inst) {
- auto *Ptr = Inst.getPointerOperand();
- auto *Val = &Inst;
- Output.push_back(Edge(Val, Ptr, EdgeType::Reference, AttrNone));
- }
- void visitStoreInst(StoreInst &Inst) {
- auto *Ptr = Inst.getPointerOperand();
- auto *Val = Inst.getValueOperand();
- Output.push_back(Edge(Ptr, Val, EdgeType::Dereference, AttrNone));
- }
- void visitVAArgInst(VAArgInst &Inst) {
- // We can't fully model va_arg here. For *Ptr = Inst.getOperand(0), it does
- // two things:
- // 1. Loads a value from *((T*)*Ptr).
- // 2. Increments (stores to) *Ptr by some target-specific amount.
- // For now, we'll handle this like a landingpad instruction (by placing the
- // result in its own group, and having that group alias externals).
- auto *Val = &Inst;
- Output.push_back(Edge(Val, Val, EdgeType::Assign, AttrAll));
- }
- static bool isFunctionExternal(Function *Fn) {
- return Fn->isDeclaration() || !Fn->hasLocalLinkage();
- }
- // Gets whether the sets at Index1 above, below, or equal to the sets at
- // Index2. Returns None if they are not in the same set chain.
- static Optional<Level> getIndexRelation(const StratifiedSets<Value *> &Sets,
- StratifiedIndex Index1,
- StratifiedIndex Index2) {
- if (Index1 == Index2)
- return Level::Same;
- const auto *Current = &Sets.getLink(Index1);
- while (Current->hasBelow()) {
- if (Current->Below == Index2)
- return Level::Below;
- Current = &Sets.getLink(Current->Below);
- }
- Current = &Sets.getLink(Index1);
- while (Current->hasAbove()) {
- if (Current->Above == Index2)
- return Level::Above;
- Current = &Sets.getLink(Current->Above);
- }
- return NoneType();
- }
- bool
- tryInterproceduralAnalysis(const SmallVectorImpl<Function *> &Fns,
- Value *FuncValue,
- const iterator_range<User::op_iterator> &Args) {
- const unsigned ExpectedMaxArgs = 8;
- const unsigned MaxSupportedArgs = 50;
- assert(Fns.size() > 0);
- // I put this here to give us an upper bound on time taken by IPA. Is it
- // really (realistically) needed? Keep in mind that we do have an n^2 algo.
- if (std::distance(Args.begin(), Args.end()) > (int)MaxSupportedArgs)
- return false;
- // Exit early if we'll fail anyway
- for (auto *Fn : Fns) {
- if (isFunctionExternal(Fn) || Fn->isVarArg())
- return false;
- auto &MaybeInfo = AA.ensureCached(Fn);
- if (!MaybeInfo.hasValue())
- return false;
- }
- SmallVector<Value *, ExpectedMaxArgs> Arguments(Args.begin(), Args.end());
- SmallVector<StratifiedInfo, ExpectedMaxArgs> Parameters;
- for (auto *Fn : Fns) {
- auto &Info = *AA.ensureCached(Fn);
- auto &Sets = Info.Sets;
- auto &RetVals = Info.ReturnedValues;
- Parameters.clear();
- for (auto &Param : Fn->args()) {
- auto MaybeInfo = Sets.find(&Param);
- // Did a new parameter somehow get added to the function/slip by?
