123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602 |
- //===-- DxilConstantFolding.cpp - Fold dxil intrinsics into constants -----===//
- //
- // The LLVM Compiler Infrastructure
- //
- // This file is distributed under the University of Illinois Open Source
- // License. See LICENSE.TXT for details.
- //
- // Copyright (C) Microsoft Corporation. All rights reserved.
- //
- //===----------------------------------------------------------------------===//
- //
- //
- //===----------------------------------------------------------------------===//
- #include "llvm/Analysis/DxilConstantFolding.h"
- #include "llvm/Analysis/ConstantFolding.h"
- #include "llvm/ADT/SmallPtrSet.h"
- #include "llvm/ADT/SmallVector.h"
- #include "llvm/ADT/StringMap.h"
- #include "llvm/Analysis/TargetLibraryInfo.h"
- #include "llvm/Analysis/ValueTracking.h"
- #include "llvm/Config/config.h"
- #include "llvm/IR/Constants.h"
- #include "llvm/IR/DataLayout.h"
- #include "llvm/IR/DerivedTypes.h"
- #include "llvm/IR/Function.h"
- #include "llvm/IR/GetElementPtrTypeIterator.h"
- #include "llvm/IR/GlobalVariable.h"
- #include "llvm/IR/Instructions.h"
- #include "llvm/IR/Intrinsics.h"
- #include "llvm/IR/Operator.h"
- #include "llvm/Support/ErrorHandling.h"
- #include "llvm/Support/MathExtras.h"
- #include <cerrno>
- #include <cmath>
- #include <algorithm>
- #include <functional>
- #include "dxc/DXIL/DXIL.h"
- #include "dxc/HLSL/DxilConvergentName.h"
- using namespace llvm;
- using namespace hlsl;
- namespace {
- bool IsConvergentMarker(const Function *F) {
- return F->getName().startswith(kConvergentFunctionPrefix);
- }
- bool IsConvergentMarker(const char *Name) {
- StringRef RName = Name;
- return RName.startswith(kConvergentFunctionPrefix);
- }
- } // namespace
- // Check if the given function is a dxil intrinsic and if so extract the
- // opcode for the instrinsic being called.
- static bool GetDxilOpcode(StringRef Name, ArrayRef<Constant *> Operands, OP::OpCode &out) {
- if (!OP::IsDxilOpFuncName(Name))
- return false;
- if (!Operands.size())
- return false;
- if (ConstantInt *ci = dyn_cast<ConstantInt>(Operands[0])) {
- uint64_t opcode = ci->getLimitedValue();
- if (opcode < static_cast<uint64_t>(OP::OpCode::NumOpCodes)) {
- out = static_cast<OP::OpCode>(opcode);
- return true;
- }
- }
- return false;
- }
- // Typedefs for passing function pointers to evaluate float constants.
- typedef double(__cdecl *NativeFPUnaryOp)(double);
- typedef std::function<APFloat::opStatus(APFloat&)> APFloatUnaryOp;
- /// Currently APFloat versions of these functions do not exist, so we use
- /// the host native double versions. Float versions are not called
- /// directly but for all these it is true (float)(f((double)arg)) ==
- /// f(arg). Long double not supported yet.
- ///
- /// Calls out to the llvm constant folding function to do the real work.
- static Constant *DxilConstantFoldFP(NativeFPUnaryOp NativeFP, ConstantFP *C, Type *Ty) {
- double V = llvm::getValueAsDouble(C);
- return llvm::ConstantFoldFP(NativeFP, V, Ty);
- }
- // Constant fold using the provided function on APFloats.
- static Constant *HLSLConstantFoldAPFloat(APFloatUnaryOp NativeFP, ConstantFP *C, Type *Ty) {
- APFloat APF = C->getValueAPF();
- if (NativeFP(APF) != APFloat::opStatus::opOK)
- return nullptr;
- return ConstantFP::get(Ty->getContext(), APF);
- }
- // Constant fold a round dxil intrinsic.
