12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511 |
- //===- InstructionSimplify.cpp - Fold instruction operands ----------------===//
- //
- // The LLVM Compiler Infrastructure
- //
- // This file is distributed under the University of Illinois Open Source
- // License. See LICENSE.TXT for details.
- //
- //===----------------------------------------------------------------------===//
- //
- // This file implements routines for folding instructions into simpler forms
- // that do not require creating new instructions. This does constant folding
- // ("add i32 1, 1" -> "2") but can also handle non-constant operands, either
- // returning a constant ("and i32 %x, 0" -> "0") or an already existing value
- // ("and i32 %x, %x" -> "%x"). All operands are assumed to have already been
- // simplified: This is usually true and assuming it simplifies the logic (if
- // they have not been simplified then results are correct but maybe suboptimal).
- //
- //===----------------------------------------------------------------------===//
- #include "llvm/Analysis/InstructionSimplify.h"
- #include "llvm/ADT/SetVector.h"
- #include "llvm/ADT/Statistic.h"
- #include "llvm/Analysis/AliasAnalysis.h"
- #include "llvm/Analysis/ConstantFolding.h"
- #include "llvm/Analysis/MemoryBuiltins.h"
- #include "llvm/Analysis/ValueTracking.h"
- #include "llvm/Analysis/VectorUtils.h"
- #include "llvm/IR/ConstantRange.h"
- #include "llvm/IR/DataLayout.h"
- #include "llvm/IR/Dominators.h"
- #include "llvm/IR/GetElementPtrTypeIterator.h"
- #include "llvm/IR/GlobalAlias.h"
- #include "llvm/IR/Operator.h"
- #include "llvm/IR/PatternMatch.h"
- #include "llvm/IR/ValueHandle.h"
- #include <algorithm>
- #include "llvm/Analysis/DxilSimplify.h" // HLSL Change - simplify dxil call.
- using namespace llvm;
- using namespace llvm::PatternMatch;
- #define DEBUG_TYPE "instsimplify"
- enum { RecursionLimit = 3 };
- STATISTIC(NumExpand, "Number of expansions");
- STATISTIC(NumReassoc, "Number of reassociations");
- namespace {
- struct Query {
- const DataLayout &DL;
- const TargetLibraryInfo *TLI;
- const DominatorTree *DT;
- AssumptionCache *AC;
- const Instruction *CxtI;
- Query(const DataLayout &DL, const TargetLibraryInfo *tli,
- const DominatorTree *dt, AssumptionCache *ac = nullptr,
- const Instruction *cxti = nullptr)
- : DL(DL), TLI(tli), DT(dt), AC(ac), CxtI(cxti) {}
- };
- } // end anonymous namespace
- static Value *SimplifyAndInst(Value *, Value *, const Query &, unsigned);
- static Value *SimplifyBinOp(unsigned, Value *, Value *, const Query &,
- unsigned);
- static Value *SimplifyFPBinOp(unsigned, Value *, Value *, const FastMathFlags &,
- const Query &, unsigned);
- static Value *SimplifyCmpInst(unsigned, Value *, Value *, const Query &,
- unsigned);
- static Value *SimplifyOrInst(Value *, Value *, const Query &, unsigned);
- static Value *SimplifyXorInst(Value *, Value *, const Query &, unsigned);
- static Value *SimplifyTruncInst(Value *, Type *, const Query &, unsigned);
- /// getFalse - For a boolean type, or a vector of boolean type, return false, or
- /// a vector with every element false, as appropriate for the type.
- static Constant *getFalse(Type *Ty) {
- assert(Ty->getScalarType()->isIntegerTy(1) &&
- "Expected i1 type or a vector of i1!");
- return Constant::getNullValue(Ty);
- }
- /// getTrue - For a boolean type, or a vector of boolean type, return true, or
- /// a vector with every element true, as appropriate for the type.
- static Constant *getTrue(Type *Ty) {
- assert(Ty->getScalarType()->isIntegerTy(1) &&
- "Expected i1 type or a vector of i1!");
- return Constant::getAllOnesValue(Ty);
- }
- /// isSameCompare - Is V equivalent to the comparison "LHS Pred RHS"?
- static bool isSameCompare(Value *V, CmpInst::Predicate Pred, Value *LHS,
- Value *RHS) {
- CmpInst *Cmp = dyn_cast<CmpInst>(V);
- if (!Cmp)
- return false;
- CmpInst::Predicate CPred = Cmp->getPredicate();
- Value *CLHS = Cmp->getOperand(0), *CRHS = Cmp->getOperand(1);
- if (CPred == Pred && CLHS == LHS && CRHS == RHS)
- return true;
- return CPred == CmpInst::getSwappedPredicate(Pred) && CLHS == RHS &&
- CRHS == LHS;
- }
- /// ValueDominatesPHI - Does the given value dominate the specified phi node?
- static bool ValueDominatesPHI(Value *V, PHINode *P, const DominatorTree *DT) {
- Instruction *I = dyn_cast<Instruction>(V);
- if (!I)
- // Arguments and constants dominate all instructions.
- return true;
- // If we are processing instructions (and/or basic blocks) that have not been
- // fully added to a function, the parent nodes may still be null. Simply
- // return the conservative answer in these cases.
- if (!I->getParent() || !P->getParent() || !I->getParent()->getParent())
- return false;
- // If we have a DominatorTree then do a precise test.
- if (DT) {
- if (!DT->isReachableFromEntry(P->getParent()))
- return true;
- if (!DT->isReachableFromEntry(I->getParent()))
- return false;
- return DT->dominates(I, P);
- }
- // Otherwise, if the instruction is in the entry block, and is not an invoke,
- // then it obviously dominates all phi nodes.
- if (I->getParent() == &I->getParent()->getParent()->getEntryBlock() &&
- !isa<InvokeInst>(I))
- return true;
- return false;
- }
- /// ExpandBinOp - Simplify "A op (B op' C)" by distributing op over op', turning
- /// it into "(A op B) op' (A op C)". Here "op" is given by Opcode and "op'" is
- /// given by OpcodeToExpand, while "A" corresponds to LHS and "B op' C" to RHS.
- /// Also performs the transform "(A op' B) op C" -> "(A op C) op' (B op C)".
- /// Returns the simplified value, or null if no simplification was performed.
- static Value *ExpandBinOp(unsigned Opcode, Value *LHS, Value *RHS,
- unsigned OpcToExpand, const Query &Q,
- unsigned MaxRecurse) {
- Instruction::BinaryOps OpcodeToExpand = (Instruction::BinaryOps)OpcToExpand;
- // Recursion is always used, so bail out at once if we already hit the limit.
- if (!MaxRecurse--)
- return nullptr;
- // Check whether the expression has the form "(A op' B) op C".
- if (BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS))
- if (Op0->getOpcode() == OpcodeToExpand) {
- // It does! Try turning it into "(A op C) op' (B op C)".
- Value *A = Op0->getOperand(0), *B = Op0->getOperand(1), *C = RHS;
- // Do "A op C" and "B op C" both simplify?
- if (Value *L = SimplifyBinOp(Opcode, A, C, Q, MaxRecurse))
- if (Value *R = SimplifyBinOp(Opcode, B, C, Q, MaxRecurse)) {
- // They do! Return "L op' R" if it simplifies or is already available.
- // If "L op' R" equals "A op' B" then "L op' R" is just the LHS.
- if ((L == A && R == B) || (Instruction::isCommutative(OpcodeToExpand)
- && L == B && R == A)) {
- ++NumExpand;
- return LHS;
- }
- // Otherwise return "L op' R" if it simplifies.
- if (Value *V = SimplifyBinOp(OpcodeToExpand, L, R, Q, MaxRecurse)) {
- ++NumExpand;
- return V;
- }
- }
- }
- // Check whether the expression has the form "A op (B op' C)".
- if (BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS))
- if (Op1->getOpcode() == OpcodeToExpand) {
- // It does! Try turning it into "(A op B) op' (A op C)".
- Value *A = LHS, *B = Op1->getOperand(0), *C = Op1->getOperand(1);
- // Do "A op B" and "A op C" both simplify?
- if (Value *L = SimplifyBinOp(Opcode, A, B, Q, MaxRecurse))
- if (Value *R = SimplifyBinOp(Opcode, A, C, Q, MaxRecurse)) {
- // They do! Return "L op' R" if it simplifies or is already available.
- // If "L op' R" equals "B op' C" then "L op' R" is just the RHS.
- if ((L == B && R == C) || (Instruction::isCommutative(OpcodeToExpand)
- && L == C && R == B)) {
- ++NumExpand;
- return RHS;
- }
- // Otherwise return "L op' R" if it simplifies.
- if (Value *V = SimplifyBinOp(OpcodeToExpand, L, R, Q, MaxRecurse)) {
- ++NumExpand;
- return V;
- }
- }
- }
- return nullptr;
- }
- /// SimplifyAssociativeBinOp - Generic simplifications for associative binary
- /// operations. Returns the simpler value, or null if none was found.
- static Value *SimplifyAssociativeBinOp(unsigned Opc, Value *LHS, Value *RHS,
- const Query &Q, unsigned MaxRecurse) {
- Instruction::BinaryOps Opcode = (Instruction::BinaryOps)Opc;
- assert(Instruction::isAssociative(Opcode) && "Not an associative operation!");
- // Recursion is always used, so bail out at once if we already hit the limit.
- if (!MaxRecurse--)
- return nullptr;
- BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS);
- BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS);
- // Transform: "(A op B) op C" ==> "A op (B op C)" if it simplifies completely.
- if (Op0 && Op0->getOpcode() == Opcode) {
- Value *A = Op0->getOperand(0);
- Value *B = Op0->getOperand(1);
- Value *C = RHS;
- // Does "B op C" simplify?
- if (Value *V = SimplifyBinOp(Opcode, B, C, Q, MaxRecurse)) {
- // It does! Return "A op V" if it simplifies or is already available.
- // If V equals B then "A op V" is just the LHS.
- if (V == B) return LHS;
- // Otherwise return "A op V" if it simplifies.
- if (Value *W = SimplifyBinOp(Opcode, A, V, Q, MaxRecurse)) {
- ++NumReassoc;
- return W;
- }
- }
- }
- // Transform: "A op (B op C)" ==> "(A op B) op C" if it simplifies completely.