- if (!MaybeInfo.hasValue())
- return false;
- Parameters.push_back(*MaybeInfo);
- }
- // Adding an edge from argument -> return value for each parameter that
- // may alias the return value
- for (unsigned I = 0, E = Parameters.size(); I != E; ++I) {
- auto &ParamInfo = Parameters[I];
- auto &ArgVal = Arguments[I];
- bool AddEdge = false;
- StratifiedAttrs Externals;
- for (unsigned X = 0, XE = RetVals.size(); X != XE; ++X) {
- auto MaybeInfo = Sets.find(RetVals[X]);
- if (!MaybeInfo.hasValue())
- return false;
- auto &RetInfo = *MaybeInfo;
- auto RetAttrs = Sets.getLink(RetInfo.Index).Attrs;
- auto ParamAttrs = Sets.getLink(ParamInfo.Index).Attrs;
- auto MaybeRelation =
- getIndexRelation(Sets, ParamInfo.Index, RetInfo.Index);
- if (MaybeRelation.hasValue()) {
- AddEdge = true;
- Externals |= RetAttrs | ParamAttrs;
- }
- }
- if (AddEdge)
- Output.push_back(Edge(FuncValue, ArgVal, EdgeType::Assign,
- StratifiedAttrs().flip()));
- }
- if (Parameters.size() != Arguments.size())
- return false;
- // Adding edges between arguments for arguments that may end up aliasing
- // each other. This is necessary for functions such as
- // void foo(int** a, int** b) { *a = *b; }
- // (Technically, the proper sets for this would be those below
- // Arguments[I] and Arguments[X], but our algorithm will produce
- // extremely similar, and equally correct, results either way)
- for (unsigned I = 0, E = Arguments.size(); I != E; ++I) {
- auto &MainVal = Arguments[I];
- auto &MainInfo = Parameters[I];
- auto &MainAttrs = Sets.getLink(MainInfo.Index).Attrs;
- for (unsigned X = I + 1; X != E; ++X) {
- auto &SubInfo = Parameters[X];
- auto &SubVal = Arguments[X];
- auto &SubAttrs = Sets.getLink(SubInfo.Index).Attrs;
- auto MaybeRelation =
- getIndexRelation(Sets, MainInfo.Index, SubInfo.Index);
- if (!MaybeRelation.hasValue())
- continue;
- auto NewAttrs = SubAttrs | MainAttrs;
- Output.push_back(Edge(MainVal, SubVal, EdgeType::Assign, NewAttrs));
- }
- }
- }
- return true;
- }
- template <typename InstT> void visitCallLikeInst(InstT &Inst) {
- SmallVector<Function *, 4> Targets;
- if (getPossibleTargets(&Inst, Targets)) {
- if (tryInterproceduralAnalysis(Targets, &Inst, Inst.arg_operands()))
- return;
- // Cleanup from interprocedural analysis
- Output.clear();
- }
- for (Value *V : Inst.arg_operands())
- Output.push_back(Edge(&Inst, V, EdgeType::Assign, AttrAll));
- }
- void visitCallInst(CallInst &Inst) { visitCallLikeInst(Inst); }
- void visitInvokeInst(InvokeInst &Inst) { visitCallLikeInst(Inst); }
- // Because vectors/aggregates are immutable and unaddressable,
- // there's nothing we can do to coax a value out of them, other
- // than calling Extract{Element,Value}. We can effectively treat
- // them as pointers to arbitrary memory locations we can store in
- // and load from.
- void visitExtractElementInst(ExtractElementInst &Inst) {
- auto *Ptr = Inst.getVectorOperand();
- auto *Val = &Inst;
- Output.push_back(Edge(Val, Ptr, EdgeType::Reference, AttrNone));
- }
- void visitInsertElementInst(InsertElementInst &Inst) {
- auto *Vec = Inst.getOperand(0);
- auto *Val = Inst.getOperand(1);
- Output.push_back(Edge(&Inst, Vec, EdgeType::Assign, AttrNone));
- Output.push_back(Edge(&Inst, Val, EdgeType::Dereference, AttrNone));
- }
- void visitLandingPadInst(LandingPadInst &Inst) {
- // Exceptions come from "nowhere", from our analysis' perspective.