- static Constant *HLSLConstantFoldRound(APFloat::roundingMode roundingMode, ConstantFP *C, Type *Ty) {
- APFloatUnaryOp f = [roundingMode](APFloat &x) { return x.roundToIntegral(roundingMode); };
- return HLSLConstantFoldAPFloat(f, C, Ty);
- }
- namespace {
- // Wrapper for call operands that "shifts past" the hlsl intrinsic opcode.
- // Also provides accessors that dyn_cast the operand to a constant type.
- class DxilIntrinsicOperands {
- public:
- DxilIntrinsicOperands(ArrayRef<Constant *> RawCallOperands) : m_RawCallOperands(RawCallOperands) {}
- Constant * const &operator[](size_t index) const {
- return m_RawCallOperands[index + 1];
- }
- ConstantInt *GetConstantInt(size_t index) const {
- return dyn_cast<ConstantInt>(this->operator[](index));
- }
-
- ConstantFP *GetConstantFloat(size_t index) const {
- return dyn_cast<ConstantFP>(this->operator[](index));
- }
- size_t Size() const {
- return m_RawCallOperands.size() - 1;
- }
- private:
- ArrayRef<Constant *> m_RawCallOperands;
- };
- }
- /// We only fold functions with finite arguments. Folding NaN and inf is
- /// likely to be aborted with an exception anyway, and some host libms
- /// have known errors raising exceptions.
- static bool IsFinite(ConstantFP *C) {
- if (C->getValueAPF().isNaN() || C->getValueAPF().isInfinity())
- return false;
- return true;
- }
- // Check that the op is non-null and finite.
- static bool IsValidOp(ConstantFP *C) {
- if (!C || !IsFinite(C))
- return false;
- return true;
- }
- // Check that all ops are valid.
- static bool AllValidOps(ArrayRef<ConstantFP *> Ops) {
- return std::all_of(Ops.begin(), Ops.end(), IsValidOp);
- }
- // Constant fold unary floating point intrinsics.
- static Constant *ConstantFoldUnaryFPIntrinsic(OP::OpCode opcode, Type *Ty, ConstantFP *Op) {
- switch (opcode) {
- default: break;
- case OP::OpCode::FAbs: return DxilConstantFoldFP(fabs, Op, Ty);
- case OP::OpCode::Saturate: {
- NativeFPUnaryOp f = [](double x) { return std::max(std::min(x, 1.0), 0.0); };
- return DxilConstantFoldFP(f, Op, Ty);
- }
- case OP::OpCode::Cos: return DxilConstantFoldFP(cos, Op, Ty);
- case OP::OpCode::Sin: return DxilConstantFoldFP(sin, Op, Ty);
- case OP::OpCode::Tan: return DxilConstantFoldFP(tan, Op, Ty);
- case OP::OpCode::Acos: return DxilConstantFoldFP(acos, Op, Ty);
- case OP::OpCode::Asin: return DxilConstantFoldFP(asin, Op, Ty);
- case OP::OpCode::Atan: return DxilConstantFoldFP(atan, Op, Ty);
- case OP::OpCode::Hcos: return DxilConstantFoldFP(cosh, Op, Ty);
- case OP::OpCode::Hsin: return DxilConstantFoldFP(sinh, Op, Ty);
- case OP::OpCode::Htan: return DxilConstantFoldFP(tanh, Op, Ty);
- case OP::OpCode::Exp: return DxilConstantFoldFP(exp2, Op, Ty);
- case OP::OpCode::Frc: {
- NativeFPUnaryOp f = [](double x) { double unused; return fabs(modf(x, &unused)); };
- return DxilConstantFoldFP(f, Op, Ty);
- }
- case OP::OpCode::Log: return DxilConstantFoldFP(log2, Op, Ty);
- case OP::OpCode::Sqrt: return DxilConstantFoldFP(sqrt, Op, Ty);
- case OP::OpCode::Rsqrt: {
- NativeFPUnaryOp f = [](double x) { return 1.0 / sqrt(x); };
- return DxilConstantFoldFP(f, Op, Ty);
- }
- case OP::OpCode::Round_ne: return HLSLConstantFoldRound(APFloat::roundingMode::rmNearestTiesToEven, Op, Ty);
- case OP::OpCode::Round_ni: return HLSLConstantFoldRound(APFloat::roundingMode::rmTowardNegative, Op, Ty);
- case OP::OpCode::Round_pi: return HLSLConstantFoldRound(APFloat::roundingMode::rmTowardPositive, Op, Ty);
- case OP::OpCode::Round_z: return HLSLConstantFoldRound(APFloat::roundingMode::rmTowardZero, Op, Ty);
- }
-
- return nullptr;
- }
- // Constant fold binary floating point intrinsics.