- if (Op1 && Op1->getOpcode() == Opcode) {
- Value *A = LHS;
- Value *B = Op1->getOperand(0);
- Value *C = Op1->getOperand(1);
- // Does "A op B" simplify?
- if (Value *V = SimplifyBinOp(Opcode, A, B, Q, MaxRecurse)) {
- // It does! Return "V op C" if it simplifies or is already available.
- // If V equals B then "V op C" is just the RHS.
- if (V == B) return RHS;
- // Otherwise return "V op C" if it simplifies.
- if (Value *W = SimplifyBinOp(Opcode, V, C, Q, MaxRecurse)) {
- ++NumReassoc;
- return W;
- }
- }
- }
- // The remaining transforms require commutativity as well as associativity.
- if (!Instruction::isCommutative(Opcode))
- return nullptr;
- // Transform: "(A op B) op C" ==> "(C op A) op B" if it simplifies completely.
- if (Op0 && Op0->getOpcode() == Opcode) {
- Value *A = Op0->getOperand(0);
- Value *B = Op0->getOperand(1);
- Value *C = RHS;
- // Does "C op A" simplify?
- if (Value *V = SimplifyBinOp(Opcode, C, A, Q, MaxRecurse)) {
- // It does! Return "V op B" if it simplifies or is already available.
- // If V equals A then "V op B" is just the LHS.
- if (V == A) return LHS;
- // Otherwise return "V op B" if it simplifies.
- if (Value *W = SimplifyBinOp(Opcode, V, B, Q, MaxRecurse)) {
- ++NumReassoc;
- return W;
- }
- }
- }
- // Transform: "A op (B op C)" ==> "B op (C op A)" if it simplifies completely.
- if (Op1 && Op1->getOpcode() == Opcode) {
- Value *A = LHS;
- Value *B = Op1->getOperand(0);
- Value *C = Op1->getOperand(1);
- // Does "C op A" simplify?
- if (Value *V = SimplifyBinOp(Opcode, C, A, Q, MaxRecurse)) {
- // It does! Return "B op V" if it simplifies or is already available.
- // If V equals C then "B op V" is just the RHS.
- if (V == C) return RHS;
- // Otherwise return "B op V" if it simplifies.
- if (Value *W = SimplifyBinOp(Opcode, B, V, Q, MaxRecurse)) {
- ++NumReassoc;
- return W;
- }
- }
- }
- return nullptr;
- }
- /// ThreadBinOpOverSelect - In the case of a binary operation with a select
- /// instruction as an operand, try to simplify the binop by seeing whether
- /// evaluating it on both branches of the select results in the same value.
- /// Returns the common value if so, otherwise returns null.
- static Value *ThreadBinOpOverSelect(unsigned Opcode, Value *LHS, Value *RHS,
- const Query &Q, unsigned MaxRecurse) {
- // Recursion is always used, so bail out at once if we already hit the limit.
- if (!MaxRecurse--)
- return nullptr;
- SelectInst *SI;
- if (isa<SelectInst>(LHS)) {
- SI = cast<SelectInst>(LHS);
- } else {
- assert(isa<SelectInst>(RHS) && "No select instruction operand!");
- SI = cast<SelectInst>(RHS);
- }
- // Evaluate the BinOp on the true and false branches of the select.
- Value *TV;
- Value *FV;
- if (SI == LHS) {
- TV = SimplifyBinOp(Opcode, SI->getTrueValue(), RHS, Q, MaxRecurse);
- FV = SimplifyBinOp(Opcode, SI->getFalseValue(), RHS, Q, MaxRecurse);
- } else {
- TV = SimplifyBinOp(Opcode, LHS, SI->getTrueValue(), Q, MaxRecurse);
- FV = SimplifyBinOp(Opcode, LHS, SI->getFalseValue(), Q, MaxRecurse);
- }
- // If they simplified to the same value, then return the common value.
- // If they both failed to simplify then return null.
- if (TV == FV)
- return TV;
- // If one branch simplified to undef, return the other one.
- if (TV && isa<UndefValue>(TV))
- return FV;
- if (FV && isa<UndefValue>(FV))
- return TV;
- // If applying the operation did not change the true and false select values,
- // then the result of the binop is the select itself.
- if (TV == SI->getTrueValue() && FV == SI->getFalseValue())
- return SI;
- // If one branch simplified and the other did not, and the simplified
- // value is equal to the unsimplified one, return the simplified value.
- // For example, select (cond, X, X & Z) & Z -> X & Z.
- if ((FV && !TV) || (TV && !FV)) {
- // Check that the simplified value has the form "X op Y" where "op" is the
- // same as the original operation.
- Instruction *Simplified = dyn_cast<Instruction>(FV ? FV : TV);
- if (Simplified && Simplified->getOpcode() == Opcode) {
- // The value that didn't simplify is "UnsimplifiedLHS op UnsimplifiedRHS".
- // We already know that "op" is the same as for the simplified value. See
- // if the operands match too. If so, return the simplified value.
- Value *UnsimplifiedBranch = FV ? SI->getTrueValue() : SI->getFalseValue();
- Value *UnsimplifiedLHS = SI == LHS ? UnsimplifiedBranch : LHS;
- Value *UnsimplifiedRHS = SI == LHS ? RHS : UnsimplifiedBranch;
- if (Simplified->getOperand(0) == UnsimplifiedLHS &&
- Simplified->getOperand(1) == UnsimplifiedRHS)
- return Simplified;
- if (Simplified->isCommutative() &&
- Simplified->getOperand(1) == UnsimplifiedLHS &&
- Simplified->getOperand(0) == UnsimplifiedRHS)
- return Simplified;
- }
- }
- return nullptr;
- }
- /// ThreadCmpOverSelect - In the case of a comparison with a select instruction,
- /// try to simplify the comparison by seeing whether both branches of the select
- /// result in the same value. Returns the common value if so, otherwise returns
- /// null.
- static Value *ThreadCmpOverSelect(CmpInst::Predicate Pred, Value *LHS,
- Value *RHS, const Query &Q,
- unsigned MaxRecurse) {
- // Recursion is always used, so bail out at once if we already hit the limit.
- if (!MaxRecurse--)
- return nullptr;
- // Make sure the select is on the LHS.
- if (!isa<SelectInst>(LHS)) {
- std::swap(LHS, RHS);
- Pred = CmpInst::getSwappedPredicate(Pred);
- }
- assert(isa<SelectInst>(LHS) && "Not comparing with a select instruction!");
- SelectInst *SI = cast<SelectInst>(LHS);
- Value *Cond = SI->getCondition();
- Value *TV = SI->getTrueValue();
- Value *FV = SI->getFalseValue();
- // Now that we have "cmp select(Cond, TV, FV), RHS", analyse it.
- // Does "cmp TV, RHS" simplify?
- Value *TCmp = SimplifyCmpInst(Pred, TV, RHS, Q, MaxRecurse);
- if (TCmp == Cond) {
- // It not only simplified, it simplified to the select condition. Replace
- // it with 'true'.
- TCmp = getTrue(Cond->getType());
- } else if (!TCmp) {
- // It didn't simplify. However if "cmp TV, RHS" is equal to the select
- // condition then we can replace it with 'true'. Otherwise give up.
- if (!isSameCompare(Cond, Pred, TV, RHS))
- return nullptr;
- TCmp = getTrue(Cond->getType());
- }
- // Does "cmp FV, RHS" simplify?
- Value *FCmp = SimplifyCmpInst(Pred, FV, RHS, Q, MaxRecurse);
- if (FCmp == Cond) {
- // It not only simplified, it simplified to the select condition. Replace
- // it with 'false'.
- FCmp = getFalse(Cond->getType());
- } else if (!FCmp) {
- // It didn't simplify. However if "cmp FV, RHS" is equal to the select
- // condition then we can replace it with 'false'. Otherwise give up.
- if (!isSameCompare(Cond, Pred, FV, RHS))
- return nullptr;
- FCmp = getFalse(Cond->getType());
- }
- // If both sides simplified to the same value, then use it as the result of
- // the original comparison.
- if (TCmp == FCmp)
- return TCmp;
- // The remaining cases only make sense if the select condition has the same
- // type as the result of the comparison, so bail out if this is not so.
- if (Cond->getType()->isVectorTy() != RHS->getType()->isVectorTy())
- return nullptr;
- // If the false value simplified to false, then the result of the compare
- // is equal to "Cond && TCmp". This also catches the case when the false
- // value simplified to false and the true value to true, returning "Cond".
- if (match(FCmp, m_Zero()))
- if (Value *V = SimplifyAndInst(Cond, TCmp, Q, MaxRecurse))
- return V;
- // If the true value simplified to true, then the result of the compare
- // is equal to "Cond || FCmp".
- if (match(TCmp, m_One()))
- if (Value *V = SimplifyOrInst(Cond, FCmp, Q, MaxRecurse))
- return V;
- // Finally, if the false value simplified to true and the true value to
- // false, then the result of the compare is equal to "!Cond".
- if (match(FCmp, m_One()) && match(TCmp, m_Zero()))
- if (Value *V =
- SimplifyXorInst(Cond, Constant::getAllOnesValue(Cond->getType()),
- Q, MaxRecurse))
- return V;
- return nullptr;
- }
- /// ThreadBinOpOverPHI - In the case of a binary operation with an operand that
- /// is a PHI instruction, try to simplify the binop by seeing whether evaluating
- /// it on the incoming phi values yields the same result for every value. If so
- /// returns the common value, otherwise returns null.
- static Value *ThreadBinOpOverPHI(unsigned Opcode, Value *LHS, Value *RHS,
- const Query &Q, unsigned MaxRecurse) {
- // Recursion is always used, so bail out at once if we already hit the limit.
- if (!MaxRecurse--)
- return nullptr;
- PHINode *PI;
- if (isa<PHINode>(LHS)) {
- PI = cast<PHINode>(LHS);
- // Bail out if RHS and the phi may be mutually interdependent due to a loop.
- if (!ValueDominatesPHI(RHS, PI, Q.DT))
- return nullptr;
- } else {
- assert(isa<PHINode>(RHS) && "No PHI instruction operand!");
- PI = cast<PHINode>(RHS);
- // Bail out if LHS and the phi may be mutually interdependent due to a loop.
- if (!ValueDominatesPHI(LHS, PI, Q.DT))
- return nullptr;
- }
- // Evaluate the BinOp on the incoming phi values.