- // So we place the instruction its own group, noting that said group may
- // alias externals
- Output.push_back(Edge(&Inst, &Inst, EdgeType::Assign, AttrAll));
- }
- void visitInsertValueInst(InsertValueInst &Inst) {
- auto *Agg = Inst.getOperand(0);
- auto *Val = Inst.getOperand(1);
- Output.push_back(Edge(&Inst, Agg, EdgeType::Assign, AttrNone));
- Output.push_back(Edge(&Inst, Val, EdgeType::Dereference, AttrNone));
- }
- void visitExtractValueInst(ExtractValueInst &Inst) {
- auto *Ptr = Inst.getAggregateOperand();
- Output.push_back(Edge(&Inst, Ptr, EdgeType::Reference, AttrNone));
- }
- void visitShuffleVectorInst(ShuffleVectorInst &Inst) {
- auto *From1 = Inst.getOperand(0);
- auto *From2 = Inst.getOperand(1);
- Output.push_back(Edge(&Inst, From1, EdgeType::Assign, AttrNone));
- Output.push_back(Edge(&Inst, From2, EdgeType::Assign, AttrNone));
- }
- void visitConstantExpr(ConstantExpr *CE) {
- switch (CE->getOpcode()) {
- default:
- llvm_unreachable("Unknown instruction type encountered!");
- // Build the switch statement using the Instruction.def file.
- #define HANDLE_INST(NUM, OPCODE, CLASS) \
- case Instruction::OPCODE: \
- visit##OPCODE(*(CLASS *)CE); \
- break;
- #include "llvm/IR/Instruction.def"
- }
- }
- };
- // For a given instruction, we need to know which Value* to get the
- // users of in order to build our graph. In some cases (i.e. add),
- // we simply need the Instruction*. In other cases (i.e. store),
- // finding the users of the Instruction* is useless; we need to find
- // the users of the first operand. This handles determining which
- // value to follow for us.
- //
- // Note: we *need* to keep this in sync with GetEdgesVisitor. Add
- // something to GetEdgesVisitor, add it here -- remove something from
- // GetEdgesVisitor, remove it here.
- class GetTargetValueVisitor
- : public InstVisitor<GetTargetValueVisitor, Value *> {
- public:
- Value *visitInstruction(Instruction &Inst) { return &Inst; }
- Value *visitStoreInst(StoreInst &Inst) { return Inst.getPointerOperand(); }
- Value *visitAtomicCmpXchgInst(AtomicCmpXchgInst &Inst) {
- return Inst.getPointerOperand();
- }
- Value *visitAtomicRMWInst(AtomicRMWInst &Inst) {
- return Inst.getPointerOperand();
- }
- Value *visitInsertElementInst(InsertElementInst &Inst) {
- return Inst.getOperand(0);
- }
- Value *visitInsertValueInst(InsertValueInst &Inst) {
- return Inst.getAggregateOperand();
- }
- };
- // Set building requires a weighted bidirectional graph.
- template <typename EdgeTypeT> class WeightedBidirectionalGraph {
- public:
- typedef std::size_t Node;
- private:
- const static Node StartNode = Node(0);
- struct Edge {
- EdgeTypeT Weight;
- Node Other;
- Edge(const EdgeTypeT &W, const Node &N) : Weight(W), Other(N) {}
- bool operator==(const Edge &E) const {
- return Weight == E.Weight && Other == E.Other;
- }
- bool operator!=(const Edge &E) const { return !operator==(E); }
- };
- struct NodeImpl {
- std::vector<Edge> Edges;
- };
- std::vector<NodeImpl> NodeImpls;
- bool inbounds(Node NodeIndex) const { return NodeIndex < NodeImpls.size(); }
- const NodeImpl &getNode(Node N) const { return NodeImpls[N]; }
- NodeImpl &getNode(Node N) { return NodeImpls[N]; }
- public:
- // ----- Various Edge iterators for the graph ----- //
- // \brief Iterator for edges. Because this graph is bidirected, we don't
- // allow modificaiton of the edges using this iterator. Additionally, the
- // iterator becomes invalid if you add edges to or from the node you're
- // getting the edges of.
- struct EdgeIterator : public std::iterator<std::forward_iterator_tag,
- std::tuple<EdgeTypeT, Node *>> {
- EdgeIterator(const typename std::vector<Edge>::const_iterator &Iter)
- : Current(Iter) {}
- EdgeIterator(NodeImpl &Impl) : Current(Impl.begin()) {}
- EdgeIterator &operator++() {
- ++Current;
- return *this;
- }
- EdgeIterator operator++(int) {
- EdgeIterator Copy(Current);
- operator++();
- return Copy;
- }
- std::tuple<EdgeTypeT, Node> &operator*() {
- Store = std::make_tuple(Current->Weight, Current->Other);
- return Store;
- }
- bool operator==(const EdgeIterator &Other) const {
- return Current == Other.Current;
- }
- bool operator!=(const EdgeIterator &Other) const {
- return !operator==(Other);
- }
- private:
- typename std::vector<Edge>::const_iterator Current;
- std::tuple<EdgeTypeT, Node> Store;
- };
- // Wrapper for EdgeIterator with begin()/end() calls.
