1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801 |
- //===-- ConstantFolding.cpp - Fold instructions into constants ------------===//
- //
- // The LLVM Compiler Infrastructure
- //
- // This file is distributed under the University of Illinois Open Source
- // License. See LICENSE.TXT for details.
- //
- //===----------------------------------------------------------------------===//
- //
- // This file defines routines for folding instructions into constants.
- //
- // Also, to supplement the basic IR ConstantExpr simplifications,
- // this file defines some additional folding routines that can make use of
- // DataLayout information. These functions cannot go in IR due to library
- // dependency issues.
- //
- //===----------------------------------------------------------------------===//
- #include "llvm/Analysis/ConstantFolding.h"
- #include "llvm/ADT/SmallPtrSet.h"
- #include "llvm/ADT/SmallVector.h"
- #include "llvm/ADT/StringMap.h"
- #include "llvm/Analysis/TargetLibraryInfo.h"
- #include "llvm/Analysis/ValueTracking.h"
- #include "llvm/Config/config.h"
- #include "llvm/IR/Constants.h"
- #include "llvm/IR/DataLayout.h"
- #include "llvm/IR/DerivedTypes.h"
- #include "llvm/IR/Function.h"
- #include "llvm/IR/GetElementPtrTypeIterator.h"
- #include "llvm/IR/GlobalVariable.h"
- #include "llvm/IR/Instructions.h"
- #include "llvm/IR/Intrinsics.h"
- #include "llvm/IR/Operator.h"
- #include "llvm/Support/ErrorHandling.h"
- #include "llvm/Support/MathExtras.h"
- #include <cerrno>
- #include <cmath>
- #include "llvm/Analysis/DxilConstantFolding.h" // HLSL Change
- #ifdef HAVE_FENV_H
- #include <fenv.h>
- #endif
- using namespace llvm;
- //===----------------------------------------------------------------------===//
- // Constant Folding internal helper functions
- //===----------------------------------------------------------------------===//
- /// Constant fold bitcast, symbolically evaluating it with DataLayout.
- /// This always returns a non-null constant, but it may be a
- /// ConstantExpr if unfoldable.
- static Constant *FoldBitCast(Constant *C, Type *DestTy, const DataLayout &DL) {
- // Catch the obvious splat cases.
- if (C->isNullValue() && !DestTy->isX86_MMXTy())
- return Constant::getNullValue(DestTy);
- if (C->isAllOnesValue() && !DestTy->isX86_MMXTy() &&
- !DestTy->isPtrOrPtrVectorTy()) // Don't get ones for ptr types!
- return Constant::getAllOnesValue(DestTy);
- // Handle a vector->integer cast.
- if (IntegerType *IT = dyn_cast<IntegerType>(DestTy)) {
- VectorType *VTy = dyn_cast<VectorType>(C->getType());
- if (!VTy)
- return ConstantExpr::getBitCast(C, DestTy);
- unsigned NumSrcElts = VTy->getNumElements();
- Type *SrcEltTy = VTy->getElementType();
- // If the vector is a vector of floating point, convert it to vector of int
- // to simplify things.
- if (SrcEltTy->isFloatingPointTy()) {
- unsigned FPWidth = SrcEltTy->getPrimitiveSizeInBits();
- Type *SrcIVTy =
- VectorType::get(IntegerType::get(C->getContext(), FPWidth), NumSrcElts);
- // Ask IR to do the conversion now that #elts line up.
- C = ConstantExpr::getBitCast(C, SrcIVTy);
- }
- ConstantDataVector *CDV = dyn_cast<ConstantDataVector>(C);
- if (!CDV)
- return ConstantExpr::getBitCast(C, DestTy);
- // Now that we know that the input value is a vector of integers, just shift
- // and insert them into our result.
- unsigned BitShift = DL.getTypeAllocSizeInBits(SrcEltTy);
- APInt Result(IT->getBitWidth(), 0);
- for (unsigned i = 0; i != NumSrcElts; ++i) {
- Result <<= BitShift;
- if (DL.isLittleEndian())
- Result |= CDV->getElementAsInteger(NumSrcElts-i-1);
- else
- Result |= CDV->getElementAsInteger(i);
- }
- return ConstantInt::get(IT, Result);
- }
- // The code below only handles casts to vectors currently.
- VectorType *DestVTy = dyn_cast<VectorType>(DestTy);
- if (!DestVTy)
- return ConstantExpr::getBitCast(C, DestTy);
- // If this is a scalar -> vector cast, convert the input into a <1 x scalar>
- // vector so the code below can handle it uniformly.
- if (isa<ConstantFP>(C) || isa<ConstantInt>(C)) {
- Constant *Ops = C; // don't take the address of C!
- return FoldBitCast(ConstantVector::get(Ops), DestTy, DL);
- }
- // If this is a bitcast from constant vector -> vector, fold it.
- if (!isa<ConstantDataVector>(C) && !isa<ConstantVector>(C))
- return ConstantExpr::getBitCast(C, DestTy);
- // If the element types match, IR can fold it.
- unsigned NumDstElt = DestVTy->getNumElements();
- unsigned NumSrcElt = C->getType()->getVectorNumElements();
- if (NumDstElt == NumSrcElt)
- return ConstantExpr::getBitCast(C, DestTy);
- Type *SrcEltTy = C->getType()->getVectorElementType();
- Type *DstEltTy = DestVTy->getElementType();
- // Otherwise, we're changing the number of elements in a vector, which
- // requires endianness information to do the right thing. For example,
- // bitcast (<2 x i64> <i64 0, i64 1> to <4 x i32>)
- // folds to (little endian):
- // <4 x i32> <i32 0, i32 0, i32 1, i32 0>
- // and to (big endian):
- // <4 x i32> <i32 0, i32 0, i32 0, i32 1>
- // First thing is first. We only want to think about integer here, so if
- // we have something in FP form, recast it as integer.
- if (DstEltTy->isFloatingPointTy()) {
- // Fold to an vector of integers with same size as our FP type.
- unsigned FPWidth = DstEltTy->getPrimitiveSizeInBits();
- Type *DestIVTy =
- VectorType::get(IntegerType::get(C->getContext(), FPWidth), NumDstElt);
- // Recursively handle this integer conversion, if possible.
- C = FoldBitCast(C, DestIVTy, DL);
- // Finally, IR can handle this now that #elts line up.
- return ConstantExpr::getBitCast(C, DestTy);
- }
- // Okay, we know the destination is integer, if the input is FP, convert
- // it to integer first.
- if (SrcEltTy->isFloatingPointTy()) {
- unsigned FPWidth = SrcEltTy->getPrimitiveSizeInBits();
- Type *SrcIVTy =
- VectorType::get(IntegerType::get(C->getContext(), FPWidth), NumSrcElt);
- // Ask IR to do the conversion now that #elts line up.
- C = ConstantExpr::getBitCast(C, SrcIVTy);
- // If IR wasn't able to fold it, bail out.
- if (!isa<ConstantVector>(C) && // FIXME: Remove ConstantVector.
- !isa<ConstantDataVector>(C))
- return C;
- }
- // Now we know that the input and output vectors are both integer vectors
- // of the same size, and that their #elements is not the same. Do the
- // conversion here, which depends on whether the input or output has
- // more elements.
- bool isLittleEndian = DL.isLittleEndian();
- SmallVector<Constant*, 32> Result;
- if (NumDstElt < NumSrcElt) {
- // Handle: bitcast (<4 x i32> <i32 0, i32 1, i32 2, i32 3> to <2 x i64>)
- Constant *Zero = Constant::getNullValue(DstEltTy);
- unsigned Ratio = NumSrcElt/NumDstElt;
- unsigned SrcBitSize = SrcEltTy->getPrimitiveSizeInBits();
- unsigned SrcElt = 0;
- for (unsigned i = 0; i != NumDstElt; ++i) {
- // Build each element of the result.
- Constant *Elt = Zero;
- unsigned ShiftAmt = isLittleEndian ? 0 : SrcBitSize*(Ratio-1);
- for (unsigned j = 0; j != Ratio; ++j) {
- Constant *Src =dyn_cast<ConstantInt>(C->getAggregateElement(SrcElt++));
- if (!Src) // Reject constantexpr elements.
- return ConstantExpr::getBitCast(C, DestTy);
- // Zero extend the element to the right size.
- Src = ConstantExpr::getZExt(Src, Elt->getType());
- // Shift it to the right place, depending on endianness.
- Src = ConstantExpr::getShl(Src,
- ConstantInt::get(Src->getType(), ShiftAmt));
- ShiftAmt += isLittleEndian ? SrcBitSize : -SrcBitSize;
- // Mix it in.
- Elt = ConstantExpr::getOr(Elt, Src);
- }
- Result.push_back(Elt);
- }
- return ConstantVector::get(Result);
- }
- // Handle: bitcast (<2 x i64> <i64 0, i64 1> to <4 x i32>)
- unsigned Ratio = NumDstElt/NumSrcElt;
- unsigned DstBitSize = DL.getTypeSizeInBits(DstEltTy);
- // Loop over each source value, expanding into multiple results.
- for (unsigned i = 0; i != NumSrcElt; ++i) {
- Constant *Src = dyn_cast<ConstantInt>(C->getAggregateElement(i));
- if (!Src) // Reject constantexpr elements.
- return ConstantExpr::getBitCast(C, DestTy);
- unsigned ShiftAmt = isLittleEndian ? 0 : DstBitSize*(Ratio-1);
- for (unsigned j = 0; j != Ratio; ++j) {
- // Shift the piece of the value into the right place, depending on
- // endianness.