- Value *CommonValue = nullptr;
- for (Value *Incoming : PI->incoming_values()) {
- // If the incoming value is the phi node itself, it can safely be skipped.
- if (Incoming == PI) continue;
- Value *V = PI == LHS ?
- SimplifyBinOp(Opcode, Incoming, RHS, Q, MaxRecurse) :
- SimplifyBinOp(Opcode, LHS, Incoming, Q, MaxRecurse);
- // If the operation failed to simplify, or simplified to a different value
- // to previously, then give up.
- if (!V || (CommonValue && V != CommonValue))
- return nullptr;
- CommonValue = V;
- }
- return CommonValue;
- }
- /// ThreadCmpOverPHI - In the case of a comparison with a PHI instruction, try
- /// try to simplify the comparison by seeing whether comparing with all of the
- /// incoming phi values yields the same result every time. If so returns the
- /// common result, otherwise returns null.
- static Value *ThreadCmpOverPHI(CmpInst::Predicate Pred, Value *LHS, Value *RHS,
- const Query &Q, unsigned MaxRecurse) {
- // Recursion is always used, so bail out at once if we already hit the limit.
- if (!MaxRecurse--)
- return nullptr;
- // Make sure the phi is on the LHS.
- if (!isa<PHINode>(LHS)) {
- std::swap(LHS, RHS);
- Pred = CmpInst::getSwappedPredicate(Pred);
- }
- assert(isa<PHINode>(LHS) && "Not comparing with a phi instruction!");
- PHINode *PI = cast<PHINode>(LHS);
- // Bail out if RHS and the phi may be mutually interdependent due to a loop.
- if (!ValueDominatesPHI(RHS, PI, Q.DT))
- return nullptr;
- // Evaluate the BinOp on the incoming phi values.
- Value *CommonValue = nullptr;
- for (Value *Incoming : PI->incoming_values()) {
- // If the incoming value is the phi node itself, it can safely be skipped.
- if (Incoming == PI) continue;
- Value *V = SimplifyCmpInst(Pred, Incoming, RHS, Q, MaxRecurse);
- // If the operation failed to simplify, or simplified to a different value
- // to previously, then give up.
- if (!V || (CommonValue && V != CommonValue))
- return nullptr;
- CommonValue = V;
- }
- return CommonValue;
- }
- /// SimplifyAddInst - Given operands for an Add, see if we can
- /// fold the result. If not, this returns null.
- static Value *SimplifyAddInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
- const Query &Q, unsigned MaxRecurse) {
- if (Constant *CLHS = dyn_cast<Constant>(Op0)) {
- if (Constant *CRHS = dyn_cast<Constant>(Op1)) {
- Constant *Ops[] = { CLHS, CRHS };
- return ConstantFoldInstOperands(Instruction::Add, CLHS->getType(), Ops,
- Q.DL, Q.TLI);
- }
- // Canonicalize the constant to the RHS.
- std::swap(Op0, Op1);
- }
- // X + undef -> undef
- if (match(Op1, m_Undef()))
- return Op1;
- // X + 0 -> X
- if (match(Op1, m_Zero()))
- return Op0;
- // X + (Y - X) -> Y
- // (Y - X) + X -> Y
- // Eg: X + -X -> 0
- Value *Y = nullptr;
- if (match(Op1, m_Sub(m_Value(Y), m_Specific(Op0))) ||
- match(Op0, m_Sub(m_Value(Y), m_Specific(Op1))))
- return Y;
- // X + ~X -> -1 since ~X = -X-1
- if (match(Op0, m_Not(m_Specific(Op1))) ||
- match(Op1, m_Not(m_Specific(Op0))))
- return Constant::getAllOnesValue(Op0->getType());
- /// i1 add -> xor.
- if (MaxRecurse && Op0->getType()->isIntegerTy(1))
- if (Value *V = SimplifyXorInst(Op0, Op1, Q, MaxRecurse-1))
- return V;
- // Try some generic simplifications for associative operations.
- if (Value *V = SimplifyAssociativeBinOp(Instruction::Add, Op0, Op1, Q,
- MaxRecurse))
- return V;
- // Threading Add over selects and phi nodes is pointless, so don't bother.
- // Threading over the select in "A + select(cond, B, C)" means evaluating
- // "A+B" and "A+C" and seeing if they are equal; but they are equal if and
- // only if B and C are equal. If B and C are equal then (since we assume
- // that operands have already been simplified) "select(cond, B, C)" should
- // have been simplified to the common value of B and C already. Analysing
- // "A+B" and "A+C" thus gains nothing, but costs compile time. Similarly
- // for threading over phi nodes.
- return nullptr;
- }
- Value *llvm::SimplifyAddInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
- const DataLayout &DL, const TargetLibraryInfo *TLI,
- const DominatorTree *DT, AssumptionCache *AC,
- const Instruction *CxtI) {
- return ::SimplifyAddInst(Op0, Op1, isNSW, isNUW, Query(DL, TLI, DT, AC, CxtI),
- RecursionLimit);
- }
- /// \brief Compute the base pointer and cumulative constant offsets for V.
- ///
- /// This strips all constant offsets off of V, leaving it the base pointer, and
- /// accumulates the total constant offset applied in the returned constant. It
- /// returns 0 if V is not a pointer, and returns the constant '0' if there are
- /// no constant offsets applied.
- ///
- /// This is very similar to GetPointerBaseWithConstantOffset except it doesn't
- /// follow non-inbounds geps. This allows it to remain usable for icmp ult/etc.
- /// folding.
- static Constant *stripAndComputeConstantOffsets(const DataLayout &DL, Value *&V,
- bool AllowNonInbounds = false) {
- assert(V->getType()->getScalarType()->isPointerTy());
- Type *IntPtrTy = DL.getIntPtrType(V->getType())->getScalarType();
- APInt Offset = APInt::getNullValue(IntPtrTy->getIntegerBitWidth());
- // Even though we don't look through PHI nodes, we could be called on an
- // instruction in an unreachable block, which may be on a cycle.
- SmallPtrSet<Value *, 4> Visited;
- Visited.insert(V);
- do {
- if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
- if ((!AllowNonInbounds && !GEP->isInBounds()) ||
- !GEP->accumulateConstantOffset(DL, Offset))
- break;
- V = GEP->getPointerOperand();
- } else if (Operator::getOpcode(V) == Instruction::BitCast) {
- V = cast<Operator>(V)->getOperand(0);
- } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
- if (GA->mayBeOverridden())
- break;
- V = GA->getAliasee();
- } else {
- break;
- }
- assert(V->getType()->getScalarType()->isPointerTy() &&
- "Unexpected operand type!");
- } while (Visited.insert(V).second);
- Constant *OffsetIntPtr = ConstantInt::get(IntPtrTy, Offset);
- if (V->getType()->isVectorTy())
- return ConstantVector::getSplat(V->getType()->getVectorNumElements(),
- OffsetIntPtr);
- return OffsetIntPtr;
- }
- /// \brief Compute the constant difference between two pointer values.
- /// If the difference is not a constant, returns zero.
- static Constant *computePointerDifference(const DataLayout &DL, Value *LHS,
- Value *RHS) {
- Constant *LHSOffset = stripAndComputeConstantOffsets(DL, LHS);
- Constant *RHSOffset = stripAndComputeConstantOffsets(DL, RHS);
- // If LHS and RHS are not related via constant offsets to the same base
- // value, there is nothing we can do here.
- if (LHS != RHS)
- return nullptr;
- // Otherwise, the difference of LHS - RHS can be computed as:
- // LHS - RHS
- // = (LHSOffset + Base) - (RHSOffset + Base)
- // = LHSOffset - RHSOffset
- return ConstantExpr::getSub(LHSOffset, RHSOffset);
- }
- /// SimplifySubInst - Given operands for a Sub, see if we can
- /// fold the result. If not, this returns null.
- static Value *SimplifySubInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
- const Query &Q, unsigned MaxRecurse) {
- if (Constant *CLHS = dyn_cast<Constant>(Op0))
- if (Constant *CRHS = dyn_cast<Constant>(Op1)) {
- Constant *Ops[] = { CLHS, CRHS };
- return ConstantFoldInstOperands(Instruction::Sub, CLHS->getType(),
- Ops, Q.DL, Q.TLI);
- }
- // X - undef -> undef
- // undef - X -> undef
- if (match(Op0, m_Undef()) || match(Op1, m_Undef()))
- return UndefValue::get(Op0->getType());
- // X - 0 -> X
- if (match(Op1, m_Zero()))
- return Op0;
- // X - X -> 0
- if (Op0 == Op1)
- return Constant::getNullValue(Op0->getType());
- // 0 - X -> 0 if the sub is NUW.
- if (isNUW && match(Op0, m_Zero()))
- return Op0;
- // (X + Y) - Z -> X + (Y - Z) or Y + (X - Z) if everything simplifies.
- // For example, (X + Y) - Y -> X; (Y + X) - Y -> X
- Value *X = nullptr, *Y = nullptr, *Z = Op1;
- if (MaxRecurse && match(Op0, m_Add(m_Value(X), m_Value(Y)))) { // (X + Y) - Z
- // See if "V === Y - Z" simplifies.
- if (Value *V = SimplifyBinOp(Instruction::Sub, Y, Z, Q, MaxRecurse-1))
- // It does! Now see if "X + V" simplifies.
- if (Value *W = SimplifyBinOp(Instruction::Add, X, V, Q, MaxRecurse-1)) {
- // It does, we successfully reassociated!
- ++NumReassoc;
- return W;
- }
- // See if "V === X - Z" simplifies.
- if (Value *V = SimplifyBinOp(Instruction::Sub, X, Z, Q, MaxRecurse-1))
- // It does! Now see if "Y + V" simplifies.
- if (Value *W = SimplifyBinOp(Instruction::Add, Y, V, Q, MaxRecurse-1)) {
- // It does, we successfully reassociated!
- ++NumReassoc;
- return W;
- }
- }
- // X - (Y + Z) -> (X - Y) - Z or (X - Z) - Y if everything simplifies.
- // For example, X - (X + 1) -> -1
- X = Op0;
- if (MaxRecurse && match(Op1, m_Add(m_Value(Y), m_Value(Z)))) { // X - (Y + Z)
- // See if "V === X - Y" simplifies.