- struct EdgeIterable {
- EdgeIterable(const std::vector<Edge> &Edges)
- : BeginIter(Edges.begin()), EndIter(Edges.end()) {}
- EdgeIterator begin() { return EdgeIterator(BeginIter); }
- EdgeIterator end() { return EdgeIterator(EndIter); }
- private:
- typename std::vector<Edge>::const_iterator BeginIter;
- typename std::vector<Edge>::const_iterator EndIter;
- };
- // ----- Actual graph-related things ----- //
- WeightedBidirectionalGraph() {}
- WeightedBidirectionalGraph(WeightedBidirectionalGraph<EdgeTypeT> &&Other)
- : NodeImpls(std::move(Other.NodeImpls)) {}
- WeightedBidirectionalGraph<EdgeTypeT> &
- operator=(WeightedBidirectionalGraph<EdgeTypeT> &&Other) {
- NodeImpls = std::move(Other.NodeImpls);
- return *this;
- }
- Node addNode() {
- auto Index = NodeImpls.size();
- auto NewNode = Node(Index);
- NodeImpls.push_back(NodeImpl());
- return NewNode;
- }
- void addEdge(Node From, Node To, const EdgeTypeT &Weight,
- const EdgeTypeT &ReverseWeight) {
- assert(inbounds(From));
- assert(inbounds(To));
- auto &FromNode = getNode(From);
- auto &ToNode = getNode(To);
- FromNode.Edges.push_back(Edge(Weight, To));
- ToNode.Edges.push_back(Edge(ReverseWeight, From));
- }
- EdgeIterable edgesFor(const Node &N) const {
- const auto &Node = getNode(N);
- return EdgeIterable(Node.Edges);
- }
- bool empty() const { return NodeImpls.empty(); }
- std::size_t size() const { return NodeImpls.size(); }
- // \brief Gets an arbitrary node in the graph as a starting point for
- // traversal.
- Node getEntryNode() {
- assert(inbounds(StartNode));
- return StartNode;
- }
- };
- typedef WeightedBidirectionalGraph<std::pair<EdgeType, StratifiedAttrs>> GraphT;
- typedef DenseMap<Value *, GraphT::Node> NodeMapT;
- }
- // -- Setting up/registering CFLAA pass -- //
- char CFLAliasAnalysis::ID = 0;
- INITIALIZE_AG_PASS(CFLAliasAnalysis, AliasAnalysis, "cfl-aa",
- "CFL-Based AA implementation", false, true, false)
- ImmutablePass *llvm::createCFLAliasAnalysisPass() {
- return new CFLAliasAnalysis();
- }
- //===----------------------------------------------------------------------===//
- // Function declarations that require types defined in the namespace above
- //===----------------------------------------------------------------------===//
- // Given an argument number, returns the appropriate Attr index to set.
- static StratifiedAttr argNumberToAttrIndex(StratifiedAttr);
- // Given a Value, potentially return which AttrIndex it maps to.
- static Optional<StratifiedAttr> valueToAttrIndex(Value *Val);
- // Gets the inverse of a given EdgeType.
- static EdgeType flipWeight(EdgeType);
- // Gets edges of the given Instruction*, writing them to the SmallVector*.
- static void argsToEdges(CFLAliasAnalysis &, Instruction *,
- SmallVectorImpl<Edge> &);
- // Gets edges of the given ConstantExpr*, writing them to the SmallVector*.
- static void argsToEdges(CFLAliasAnalysis &, ConstantExpr *,
- SmallVectorImpl<Edge> &);
- // Gets the "Level" that one should travel in StratifiedSets
- // given an EdgeType.