- Constant *Elt = ConstantExpr::getLShr(Src,
- ConstantInt::get(Src->getType(), ShiftAmt));
- ShiftAmt += isLittleEndian ? DstBitSize : -DstBitSize;
- // Truncate the element to an integer with the same pointer size and
- // convert the element back to a pointer using a inttoptr.
- if (DstEltTy->isPointerTy()) {
- IntegerType *DstIntTy = Type::getIntNTy(C->getContext(), DstBitSize);
- Constant *CE = ConstantExpr::getTrunc(Elt, DstIntTy);
- Result.push_back(ConstantExpr::getIntToPtr(CE, DstEltTy));
- continue;
- }
- // Truncate and remember this piece.
- Result.push_back(ConstantExpr::getTrunc(Elt, DstEltTy));
- }
- }
- return ConstantVector::get(Result);
- }
- /// If this constant is a constant offset from a global, return the global and
- /// the constant. Because of constantexprs, this function is recursive.
- static bool IsConstantOffsetFromGlobal(Constant *C, GlobalValue *&GV,
- APInt &Offset, const DataLayout &DL) {
- // Trivial case, constant is the global.
- if ((GV = dyn_cast<GlobalValue>(C))) {
- unsigned BitWidth = DL.getPointerTypeSizeInBits(GV->getType());
- Offset = APInt(BitWidth, 0);
- return true;
- }
- // Otherwise, if this isn't a constant expr, bail out.
- ConstantExpr *CE = dyn_cast<ConstantExpr>(C);
- if (!CE) return false;
- // Look through ptr->int and ptr->ptr casts.
- if (CE->getOpcode() == Instruction::PtrToInt ||
- CE->getOpcode() == Instruction::BitCast ||
- CE->getOpcode() == Instruction::AddrSpaceCast)
- return IsConstantOffsetFromGlobal(CE->getOperand(0), GV, Offset, DL);
- // i32* getelementptr ([5 x i32]* @a, i32 0, i32 5)
- GEPOperator *GEP = dyn_cast<GEPOperator>(CE);
- if (!GEP)
- return false;
- unsigned BitWidth = DL.getPointerTypeSizeInBits(GEP->getType());
- APInt TmpOffset(BitWidth, 0);
- // If the base isn't a global+constant, we aren't either.
- if (!IsConstantOffsetFromGlobal(CE->getOperand(0), GV, TmpOffset, DL))
- return false;
- // Otherwise, add any offset that our operands provide.
- if (!GEP->accumulateConstantOffset(DL, TmpOffset))
- return false;
- Offset = TmpOffset;
- return true;
- }
- /// Recursive helper to read bits out of global. C is the constant being copied
- /// out of. ByteOffset is an offset into C. CurPtr is the pointer to copy
- /// results into and BytesLeft is the number of bytes left in
- /// the CurPtr buffer. DL is the DataLayout.
- static bool ReadDataFromGlobal(Constant *C, uint64_t ByteOffset,
- unsigned char *CurPtr, unsigned BytesLeft,
- const DataLayout &DL) {
- assert(ByteOffset <= DL.getTypeAllocSize(C->getType()) &&
- "Out of range access");
- // If this element is zero or undefined, we can just return since *CurPtr is
- // zero initialized.
- if (isa<ConstantAggregateZero>(C) || isa<UndefValue>(C))
- return true;
- if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) {
- if (CI->getBitWidth() > 64 ||
- (CI->getBitWidth() & 7) != 0)
- return false;
- uint64_t Val = CI->getZExtValue();
- unsigned IntBytes = unsigned(CI->getBitWidth()/8);
- for (unsigned i = 0; i != BytesLeft && ByteOffset != IntBytes; ++i) {
- int n = ByteOffset;
- if (!DL.isLittleEndian())
- n = IntBytes - n - 1;
- CurPtr[i] = (unsigned char)(Val >> (n * 8));
- ++ByteOffset;
- }
- return true;
- }
- if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
- if (CFP->getType()->isDoubleTy()) {
- C = FoldBitCast(C, Type::getInt64Ty(C->getContext()), DL);
- return ReadDataFromGlobal(C, ByteOffset, CurPtr, BytesLeft, DL);
- }
- if (CFP->getType()->isFloatTy()){
- C = FoldBitCast(C, Type::getInt32Ty(C->getContext()), DL);
- return ReadDataFromGlobal(C, ByteOffset, CurPtr, BytesLeft, DL);
- }
- if (CFP->getType()->isHalfTy()){
- C = FoldBitCast(C, Type::getInt16Ty(C->getContext()), DL);
- return ReadDataFromGlobal(C, ByteOffset, CurPtr, BytesLeft, DL);
- }
- return false;
- }
- if (ConstantStruct *CS = dyn_cast<ConstantStruct>(C)) {
- const StructLayout *SL = DL.getStructLayout(CS->getType());
- unsigned Index = SL->getElementContainingOffset(ByteOffset);
- uint64_t CurEltOffset = SL->getElementOffset(Index);
- ByteOffset -= CurEltOffset;
- while (1) {
- // If the element access is to the element itself and not to tail padding,
- // read the bytes from the element.
- uint64_t EltSize = DL.getTypeAllocSize(CS->getOperand(Index)->getType());
- if (ByteOffset < EltSize &&
- !ReadDataFromGlobal(CS->getOperand(Index), ByteOffset, CurPtr,
- BytesLeft, DL))
- return false;
- ++Index;
- // Check to see if we read from the last struct element, if so we're done.
- if (Index == CS->getType()->getNumElements())
- return true;
- // If we read all of the bytes we needed from this element we're done.
- uint64_t NextEltOffset = SL->getElementOffset(Index);
- if (BytesLeft <= NextEltOffset - CurEltOffset - ByteOffset)
- return true;
- // Move to the next element of the struct.
- CurPtr += NextEltOffset - CurEltOffset - ByteOffset;
- BytesLeft -= NextEltOffset - CurEltOffset - ByteOffset;
- ByteOffset = 0;
- CurEltOffset = NextEltOffset;
- }
- // not reached.
- }
- if (isa<ConstantArray>(C) || isa<ConstantVector>(C) ||
- isa<ConstantDataSequential>(C)) {
- Type *EltTy = C->getType()->getSequentialElementType();
- uint64_t EltSize = DL.getTypeAllocSize(EltTy);
- uint64_t Index = ByteOffset / EltSize;
- uint64_t Offset = ByteOffset - Index * EltSize;
- uint64_t NumElts;
- if (ArrayType *AT = dyn_cast<ArrayType>(C->getType()))
- NumElts = AT->getNumElements();
- else
- NumElts = C->getType()->getVectorNumElements();
- for (; Index != NumElts; ++Index) {
- if (!ReadDataFromGlobal(C->getAggregateElement(Index), Offset, CurPtr,
- BytesLeft, DL))
- return false;
- uint64_t BytesWritten = EltSize - Offset;
- assert(BytesWritten <= EltSize && "Not indexing into this element?");
- if (BytesWritten >= BytesLeft)
- return true;
- Offset = 0;
- BytesLeft -= BytesWritten;
- CurPtr += BytesWritten;
- }
- return true;
- }
- if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
- if (CE->getOpcode() == Instruction::IntToPtr &&
- CE->getOperand(0)->getType() == DL.getIntPtrType(CE->getType())) {
- return ReadDataFromGlobal(CE->getOperand(0), ByteOffset, CurPtr,
- BytesLeft, DL);
- }
- }
- // Otherwise, unknown initializer type.
- return false;
- }
- static Constant *FoldReinterpretLoadFromConstPtr(Constant *C,
- const DataLayout &DL) {
- PointerType *PTy = cast<PointerType>(C->getType());
- Type *LoadTy = PTy->getElementType();
- IntegerType *IntType = dyn_cast<IntegerType>(LoadTy);
- // If this isn't an integer load we can't fold it directly.
- if (!IntType) {
- unsigned AS = PTy->getAddressSpace();
- // If this is a float/double load, we can try folding it as an int32/64 load
- // and then bitcast the result. This can be useful for union cases. Note
- // that address spaces don't matter here since we're not going to result in
- // an actual new load.
- Type *MapTy;
- if (LoadTy->isHalfTy())
- MapTy = Type::getInt16PtrTy(C->getContext(), AS);
- else if (LoadTy->isFloatTy())
- MapTy = Type::getInt32PtrTy(C->getContext(), AS);
- else if (LoadTy->isDoubleTy())
- MapTy = Type::getInt64PtrTy(C->getContext(), AS);
- else if (LoadTy->isVectorTy()) {
- MapTy = PointerType::getIntNPtrTy(C->getContext(),
- DL.getTypeAllocSizeInBits(LoadTy), AS);
- } else
- return nullptr;
- C = FoldBitCast(C, MapTy, DL);
- if (Constant *Res = FoldReinterpretLoadFromConstPtr(C, DL))
- return FoldBitCast(Res, LoadTy, DL);
- return nullptr;
- }
- unsigned BytesLoaded = (IntType->getBitWidth() + 7) / 8;
- if (BytesLoaded > 32 || BytesLoaded == 0)
- return nullptr;
- GlobalValue *GVal;
- APInt Offset;
- if (!IsConstantOffsetFromGlobal(C, GVal, Offset, DL))
- return nullptr;
- GlobalVariable *GV = dyn_cast<GlobalVariable>(GVal);
- if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer() ||
- !GV->getInitializer()->getType()->isSized())
- return nullptr;
- // If we're loading off the beginning of the global, some bytes may be valid,
- // but we don't try to handle this.