- if (Value *V = SimplifyBinOp(Instruction::Sub, X, Y, Q, MaxRecurse-1))
- // It does! Now see if "V - Z" simplifies.
- if (Value *W = SimplifyBinOp(Instruction::Sub, V, Z, Q, MaxRecurse-1)) {
- // It does, we successfully reassociated!
- ++NumReassoc;
- return W;
- }
- // See if "V === X - Z" simplifies.
- if (Value *V = SimplifyBinOp(Instruction::Sub, X, Z, Q, MaxRecurse-1))
- // It does! Now see if "V - Y" simplifies.
- if (Value *W = SimplifyBinOp(Instruction::Sub, V, Y, Q, MaxRecurse-1)) {
- // It does, we successfully reassociated!
- ++NumReassoc;
- return W;
- }
- }
- // Z - (X - Y) -> (Z - X) + Y if everything simplifies.
- // For example, X - (X - Y) -> Y.
- Z = Op0;
- if (MaxRecurse && match(Op1, m_Sub(m_Value(X), m_Value(Y)))) // Z - (X - Y)
- // See if "V === Z - X" simplifies.
- if (Value *V = SimplifyBinOp(Instruction::Sub, Z, X, Q, MaxRecurse-1))
- // It does! Now see if "V + Y" simplifies.
- if (Value *W = SimplifyBinOp(Instruction::Add, V, Y, Q, MaxRecurse-1)) {
- // It does, we successfully reassociated!
- ++NumReassoc;
- return W;
- }
- // trunc(X) - trunc(Y) -> trunc(X - Y) if everything simplifies.
- if (MaxRecurse && match(Op0, m_Trunc(m_Value(X))) &&
- match(Op1, m_Trunc(m_Value(Y))))
- if (X->getType() == Y->getType())
- // See if "V === X - Y" simplifies.
- if (Value *V = SimplifyBinOp(Instruction::Sub, X, Y, Q, MaxRecurse-1))
- // It does! Now see if "trunc V" simplifies.
- if (Value *W = SimplifyTruncInst(V, Op0->getType(), Q, MaxRecurse-1))
- // It does, return the simplified "trunc V".
- return W;
- // Variations on GEP(base, I, ...) - GEP(base, i, ...) -> GEP(null, I-i, ...).
- if (match(Op0, m_PtrToInt(m_Value(X))) &&
- match(Op1, m_PtrToInt(m_Value(Y))))
- if (Constant *Result = computePointerDifference(Q.DL, X, Y))
- return ConstantExpr::getIntegerCast(Result, Op0->getType(), true);
- // i1 sub -> xor.
- if (MaxRecurse && Op0->getType()->isIntegerTy(1))
- if (Value *V = SimplifyXorInst(Op0, Op1, Q, MaxRecurse-1))
- return V;
- // Threading Sub over selects and phi nodes is pointless, so don't bother.
- // Threading over the select in "A - select(cond, B, C)" means evaluating
- // "A-B" and "A-C" and seeing if they are equal; but they are equal if and
- // only if B and C are equal. If B and C are equal then (since we assume
- // that operands have already been simplified) "select(cond, B, C)" should
- // have been simplified to the common value of B and C already. Analysing
- // "A-B" and "A-C" thus gains nothing, but costs compile time. Similarly
- // for threading over phi nodes.
- return nullptr;
- }
- Value *llvm::SimplifySubInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
- const DataLayout &DL, const TargetLibraryInfo *TLI,
- const DominatorTree *DT, AssumptionCache *AC,
- const Instruction *CxtI) {
- return ::SimplifySubInst(Op0, Op1, isNSW, isNUW, Query(DL, TLI, DT, AC, CxtI),
- RecursionLimit);
- }
- /// Given operands for an FAdd, see if we can fold the result. If not, this
- /// returns null.
- static Value *SimplifyFAddInst(Value *Op0, Value *Op1, FastMathFlags FMF,
- const Query &Q, unsigned MaxRecurse) {
- if (Constant *CLHS = dyn_cast<Constant>(Op0)) {
- if (Constant *CRHS = dyn_cast<Constant>(Op1)) {
- Constant *Ops[] = { CLHS, CRHS };
- return ConstantFoldInstOperands(Instruction::FAdd, CLHS->getType(),
- Ops, Q.DL, Q.TLI);
- }
- // HLSL Change Begins.
- if (ConstantFP *FP = dyn_cast<ConstantFP>(Op0))
- if (FP->getValueAPF().isNaN())
- return Op0;
- // HLSL Change Ends.
- // Canonicalize the constant to the RHS.
- std::swap(Op0, Op1);
- }
- // HLSL Change Begins.
- if (ConstantFP *FP = dyn_cast<ConstantFP>(Op0))
- if (FP->getValueAPF().isNaN())
- return Op0;
- // HLSL Change Ends.
- // fadd X, -0 ==> X
- if (match(Op1, m_NegZero()))
- return Op0;
- // fadd X, 0 ==> X, when we know X is not -0
- if (match(Op1, m_Zero()) &&
- (FMF.noSignedZeros() || CannotBeNegativeZero(Op0)))
- return Op0;
- // fadd [nnan ninf] X, (fsub [nnan ninf] 0, X) ==> 0
- // where nnan and ninf have to occur at least once somewhere in this
- // expression
- Value *SubOp = nullptr;
- if (match(Op1, m_FSub(m_AnyZero(), m_Specific(Op0))))
- SubOp = Op1;
- else if (match(Op0, m_FSub(m_AnyZero(), m_Specific(Op1))))
- SubOp = Op0;
- if (SubOp) {
- Instruction *FSub = cast<Instruction>(SubOp);
- if ((FMF.noNaNs() || FSub->hasNoNaNs()) &&
- (FMF.noInfs() || FSub->hasNoInfs()))
- return Constant::getNullValue(Op0->getType());
- }
- return nullptr;
- }
- /// Given operands for an FSub, see if we can fold the result. If not, this
- /// returns null.
- static Value *SimplifyFSubInst(Value *Op0, Value *Op1, FastMathFlags FMF,
- const Query &Q, unsigned MaxRecurse) {
- if (Constant *CLHS = dyn_cast<Constant>(Op0)) {
- if (Constant *CRHS = dyn_cast<Constant>(Op1)) {
- Constant *Ops[] = { CLHS, CRHS };
- return ConstantFoldInstOperands(Instruction::FSub, CLHS->getType(),
- Ops, Q.DL, Q.TLI);
- }
- // HLSL Change Begins.
- if (ConstantFP *FP = dyn_cast<ConstantFP>(Op0))
- if (FP->getValueAPF().isNaN())
- return Op0;
- // HLSL Change Ends.
- }
- // HLSL Change Begins.
- if (ConstantFP *FP = dyn_cast<ConstantFP>(Op1))
- if (FP->getValueAPF().isNaN())
- return Op1;
- // HLSL Change Ends.
- // fsub X, 0 ==> X
- if (match(Op1, m_Zero()))
- return Op0;
- // fsub X, -0 ==> X, when we know X is not -0
- if (match(Op1, m_NegZero()) &&
- (FMF.noSignedZeros() || CannotBeNegativeZero(Op0)))
- return Op0;
- // fsub 0, (fsub -0.0, X) ==> X
- Value *X;
- if (match(Op0, m_AnyZero())) {
- if (match(Op1, m_FSub(m_NegZero(), m_Value(X))))
- return X;
- if (FMF.noSignedZeros() && match(Op1, m_FSub(m_AnyZero(), m_Value(X))))
- return X;
- }
- // fsub nnan x, x ==> 0.0
- if (FMF.noNaNs() && Op0 == Op1)
- return Constant::getNullValue(Op0->getType());
- return nullptr;
- }
- /// Given the operands for an FMul, see if we can fold the result
- static Value *SimplifyFMulInst(Value *Op0, Value *Op1,
- FastMathFlags FMF,
- const Query &Q,
- unsigned MaxRecurse) {
- if (Constant *CLHS = dyn_cast<Constant>(Op0)) {
- if (Constant *CRHS = dyn_cast<Constant>(Op1)) {
- Constant *Ops[] = {CLHS, CRHS};
- return ConstantFoldInstOperands(Instruction::FMul, CLHS->getType(), Ops,
- Q.DL, Q.TLI);
- }
- // HLSL Change Begins.
- if (ConstantFP *FP = dyn_cast<ConstantFP>(Op0))
- if (FP->getValueAPF().isNaN())
- return Op0;
- // HLSL Change Ends.
- // Canonicalize the constant to the RHS.
- std::swap(Op0, Op1);
- }
- // HLSL Change Begins.
- if (ConstantFP *FP = dyn_cast<ConstantFP>(Op0))
- if (FP->getValueAPF().isNaN())
- return Op0;
- // HLSL Change Ends.
- // fmul X, 1.0 ==> X
- if (match(Op1, m_FPOne()))
- return Op0;
- // fmul nnan nsz X, 0 ==> 0
- if (FMF.noNaNs() && FMF.noSignedZeros() && match(Op1, m_AnyZero()))
- return Op1;
- return nullptr;
- }
- /// SimplifyMulInst - Given operands for a Mul, see if we can
- /// fold the result. If not, this returns null.
- static Value *SimplifyMulInst(Value *Op0, Value *Op1, const Query &Q,
- unsigned MaxRecurse) {
- if (Constant *CLHS = dyn_cast<Constant>(Op0)) {
- if (Constant *CRHS = dyn_cast<Constant>(Op1)) {
- Constant *Ops[] = { CLHS, CRHS };
- return ConstantFoldInstOperands(Instruction::Mul, CLHS->getType(),
- Ops, Q.DL, Q.TLI);
- }
- // Canonicalize the constant to the RHS.
- std::swap(Op0, Op1);
- }
- // X * undef -> 0
- if (match(Op1, m_Undef()))
- return Constant::getNullValue(Op0->getType());
- // X * 0 -> 0
- if (match(Op1, m_Zero()))
- return Op1;
- // X * 1 -> X
- if (match(Op1, m_One()))
- return Op0;
- // (X / Y) * Y -> X if the division is exact.
- Value *X = nullptr;
- if (match(Op0, m_Exact(m_IDiv(m_Value(X), m_Specific(Op1)))) || // (X / Y) * Y
- match(Op1, m_Exact(m_IDiv(m_Value(X), m_Specific(Op0))))) // Y * (X / Y)
- return X;
- // i1 mul -> and.