- static Level directionOfEdgeType(EdgeType);
- // Builds the graph needed for constructing the StratifiedSets for the
- // given function
- static void buildGraphFrom(CFLAliasAnalysis &, Function *,
- SmallVectorImpl<Value *> &, NodeMapT &, GraphT &);
- // Gets the edges of a ConstantExpr as if it was an Instruction. This
- // function also acts on any nested ConstantExprs, adding the edges
- // of those to the given SmallVector as well.
- static void constexprToEdges(CFLAliasAnalysis &, ConstantExpr &,
- SmallVectorImpl<Edge> &);
- // Given an Instruction, this will add it to the graph, along with any
- // Instructions that are potentially only available from said Instruction
- // For example, given the following line:
- // %0 = load i16* getelementptr ([1 x i16]* @a, 0, 0), align 2
- // addInstructionToGraph would add both the `load` and `getelementptr`
- // instructions to the graph appropriately.
- static void addInstructionToGraph(CFLAliasAnalysis &, Instruction &,
- SmallVectorImpl<Value *> &, NodeMapT &,
- GraphT &);
- // Notes whether it would be pointless to add the given Value to our sets.
- static bool canSkipAddingToSets(Value *Val);
- // Builds the graph + StratifiedSets for a function.
- static FunctionInfo buildSetsFrom(CFLAliasAnalysis &, Function *);
- static Optional<Function *> parentFunctionOfValue(Value *Val) {
- if (auto *Inst = dyn_cast<Instruction>(Val)) {
- auto *Bb = Inst->getParent();
- return Bb->getParent();
- }
- if (auto *Arg = dyn_cast<Argument>(Val))
- return Arg->getParent();
- return NoneType();
- }
- template <typename Inst>
- static bool getPossibleTargets(Inst *Call,
- SmallVectorImpl<Function *> &Output) {
- if (auto *Fn = Call->getCalledFunction()) {
- Output.push_back(Fn);
- return true;
- }
- // TODO: If the call is indirect, we might be able to enumerate all potential
- // targets of the call and return them, rather than just failing.
- return false;
- }
- static Optional<Value *> getTargetValue(Instruction *Inst) {
- GetTargetValueVisitor V;
- return V.visit(Inst);
- }
- static bool hasUsefulEdges(Instruction *Inst) {
- bool IsNonInvokeTerminator =
- isa<TerminatorInst>(Inst) && !isa<InvokeInst>(Inst);
- return !isa<CmpInst>(Inst) && !isa<FenceInst>(Inst) && !IsNonInvokeTerminator;
- }
- static bool hasUsefulEdges(ConstantExpr *CE) {
- // ConstantExpr doens't have terminators, invokes, or fences, so only needs
- // to check for compares.
- return CE->getOpcode() != Instruction::ICmp &&
- CE->getOpcode() != Instruction::FCmp;
- }
- static Optional<StratifiedAttr> valueToAttrIndex(Value *Val) {
- if (isa<GlobalValue>(Val))
- return AttrGlobalIndex;
- if (auto *Arg = dyn_cast<Argument>(Val))
- // Only pointer arguments should have the argument attribute,
- // because things can't escape through scalars without us seeing a
- // cast, and thus, interaction with them doesn't matter.