- if (Offset.isNegative())
- return nullptr;
- // If we're not accessing anything in this constant, the result is undefined.
- if (Offset.getZExtValue() >=
- DL.getTypeAllocSize(GV->getInitializer()->getType()))
- return UndefValue::get(IntType);
- unsigned char RawBytes[32] = {0};
- if (!ReadDataFromGlobal(GV->getInitializer(), Offset.getZExtValue(), RawBytes,
- BytesLoaded, DL))
- return nullptr;
- APInt ResultVal = APInt(IntType->getBitWidth(), 0);
- if (DL.isLittleEndian()) {
- ResultVal = RawBytes[BytesLoaded - 1];
- for (unsigned i = 1; i != BytesLoaded; ++i) {
- ResultVal <<= 8;
- ResultVal |= RawBytes[BytesLoaded - 1 - i];
- }
- } else {
- ResultVal = RawBytes[0];
- for (unsigned i = 1; i != BytesLoaded; ++i) {
- ResultVal <<= 8;
- ResultVal |= RawBytes[i];
- }
- }
- return ConstantInt::get(IntType->getContext(), ResultVal);
- }
- static Constant *ConstantFoldLoadThroughBitcast(ConstantExpr *CE,
- const DataLayout &DL) {
- auto *DestPtrTy = dyn_cast<PointerType>(CE->getType());
- if (!DestPtrTy)
- return nullptr;
- Type *DestTy = DestPtrTy->getElementType();
- Constant *C = ConstantFoldLoadFromConstPtr(CE->getOperand(0), DL);
- if (!C)
- return nullptr;
- do {
- Type *SrcTy = C->getType();
- // If the type sizes are the same and a cast is legal, just directly
- // cast the constant.
- if (DL.getTypeSizeInBits(DestTy) == DL.getTypeSizeInBits(SrcTy)) {
- Instruction::CastOps Cast = Instruction::BitCast;
- // If we are going from a pointer to int or vice versa, we spell the cast
- // differently.
- if (SrcTy->isIntegerTy() && DestTy->isPointerTy())
- Cast = Instruction::IntToPtr;
- else if (SrcTy->isPointerTy() && DestTy->isIntegerTy())
- Cast = Instruction::PtrToInt;
- if (CastInst::castIsValid(Cast, C, DestTy))
- return ConstantExpr::getCast(Cast, C, DestTy);
- }
- // If this isn't an aggregate type, there is nothing we can do to drill down
- // and find a bitcastable constant.
- if (!SrcTy->isAggregateType())
- return nullptr;
- // We're simulating a load through a pointer that was bitcast to point to
- // a different type, so we can try to walk down through the initial
- // elements of an aggregate to see if some part of th e aggregate is
- // castable to implement the "load" semantic model.
- C = C->getAggregateElement(0u);
- } while (C);
- return nullptr;
- }
- /// Return the value that a load from C would produce if it is constant and
- /// determinable. If this is not determinable, return null.
- Constant *llvm::ConstantFoldLoadFromConstPtr(Constant *C,
- const DataLayout &DL) {
- // First, try the easy cases:
- if (GlobalVariable *GV = dyn_cast<GlobalVariable>(C))
- if (GV->isConstant() && GV->hasDefinitiveInitializer())
- return GV->getInitializer();
- // If the loaded value isn't a constant expr, we can't handle it.
- ConstantExpr *CE = dyn_cast<ConstantExpr>(C);
- if (!CE)
- return nullptr;
- if (CE->getOpcode() == Instruction::GetElementPtr) {
- if (GlobalVariable *GV = dyn_cast<GlobalVariable>(CE->getOperand(0))) {
- if (GV->isConstant() && GV->hasDefinitiveInitializer()) {
- if (Constant *V =
- ConstantFoldLoadThroughGEPConstantExpr(GV->getInitializer(), CE))
- return V;
- }
- }
- }
- if (CE->getOpcode() == Instruction::BitCast)
- if (Constant *LoadedC = ConstantFoldLoadThroughBitcast(CE, DL))
- return LoadedC;
- // Instead of loading constant c string, use corresponding integer value
- // directly if string length is small enough.
- StringRef Str;
- if (getConstantStringInfo(CE, Str) && !Str.empty()) {
- unsigned StrLen = Str.size();
- Type *Ty = cast<PointerType>(CE->getType())->getElementType();
- unsigned NumBits = Ty->getPrimitiveSizeInBits();
- // Replace load with immediate integer if the result is an integer or fp
- // value.
- if ((NumBits >> 3) == StrLen + 1 && (NumBits & 7) == 0 &&
- (isa<IntegerType>(Ty) || Ty->isFloatingPointTy())) {
- APInt StrVal(NumBits, 0);
- APInt SingleChar(NumBits, 0);
- if (DL.isLittleEndian()) {
- for (signed i = StrLen-1; i >= 0; i--) {
- SingleChar = (uint64_t) Str[i] & UCHAR_MAX;
- StrVal = (StrVal << 8) | SingleChar;
- }
- } else {
- for (unsigned i = 0; i < StrLen; i++) {
- SingleChar = (uint64_t) Str[i] & UCHAR_MAX;
- StrVal = (StrVal << 8) | SingleChar;
- }
- // Append NULL at the end.
- SingleChar = 0;
- StrVal = (StrVal << 8) | SingleChar;
- }
- Constant *Res = ConstantInt::get(CE->getContext(), StrVal);
- if (Ty->isFloatingPointTy())
- Res = ConstantExpr::getBitCast(Res, Ty);
- return Res;
- }
- }
- // If this load comes from anywhere in a constant global, and if the global
- // is all undef or zero, we know what it loads.
- if (GlobalVariable *GV =
- dyn_cast<GlobalVariable>(GetUnderlyingObject(CE, DL))) {
- if (GV->isConstant() && GV->hasDefinitiveInitializer()) {
- Type *ResTy = cast<PointerType>(C->getType())->getElementType();
- if (GV->getInitializer()->isNullValue())
- return Constant::getNullValue(ResTy);
- if (isa<UndefValue>(GV->getInitializer()))
- return UndefValue::get(ResTy);
- }
- }
- // Try hard to fold loads from bitcasted strange and non-type-safe things.
- return FoldReinterpretLoadFromConstPtr(CE, DL);
- }
- static Constant *ConstantFoldLoadInst(const LoadInst *LI,
- const DataLayout &DL) {
- if (LI->isVolatile()) return nullptr;
- if (Constant *C = dyn_cast<Constant>(LI->getOperand(0)))
- return ConstantFoldLoadFromConstPtr(C, DL);
- return nullptr;
- }
- /// One of Op0/Op1 is a constant expression.
- /// Attempt to symbolically evaluate the result of a binary operator merging
- /// these together. If target data info is available, it is provided as DL,
- /// otherwise DL is null.
- static Constant *SymbolicallyEvaluateBinop(unsigned Opc, Constant *Op0,
- Constant *Op1,
- const DataLayout &DL) {
- // SROA
- // Fold (and 0xffffffff00000000, (shl x, 32)) -> shl.
- // Fold (lshr (or X, Y), 32) -> (lshr [X/Y], 32) if one doesn't contribute
- // bits.
- if (Opc == Instruction::And) {
- unsigned BitWidth = DL.getTypeSizeInBits(Op0->getType()->getScalarType());
- APInt KnownZero0(BitWidth, 0), KnownOne0(BitWidth, 0);
- APInt KnownZero1(BitWidth, 0), KnownOne1(BitWidth, 0);
- computeKnownBits(Op0, KnownZero0, KnownOne0, DL);
- computeKnownBits(Op1, KnownZero1, KnownOne1, DL);
- if ((KnownOne1 | KnownZero0).isAllOnesValue()) {
- // All the bits of Op0 that the 'and' could be masking are already zero.
- return Op0;
- }
- if ((KnownOne0 | KnownZero1).isAllOnesValue()) {
- // All the bits of Op1 that the 'and' could be masking are already zero.
- return Op1;
- }
- APInt KnownZero = KnownZero0 | KnownZero1;
- APInt KnownOne = KnownOne0 & KnownOne1;
- if ((KnownZero | KnownOne).isAllOnesValue()) {
- return ConstantInt::get(Op0->getType(), KnownOne);
- }
- }
- // If the constant expr is something like &A[123] - &A[4].f, fold this into a
- // constant. This happens frequently when iterating over a global array.
- if (Opc == Instruction::Sub) {
- GlobalValue *GV1, *GV2;
- APInt Offs1, Offs2;
- if (IsConstantOffsetFromGlobal(Op0, GV1, Offs1, DL))
- if (IsConstantOffsetFromGlobal(Op1, GV2, Offs2, DL) && GV1 == GV2) {
- unsigned OpSize = DL.getTypeSizeInBits(Op0->getType());
- // (&GV+C1) - (&GV+C2) -> C1-C2, pointer arithmetic cannot overflow.
- // PtrToInt may change the bitwidth so we have convert to the right size
- // first.
- return ConstantInt::get(Op0->getType(), Offs1.zextOrTrunc(OpSize) -
- Offs2.zextOrTrunc(OpSize));
- }
- }
- return nullptr;
- }
- /// If array indices are not pointer-sized integers, explicitly cast them so
- /// that they aren't implicitly casted by the getelementptr.