- static Constant *ConstantFoldBinaryFPIntrinsic(OP::OpCode opcode, Type *Ty, ConstantFP *Op1, ConstantFP *Op2) {
- const APFloat &C1 = Op1->getValueAPF();
- const APFloat &C2 = Op2->getValueAPF();
- switch (opcode) {
- default: break;
- case OP::OpCode::FMax: return ConstantFP::get(Ty->getContext(), maxnum(C1, C2));
- case OP::OpCode::FMin: return ConstantFP::get(Ty->getContext(), minnum(C1, C2));
- }
- return nullptr;
- }
- // Constant fold ternary floating point intrinsics.
- static Constant *ConstantFoldTernaryFPIntrinsic(OP::OpCode opcode, Type *Ty, ConstantFP *Op1, ConstantFP *Op2, ConstantFP *Op3) {
- const APFloat &C1 = Op1->getValueAPF();
- const APFloat &C2 = Op2->getValueAPF();
- const APFloat &C3 = Op3->getValueAPF();
- APFloat::roundingMode roundingMode = APFloat::rmNearestTiesToEven;
- switch (opcode) {
- default: break;
- case OP::OpCode::FMad: {
- APFloat result(C1);
- result.multiply(C2, roundingMode);
- result.add(C3, roundingMode);
- return ConstantFP::get(Ty->getContext(), result);
- }
- case OP::OpCode::Fma: {
- APFloat result(C1);
- result.fusedMultiplyAdd(C2, C3, roundingMode);
- return ConstantFP::get(Ty->getContext(), result);
- }
- }
- return nullptr;
- }
- // Compute dot product for arbitrary sized vectors.
- static Constant *ComputeDot(Type *Ty, ArrayRef<ConstantFP *> A, ArrayRef<ConstantFP *> B) {
- if (A.size() != B.size() || !A.size()) {
- assert(false && "invalid call to compute dot");
- return nullptr;
- }
- if (!AllValidOps(A) || !AllValidOps(B))
- return nullptr;
-
- APFloat::roundingMode roundingMode = APFloat::roundingMode::rmNearestTiesToEven;
- APFloat sum = APFloat::getZero(A[0]->getValueAPF().getSemantics());
- for (int i = 0, e = A.size(); i != e; ++i) {
- APFloat val(A[i]->getValueAPF());
- val.multiply(B[i]->getValueAPF(), roundingMode);
- sum.add(val, roundingMode);
- }
- return ConstantFP::get(Ty->getContext(), sum);
- }
- // Constant folding for dot2, dot3, and dot4.