- if (MaxRecurse && Op0->getType()->isIntegerTy(1))
- if (Value *V = SimplifyAndInst(Op0, Op1, Q, MaxRecurse-1))
- return V;
- // Try some generic simplifications for associative operations.
- if (Value *V = SimplifyAssociativeBinOp(Instruction::Mul, Op0, Op1, Q,
- MaxRecurse))
- return V;
- // Mul distributes over Add. Try some generic simplifications based on this.
- if (Value *V = ExpandBinOp(Instruction::Mul, Op0, Op1, Instruction::Add,
- Q, MaxRecurse))
- return V;
- // If the operation is with the result of a select instruction, check whether
- // operating on either branch of the select always yields the same value.
- if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
- if (Value *V = ThreadBinOpOverSelect(Instruction::Mul, Op0, Op1, Q,
- MaxRecurse))
- return V;
- // If the operation is with the result of a phi instruction, check whether
- // operating on all incoming values of the phi always yields the same value.
- if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
- if (Value *V = ThreadBinOpOverPHI(Instruction::Mul, Op0, Op1, Q,
- MaxRecurse))
- return V;
- return nullptr;
- }
- Value *llvm::SimplifyFAddInst(Value *Op0, Value *Op1, FastMathFlags FMF,
- const DataLayout &DL,
- const TargetLibraryInfo *TLI,
- const DominatorTree *DT, AssumptionCache *AC,
- const Instruction *CxtI) {
- return ::SimplifyFAddInst(Op0, Op1, FMF, Query(DL, TLI, DT, AC, CxtI),
- RecursionLimit);
- }
- Value *llvm::SimplifyFSubInst(Value *Op0, Value *Op1, FastMathFlags FMF,
- const DataLayout &DL,
- const TargetLibraryInfo *TLI,
- const DominatorTree *DT, AssumptionCache *AC,
- const Instruction *CxtI) {
- return ::SimplifyFSubInst(Op0, Op1, FMF, Query(DL, TLI, DT, AC, CxtI),
- RecursionLimit);
- }
- Value *llvm::SimplifyFMulInst(Value *Op0, Value *Op1, FastMathFlags FMF,
- const DataLayout &DL,
- const TargetLibraryInfo *TLI,
- const DominatorTree *DT, AssumptionCache *AC,
- const Instruction *CxtI) {
- return ::SimplifyFMulInst(Op0, Op1, FMF, Query(DL, TLI, DT, AC, CxtI),
- RecursionLimit);
- }
- Value *llvm::SimplifyMulInst(Value *Op0, Value *Op1, const DataLayout &DL,
- const TargetLibraryInfo *TLI,
- const DominatorTree *DT, AssumptionCache *AC,
- const Instruction *CxtI) {
- return ::SimplifyMulInst(Op0, Op1, Query(DL, TLI, DT, AC, CxtI),
- RecursionLimit);
- }
- /// SimplifyDiv - Given operands for an SDiv or UDiv, see if we can
- /// fold the result. If not, this returns null.
- static Value *SimplifyDiv(Instruction::BinaryOps Opcode, Value *Op0, Value *Op1,
- const Query &Q, unsigned MaxRecurse) {
- if (Constant *C0 = dyn_cast<Constant>(Op0)) {
- if (Constant *C1 = dyn_cast<Constant>(Op1)) {
- Constant *Ops[] = { C0, C1 };
- return ConstantFoldInstOperands(Opcode, C0->getType(), Ops, Q.DL, Q.TLI);
- }
- }
- bool isSigned = Opcode == Instruction::SDiv;
- // X / undef -> undef
- if (match(Op1, m_Undef()))
- return Op1;
- // X / 0 -> undef, we don't need to preserve faults!
- if (match(Op1, m_Zero()))
- return UndefValue::get(Op1->getType());
- // undef / X -> 0
- if (match(Op0, m_Undef()))
- return Constant::getNullValue(Op0->getType());
- // 0 / X -> 0, we don't need to preserve faults!
- if (match(Op0, m_Zero()))
- return Op0;
- // X / 1 -> X
- if (match(Op1, m_One()))
- return Op0;
- if (Op0->getType()->isIntegerTy(1))
- // It can't be division by zero, hence it must be division by one.
- return Op0;
- // X / X -> 1
- if (Op0 == Op1)
- return ConstantInt::get(Op0->getType(), 1);
- // (X * Y) / Y -> X if the multiplication does not overflow.
- Value *X = nullptr, *Y = nullptr;
- if (match(Op0, m_Mul(m_Value(X), m_Value(Y))) && (X == Op1 || Y == Op1)) {
- if (Y != Op1) std::swap(X, Y); // Ensure expression is (X * Y) / Y, Y = Op1
- OverflowingBinaryOperator *Mul = cast<OverflowingBinaryOperator>(Op0);
- // If the Mul knows it does not overflow, then we are good to go.
- if ((isSigned && Mul->hasNoSignedWrap()) ||
- (!isSigned && Mul->hasNoUnsignedWrap()))
- return X;
- // If X has the form X = A / Y then X * Y cannot overflow.
- if (BinaryOperator *Div = dyn_cast<BinaryOperator>(X))
- if (Div->getOpcode() == Opcode && Div->getOperand(1) == Y)
- return X;
- }
- // (X rem Y) / Y -> 0
- if ((isSigned && match(Op0, m_SRem(m_Value(), m_Specific(Op1)))) ||
- (!isSigned && match(Op0, m_URem(m_Value(), m_Specific(Op1)))))
- return Constant::getNullValue(Op0->getType());
- // (X /u C1) /u C2 -> 0 if C1 * C2 overflow
- ConstantInt *C1, *C2;
- if (!isSigned && match(Op0, m_UDiv(m_Value(X), m_ConstantInt(C1))) &&
- match(Op1, m_ConstantInt(C2))) {
- bool Overflow;
- C1->getValue().umul_ov(C2->getValue(), Overflow);
- if (Overflow)
- return Constant::getNullValue(Op0->getType());
- }
- // If the operation is with the result of a select instruction, check whether
- // operating on either branch of the select always yields the same value.
- if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
- if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse))
- return V;
- // If the operation is with the result of a phi instruction, check whether
- // operating on all incoming values of the phi always yields the same value.
- if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
- if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse))
- return V;
- return nullptr;
- }
- /// SimplifySDivInst - Given operands for an SDiv, see if we can
- /// fold the result. If not, this returns null.
- static Value *SimplifySDivInst(Value *Op0, Value *Op1, const Query &Q,
- unsigned MaxRecurse) {
- if (Value *V = SimplifyDiv(Instruction::SDiv, Op0, Op1, Q, MaxRecurse))
- return V;
- return nullptr;
- }
- Value *llvm::SimplifySDivInst(Value *Op0, Value *Op1, const DataLayout &DL,
- const TargetLibraryInfo *TLI,
- const DominatorTree *DT, AssumptionCache *AC,
- const Instruction *CxtI) {
- return ::SimplifySDivInst(Op0, Op1, Query(DL, TLI, DT, AC, CxtI),
- RecursionLimit);
- }
- /// SimplifyUDivInst - Given operands for a UDiv, see if we can
- /// fold the result. If not, this returns null.
- static Value *SimplifyUDivInst(Value *Op0, Value *Op1, const Query &Q,
- unsigned MaxRecurse) {
- if (Value *V = SimplifyDiv(Instruction::UDiv, Op0, Op1, Q, MaxRecurse))
- return V;
- return nullptr;
- }
- Value *llvm::SimplifyUDivInst(Value *Op0, Value *Op1, const DataLayout &DL,
- const TargetLibraryInfo *TLI,
- const DominatorTree *DT, AssumptionCache *AC,
- const Instruction *CxtI) {
- return ::SimplifyUDivInst(Op0, Op1, Query(DL, TLI, DT, AC, CxtI),
- RecursionLimit);
- }
- static Value *SimplifyFDivInst(Value *Op0, Value *Op1, FastMathFlags FMF,
- const Query &Q, unsigned) {
- // HLSL Change Begins.
- if (Constant *C0 = dyn_cast<Constant>(Op0)) {
- if (Constant *C1 = dyn_cast<Constant>(Op1)) {
- Constant *Ops[] = {C0, C1};
- return ConstantFoldInstOperands(Instruction::FDiv, C0->getType(), Ops,
- Q.DL, Q.TLI);
- }
- if (ConstantFP *FP = dyn_cast<ConstantFP>(C0))
- if (FP->getValueAPF().isNaN())
- return Op0;
- }
- if (ConstantFP *FP = dyn_cast<ConstantFP>(Op1))
- if (FP->getValueAPF().isNaN())
- return Op1;
- // HLSL Change Ends.
- // undef / X -> undef (the undef could be a snan).
- if (match(Op0, m_Undef()))
- return Op0;
- // X / undef -> undef
- if (match(Op1, m_Undef()))
- return Op1;
- // 0 / X -> 0
- // Requires that NaNs are off (X could be zero) and signed zeroes are
- // ignored (X could be positive or negative, so the output sign is unknown).
- if (FMF.noNaNs() && FMF.noSignedZeros() && match(Op0, m_AnyZero()))
- return Op0;
- if (FMF.noNaNs()) {
- // X / X -> 1.0 is legal when NaNs are ignored.
- if (Op0 == Op1)
- return ConstantFP::get(Op0->getType(), 1.0);
- // -X / X -> -1.0 and
- // X / -X -> -1.0 are legal when NaNs are ignored.
- // We can ignore signed zeros because +-0.0/+-0.0 is NaN and ignored.
- if ((BinaryOperator::isFNeg(Op0, /*IgnoreZeroSign=*/true) &&
- BinaryOperator::getFNegArgument(Op0) == Op1) ||
- (BinaryOperator::isFNeg(Op1, /*IgnoreZeroSign=*/true) &&
- BinaryOperator::getFNegArgument(Op1) == Op0))
- return ConstantFP::get(Op0->getType(), -1.0);
- }
- return nullptr;
- }
- Value *llvm::SimplifyFDivInst(Value *Op0, Value *Op1, FastMathFlags FMF,
- const DataLayout &DL,
- const TargetLibraryInfo *TLI,
- const DominatorTree *DT, AssumptionCache *AC,
- const Instruction *CxtI) {
- return ::SimplifyFDivInst(Op0, Op1, FMF, Query(DL, TLI, DT, AC, CxtI),
- RecursionLimit);
- }
- /// SimplifyRem - Given operands for an SRem or URem, see if we can
- /// fold the result. If not, this returns null.