- static Constant *CastGEPIndices(Type *SrcTy, ArrayRef<Constant *> Ops,
- Type *ResultTy, const DataLayout &DL,
- const TargetLibraryInfo *TLI) {
- Type *IntPtrTy = DL.getIntPtrType(ResultTy);
- bool Any = false;
- SmallVector<Constant*, 32> NewIdxs;
- for (unsigned i = 1, e = Ops.size(); i != e; ++i) {
- if ((i == 1 ||
- !isa<StructType>(GetElementPtrInst::getIndexedType(
- cast<PointerType>(Ops[0]->getType()->getScalarType())
- ->getElementType(),
- Ops.slice(1, i - 1)))) &&
- Ops[i]->getType() != IntPtrTy) {
- Any = true;
- NewIdxs.push_back(ConstantExpr::getCast(CastInst::getCastOpcode(Ops[i],
- true,
- IntPtrTy,
- true),
- Ops[i], IntPtrTy));
- } else
- NewIdxs.push_back(Ops[i]);
- }
- if (!Any)
- return nullptr;
- Constant *C = ConstantExpr::getGetElementPtr(SrcTy, Ops[0], NewIdxs);
- if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
- if (Constant *Folded = ConstantFoldConstantExpression(CE, DL, TLI))
- C = Folded;
- }
- return C;
- }
- /// Strip the pointer casts, but preserve the address space information.
- static Constant* StripPtrCastKeepAS(Constant* Ptr) {
- assert(Ptr->getType()->isPointerTy() && "Not a pointer type");
- PointerType *OldPtrTy = cast<PointerType>(Ptr->getType());
- Ptr = Ptr->stripPointerCasts();
- PointerType *NewPtrTy = cast<PointerType>(Ptr->getType());
- // Preserve the address space number of the pointer.
- if (NewPtrTy->getAddressSpace() != OldPtrTy->getAddressSpace()) {
- NewPtrTy = NewPtrTy->getElementType()->getPointerTo(
- OldPtrTy->getAddressSpace());
- Ptr = ConstantExpr::getPointerCast(Ptr, NewPtrTy);
- }
- return Ptr;
- }
- /// If we can symbolically evaluate the GEP constant expression, do so.
- static Constant *SymbolicallyEvaluateGEP(Type *SrcTy, ArrayRef<Constant *> Ops,
- Type *ResultTy, const DataLayout &DL,
- const TargetLibraryInfo *TLI) {
- Constant *Ptr = Ops[0];
- if (!Ptr->getType()->getPointerElementType()->isSized() ||
- !Ptr->getType()->isPointerTy())
- return nullptr;
- Type *IntPtrTy = DL.getIntPtrType(Ptr->getType());
- Type *ResultElementTy = ResultTy->getPointerElementType();
- // If this is a constant expr gep that is effectively computing an
- // "offsetof", fold it into 'cast int Size to T*' instead of 'gep 0, 0, 12'
- for (unsigned i = 1, e = Ops.size(); i != e; ++i)
- if (!isa<ConstantInt>(Ops[i])) {
- // If this is "gep i8* Ptr, (sub 0, V)", fold this as:
- // "inttoptr (sub (ptrtoint Ptr), V)"
- if (Ops.size() == 2 && ResultElementTy->isIntegerTy(8)) {
- ConstantExpr *CE = dyn_cast<ConstantExpr>(Ops[1]);
- assert((!CE || CE->getType() == IntPtrTy) &&
- "CastGEPIndices didn't canonicalize index types!");
- if (CE && CE->getOpcode() == Instruction::Sub &&
- CE->getOperand(0)->isNullValue()) {
- Constant *Res = ConstantExpr::getPtrToInt(Ptr, CE->getType());
- Res = ConstantExpr::getSub(Res, CE->getOperand(1));
- Res = ConstantExpr::getIntToPtr(Res, ResultTy);
- if (ConstantExpr *ResCE = dyn_cast<ConstantExpr>(Res))
- Res = ConstantFoldConstantExpression(ResCE, DL, TLI);
- return Res;
- }
- }
- return nullptr;
- }
- unsigned BitWidth = DL.getTypeSizeInBits(IntPtrTy);
- APInt Offset =
- APInt(BitWidth,
- DL.getIndexedOffset(
- Ptr->getType(),
- makeArrayRef((Value * const *)Ops.data() + 1, Ops.size() - 1)));
- Ptr = StripPtrCastKeepAS(Ptr);
- // If this is a GEP of a GEP, fold it all into a single GEP.
- while (GEPOperator *GEP = dyn_cast<GEPOperator>(Ptr)) {
- SmallVector<Value *, 4> NestedOps(GEP->op_begin() + 1, GEP->op_end());
- // Do not try the incorporate the sub-GEP if some index is not a number.
- bool AllConstantInt = true;
- for (unsigned i = 0, e = NestedOps.size(); i != e; ++i)
- if (!isa<ConstantInt>(NestedOps[i])) {
- AllConstantInt = false;
- break;
- }
- if (!AllConstantInt)
- break;
- Ptr = cast<Constant>(GEP->getOperand(0));
- Offset += APInt(BitWidth, DL.getIndexedOffset(Ptr->getType(), NestedOps));
- Ptr = StripPtrCastKeepAS(Ptr);
- }
- // If the base value for this address is a literal integer value, fold the
- // getelementptr to the resulting integer value casted to the pointer type.
- APInt BasePtr(BitWidth, 0);
- if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ptr)) {
- if (CE->getOpcode() == Instruction::IntToPtr) {
- if (ConstantInt *Base = dyn_cast<ConstantInt>(CE->getOperand(0)))
- BasePtr = Base->getValue().zextOrTrunc(BitWidth);
- }
- }
- if (Ptr->isNullValue() || BasePtr != 0) {
- Constant *C = ConstantInt::get(Ptr->getContext(), Offset + BasePtr);
- return ConstantExpr::getIntToPtr(C, ResultTy);
- }
- // Otherwise form a regular getelementptr. Recompute the indices so that
- // we eliminate over-indexing of the notional static type array bounds.
- // This makes it easy to determine if the getelementptr is "inbounds".
- // Also, this helps GlobalOpt do SROA on GlobalVariables.
- Type *Ty = Ptr->getType();
- assert(Ty->isPointerTy() && "Forming regular GEP of non-pointer type");
- SmallVector<Constant *, 32> NewIdxs;
- do {
- if (SequentialType *ATy = dyn_cast<SequentialType>(Ty)) {
- if (ATy->isPointerTy()) {
- // The only pointer indexing we'll do is on the first index of the GEP.
- if (!NewIdxs.empty())
- break;
- // Only handle pointers to sized types, not pointers to functions.
- if (!ATy->getElementType()->isSized())
- return nullptr;
- }
- // Determine which element of the array the offset points into.
- APInt ElemSize(BitWidth, DL.getTypeAllocSize(ATy->getElementType()));
- if (ElemSize == 0)
- // The element size is 0. This may be [0 x Ty]*, so just use a zero
- // index for this level and proceed to the next level to see if it can
- // accommodate the offset.
- NewIdxs.push_back(ConstantInt::get(IntPtrTy, 0));
- else {
- // The element size is non-zero divide the offset by the element
- // size (rounding down), to compute the index at this level.
- APInt NewIdx = Offset.udiv(ElemSize);
- Offset -= NewIdx * ElemSize;
- NewIdxs.push_back(ConstantInt::get(IntPtrTy, NewIdx));
- }
- Ty = ATy->getElementType();
- } else if (StructType *STy = dyn_cast<StructType>(Ty)) {
- // If we end up with an offset that isn't valid for this struct type, we
- // can't re-form this GEP in a regular form, so bail out. The pointer
- // operand likely went through casts that are necessary to make the GEP
- // sensible.
- const StructLayout &SL = *DL.getStructLayout(STy);
- if (Offset.uge(SL.getSizeInBytes()))
- break;
- // Determine which field of the struct the offset points into. The
- // getZExtValue is fine as we've already ensured that the offset is
- // within the range representable by the StructLayout API.
- unsigned ElIdx = SL.getElementContainingOffset(Offset.getZExtValue());
- NewIdxs.push_back(ConstantInt::get(Type::getInt32Ty(Ty->getContext()),
- ElIdx));
- Offset -= APInt(BitWidth, SL.getElementOffset(ElIdx));
- Ty = STy->getTypeAtIndex(ElIdx);
- } else {
- // We've reached some non-indexable type.
- break;
- }
- } while (Ty != ResultElementTy);
- // If we haven't used up the entire offset by descending the static
- // type, then the offset is pointing into the middle of an indivisible
- // member, so we can't simplify it.
- if (Offset != 0)
- return nullptr;
- // Create a GEP.
- Constant *C = ConstantExpr::getGetElementPtr(SrcTy, Ptr, NewIdxs);
- assert(C->getType()->getPointerElementType() == Ty &&
- "Computed GetElementPtr has unexpected type!");
- // If we ended up indexing a member with a type that doesn't match
- // the type of what the original indices indexed, add a cast.
- if (Ty != ResultElementTy)
- C = FoldBitCast(C, ResultTy, DL);
- return C;
- }
- //===----------------------------------------------------------------------===//
- // Constant Folding public APIs
- //===----------------------------------------------------------------------===//
- /// Try to constant fold the specified instruction.
- /// If successful, the constant result is returned, if not, null is returned.
- /// Note that this fails if not all of the operands are constant. Otherwise,
- /// this function can only fail when attempting to fold instructions like loads
- /// and stores, which have no constant expression form.
- Constant *llvm::ConstantFoldInstruction(Instruction *I, const DataLayout &DL,
- const TargetLibraryInfo *TLI) {
- // Handle PHI nodes quickly here...
- if (PHINode *PN = dyn_cast<PHINode>(I)) {
- Constant *CommonValue = nullptr;
- for (Value *Incoming : PN->incoming_values()) {
- // If the incoming value is undef then skip it. Note that while we could
- // skip the value if it is equal to the phi node itself we choose not to
- // because that would break the rule that constant folding only applies if
- // all operands are constants.