- if (!Arg->hasNoAliasAttr() && Arg->getType()->isPointerTy())
- return argNumberToAttrIndex(Arg->getArgNo());
- return NoneType();
- }
- static StratifiedAttr argNumberToAttrIndex(unsigned ArgNum) {
- if (ArgNum >= AttrMaxNumArgs)
- return AttrAllIndex;
- return ArgNum + AttrFirstArgIndex;
- }
- static EdgeType flipWeight(EdgeType Initial) {
- switch (Initial) {
- case EdgeType::Assign:
- return EdgeType::Assign;
- case EdgeType::Dereference:
- return EdgeType::Reference;
- case EdgeType::Reference:
- return EdgeType::Dereference;
- }
- llvm_unreachable("Incomplete coverage of EdgeType enum");
- }
- static void argsToEdges(CFLAliasAnalysis &Analysis, Instruction *Inst,
- SmallVectorImpl<Edge> &Output) {
- assert(hasUsefulEdges(Inst) &&
- "Expected instructions to have 'useful' edges");
- GetEdgesVisitor v(Analysis, Output);
- v.visit(Inst);
- }
- static void argsToEdges(CFLAliasAnalysis &Analysis, ConstantExpr *CE,
- SmallVectorImpl<Edge> &Output) {
- assert(hasUsefulEdges(CE) && "Expected constant expr to have 'useful' edges");
- GetEdgesVisitor v(Analysis, Output);
- v.visitConstantExpr(CE);
- }
- static Level directionOfEdgeType(EdgeType Weight) {
- switch (Weight) {
- case EdgeType::Reference:
- return Level::Above;
- case EdgeType::Dereference:
- return Level::Below;
- case EdgeType::Assign:
- return Level::Same;
- }
- llvm_unreachable("Incomplete switch coverage");
- }
- static void constexprToEdges(CFLAliasAnalysis &Analysis,
- ConstantExpr &CExprToCollapse,
- SmallVectorImpl<Edge> &Results) {
- SmallVector<ConstantExpr *, 4> Worklist;
- Worklist.push_back(&CExprToCollapse);
- SmallVector<Edge, 8> ConstexprEdges;
- SmallPtrSet<ConstantExpr *, 4> Visited;
- while (!Worklist.empty()) {
- auto *CExpr = Worklist.pop_back_val();
- if (!hasUsefulEdges(CExpr))
- continue;
- ConstexprEdges.clear();
- argsToEdges(Analysis, CExpr, ConstexprEdges);
- for (auto &Edge : ConstexprEdges) {
- if (auto *Nested = dyn_cast<ConstantExpr>(Edge.From))
- if (Visited.insert(Nested).second)
- Worklist.push_back(Nested);
- if (auto *Nested = dyn_cast<ConstantExpr>(Edge.To))
- if (Visited.insert(Nested).second)
- Worklist.push_back(Nested);
- }
- Results.append(ConstexprEdges.begin(), ConstexprEdges.end());
- }
- }
- static void addInstructionToGraph(CFLAliasAnalysis &Analysis, Instruction &Inst,
- SmallVectorImpl<Value *> &ReturnedValues,
- NodeMapT &Map, GraphT &Graph) {
- const auto findOrInsertNode = [&Map, &Graph](Value *Val) {
- auto Pair = Map.insert(std::make_pair(Val, GraphT::Node()));
- auto &Iter = Pair.first;
- if (Pair.second) {
- auto NewNode = Graph.addNode();
- Iter->second = NewNode;
- }
- return Iter->second;
- };
- // We don't want the edges of most "return" instructions, but we *do* want
- // to know what can be returned.
- if (isa<ReturnInst>(&Inst))
- ReturnedValues.push_back(&Inst);
- if (!hasUsefulEdges(&Inst))
- return;
- SmallVector<Edge, 8> Edges;
- argsToEdges(Analysis, &Inst, Edges);
- // In the case of an unused alloca (or similar), edges may be empty. Note
- // that it exists so we can potentially answer NoAlias.