- static Value *SimplifyRem(Instruction::BinaryOps Opcode, Value *Op0, Value *Op1,
- const Query &Q, unsigned MaxRecurse) {
- if (Constant *C0 = dyn_cast<Constant>(Op0)) {
- if (Constant *C1 = dyn_cast<Constant>(Op1)) {
- Constant *Ops[] = { C0, C1 };
- return ConstantFoldInstOperands(Opcode, C0->getType(), Ops, Q.DL, Q.TLI);
- }
- }
- // X % undef -> undef
- if (match(Op1, m_Undef()))
- return Op1;
- // undef % X -> 0
- if (match(Op0, m_Undef()))
- return Constant::getNullValue(Op0->getType());
- // 0 % X -> 0, we don't need to preserve faults!
- if (match(Op0, m_Zero()))
- return Op0;
- // X % 0 -> undef, we don't need to preserve faults!
- if (match(Op1, m_Zero()))
- return UndefValue::get(Op0->getType());
- // X % 1 -> 0
- if (match(Op1, m_One()))
- return Constant::getNullValue(Op0->getType());
- if (Op0->getType()->isIntegerTy(1))
- // It can't be remainder by zero, hence it must be remainder by one.
- return Constant::getNullValue(Op0->getType());
- // X % X -> 0
- if (Op0 == Op1)
- return Constant::getNullValue(Op0->getType());
- // (X % Y) % Y -> X % Y
- if ((Opcode == Instruction::SRem &&
- match(Op0, m_SRem(m_Value(), m_Specific(Op1)))) ||
- (Opcode == Instruction::URem &&
- match(Op0, m_URem(m_Value(), m_Specific(Op1)))))
- return Op0;
- // If the operation is with the result of a select instruction, check whether
- // operating on either branch of the select always yields the same value.
- if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
- if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse))
- return V;
- // If the operation is with the result of a phi instruction, check whether
- // operating on all incoming values of the phi always yields the same value.
- if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
- if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse))
- return V;
- return nullptr;
- }
- /// SimplifySRemInst - Given operands for an SRem, see if we can
- /// fold the result. If not, this returns null.
- static Value *SimplifySRemInst(Value *Op0, Value *Op1, const Query &Q,
- unsigned MaxRecurse) {
- if (Value *V = SimplifyRem(Instruction::SRem, Op0, Op1, Q, MaxRecurse))
- return V;
- return nullptr;
- }
- Value *llvm::SimplifySRemInst(Value *Op0, Value *Op1, const DataLayout &DL,
- const TargetLibraryInfo *TLI,
- const DominatorTree *DT, AssumptionCache *AC,
- const Instruction *CxtI) {
- return ::SimplifySRemInst(Op0, Op1, Query(DL, TLI, DT, AC, CxtI),
- RecursionLimit);
- }
- /// SimplifyURemInst - Given operands for a URem, see if we can
- /// fold the result. If not, this returns null.
- static Value *SimplifyURemInst(Value *Op0, Value *Op1, const Query &Q,
- unsigned MaxRecurse) {
- if (Value *V = SimplifyRem(Instruction::URem, Op0, Op1, Q, MaxRecurse))
- return V;
- return nullptr;
- }
- Value *llvm::SimplifyURemInst(Value *Op0, Value *Op1, const DataLayout &DL,
- const TargetLibraryInfo *TLI,
- const DominatorTree *DT, AssumptionCache *AC,
- const Instruction *CxtI) {
- return ::SimplifyURemInst(Op0, Op1, Query(DL, TLI, DT, AC, CxtI),
- RecursionLimit);
- }
- static Value *SimplifyFRemInst(Value *Op0, Value *Op1, FastMathFlags FMF,
- const Query &Q, unsigned) {
- // HLSL Change Begins.
- if (Constant *C0 = dyn_cast<Constant>(Op0)) {
- if (Constant *C1 = dyn_cast<Constant>(Op1)) {
- Constant *Ops[] = {C0, C1};
- return ConstantFoldInstOperands(Instruction::FRem, C0->getType(), Ops,
- Q.DL, Q.TLI);
- }
- if (ConstantFP *FP = dyn_cast<ConstantFP>(C0))
- if (FP->getValueAPF().isNaN())
- return Op0;
- }
- if (ConstantFP *FP = dyn_cast<ConstantFP>(Op1))
- if (FP->getValueAPF().isNaN())
- return Op1;
- // HLSL Change Ends.
- // undef % X -> undef (the undef could be a snan).
- if (match(Op0, m_Undef()))
- return Op0;
- // X % undef -> undef
- if (match(Op1, m_Undef()))
- return Op1;
- // 0 % X -> 0
- // Requires that NaNs are off (X could be zero) and signed zeroes are
- // ignored (X could be positive or negative, so the output sign is unknown).
- if (FMF.noNaNs() && FMF.noSignedZeros() && match(Op0, m_AnyZero()))
- return Op0;
- return nullptr;
- }
- Value *llvm::SimplifyFRemInst(Value *Op0, Value *Op1, FastMathFlags FMF,
- const DataLayout &DL,
- const TargetLibraryInfo *TLI,
- const DominatorTree *DT, AssumptionCache *AC,
- const Instruction *CxtI) {
- return ::SimplifyFRemInst(Op0, Op1, FMF, Query(DL, TLI, DT, AC, CxtI),
- RecursionLimit);
- }
- /// isUndefShift - Returns true if a shift by \c Amount always yields undef.
- static bool isUndefShift(Value *Amount) {
- Constant *C = dyn_cast<Constant>(Amount);
- if (!C)
- return false;
- // X shift by undef -> undef because it may shift by the bitwidth.
- if (isa<UndefValue>(C))
- return true;
- // Shifting by the bitwidth or more is undefined.
- if (ConstantInt *CI = dyn_cast<ConstantInt>(C))
- if (CI->getValue().getLimitedValue() >=
- CI->getType()->getScalarSizeInBits())
- return true;
- // If all lanes of a vector shift are undefined the whole shift is.
- if (isa<ConstantVector>(C) || isa<ConstantDataVector>(C)) {
- for (unsigned I = 0, E = C->getType()->getVectorNumElements(); I != E; ++I)
- if (!isUndefShift(C->getAggregateElement(I)))
- return false;
- return true;
- }
- return false;
- }
- /// SimplifyShift - Given operands for an Shl, LShr or AShr, see if we can
- /// fold the result. If not, this returns null.
- static Value *SimplifyShift(unsigned Opcode, Value *Op0, Value *Op1,
- const Query &Q, unsigned MaxRecurse) {
- if (Constant *C0 = dyn_cast<Constant>(Op0)) {
- if (Constant *C1 = dyn_cast<Constant>(Op1)) {
- Constant *Ops[] = { C0, C1 };
- return ConstantFoldInstOperands(Opcode, C0->getType(), Ops, Q.DL, Q.TLI);
- }
- }
- // 0 shift by X -> 0
- if (match(Op0, m_Zero()))
- return Op0;
- // X shift by 0 -> X
- if (match(Op1, m_Zero()))
- return Op0;
- // Fold undefined shifts.
- if (isUndefShift(Op1))
- return UndefValue::get(Op0->getType());
- // If the operation is with the result of a select instruction, check whether
- // operating on either branch of the select always yields the same value.
- if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
- if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse))
- return V;
- // If the operation is with the result of a phi instruction, check whether
- // operating on all incoming values of the phi always yields the same value.
- if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
- if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse))
- return V;
- return nullptr;
- }
- /// \brief Given operands for an Shl, LShr or AShr, see if we can
- /// fold the result. If not, this returns null.
- static Value *SimplifyRightShift(unsigned Opcode, Value *Op0, Value *Op1,
- bool isExact, const Query &Q,
- unsigned MaxRecurse) {
- if (Value *V = SimplifyShift(Opcode, Op0, Op1, Q, MaxRecurse))
- return V;
- // X >> X -> 0
- if (Op0 == Op1)
- return Constant::getNullValue(Op0->getType());
- // undef >> X -> 0
- // undef >> X -> undef (if it's exact)
- if (match(Op0, m_Undef()))
- return isExact ? Op0 : Constant::getNullValue(Op0->getType());
- // The low bit cannot be shifted out of an exact shift if it is set.
- if (isExact) {
- unsigned BitWidth = Op0->getType()->getScalarSizeInBits();
- APInt Op0KnownZero(BitWidth, 0);
- APInt Op0KnownOne(BitWidth, 0);
- computeKnownBits(Op0, Op0KnownZero, Op0KnownOne, Q.DL, /*Depth=*/0, Q.AC,
- Q.CxtI, Q.DT);
- if (Op0KnownOne[0])
- return Op0;
- }
- return nullptr;
- }
- /// SimplifyShlInst - Given operands for an Shl, see if we can
- /// fold the result. If not, this returns null.
- static Value *SimplifyShlInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
- const Query &Q, unsigned MaxRecurse) {
- if (Value *V = SimplifyShift(Instruction::Shl, Op0, Op1, Q, MaxRecurse))
- return V;
- // undef << X -> 0
- // undef << X -> undef if (if it's NSW/NUW)
- if (match(Op0, m_Undef()))
- return isNSW || isNUW ? Op0 : Constant::getNullValue(Op0->getType());
- // (X >> A) << A -> X
- Value *X;
- if (match(Op0, m_Exact(m_Shr(m_Value(X), m_Specific(Op1)))))
- return X;
- return nullptr;
- }
- Value *llvm::SimplifyShlInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
- const DataLayout &DL, const TargetLibraryInfo *TLI,
- const DominatorTree *DT, AssumptionCache *AC,
- const Instruction *CxtI) {
- return ::SimplifyShlInst(Op0, Op1, isNSW, isNUW, Query(DL, TLI, DT, AC, CxtI),
- RecursionLimit);
- }
- /// SimplifyLShrInst - Given operands for an LShr, see if we can
- /// fold the result. If not, this returns null.