- if (isa<UndefValue>(Incoming))
- continue;
- // If the incoming value is not a constant, then give up.
- Constant *C = dyn_cast<Constant>(Incoming);
- if (!C)
- return nullptr;
- // Fold the PHI's operands.
- if (ConstantExpr *NewC = dyn_cast<ConstantExpr>(C))
- C = ConstantFoldConstantExpression(NewC, DL, TLI);
- // If the incoming value is a different constant to
- // the one we saw previously, then give up.
- if (CommonValue && C != CommonValue)
- return nullptr;
- CommonValue = C;
- }
- // If we reach here, all incoming values are the same constant or undef.
- return CommonValue ? CommonValue : UndefValue::get(PN->getType());
- }
- // Scan the operand list, checking to see if they are all constants, if so,
- // hand off to ConstantFoldInstOperands.
- SmallVector<Constant*, 8> Ops;
- for (User::op_iterator i = I->op_begin(), e = I->op_end(); i != e; ++i) {
- Constant *Op = dyn_cast<Constant>(*i);
- if (!Op)
- return nullptr; // All operands not constant!
- // Fold the Instruction's operands.
- if (ConstantExpr *NewCE = dyn_cast<ConstantExpr>(Op))
- Op = ConstantFoldConstantExpression(NewCE, DL, TLI);
- Ops.push_back(Op);
- }
- if (const CmpInst *CI = dyn_cast<CmpInst>(I))
- return ConstantFoldCompareInstOperands(CI->getPredicate(), Ops[0], Ops[1],
- DL, TLI);
- if (const LoadInst *LI = dyn_cast<LoadInst>(I))
- return ConstantFoldLoadInst(LI, DL);
- if (InsertValueInst *IVI = dyn_cast<InsertValueInst>(I)) {
- return ConstantExpr::getInsertValue(
- cast<Constant>(IVI->getAggregateOperand()),
- cast<Constant>(IVI->getInsertedValueOperand()),
- IVI->getIndices());
- }
- if (ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(I)) {
- return ConstantExpr::getExtractValue(
- cast<Constant>(EVI->getAggregateOperand()),
- EVI->getIndices());
- }
- return ConstantFoldInstOperands(I->getOpcode(), I->getType(), Ops, DL, TLI);
- }
- static Constant *
- ConstantFoldConstantExpressionImpl(const ConstantExpr *CE, const DataLayout &DL,
- const TargetLibraryInfo *TLI,
- SmallPtrSetImpl<ConstantExpr *> &FoldedOps) {
- SmallVector<Constant *, 8> Ops;
- for (User::const_op_iterator i = CE->op_begin(), e = CE->op_end(); i != e;
- ++i) {
- Constant *NewC = cast<Constant>(*i);
- // Recursively fold the ConstantExpr's operands. If we have already folded
- // a ConstantExpr, we don't have to process it again.
- if (ConstantExpr *NewCE = dyn_cast<ConstantExpr>(NewC)) {
- if (FoldedOps.insert(NewCE).second)
- NewC = ConstantFoldConstantExpressionImpl(NewCE, DL, TLI, FoldedOps);
- }
- Ops.push_back(NewC);
- }
- if (CE->isCompare())
- return ConstantFoldCompareInstOperands(CE->getPredicate(), Ops[0], Ops[1],
- DL, TLI);
- return ConstantFoldInstOperands(CE->getOpcode(), CE->getType(), Ops, DL, TLI);
- }
- /// Attempt to fold the constant expression
- /// using the specified DataLayout. If successful, the constant result is
- /// result is returned, if not, null is returned.
- Constant *llvm::ConstantFoldConstantExpression(const ConstantExpr *CE,
- const DataLayout &DL,
- const TargetLibraryInfo *TLI) {
- SmallPtrSet<ConstantExpr *, 4> FoldedOps;
- return ConstantFoldConstantExpressionImpl(CE, DL, TLI, FoldedOps);
- }
- /// Attempt to constant fold an instruction with the
- /// specified opcode and operands. If successful, the constant result is
- /// returned, if not, null is returned. Note that this function can fail when
- /// attempting to fold instructions like loads and stores, which have no
- /// constant expression form.
- ///
- /// TODO: This function neither utilizes nor preserves nsw/nuw/inbounds/etc
- /// information, due to only being passed an opcode and operands. Constant
- /// folding using this function strips this information.
- ///
- Constant *llvm::ConstantFoldInstOperands(unsigned Opcode, Type *DestTy,
- ArrayRef<Constant *> Ops,
- const DataLayout &DL,
- const TargetLibraryInfo *TLI) {
- // Handle easy binops first.
- if (Instruction::isBinaryOp(Opcode)) {
- if (isa<ConstantExpr>(Ops[0]) || isa<ConstantExpr>(Ops[1])) {
- if (Constant *C = SymbolicallyEvaluateBinop(Opcode, Ops[0], Ops[1], DL))
- return C;
- }
- return ConstantExpr::get(Opcode, Ops[0], Ops[1]);
- }
- switch (Opcode) {
- default: return nullptr;
- case Instruction::ICmp:
- case Instruction::FCmp: llvm_unreachable("Invalid for compares");
- case Instruction::Call:
- if (Function *F = dyn_cast<Function>(Ops.back()))
- if (canConstantFoldCallTo(F))
- return ConstantFoldCall(F, Ops.slice(0, Ops.size() - 1), TLI);
- return nullptr;
- case Instruction::PtrToInt:
- // If the input is a inttoptr, eliminate the pair. This requires knowing
- // the width of a pointer, so it can't be done in ConstantExpr::getCast.
- if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ops[0])) {
- if (CE->getOpcode() == Instruction::IntToPtr) {
- Constant *Input = CE->getOperand(0);
- unsigned InWidth = Input->getType()->getScalarSizeInBits();
- unsigned PtrWidth = DL.getPointerTypeSizeInBits(CE->getType());
- if (PtrWidth < InWidth) {
- Constant *Mask =
- ConstantInt::get(CE->getContext(),
- APInt::getLowBitsSet(InWidth, PtrWidth));
- Input = ConstantExpr::getAnd(Input, Mask);
- }
- // Do a zext or trunc to get to the dest size.
- return ConstantExpr::getIntegerCast(Input, DestTy, false);
- }
- }
- return ConstantExpr::getCast(Opcode, Ops[0], DestTy);
- case Instruction::IntToPtr:
- // If the input is a ptrtoint, turn the pair into a ptr to ptr bitcast if
- // the int size is >= the ptr size and the address spaces are the same.
- // This requires knowing the width of a pointer, so it can't be done in
- // ConstantExpr::getCast.
- if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ops[0])) {
- if (CE->getOpcode() == Instruction::PtrToInt) {
- Constant *SrcPtr = CE->getOperand(0);
- unsigned SrcPtrSize = DL.getPointerTypeSizeInBits(SrcPtr->getType());
- unsigned MidIntSize = CE->getType()->getScalarSizeInBits();
- if (MidIntSize >= SrcPtrSize) {
- unsigned SrcAS = SrcPtr->getType()->getPointerAddressSpace();
- if (SrcAS == DestTy->getPointerAddressSpace())
- return FoldBitCast(CE->getOperand(0), DestTy, DL);
- }
- }
- }
- return ConstantExpr::getCast(Opcode, Ops[0], DestTy);
- case Instruction::Trunc:
- case Instruction::ZExt:
- case Instruction::SExt:
- case Instruction::FPTrunc:
- case Instruction::FPExt:
- case Instruction::UIToFP:
- case Instruction::SIToFP:
- case Instruction::FPToUI:
- case Instruction::FPToSI:
- case Instruction::AddrSpaceCast:
- return ConstantExpr::getCast(Opcode, Ops[0], DestTy);
- case Instruction::BitCast:
- return FoldBitCast(Ops[0], DestTy, DL);
- case Instruction::Select:
- return ConstantExpr::getSelect(Ops[0], Ops[1], Ops[2]);
- case Instruction::ExtractElement:
- return ConstantExpr::getExtractElement(Ops[0], Ops[1]);
- case Instruction::InsertElement:
- return ConstantExpr::getInsertElement(Ops[0], Ops[1], Ops[2]);
- case Instruction::ShuffleVector:
- return ConstantExpr::getShuffleVector(Ops[0], Ops[1], Ops[2]);
- case Instruction::GetElementPtr: {
- Type *SrcTy = nullptr;
- if (Constant *C = CastGEPIndices(SrcTy, Ops, DestTy, DL, TLI))
- return C;
- if (Constant *C = SymbolicallyEvaluateGEP(SrcTy, Ops, DestTy, DL, TLI))
- return C;
- return ConstantExpr::getGetElementPtr(SrcTy, Ops[0], Ops.slice(1));
- }
- }
- }
- /// Attempt to constant fold a compare
- /// instruction (icmp/fcmp) with the specified operands. If it fails, it
- /// returns a constant expression of the specified operands.
- Constant *llvm::ConstantFoldCompareInstOperands(unsigned Predicate,
- Constant *Ops0, Constant *Ops1,
- const DataLayout &DL,
- const TargetLibraryInfo *TLI) {
- // fold: icmp (inttoptr x), null -> icmp x, 0
- // fold: icmp (ptrtoint x), 0 -> icmp x, null
- // fold: icmp (inttoptr x), (inttoptr y) -> icmp trunc/zext x, trunc/zext y
- // fold: icmp (ptrtoint x), (ptrtoint y) -> icmp x, y
- //
- // FIXME: The following comment is out of data and the DataLayout is here now.