- if (Edges.empty()) {
- auto MaybeVal = getTargetValue(&Inst);
- assert(MaybeVal.hasValue());
- auto *Target = *MaybeVal;
- findOrInsertNode(Target);
- return;
- }
- const auto addEdgeToGraph = [&Graph, &findOrInsertNode](const Edge &E) {
- auto To = findOrInsertNode(E.To);
- auto From = findOrInsertNode(E.From);
- auto FlippedWeight = flipWeight(E.Weight);
- auto Attrs = E.AdditionalAttrs;
- Graph.addEdge(From, To, std::make_pair(E.Weight, Attrs),
- std::make_pair(FlippedWeight, Attrs));
- };
- SmallVector<ConstantExpr *, 4> ConstantExprs;
- for (const Edge &E : Edges) {
- addEdgeToGraph(E);
- if (auto *Constexpr = dyn_cast<ConstantExpr>(E.To))
- ConstantExprs.push_back(Constexpr);
- if (auto *Constexpr = dyn_cast<ConstantExpr>(E.From))
- ConstantExprs.push_back(Constexpr);
- }
- for (ConstantExpr *CE : ConstantExprs) {
- Edges.clear();
- constexprToEdges(Analysis, *CE, Edges);
- std::for_each(Edges.begin(), Edges.end(), addEdgeToGraph);
- }
- }
- // Aside: We may remove graph construction entirely, because it doesn't really
- // buy us much that we don't already have. I'd like to add interprocedural
- // analysis prior to this however, in case that somehow requires the graph
- // produced by this for efficient execution
- static void buildGraphFrom(CFLAliasAnalysis &Analysis, Function *Fn,
- SmallVectorImpl<Value *> &ReturnedValues,
- NodeMapT &Map, GraphT &Graph) {
- for (auto &Bb : Fn->getBasicBlockList())
- for (auto &Inst : Bb.getInstList())
- addInstructionToGraph(Analysis, Inst, ReturnedValues, Map, Graph);
- }
- static bool canSkipAddingToSets(Value *Val) {
- // Constants can share instances, which may falsely unify multiple
- // sets, e.g. in
- // store i32* null, i32** %ptr1
- // store i32* null, i32** %ptr2
- // clearly ptr1 and ptr2 should not be unified into the same set, so
- // we should filter out the (potentially shared) instance to
- // i32* null.
- if (isa<Constant>(Val)) {
- bool Container = isa<ConstantVector>(Val) || isa<ConstantArray>(Val) ||
- isa<ConstantStruct>(Val);
- // TODO: Because all of these things are constant, we can determine whether
- // the data is *actually* mutable at graph building time. This will probably
- // come for free/cheap with offset awareness.
- bool CanStoreMutableData =
- isa<GlobalValue>(Val) || isa<ConstantExpr>(Val) || Container;
- return !CanStoreMutableData;
- }
- return false;
- }
- static FunctionInfo buildSetsFrom(CFLAliasAnalysis &Analysis, Function *Fn) {
- NodeMapT Map;
- GraphT Graph;
- SmallVector<Value *, 4> ReturnedValues;
- buildGraphFrom(Analysis, Fn, ReturnedValues, Map, Graph);
- DenseMap<GraphT::Node, Value *> NodeValueMap;
- NodeValueMap.resize(Map.size());
- for (const auto &Pair : Map)
- NodeValueMap.insert(std::make_pair(Pair.second, Pair.first));
- const auto findValueOrDie = [&NodeValueMap](GraphT::Node Node) {
- auto ValIter = NodeValueMap.find(Node);
- assert(ValIter != NodeValueMap.end());
- return ValIter->second;
- };
- StratifiedSetsBuilder<Value *> Builder;
- SmallVector<GraphT::Node, 16> Worklist;
- for (auto &Pair : Map) {
- Worklist.clear();
- auto *Value = Pair.first;
- Builder.add(Value);
- auto InitialNode = Pair.second;
- Worklist.push_back(InitialNode);
- while (!Worklist.empty()) {
- auto Node = Worklist.pop_back_val();
- auto *CurValue = findValueOrDie(Node);
- if (canSkipAddingToSets(CurValue))
- continue;
- for (const auto &EdgeTuple : Graph.edgesFor(Node)) {
- auto Weight = std::get<0>(EdgeTuple);
- auto Label = Weight.first;
- auto &OtherNode = std::get<1>(EdgeTuple);
- auto *OtherValue = findValueOrDie(OtherNode);
- if (canSkipAddingToSets(OtherValue))
- continue;
- bool Added;
- switch (directionOfEdgeType(Label)) {
- case Level::Above:
- Added = Builder.addAbove(CurValue, OtherValue);
- break;
- case Level::Below:
- Added = Builder.addBelow(CurValue, OtherValue);
- break;
- case Level::Same:
- Added = Builder.addWith(CurValue, OtherValue);
- break;
- }
- auto Aliasing = Weight.second;
- if (auto MaybeCurIndex = valueToAttrIndex(CurValue))
- Aliasing.set(*MaybeCurIndex);
- if (auto MaybeOtherIndex = valueToAttrIndex(OtherValue))
- Aliasing.set(*MaybeOtherIndex);
- Builder.noteAttributes(CurValue, Aliasing);
- Builder.noteAttributes(OtherValue, Aliasing);
- if (Added)
- Worklist.push_back(OtherNode);
- }
- }
- }
- // There are times when we end up with parameters not in our graph (i.e. if
- // it's only used as the condition of a branch). Other bits of code depend on
- // things that were present during construction being present in the graph.