- static Constant *ConstantFoldDot(OP::OpCode opcode, Type *Ty, const DxilIntrinsicOperands &operands) {
- switch (opcode) {
- default: break;
- case OP::OpCode::Dot2: {
- ConstantFP *Ax = operands.GetConstantFloat(0);
- ConstantFP *Ay = operands.GetConstantFloat(1);
- ConstantFP *Bx = operands.GetConstantFloat(2);
- ConstantFP *By = operands.GetConstantFloat(3);
- return ComputeDot(Ty, { Ax, Ay }, { Bx, By });
- }
- case OP::OpCode::Dot3: {
- ConstantFP *Ax = operands.GetConstantFloat(0);
- ConstantFP *Ay = operands.GetConstantFloat(1);
- ConstantFP *Az = operands.GetConstantFloat(2);
- ConstantFP *Bx = operands.GetConstantFloat(3);
- ConstantFP *By = operands.GetConstantFloat(4);
- ConstantFP *Bz = operands.GetConstantFloat(5);
- return ComputeDot(Ty, { Ax, Ay, Az }, { Bx, By, Bz });
- }
- case OP::OpCode::Dot4: {
- ConstantFP *Ax = operands.GetConstantFloat(0);
- ConstantFP *Ay = operands.GetConstantFloat(1);
- ConstantFP *Az = operands.GetConstantFloat(2);
- ConstantFP *Aw = operands.GetConstantFloat(3);
- ConstantFP *Bx = operands.GetConstantFloat(4);
- ConstantFP *By = operands.GetConstantFloat(5);
- ConstantFP *Bz = operands.GetConstantFloat(6);
- ConstantFP *Bw = operands.GetConstantFloat(7);
- return ComputeDot(Ty, { Ax, Ay, Az, Aw }, { Bx, By, Bz, Bw });
- }
- }
- return nullptr;
- }
- // Constant fold a Bfrev dxil intrinsic.
- static Constant *HLSLConstantFoldBfrev(ConstantInt *C, Type *Ty) {
- APInt API = C->getValue();
- uint64_t result = 0;
- if (Ty == Type::getInt32Ty(Ty->getContext())) {
- uint32_t val = static_cast<uint32_t>(API.getLimitedValue());
- result = llvm::reverseBits(val);
- }
- else if (Ty == Type::getInt16Ty(Ty->getContext())) {
- uint16_t val = static_cast<uint16_t>(API.getLimitedValue());
- result = llvm::reverseBits(val);
- }
- else if (Ty == Type::getInt64Ty(Ty->getContext())) {
- uint64_t val = static_cast<uint64_t>(API.getLimitedValue());
- result = llvm::reverseBits(val);
- }
- else {
- return nullptr;
- }
- return ConstantInt::get(Ty, result);
- }
- // Handle special case for findfirst* bit functions.
- // When the position is equal to the bitwidth the value was not found
- // and we need to return a result of -1.
- static Constant *HLSLConstantFoldFindBit(Type *Ty, unsigned position, unsigned bitwidth) {
- if (position == bitwidth)
- return ConstantInt::get(Ty, APInt::getAllOnesValue(Ty->getScalarSizeInBits()));
- return ConstantInt::get(Ty, position);
- }
- // Constant fold unary integer intrinsics.
- static Constant *ConstantFoldUnaryIntIntrinsic(OP::OpCode opcode, Type *Ty, ConstantInt *Op) {
- APInt API = Op->getValue();
- switch (opcode) {
- default: break;
- case OP::OpCode::Bfrev: return HLSLConstantFoldBfrev(Op, Ty);
- case OP::OpCode::Countbits: return ConstantInt::get(Ty, API.countPopulation());
- case OP::OpCode::FirstbitLo: return HLSLConstantFoldFindBit(Ty, API.countTrailingZeros(), API.getBitWidth());
- case OP::OpCode::FirstbitHi: return HLSLConstantFoldFindBit(Ty, API.countLeadingZeros(), API.getBitWidth());
- case OP::OpCode::FirstbitSHi: {
- if (API.isNegative())
- return HLSLConstantFoldFindBit(Ty, API.countLeadingOnes(), API.getBitWidth());
- else
- return HLSLConstantFoldFindBit(Ty, API.countLeadingZeros(), API.getBitWidth());
- }
- }
-
- return nullptr;
- }
- // Constant fold binary integer intrinsics.