- // ConstantExpr::getCompare cannot do this, because it doesn't have DL
- // around to know if bit truncation is happening.
- if (ConstantExpr *CE0 = dyn_cast<ConstantExpr>(Ops0)) {
- if (Ops1->isNullValue()) {
- if (CE0->getOpcode() == Instruction::IntToPtr) {
- Type *IntPtrTy = DL.getIntPtrType(CE0->getType());
- // Convert the integer value to the right size to ensure we get the
- // proper extension or truncation.
- Constant *C = ConstantExpr::getIntegerCast(CE0->getOperand(0),
- IntPtrTy, false);
- Constant *Null = Constant::getNullValue(C->getType());
- return ConstantFoldCompareInstOperands(Predicate, C, Null, DL, TLI);
- }
- // Only do this transformation if the int is intptrty in size, otherwise
- // there is a truncation or extension that we aren't modeling.
- if (CE0->getOpcode() == Instruction::PtrToInt) {
- Type *IntPtrTy = DL.getIntPtrType(CE0->getOperand(0)->getType());
- if (CE0->getType() == IntPtrTy) {
- Constant *C = CE0->getOperand(0);
- Constant *Null = Constant::getNullValue(C->getType());
- return ConstantFoldCompareInstOperands(Predicate, C, Null, DL, TLI);
- }
- }
- }
- if (ConstantExpr *CE1 = dyn_cast<ConstantExpr>(Ops1)) {
- if (CE0->getOpcode() == CE1->getOpcode()) {
- if (CE0->getOpcode() == Instruction::IntToPtr) {
- Type *IntPtrTy = DL.getIntPtrType(CE0->getType());
- // Convert the integer value to the right size to ensure we get the
- // proper extension or truncation.
- Constant *C0 = ConstantExpr::getIntegerCast(CE0->getOperand(0),
- IntPtrTy, false);
- Constant *C1 = ConstantExpr::getIntegerCast(CE1->getOperand(0),
- IntPtrTy, false);
- return ConstantFoldCompareInstOperands(Predicate, C0, C1, DL, TLI);
- }
- // Only do this transformation if the int is intptrty in size, otherwise
- // there is a truncation or extension that we aren't modeling.
- if (CE0->getOpcode() == Instruction::PtrToInt) {
- Type *IntPtrTy = DL.getIntPtrType(CE0->getOperand(0)->getType());
- if (CE0->getType() == IntPtrTy &&
- CE0->getOperand(0)->getType() == CE1->getOperand(0)->getType()) {
- return ConstantFoldCompareInstOperands(
- Predicate, CE0->getOperand(0), CE1->getOperand(0), DL, TLI);
- }
- }
- }
- }
- // icmp eq (or x, y), 0 -> (icmp eq x, 0) & (icmp eq y, 0)
- // icmp ne (or x, y), 0 -> (icmp ne x, 0) | (icmp ne y, 0)
- if ((Predicate == ICmpInst::ICMP_EQ || Predicate == ICmpInst::ICMP_NE) &&
- CE0->getOpcode() == Instruction::Or && Ops1->isNullValue()) {
- Constant *LHS = ConstantFoldCompareInstOperands(
- Predicate, CE0->getOperand(0), Ops1, DL, TLI);
- Constant *RHS = ConstantFoldCompareInstOperands(
- Predicate, CE0->getOperand(1), Ops1, DL, TLI);
- unsigned OpC =
- Predicate == ICmpInst::ICMP_EQ ? Instruction::And : Instruction::Or;
- Constant *Ops[] = { LHS, RHS };
- return ConstantFoldInstOperands(OpC, LHS->getType(), Ops, DL, TLI);
- }
- }
- return ConstantExpr::getCompare(Predicate, Ops0, Ops1);
- }
- /// Given a constant and a getelementptr constantexpr, return the constant value
- /// being addressed by the constant expression, or null if something is funny
- /// and we can't decide.
- Constant *llvm::ConstantFoldLoadThroughGEPConstantExpr(Constant *C,
- ConstantExpr *CE) {
- if (!CE->getOperand(1)->isNullValue())
- return nullptr; // Do not allow stepping over the value!
- // Loop over all of the operands, tracking down which value we are
- // addressing.
- for (unsigned i = 2, e = CE->getNumOperands(); i != e; ++i) {
- C = C->getAggregateElement(CE->getOperand(i));
- if (!C)
- return nullptr;
- }
- return C;
- }
- /// Given a constant and getelementptr indices (with an *implied* zero pointer
- /// index that is not in the list), return the constant value being addressed by
- /// a virtual load, or null if something is funny and we can't decide.
- Constant *llvm::ConstantFoldLoadThroughGEPIndices(Constant *C,
- ArrayRef<Constant*> Indices) {
- // Loop over all of the operands, tracking down which value we are
- // addressing.
- for (unsigned i = 0, e = Indices.size(); i != e; ++i) {
- C = C->getAggregateElement(Indices[i]);
- if (!C)
- return nullptr;
- }
- return C;
- }
- //===----------------------------------------------------------------------===//
- // Constant Folding for Calls
- //
- /// Return true if it's even possible to fold a call to the specified function.
- bool llvm::canConstantFoldCallTo(const Function *F) {
- if (hlsl::CanConstantFoldCallTo(F)) // HLSL Change
- return true;
- switch (F->getIntrinsicID()) {
- case Intrinsic::fabs:
- case Intrinsic::minnum:
- case Intrinsic::maxnum:
- case Intrinsic::log:
- case Intrinsic::log2:
- case Intrinsic::log10:
- case Intrinsic::exp:
- case Intrinsic::exp2:
- case Intrinsic::floor:
- case Intrinsic::ceil:
- case Intrinsic::sqrt:
- case Intrinsic::sin:
- case Intrinsic::cos:
- case Intrinsic::pow:
- case Intrinsic::powi:
- case Intrinsic::bswap:
- case Intrinsic::ctpop:
- case Intrinsic::ctlz:
- case Intrinsic::cttz:
- case Intrinsic::fma:
- case Intrinsic::fmuladd:
- case Intrinsic::copysign:
- case Intrinsic::round:
- case Intrinsic::sadd_with_overflow:
- case Intrinsic::uadd_with_overflow:
- case Intrinsic::ssub_with_overflow:
- case Intrinsic::usub_with_overflow:
- case Intrinsic::smul_with_overflow:
- case Intrinsic::umul_with_overflow:
- case Intrinsic::convert_from_fp16:
- case Intrinsic::convert_to_fp16:
- #if 0 // HLSL Change - remove platform intrinsics
- case Intrinsic::x86_sse_cvtss2si:
- case Intrinsic::x86_sse_cvtss2si64:
- case Intrinsic::x86_sse_cvttss2si:
- case Intrinsic::x86_sse_cvttss2si64:
- case Intrinsic::x86_sse2_cvtsd2si:
- case Intrinsic::x86_sse2_cvtsd2si64:
- case Intrinsic::x86_sse2_cvttsd2si:
- case Intrinsic::x86_sse2_cvttsd2si64:
- #endif // HLSL Change - remove platform intrinsics
- return true;
- default:
- return false;
- case 0: break;
- }
- if (!F->hasName())
- return false;
- StringRef Name = F->getName();
- // In these cases, the check of the length is required. We don't want to
- // return true for a name like "cos\0blah" which strcmp would return equal to
- // "cos", but has length 8.
- switch (Name[0]) {
- default: return false;
- case 'a':
- return Name == "acos" || Name == "asin" || Name == "atan" || Name =="atan2";
- case 'c':
- return Name == "cos" || Name == "ceil" || Name == "cosf" || Name == "cosh";
- case 'e':
- return Name == "exp" || Name == "exp2";
- case 'f':
- return Name == "fabs" || Name == "fmod" || Name == "floor";
- case 'l':
- return Name == "log" || Name == "log10";
- case 'p':
- return Name == "pow";
- case 's':
- return Name == "sin" || Name == "sinh" || Name == "sqrt" ||
- Name == "sinf" || Name == "sqrtf";
- case 't':
- return Name == "tan" || Name == "tanh";
- }
- }
- static Constant *GetConstantFoldFPValue(double V, Type *Ty) {
- if (Ty->isHalfTy()) {
- APFloat APF(V);
- bool unused;
- APF.convert(APFloat::IEEEhalf, APFloat::rmNearestTiesToEven, &unused);
- return ConstantFP::get(Ty->getContext(), APF);
- }
- if (Ty->isFloatTy())
- return ConstantFP::get(Ty->getContext(), APFloat((float)V));
- if (Ty->isDoubleTy())
- return ConstantFP::get(Ty->getContext(), APFloat(V));
- llvm_unreachable("Can only constant fold half/float/double");
- }
- namespace {
- /// Clear the floating-point exception state.
- static inline void llvm_fenv_clearexcept() {
- #if defined(HAVE_FENV_H) && HAVE_DECL_FE_ALL_EXCEPT
- feclearexcept(FE_ALL_EXCEPT);
- #endif
- errno = 0;
- }
- /// Test if a floating-point exception was raised.