- static Value *SimplifyLShrInst(Value *Op0, Value *Op1, bool isExact,
- const Query &Q, unsigned MaxRecurse) {
- if (Value *V = SimplifyRightShift(Instruction::LShr, Op0, Op1, isExact, Q,
- MaxRecurse))
- return V;
- // (X << A) >> A -> X
- Value *X;
- if (match(Op0, m_NUWShl(m_Value(X), m_Specific(Op1))))
- return X;
- return nullptr;
- }
- Value *llvm::SimplifyLShrInst(Value *Op0, Value *Op1, bool isExact,
- const DataLayout &DL,
- const TargetLibraryInfo *TLI,
- const DominatorTree *DT, AssumptionCache *AC,
- const Instruction *CxtI) {
- return ::SimplifyLShrInst(Op0, Op1, isExact, Query(DL, TLI, DT, AC, CxtI),
- RecursionLimit);
- }
- /// SimplifyAShrInst - Given operands for an AShr, see if we can
- /// fold the result. If not, this returns null.
- static Value *SimplifyAShrInst(Value *Op0, Value *Op1, bool isExact,
- const Query &Q, unsigned MaxRecurse) {
- if (Value *V = SimplifyRightShift(Instruction::AShr, Op0, Op1, isExact, Q,
- MaxRecurse))
- return V;
- // all ones >>a X -> all ones
- if (match(Op0, m_AllOnes()))
- return Op0;
- // (X << A) >> A -> X
- Value *X;
- if (match(Op0, m_NSWShl(m_Value(X), m_Specific(Op1))))
- return X;
- // Arithmetic shifting an all-sign-bit value is a no-op.
- unsigned NumSignBits = ComputeNumSignBits(Op0, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
- if (NumSignBits == Op0->getType()->getScalarSizeInBits())
- return Op0;
- return nullptr;
- }
- Value *llvm::SimplifyAShrInst(Value *Op0, Value *Op1, bool isExact,
- const DataLayout &DL,
- const TargetLibraryInfo *TLI,
- const DominatorTree *DT, AssumptionCache *AC,
- const Instruction *CxtI) {
- return ::SimplifyAShrInst(Op0, Op1, isExact, Query(DL, TLI, DT, AC, CxtI),
- RecursionLimit);
- }
- static Value *simplifyUnsignedRangeCheck(ICmpInst *ZeroICmp,
- ICmpInst *UnsignedICmp, bool IsAnd) {
- Value *X, *Y;
- ICmpInst::Predicate EqPred;
- if (!match(ZeroICmp, m_ICmp(EqPred, m_Value(Y), m_Zero())) ||
- !ICmpInst::isEquality(EqPred))
- return nullptr;
- ICmpInst::Predicate UnsignedPred;
- if (match(UnsignedICmp, m_ICmp(UnsignedPred, m_Value(X), m_Specific(Y))) &&
- ICmpInst::isUnsigned(UnsignedPred))
- ;
- else if (match(UnsignedICmp,
- m_ICmp(UnsignedPred, m_Value(Y), m_Specific(X))) &&
- ICmpInst::isUnsigned(UnsignedPred))
- UnsignedPred = ICmpInst::getSwappedPredicate(UnsignedPred);
- else
- return nullptr;
- // X < Y && Y != 0 --> X < Y
- // X < Y || Y != 0 --> Y != 0
- if (UnsignedPred == ICmpInst::ICMP_ULT && EqPred == ICmpInst::ICMP_NE)
- return IsAnd ? UnsignedICmp : ZeroICmp;
- // X >= Y || Y != 0 --> true
- // X >= Y || Y == 0 --> X >= Y
- if (UnsignedPred == ICmpInst::ICMP_UGE && !IsAnd) {
- if (EqPred == ICmpInst::ICMP_NE)
- return getTrue(UnsignedICmp->getType());
- return UnsignedICmp;
- }
- // X < Y && Y == 0 --> false
- if (UnsignedPred == ICmpInst::ICMP_ULT && EqPred == ICmpInst::ICMP_EQ &&
- IsAnd)
- return getFalse(UnsignedICmp->getType());
- return nullptr;
- }
- // Simplify (and (icmp ...) (icmp ...)) to true when we can tell that the range
- // of possible values cannot be satisfied.
- static Value *SimplifyAndOfICmps(ICmpInst *Op0, ICmpInst *Op1) {
- ICmpInst::Predicate Pred0, Pred1;
- ConstantInt *CI1, *CI2;
- Value *V;
- if (Value *X = simplifyUnsignedRangeCheck(Op0, Op1, /*IsAnd=*/true))
- return X;
- if (!match(Op0, m_ICmp(Pred0, m_Add(m_Value(V), m_ConstantInt(CI1)),
- m_ConstantInt(CI2))))
- return nullptr;
- if (!match(Op1, m_ICmp(Pred1, m_Specific(V), m_Specific(CI1))))
- return nullptr;
- Type *ITy = Op0->getType();
- auto *AddInst = cast<BinaryOperator>(Op0->getOperand(0));
- bool isNSW = AddInst->hasNoSignedWrap();
- bool isNUW = AddInst->hasNoUnsignedWrap();
- const APInt &CI1V = CI1->getValue();
- const APInt &CI2V = CI2->getValue();
- const APInt Delta = CI2V - CI1V;
- if (CI1V.isStrictlyPositive()) {
- if (Delta == 2) {
- if (Pred0 == ICmpInst::ICMP_ULT && Pred1 == ICmpInst::ICMP_SGT)
- return getFalse(ITy);
- if (Pred0 == ICmpInst::ICMP_SLT && Pred1 == ICmpInst::ICMP_SGT && isNSW)
- return getFalse(ITy);
- }
- if (Delta == 1) {
- if (Pred0 == ICmpInst::ICMP_ULE && Pred1 == ICmpInst::ICMP_SGT)
- return getFalse(ITy);
- if (Pred0 == ICmpInst::ICMP_SLE && Pred1 == ICmpInst::ICMP_SGT && isNSW)
- return getFalse(ITy);
- }
- }
- if (CI1V.getBoolValue() && isNUW) {
- if (Delta == 2)
- if (Pred0 == ICmpInst::ICMP_ULT && Pred1 == ICmpInst::ICMP_UGT)
- return getFalse(ITy);
- if (Delta == 1)
- if (Pred0 == ICmpInst::ICMP_ULE && Pred1 == ICmpInst::ICMP_UGT)
- return getFalse(ITy);
- }
- return nullptr;
- }
- /// SimplifyAndInst - Given operands for an And, see if we can
- /// fold the result. If not, this returns null.
- static Value *SimplifyAndInst(Value *Op0, Value *Op1, const Query &Q,
- unsigned MaxRecurse) {
- if (Constant *CLHS = dyn_cast<Constant>(Op0)) {
- if (Constant *CRHS = dyn_cast<Constant>(Op1)) {
- Constant *Ops[] = { CLHS, CRHS };
- return ConstantFoldInstOperands(Instruction::And, CLHS->getType(),
- Ops, Q.DL, Q.TLI);
- }
- // Canonicalize the constant to the RHS.
- std::swap(Op0, Op1);
- }
- // X & undef -> 0
- if (match(Op1, m_Undef()))
- return Constant::getNullValue(Op0->getType());
- // X & X = X
- if (Op0 == Op1)
- return Op0;
- // X & 0 = 0
- if (match(Op1, m_Zero()))
- return Op1;
- // X & -1 = X
- if (match(Op1, m_AllOnes()))
- return Op0;
- // A & ~A = ~A & A = 0
- if (match(Op0, m_Not(m_Specific(Op1))) ||
- match(Op1, m_Not(m_Specific(Op0))))
- return Constant::getNullValue(Op0->getType());
- // (A | ?) & A = A
- Value *A = nullptr, *B = nullptr;
- if (match(Op0, m_Or(m_Value(A), m_Value(B))) &&
- (A == Op1 || B == Op1))
- return Op1;
- // A & (A | ?) = A
- if (match(Op1, m_Or(m_Value(A), m_Value(B))) &&
- (A == Op0 || B == Op0))
- return Op0;
- // A & (-A) = A if A is a power of two or zero.
- if (match(Op0, m_Neg(m_Specific(Op1))) ||
- match(Op1, m_Neg(m_Specific(Op0)))) {
- if (isKnownToBeAPowerOfTwo(Op0, Q.DL, /*OrZero*/ true, 0, Q.AC, Q.CxtI,
- Q.DT))
- return Op0;
- if (isKnownToBeAPowerOfTwo(Op1, Q.DL, /*OrZero*/ true, 0, Q.AC, Q.CxtI,
- Q.DT))
- return Op1;
- }
- if (auto *ICILHS = dyn_cast<ICmpInst>(Op0)) {
- if (auto *ICIRHS = dyn_cast<ICmpInst>(Op1)) {
- if (Value *V = SimplifyAndOfICmps(ICILHS, ICIRHS))
- return V;
- if (Value *V = SimplifyAndOfICmps(ICIRHS, ICILHS))
- return V;
- }
- }
- // Try some generic simplifications for associative operations.
- if (Value *V = SimplifyAssociativeBinOp(Instruction::And, Op0, Op1, Q,
- MaxRecurse))
- return V;
- // And distributes over Or. Try some generic simplifications based on this.
- if (Value *V = ExpandBinOp(Instruction::And, Op0, Op1, Instruction::Or,
- Q, MaxRecurse))
- return V;
- // And distributes over Xor. Try some generic simplifications based on this.
- if (Value *V = ExpandBinOp(Instruction::And, Op0, Op1, Instruction::Xor,
- Q, MaxRecurse))
- return V;
- // If the operation is with the result of a select instruction, check whether
- // operating on either branch of the select always yields the same value.
- if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
- if (Value *V = ThreadBinOpOverSelect(Instruction::And, Op0, Op1, Q,
- MaxRecurse))
- return V;
- // If the operation is with the result of a phi instruction, check whether
- // operating on all incoming values of the phi always yields the same value.
- if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
- if (Value *V = ThreadBinOpOverPHI(Instruction::And, Op0, Op1, Q,
- MaxRecurse))
- return V;
- return nullptr;
- }
- Value *llvm::SimplifyAndInst(Value *Op0, Value *Op1, const DataLayout &DL,
- const TargetLibraryInfo *TLI,
- const DominatorTree *DT, AssumptionCache *AC,
- const Instruction *CxtI) {
- return ::SimplifyAndInst(Op0, Op1, Query(DL, TLI, DT, AC, CxtI),
- RecursionLimit);
- }
- // Simplify (or (icmp ...) (icmp ...)) to true when we can tell that the union
- // contains all possible values.