- static Constant *ConstantFoldBinaryIntIntrinsic(OP::OpCode opcode, Type *Ty, ConstantInt *Op1, ConstantInt *Op2) {
- APInt C1 = Op1->getValue();
- APInt C2 = Op2->getValue();
- switch (opcode) {
- default: break;
- case OP::OpCode::IMin: {
- APInt minVal = C1.slt(C2) ? C1 : C2;
- return ConstantInt::get(Ty, minVal);
- }
- case OP::OpCode::IMax: {
- APInt maxVal = C1.sgt(C2) ? C1 : C2;
- return ConstantInt::get(Ty, maxVal);
- }
- case OP::OpCode::UMin: {
- APInt minVal = C1.ult(C2) ? C1 : C2;
- return ConstantInt::get(Ty, minVal);
- }
- case OP::OpCode::UMax: {
- APInt maxVal = C1.ugt(C2) ? C1 : C2;
- return ConstantInt::get(Ty, maxVal);
- }
- }
- return nullptr;
- }
- // Compute bit field extract for ibfe and ubfe.
- // The comptuation for ibfe and ubfe is the same except for the right shift,
- // which is an arithemetic shift for ibfe and logical shift for ubfe.
- // ubfe: https://msdn.microsoft.com/en-us/library/windows/desktop/hh447243(v=vs.85).aspx
- // ibfe: https://msdn.microsoft.com/en-us/library/windows/desktop/hh447243(v=vs.85).aspx
- static Constant *ComputeBFE(Type *Ty, APInt width, APInt offset, APInt val, std::function<APInt(APInt, APInt)> shr) {
- const APInt bitwidth(width.getBitWidth(), width.getBitWidth());
- // Limit width and offset to the bitwidth of the value.
- width = width.And(bitwidth-1);
- offset = offset.And(bitwidth-1);
-
- if (width == 0) {
- return ConstantInt::get(Ty, 0);
- }
- else if ((width + offset).ult(bitwidth)) {
- APInt dest = val.shl(bitwidth - (width + offset));
- dest = shr(dest, bitwidth - width);
- return ConstantInt::get(Ty, dest);
- }
- else {
- APInt dest = shr(val, offset);
- return ConstantInt::get(Ty, dest);
- }
- }
- // Constant fold ternary integer intrinsic.
- static Constant *ConstantFoldTernaryIntIntrinsic(OP::OpCode opcode, Type *Ty, ConstantInt *Op1, ConstantInt *Op2, ConstantInt *Op3) {
- APInt C1 = Op1->getValue();
- APInt C2 = Op2->getValue();
- APInt C3 = Op3->getValue();
- switch (opcode) {
- default: break;
- case OP::OpCode::IMad:
- case OP::OpCode::UMad: {
- // Result is same for signed/unsigned since this is twos complement and we only
- // keep the lower half of the multiply.
- APInt result = C1 * C2 + C3;
- return ConstantInt::get(Ty, result);
- }
- case OP::OpCode::Ubfe: return ComputeBFE(Ty, C1, C2, C3, [](APInt val, APInt amt) {return val.lshr(amt); });
- case OP::OpCode::Ibfe: return ComputeBFE(Ty, C1, C2, C3, [](APInt val, APInt amt) {return val.ashr(amt); });
- }
- return nullptr;
- }
- // Constant fold quaternary integer intrinsic.
- //
- // Currently we only have one quaternary intrinsic: Bfi.
- // The Bfi computaion is described here:
- // https://msdn.microsoft.com/en-us/library/windows/desktop/hh446837(v=vs.85).aspx
- static Constant *ConstantFoldQuaternaryIntInstrinsic(OP::OpCode opcode, Type *Ty, ConstantInt *Op1, ConstantInt *Op2, ConstantInt *Op3, ConstantInt *Op4) {
- if (opcode != OP::OpCode::Bfi)
- return nullptr;
- APInt bitwidth(Op1->getValue().getBitWidth(), Op1->getValue().getBitWidth());
- APInt width = Op1->getValue().And(bitwidth-1);
- APInt offset = Op2->getValue().And(bitwidth-1);
- APInt src = Op3->getValue();
- APInt dst = Op4->getValue();
- APInt one(bitwidth.getBitWidth(), 1);
- APInt allOnes = APInt::getAllOnesValue(bitwidth.getBitWidth());
- // bitmask = (((1 << width)-1) << offset) & 0xffffffff
- // dest = ((src2 << offset) & bitmask) | (src3 & ~bitmask)
- APInt bitmask = (one.shl(width) - 1).shl(offset).And(allOnes);
- APInt result = (src.shl(offset).And(bitmask)).Or(dst.And(~bitmask));
- return ConstantInt::get(Ty, result);
- }
- // Top level function to constant fold floating point intrinsics.