- static inline bool llvm_fenv_testexcept() {
- int errno_val = errno;
- if (errno_val == ERANGE || errno_val == EDOM)
- return true;
- #if defined(HAVE_FENV_H) && HAVE_DECL_FE_ALL_EXCEPT && HAVE_DECL_FE_INEXACT
- if (fetestexcept(FE_ALL_EXCEPT & ~FE_INEXACT))
- return true;
- #endif
- return false;
- }
- } // End namespace
- // HLSL Change: changed calling convention of NativeFP to __cdecl and make non-static
- Constant *llvm::ConstantFoldFP(double (__cdecl *NativeFP)(double), double V,
- Type *Ty) {
- llvm_fenv_clearexcept();
- V = NativeFP(V);
- if (llvm_fenv_testexcept()) {
- llvm_fenv_clearexcept();
- return nullptr;
- }
- return GetConstantFoldFPValue(V, Ty);
- }
- // HLSL Change: changed calling convention of NativeFP to __cdecl
- static Constant *ConstantFoldBinaryFP(double (__cdecl *NativeFP)(double, double),
- double V, double W, Type *Ty) {
- llvm_fenv_clearexcept();
- V = NativeFP(V, W);
- if (llvm_fenv_testexcept()) {
- llvm_fenv_clearexcept();
- return nullptr;
- }
- return GetConstantFoldFPValue(V, Ty);
- }
- #if 0 // HLSL Change - remove platform intrinsics
- /// Attempt to fold an SSE floating point to integer conversion of a constant
- /// floating point. If roundTowardZero is false, the default IEEE rounding is
- /// used (toward nearest, ties to even). This matches the behavior of the
- /// non-truncating SSE instructions in the default rounding mode. The desired
- /// integer type Ty is used to select how many bits are available for the
- /// result. Returns null if the conversion cannot be performed, otherwise
- /// returns the Constant value resulting from the conversion.
- static Constant *ConstantFoldConvertToInt(const APFloat &Val,
- bool roundTowardZero, Type *Ty) {
- // All of these conversion intrinsics form an integer of at most 64bits.
- unsigned ResultWidth = Ty->getIntegerBitWidth();
- assert(ResultWidth <= 64 &&
- "Can only constant fold conversions to 64 and 32 bit ints");
- uint64_t UIntVal;
- bool isExact = false;
- APFloat::roundingMode mode = roundTowardZero? APFloat::rmTowardZero
- : APFloat::rmNearestTiesToEven;
- APFloat::opStatus status = Val.convertToInteger(&UIntVal, ResultWidth,
- /*isSigned=*/true, mode,
- &isExact);
- if (status != APFloat::opOK && status != APFloat::opInexact)
- return nullptr;
- return ConstantInt::get(Ty, UIntVal, /*isSigned=*/true);
- }
- #endif // HLSL Change Ends
- // HLSL Change - make non-static.
- double llvm::getValueAsDouble(ConstantFP *Op) {
- Type *Ty = Op->getType();
- if (Ty->isFloatTy())
- return Op->getValueAPF().convertToFloat();
- if (Ty->isDoubleTy())
- return Op->getValueAPF().convertToDouble();
- bool unused;
- APFloat APF = Op->getValueAPF();
- APF.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven, &unused);
- return APF.convertToDouble();
- }
- static Constant *ConstantFoldScalarCall(StringRef Name, unsigned IntrinsicID,
- Type *Ty, ArrayRef<Constant *> Operands,
- const TargetLibraryInfo *TLI) {
- if (Constant *C = hlsl::ConstantFoldScalarCall(Name, Ty, Operands)) // HLSL Change - Try hlsl constant folding first.
- return C;
- if (Operands.size() == 1) {
- if (ConstantFP *Op = dyn_cast<ConstantFP>(Operands[0])) {
- if (IntrinsicID == Intrinsic::convert_to_fp16) {
- APFloat Val(Op->getValueAPF());
- bool lost = false;
- Val.convert(APFloat::IEEEhalf, APFloat::rmNearestTiesToEven, &lost);
- return ConstantInt::get(Ty->getContext(), Val.bitcastToAPInt());
- }
- if (!Ty->isHalfTy() && !Ty->isFloatTy() && !Ty->isDoubleTy())
- return nullptr;
- if (IntrinsicID == Intrinsic::round) {
- APFloat V = Op->getValueAPF();
- V.roundToIntegral(APFloat::rmNearestTiesToAway);
- return ConstantFP::get(Ty->getContext(), V);
- }
- /// We only fold functions with finite arguments. Folding NaN and inf is
- /// likely to be aborted with an exception anyway, and some host libms
- /// have known errors raising exceptions.
- if (Op->getValueAPF().isNaN() || Op->getValueAPF().isInfinity())
- return nullptr;
- /// Currently APFloat versions of these functions do not exist, so we use
- /// the host native double versions. Float versions are not called
- /// directly but for all these it is true (float)(f((double)arg)) ==
- /// f(arg). Long double not supported yet.
- double V = getValueAsDouble(Op);
- switch (IntrinsicID) {
- default: break;
- case Intrinsic::fabs:
- return ConstantFoldFP(fabs, V, Ty);
- case Intrinsic::log2:
- return ConstantFoldFP(Log2, V, Ty);
- case Intrinsic::log:
- return ConstantFoldFP(log, V, Ty);
- case Intrinsic::log10:
- return ConstantFoldFP(log10, V, Ty);
- case Intrinsic::exp:
- return ConstantFoldFP(exp, V, Ty);
- case Intrinsic::exp2:
- return ConstantFoldFP(exp2, V, Ty);
- case Intrinsic::floor:
- return ConstantFoldFP(floor, V, Ty);
- case Intrinsic::ceil:
- return ConstantFoldFP(ceil, V, Ty);
- case Intrinsic::sin:
- return ConstantFoldFP(sin, V, Ty);
- case Intrinsic::cos:
- return ConstantFoldFP(cos, V, Ty);
- }
- if (!TLI)
- return nullptr;
- switch (Name[0]) {
- case 'a':
- if (Name == "acos" && TLI->has(LibFunc::acos))
- return ConstantFoldFP(acos, V, Ty);
- else if (Name == "asin" && TLI->has(LibFunc::asin))
- return ConstantFoldFP(asin, V, Ty);
- else if (Name == "atan" && TLI->has(LibFunc::atan))
- return ConstantFoldFP(atan, V, Ty);
- break;
- case 'c':
- if (Name == "ceil" && TLI->has(LibFunc::ceil))
- return ConstantFoldFP(ceil, V, Ty);
- else if (Name == "cos" && TLI->has(LibFunc::cos))
- return ConstantFoldFP(cos, V, Ty);
- else if (Name == "cosh" && TLI->has(LibFunc::cosh))
- return ConstantFoldFP(cosh, V, Ty);
- else if (Name == "cosf" && TLI->has(LibFunc::cosf))
- return ConstantFoldFP(cos, V, Ty);
- break;
- case 'e':
- if (Name == "exp" && TLI->has(LibFunc::exp))
- return ConstantFoldFP(exp, V, Ty);
- if (Name == "exp2" && TLI->has(LibFunc::exp2)) {
- // Constant fold exp2(x) as pow(2,x) in case the host doesn't have a
- // C99 library.
- return ConstantFoldBinaryFP(pow, 2.0, V, Ty);
- }
- break;
- case 'f':
- if (Name == "fabs" && TLI->has(LibFunc::fabs))
- return ConstantFoldFP(fabs, V, Ty);
- else if (Name == "floor" && TLI->has(LibFunc::floor))
- return ConstantFoldFP(floor, V, Ty);
- break;
- case 'l':
- if (Name == "log" && V > 0 && TLI->has(LibFunc::log))
- return ConstantFoldFP(log, V, Ty);
- else if (Name == "log10" && V > 0 && TLI->has(LibFunc::log10))
- return ConstantFoldFP(log10, V, Ty);
- else if (IntrinsicID == Intrinsic::sqrt &&
- (Ty->isHalfTy() || Ty->isFloatTy() || Ty->isDoubleTy())) {
- if (V >= -0.0)
- return ConstantFoldFP(sqrt, V, Ty);
- else {
- // Unlike the sqrt definitions in C/C++, POSIX, and IEEE-754 - which
- // all guarantee or favor returning NaN - the square root of a
- // negative number is not defined for the LLVM sqrt intrinsic.
- // This is because the intrinsic should only be emitted in place of
- // libm's sqrt function when using "no-nans-fp-math".
- return UndefValue::get(Ty);
- }
- }
- break;
- case 's':
- if (Name == "sin" && TLI->has(LibFunc::sin))
- return ConstantFoldFP(sin, V, Ty);
- else if (Name == "sinh" && TLI->has(LibFunc::sinh))
- return ConstantFoldFP(sinh, V, Ty);
- else if (Name == "sqrt" && V >= 0 && TLI->has(LibFunc::sqrt))
- return ConstantFoldFP(sqrt, V, Ty);
- else if (Name == "sqrtf" && V >= 0 && TLI->has(LibFunc::sqrtf))
- return ConstantFoldFP(sqrt, V, Ty);
- else if (Name == "sinf" && TLI->has(LibFunc::sinf))
- return ConstantFoldFP(sin, V, Ty);
- break;
- case 't':
- if (Name == "tan" && TLI->has(LibFunc::tan))
- return ConstantFoldFP(tan, V, Ty);
- else if (Name == "tanh" && TLI->has(LibFunc::tanh))
- return ConstantFoldFP(tanh, V, Ty);
- break;
- default:
- break;
- }
- return nullptr;
- }
- if (ConstantInt *Op = dyn_cast<ConstantInt>(Operands[0])) {
- switch (IntrinsicID) {
- case Intrinsic::bswap:
- return ConstantInt::get(Ty->getContext(), Op->getValue().byteSwap());
- case Intrinsic::ctpop:
- return ConstantInt::get(Ty, Op->getValue().countPopulation());
- case Intrinsic::convert_from_fp16: {
- APFloat Val(APFloat::IEEEhalf, Op->getValue());
- bool lost = false;
- APFloat::opStatus status = Val.convert(
- Ty->getFltSemantics(), APFloat::rmNearestTiesToEven, &lost);
- // Conversion is always precise.