- // So, we add all present arguments here.
- for (auto &Arg : Fn->args()) {
- if (!Builder.add(&Arg))
- continue;
- auto Attrs = valueToAttrIndex(&Arg);
- if (Attrs.hasValue())
- Builder.noteAttributes(&Arg, *Attrs);
- }
- return FunctionInfo(Builder.build(), std::move(ReturnedValues));
- }
- void CFLAliasAnalysis::scan(Function *Fn) {
- auto InsertPair = Cache.insert(std::make_pair(Fn, Optional<FunctionInfo>()));
- (void)InsertPair;
- assert(InsertPair.second &&
- "Trying to scan a function that has already been cached");
- FunctionInfo Info(buildSetsFrom(*this, Fn));
- Cache[Fn] = std::move(Info);
- Handles.push_front(FunctionHandle(Fn, this));
- }
- AliasResult CFLAliasAnalysis::query(const MemoryLocation &LocA,
- const MemoryLocation &LocB) {
- auto *ValA = const_cast<Value *>(LocA.Ptr);
- auto *ValB = const_cast<Value *>(LocB.Ptr);
- Function *Fn = nullptr;
- auto MaybeFnA = parentFunctionOfValue(ValA);
- auto MaybeFnB = parentFunctionOfValue(ValB);
- if (!MaybeFnA.hasValue() && !MaybeFnB.hasValue()) {
- // The only times this is known to happen are when globals + InlineAsm
- // are involved
- DEBUG(dbgs() << "CFLAA: could not extract parent function information.\n");
- return MayAlias;
- }
- if (MaybeFnA.hasValue()) {
- Fn = *MaybeFnA;
- assert((!MaybeFnB.hasValue() || *MaybeFnB == *MaybeFnA) &&
- "Interprocedural queries not supported");
- } else {
- Fn = *MaybeFnB;
- }
- assert(Fn != nullptr);
- auto &MaybeInfo = ensureCached(Fn);
- assert(MaybeInfo.hasValue());
- auto &Sets = MaybeInfo->Sets;
- auto MaybeA = Sets.find(ValA);
- if (!MaybeA.hasValue())
- return MayAlias;
- auto MaybeB = Sets.find(ValB);
- if (!MaybeB.hasValue())
- return MayAlias;
- auto SetA = *MaybeA;
- auto SetB = *MaybeB;
- auto AttrsA = Sets.getLink(SetA.Index).Attrs;
- auto AttrsB = Sets.getLink(SetB.Index).Attrs;
- // Stratified set attributes are used as markets to signify whether a member
- // of a StratifiedSet (or a member of a set above the current set) has
- // interacted with either arguments or globals. "Interacted with" meaning
- // its value may be different depending on the value of an argument or
- // global. The thought behind this is that, because arguments and globals
- // may alias each other, if AttrsA and AttrsB have touched args/globals,
- // we must conservatively say that they alias. However, if at least one of
- // the sets has no values that could legally be altered by changing the value
- // of an argument or global, then we don't have to be as conservative.
- if (AttrsA.any() && AttrsB.any())
- return MayAlias;
- // We currently unify things even if the accesses to them may not be in
- // bounds, so we can't return partial alias here because we don't
- // know whether the pointer is really within the object or not.
- // IE Given an out of bounds GEP and an alloca'd pointer, we may
- // unify the two. We can't return partial alias for this case.
- // Since we do not currently track enough information to
- // differentiate
- if (SetA.Index == SetB.Index)
- return MayAlias;
- return NoAlias;
- }
- bool CFLAliasAnalysis::doInitialization(Module &M) {
- InitializeAliasAnalysis(this, &M.getDataLayout());
- return true;
- }
|