- static Constant *ConstantFoldFPIntrinsic(OP::OpCode opcode, Type *Ty, const DxilIntrinsicOperands &IntrinsicOperands) {
- if (!Ty->isHalfTy() && !Ty->isFloatTy() && !Ty->isDoubleTy())
- return nullptr;
- OP::OpCodeClass opClass = OP::GetOpCodeClass(opcode);
- switch (opClass) {
- default: break;
- case OP::OpCodeClass::Unary: {
- assert(IntrinsicOperands.Size() == 1);
- ConstantFP *Op = IntrinsicOperands.GetConstantFloat(0);
- if (!IsValidOp(Op))
- return nullptr;
- return ConstantFoldUnaryFPIntrinsic(opcode, Ty, Op);
- }
- case OP::OpCodeClass::Binary: {
- assert(IntrinsicOperands.Size() == 2);
- ConstantFP *Op1 = IntrinsicOperands.GetConstantFloat(0);
- ConstantFP *Op2 = IntrinsicOperands.GetConstantFloat(1);
- if (!IsValidOp(Op1) || !IsValidOp(Op2))
- return nullptr;
- return ConstantFoldBinaryFPIntrinsic(opcode, Ty, Op1, Op2);
- }
- case OP::OpCodeClass::Tertiary: {
- assert(IntrinsicOperands.Size() == 3);
- ConstantFP *Op1 = IntrinsicOperands.GetConstantFloat(0);
- ConstantFP *Op2 = IntrinsicOperands.GetConstantFloat(1);
- ConstantFP *Op3 = IntrinsicOperands.GetConstantFloat(2);
- if (!IsValidOp(Op1) || !IsValidOp(Op2) || !IsValidOp(Op3))
- return nullptr;
- return ConstantFoldTernaryFPIntrinsic(opcode, Ty, Op1, Op2, Op3);
- }
- case OP::OpCodeClass::Dot2:
- case OP::OpCodeClass::Dot3:
- case OP::OpCodeClass::Dot4:
- return ConstantFoldDot(opcode, Ty, IntrinsicOperands);
- }
- return nullptr;
- }
- // Top level function to constant fold integer intrinsics.
- static Constant *ConstantFoldIntIntrinsic(OP::OpCode opcode, Type *Ty, const DxilIntrinsicOperands &IntrinsicOperands) {
- if (Ty->getScalarSizeInBits() > (sizeof(int64_t) * CHAR_BIT))
- return nullptr;
- OP::OpCodeClass opClass = OP::GetOpCodeClass(opcode);
- switch (opClass) {
- default: break;
- case OP::OpCodeClass::Unary:
- case OP::OpCodeClass::UnaryBits: {
- assert(IntrinsicOperands.Size() == 1);
- ConstantInt *Op = IntrinsicOperands.GetConstantInt(0);
- if (!Op)
- return nullptr;
- return ConstantFoldUnaryIntIntrinsic(opcode, Ty, Op);
- }
- case OP::OpCodeClass::Binary: {
- assert(IntrinsicOperands.Size() == 2);
- ConstantInt *Op1 = IntrinsicOperands.GetConstantInt(0);
- ConstantInt *Op2 = IntrinsicOperands.GetConstantInt(1);
- if (!Op1 || !Op2)
- return nullptr;
-
- return ConstantFoldBinaryIntIntrinsic(opcode, Ty, Op1, Op2);
- }
- case OP::OpCodeClass::Tertiary: {
- assert(IntrinsicOperands.Size() == 3);
- ConstantInt *Op1 = IntrinsicOperands.GetConstantInt(0);
- ConstantInt *Op2 = IntrinsicOperands.GetConstantInt(1);
- ConstantInt *Op3 = IntrinsicOperands.GetConstantInt(2);
- if (!Op1 || !Op2 || !Op3)
- return nullptr;
-
- return ConstantFoldTernaryIntIntrinsic(opcode, Ty, Op1, Op2, Op3);
- }
- case OP::OpCodeClass::Quaternary: {
- assert(IntrinsicOperands.Size() == 4);