- (void)status;
- assert(status == APFloat::opOK && !lost &&
- "Precision lost during fp16 constfolding");
- return ConstantFP::get(Ty->getContext(), Val);
- }
- default:
- return nullptr;
- }
- }
- #if 0 // HLSL Change - remove platform intrinsics
- // Support ConstantVector in case we have an Undef in the top.
- if (isa<ConstantVector>(Operands[0]) ||
- isa<ConstantDataVector>(Operands[0])) {
- Constant *Op = cast<Constant>(Operands[0]);
- switch (IntrinsicID) {
- default: break;
- case Intrinsic::x86_sse_cvtss2si:
- case Intrinsic::x86_sse_cvtss2si64:
- case Intrinsic::x86_sse2_cvtsd2si:
- case Intrinsic::x86_sse2_cvtsd2si64:
- if (ConstantFP *FPOp =
- dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U)))
- return ConstantFoldConvertToInt(FPOp->getValueAPF(),
- /*roundTowardZero=*/false, Ty);
- case Intrinsic::x86_sse_cvttss2si:
- case Intrinsic::x86_sse_cvttss2si64:
- case Intrinsic::x86_sse2_cvttsd2si:
- case Intrinsic::x86_sse2_cvttsd2si64:
- if (ConstantFP *FPOp =
- dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U)))
- return ConstantFoldConvertToInt(FPOp->getValueAPF(),
- /*roundTowardZero=*/true, Ty);
- }
- }
- #endif // HLSL Change - remove platform intrinsics
- if (isa<UndefValue>(Operands[0])) {
- if (IntrinsicID == Intrinsic::bswap)
- return Operands[0];
- return nullptr;
- }
- return nullptr;
- }
- if (Operands.size() == 2) {
- if (ConstantFP *Op1 = dyn_cast<ConstantFP>(Operands[0])) {
- if (!Ty->isHalfTy() && !Ty->isFloatTy() && !Ty->isDoubleTy())
- return nullptr;
- double Op1V = getValueAsDouble(Op1);
- if (ConstantFP *Op2 = dyn_cast<ConstantFP>(Operands[1])) {
- if (Op2->getType() != Op1->getType())
- return nullptr;
- double Op2V = getValueAsDouble(Op2);
- if (IntrinsicID == Intrinsic::pow) {
- return ConstantFoldBinaryFP(pow, Op1V, Op2V, Ty);
- }
- if (IntrinsicID == Intrinsic::copysign) {
- APFloat V1 = Op1->getValueAPF();
- APFloat V2 = Op2->getValueAPF();
- V1.copySign(V2);
- return ConstantFP::get(Ty->getContext(), V1);
- }
- if (IntrinsicID == Intrinsic::minnum) {
- const APFloat &C1 = Op1->getValueAPF();
- const APFloat &C2 = Op2->getValueAPF();
- return ConstantFP::get(Ty->getContext(), minnum(C1, C2));
- }
- if (IntrinsicID == Intrinsic::maxnum) {
- const APFloat &C1 = Op1->getValueAPF();
- const APFloat &C2 = Op2->getValueAPF();
- return ConstantFP::get(Ty->getContext(), maxnum(C1, C2));
- }
- if (!TLI)
- return nullptr;
- if (Name == "pow" && TLI->has(LibFunc::pow))
- return ConstantFoldBinaryFP(pow, Op1V, Op2V, Ty);
- if (Name == "fmod" && TLI->has(LibFunc::fmod))
- return ConstantFoldBinaryFP(fmod, Op1V, Op2V, Ty);
- if (Name == "atan2" && TLI->has(LibFunc::atan2))
- return ConstantFoldBinaryFP(atan2, Op1V, Op2V, Ty);
- } else if (ConstantInt *Op2C = dyn_cast<ConstantInt>(Operands[1])) {
- if (IntrinsicID == Intrinsic::powi && Ty->isHalfTy())
- return ConstantFP::get(Ty->getContext(),
- APFloat((float)std::pow((float)Op1V,
- (int)Op2C->getZExtValue())));
- if (IntrinsicID == Intrinsic::powi && Ty->isFloatTy())
- return ConstantFP::get(Ty->getContext(),
- APFloat((float)std::pow((float)Op1V,
- (int)Op2C->getZExtValue())));
- if (IntrinsicID == Intrinsic::powi && Ty->isDoubleTy())
- return ConstantFP::get(Ty->getContext(),
- APFloat((double)std::pow((double)Op1V,
- (int)Op2C->getZExtValue())));
- }
- return nullptr;
- }
- if (ConstantInt *Op1 = dyn_cast<ConstantInt>(Operands[0])) {
- if (ConstantInt *Op2 = dyn_cast<ConstantInt>(Operands[1])) {
- switch (IntrinsicID) {
- default: break;
- case Intrinsic::sadd_with_overflow:
- case Intrinsic::uadd_with_overflow:
- case Intrinsic::ssub_with_overflow:
- case Intrinsic::usub_with_overflow:
- case Intrinsic::smul_with_overflow:
- case Intrinsic::umul_with_overflow: {
- APInt Res;
- bool Overflow;
- switch (IntrinsicID) {
- default: llvm_unreachable("Invalid case");
- case Intrinsic::sadd_with_overflow:
- Res = Op1->getValue().sadd_ov(Op2->getValue(), Overflow);
- break;
- case Intrinsic::uadd_with_overflow:
- Res = Op1->getValue().uadd_ov(Op2->getValue(), Overflow);
- break;
- case Intrinsic::ssub_with_overflow:
- Res = Op1->getValue().ssub_ov(Op2->getValue(), Overflow);
- break;
- case Intrinsic::usub_with_overflow:
- Res = Op1->getValue().usub_ov(Op2->getValue(), Overflow);
- break;
- case Intrinsic::smul_with_overflow:
- Res = Op1->getValue().smul_ov(Op2->getValue(), Overflow);
- break;
- case Intrinsic::umul_with_overflow:
- Res = Op1->getValue().umul_ov(Op2->getValue(), Overflow);
- break;
- }
- Constant *Ops[] = {
- ConstantInt::get(Ty->getContext(), Res),
- ConstantInt::get(Type::getInt1Ty(Ty->getContext()), Overflow)
- };
- return ConstantStruct::get(cast<StructType>(Ty), Ops);
- }
- case Intrinsic::cttz:
- if (Op2->isOne() && Op1->isZero()) // cttz(0, 1) is undef.
- return UndefValue::get(Ty);
- return ConstantInt::get(Ty, Op1->getValue().countTrailingZeros());
- case Intrinsic::ctlz:
- if (Op2->isOne() && Op1->isZero()) // ctlz(0, 1) is undef.
- return UndefValue::get(Ty);
- return ConstantInt::get(Ty, Op1->getValue().countLeadingZeros());
- }
- }
- return nullptr;
- }
- return nullptr;
- }
- if (Operands.size() != 3)
- return nullptr;
- if (const ConstantFP *Op1 = dyn_cast<ConstantFP>(Operands[0])) {
- if (const ConstantFP *Op2 = dyn_cast<ConstantFP>(Operands[1])) {
- if (const ConstantFP *Op3 = dyn_cast<ConstantFP>(Operands[2])) {
- switch (IntrinsicID) {
- default: break;
- case Intrinsic::fma:
- case Intrinsic::fmuladd: {
- APFloat V = Op1->getValueAPF();
- APFloat::opStatus s = V.fusedMultiplyAdd(Op2->getValueAPF(),
- Op3->getValueAPF(),
- APFloat::rmNearestTiesToEven);
- if (s != APFloat::opInvalidOp)
- return ConstantFP::get(Ty->getContext(), V);
- return nullptr;
- }
- }
- }
- }
- }
- return nullptr;
- }
- static Constant *ConstantFoldVectorCall(StringRef Name, unsigned IntrinsicID,
- VectorType *VTy,
- ArrayRef<Constant *> Operands,
- const TargetLibraryInfo *TLI) {
- SmallVector<Constant *, 4> Result(VTy->getNumElements());
- SmallVector<Constant *, 4> Lane(Operands.size());
- Type *Ty = VTy->getElementType();
- for (unsigned I = 0, E = VTy->getNumElements(); I != E; ++I) {
- // Gather a column of constants.
- for (unsigned J = 0, JE = Operands.size(); J != JE; ++J) {
- Constant *Agg = Operands[J]->getAggregateElement(I);
- if (!Agg)
- return nullptr;
- Lane[J] = Agg;
- }
- // Use the regular scalar folding to simplify this column.
- Constant *Folded = ConstantFoldScalarCall(Name, IntrinsicID, Ty, Lane, TLI);
- if (!Folded)
- return nullptr;
- Result[I] = Folded;
- }
- return ConstantVector::get(Result);
- }
- /// Attempt to constant fold a call to the specified function
- /// with the specified arguments, returning null if unsuccessful.
- Constant *
- llvm::ConstantFoldCall(Function *F, ArrayRef<Constant *> Operands,
- const TargetLibraryInfo *TLI) {
- if (!F->hasName())
- return nullptr;
- StringRef Name = F->getName();
- Type *Ty = F->getReturnType();
- if (VectorType *VTy = dyn_cast<VectorType>(Ty))
- return ConstantFoldVectorCall(Name, F->getIntrinsicID(), VTy, Operands, TLI);
- return ConstantFoldScalarCall(Name, F->getIntrinsicID(), Ty, Operands, TLI);
- }
|