- ConstantInt *Op1 = IntrinsicOperands.GetConstantInt(0);
- ConstantInt *Op2 = IntrinsicOperands.GetConstantInt(1);
- ConstantInt *Op3 = IntrinsicOperands.GetConstantInt(2);
- ConstantInt *Op4 = IntrinsicOperands.GetConstantInt(3);
- if (!Op1 || !Op2 || !Op3 || !Op4)
- return nullptr;
- return ConstantFoldQuaternaryIntInstrinsic(opcode, Ty, Op1, Op2, Op3, Op4);
- }
- case OP::OpCodeClass::IsHelperLane:
- return ConstantInt::get(Ty, (uint64_t)0);
- }
- return nullptr;
- }
- // External entry point to constant fold dxil intrinsics.
- // Called from the llvm constant folding routine.
- Constant *hlsl::ConstantFoldScalarCall(StringRef Name, Type *Ty, ArrayRef<Constant *> RawOperands) {
- OP::OpCode opcode;
- if (GetDxilOpcode(Name, RawOperands, opcode)) {
- DxilIntrinsicOperands IntrinsicOperands(RawOperands);
- if (Ty->isFloatingPointTy()) {
- return ConstantFoldFPIntrinsic(opcode, Ty, IntrinsicOperands);
- }
- else if (Ty->isIntegerTy()) {
- return ConstantFoldIntIntrinsic(opcode, Ty, IntrinsicOperands);
- }
- } else if (IsConvergentMarker(Name.data())) {
- assert(RawOperands.size() == 1);
- if (ConstantInt *C = dyn_cast<ConstantInt>(RawOperands[0]))
- return C;
- if (ConstantFP *C = dyn_cast<ConstantFP>(RawOperands[0]))
- return C;
- }
- return hlsl::ConstantFoldScalarCallExt(Name, Ty, RawOperands);
- }
- // External entry point to determine if we can constant fold calls to
- // the given function. We have to overestimate the set of functions because
- // we only have the function value here instead of the call. We need the
- // actual call to get the opcode for the intrinsic.
- bool hlsl::CanConstantFoldCallTo(const Function *F) {
- // Only constant fold dxil functions when we have a valid dxil module.
- if (!F->getParent()->HasDxilModule()) {
- assert(!OP::IsDxilOpFunc(F) && "dx.op function with no dxil module?");
- return false;
- }
- if (IsConvergentMarker(F))
- return true;
- // Lookup opcode class in dxil module. Set default value to invalid class.
- OP::OpCodeClass opClass = OP::OpCodeClass::NumOpClasses;
- const bool found = F->getParent()->GetDxilModule().GetOP()->GetOpCodeClass(F, opClass);
- // Return true for those dxil operation classes we can constant fold.
- if (found) {
- switch (opClass) {
- default: break;
- case OP::OpCodeClass::Unary:
- case OP::OpCodeClass::UnaryBits:
- case OP::OpCodeClass::Binary:
- case OP::OpCodeClass::Tertiary:
- case OP::OpCodeClass::Quaternary:
- case OP::OpCodeClass::Dot2:
- case OP::OpCodeClass::Dot3:
- case OP::OpCodeClass::Dot4:
- return true;
- case OP::OpCodeClass::IsHelperLane: {
- const hlsl::ShaderModel *pSM =
- F->getParent()->GetDxilModule().GetShaderModel();
- return !pSM->IsPS() && !pSM->IsLib();
- }
- }
- }
- return hlsl::CanConstantFoldCallToExt(F);
- }
|