- static Value *SimplifyOrOfICmps(ICmpInst *Op0, ICmpInst *Op1) {
- ICmpInst::Predicate Pred0, Pred1;
- ConstantInt *CI1, *CI2;
- Value *V;
- if (Value *X = simplifyUnsignedRangeCheck(Op0, Op1, /*IsAnd=*/false))
- return X;
- if (!match(Op0, m_ICmp(Pred0, m_Add(m_Value(V), m_ConstantInt(CI1)),
- m_ConstantInt(CI2))))
- return nullptr;
- if (!match(Op1, m_ICmp(Pred1, m_Specific(V), m_Specific(CI1))))
- return nullptr;
- Type *ITy = Op0->getType();
- auto *AddInst = cast<BinaryOperator>(Op0->getOperand(0));
- bool isNSW = AddInst->hasNoSignedWrap();
- bool isNUW = AddInst->hasNoUnsignedWrap();
- const APInt &CI1V = CI1->getValue();
- const APInt &CI2V = CI2->getValue();
- const APInt Delta = CI2V - CI1V;
- if (CI1V.isStrictlyPositive()) {
- if (Delta == 2) {
- if (Pred0 == ICmpInst::ICMP_UGE && Pred1 == ICmpInst::ICMP_SLE)
- return getTrue(ITy);
- if (Pred0 == ICmpInst::ICMP_SGE && Pred1 == ICmpInst::ICMP_SLE && isNSW)
- return getTrue(ITy);
- }
- if (Delta == 1) {
- if (Pred0 == ICmpInst::ICMP_UGT && Pred1 == ICmpInst::ICMP_SLE)
- return getTrue(ITy);
- if (Pred0 == ICmpInst::ICMP_SGT && Pred1 == ICmpInst::ICMP_SLE && isNSW)
- return getTrue(ITy);
- }
- }
- if (CI1V.getBoolValue() && isNUW) {
- if (Delta == 2)
- if (Pred0 == ICmpInst::ICMP_UGE && Pred1 == ICmpInst::ICMP_ULE)
- return getTrue(ITy);
- if (Delta == 1)
- if (Pred0 == ICmpInst::ICMP_UGT && Pred1 == ICmpInst::ICMP_ULE)
- return getTrue(ITy);
- }
- return nullptr;
- }
- /// SimplifyOrInst - Given operands for an Or, see if we can
- /// fold the result. If not, this returns null.
- static Value *SimplifyOrInst(Value *Op0, Value *Op1, const Query &Q,
- unsigned MaxRecurse) {
- if (Constant *CLHS = dyn_cast<Constant>(Op0)) {
- if (Constant *CRHS = dyn_cast<Constant>(Op1)) {
- Constant *Ops[] = { CLHS, CRHS };
- return ConstantFoldInstOperands(Instruction::Or, CLHS->getType(),
- Ops, Q.DL, Q.TLI);
- }
- // Canonicalize the constant to the RHS.
- std::swap(Op0, Op1);
- }
- // X | undef -> -1
- if (match(Op1, m_Undef()))
- return Constant::getAllOnesValue(Op0->getType());
- // X | X = X
- if (Op0 == Op1)
- return Op0;
- // X | 0 = X
- if (match(Op1, m_Zero()))
- return Op0;
- // X | -1 = -1
- if (match(Op1, m_AllOnes()))
- return Op1;
- // A | ~A = ~A | A = -1
- if (match(Op0, m_Not(m_Specific(Op1))) ||
- match(Op1, m_Not(m_Specific(Op0))))
- return Constant::getAllOnesValue(Op0->getType());
- // (A & ?) | A = A
- Value *A = nullptr, *B = nullptr;
- if (match(Op0, m_And(m_Value(A), m_Value(B))) &&
- (A == Op1 || B == Op1))
- return Op1;
- // A | (A & ?) = A
- if (match(Op1, m_And(m_Value(A), m_Value(B))) &&
- (A == Op0 || B == Op0))
- return Op0;
- // ~(A & ?) | A = -1
- if (match(Op0, m_Not(m_And(m_Value(A), m_Value(B)))) &&
- (A == Op1 || B == Op1))
- return Constant::getAllOnesValue(Op1->getType());
- // A | ~(A & ?) = -1
- if (match(Op1, m_Not(m_And(m_Value(A), m_Value(B)))) &&
- (A == Op0 || B == Op0))
- return Constant::getAllOnesValue(Op0->getType());
- if (auto *ICILHS = dyn_cast<ICmpInst>(Op0)) {
- if (auto *ICIRHS = dyn_cast<ICmpInst>(Op1)) {
- if (Value *V = SimplifyOrOfICmps(ICILHS, ICIRHS))
- return V;
- if (Value *V = SimplifyOrOfICmps(ICIRHS, ICILHS))
- return V;
- }
- }
- // Try some generic simplifications for associative operations.
- if (Value *V = SimplifyAssociativeBinOp(Instruction::Or, Op0, Op1, Q,
- MaxRecurse))
- return V;
- // Or distributes over And. Try some generic simplifications based on this.
- if (Value *V = ExpandBinOp(Instruction::Or, Op0, Op1, Instruction::And, Q,
- MaxRecurse))
- return V;
- // If the operation is with the result of a select instruction, check whether
- // operating on either branch of the select always yields the same value.
- if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
- if (Value *V = ThreadBinOpOverSelect(Instruction::Or, Op0, Op1, Q,
- MaxRecurse))
- return V;
- // (A & C)|(B & D)
- Value *C = nullptr, *D = nullptr;
- if (match(Op0, m_And(m_Value(A), m_Value(C))) &&
- match(Op1, m_And(m_Value(B), m_Value(D)))) {
- ConstantInt *C1 = dyn_cast<ConstantInt>(C);
- ConstantInt *C2 = dyn_cast<ConstantInt>(D);
- if (C1 && C2 && (C1->getValue() == ~C2->getValue())) {
- // (A & C1)|(B & C2)
- // If we have: ((V + N) & C1) | (V & C2)
- // .. and C2 = ~C1 and C2 is 0+1+ and (N & C2) == 0
- // replace with V+N.
- Value *V1, *V2;
- if ((C2->getValue() & (C2->getValue() + 1)) == 0 && // C2 == 0+1+
- match(A, m_Add(m_Value(V1), m_Value(V2)))) {
- // Add commutes, try both ways.
- if (V1 == B &&
- MaskedValueIsZero(V2, C2->getValue(), Q.DL, 0, Q.AC, Q.CxtI, Q.DT))
- return A;
- if (V2 == B &&
- MaskedValueIsZero(V1, C2->getValue(), Q.DL, 0, Q.AC, Q.CxtI, Q.DT))
- return A;
- }
- // Or commutes, try both ways.
- if ((C1->getValue() & (C1->getValue() + 1)) == 0 &&
- match(B, m_Add(m_Value(V1), m_Value(V2)))) {
- // Add commutes, try both ways.
- if (V1 == A &&
- MaskedValueIsZero(V2, C1->getValue(), Q.DL, 0, Q.AC, Q.CxtI, Q.DT))
- return B;
- if (V2 == A &&
- MaskedValueIsZero(V1, C1->getValue(), Q.DL, 0, Q.AC, Q.CxtI, Q.DT))
- return B;
- }
- }
- }
- // If the operation is with the result of a phi instruction, check whether
- // operating on all incoming values of the phi always yields the same value.
- if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
- if (Value *V = ThreadBinOpOverPHI(Instruction::Or, Op0, Op1, Q, MaxRecurse))
- return V;
- return nullptr;
- }
- Value *llvm::SimplifyOrInst(Value *Op0, Value *Op1, const DataLayout &DL,
- const TargetLibraryInfo *TLI,
- const DominatorTree *DT, AssumptionCache *AC,
- const Instruction *CxtI) {
- return ::SimplifyOrInst(Op0, Op1, Query(DL, TLI, DT, AC, CxtI),
- RecursionLimit);
- }
- /// SimplifyXorInst - Given operands for a Xor, see if we can
- /// fold the result. If not, this returns null.
- static Value *SimplifyXorInst(Value *Op0, Value *Op1, const Query &Q,
- unsigned MaxRecurse) {
- if (Constant *CLHS = dyn_cast<Constant>(Op0)) {
- if (Constant *CRHS = dyn_cast<Constant>(Op1)) {
- Constant *Ops[] = { CLHS, CRHS };
- return ConstantFoldInstOperands(Instruction::Xor, CLHS->getType(),
- Ops, Q.DL, Q.TLI);
- }
- // Canonicalize the constant to the RHS.
- std::swap(Op0, Op1);
- }
- // A ^ undef -> undef
- if (match(Op1, m_Undef()))
- return Op1;
- // A ^ 0 = A
- if (match(Op1, m_Zero()))
- return Op0;
- // A ^ A = 0
- if (Op0 == Op1)
- return Constant::getNullValue(Op0->getType());
- // A ^ ~A = ~A ^ A = -1
- if (match(Op0, m_Not(m_Specific(Op1))) ||
- match(Op1, m_Not(m_Specific(Op0))))
- return Constant::getAllOnesValue(Op0->getType());
- // Try some generic simplifications for associative operations.
- if (Value *V = SimplifyAssociativeBinOp(Instruction::Xor, Op0, Op1, Q,
- MaxRecurse))
- return V;
- // Threading Xor over selects and phi nodes is pointless, so don't bother.
- // Threading over the select in "A ^ select(cond, B, C)" means evaluating
- // "A^B" and "A^C" and seeing if they are equal; but they are equal if and
- // only if B and C are equal. If B and C are equal then (since we assume
- // that operands have already been simplified) "select(cond, B, C)" should
- // have been simplified to the common value of B and C already. Analysing
- // "A^B" and "A^C" thus gains nothing, but costs compile time. Similarly
- // for threading over phi nodes.
- return nullptr;
- }
- Value *llvm::SimplifyXorInst(Value *Op0, Value *Op1, const DataLayout &DL,
- const TargetLibraryInfo *TLI,
- const DominatorTree *DT, AssumptionCache *AC,
- const Instruction *CxtI) {
- return ::SimplifyXorInst(Op0, Op1, Query(DL, TLI, DT, AC, CxtI),
- RecursionLimit);
- }
- static Type *GetCompareTy(Value *Op) {
- return CmpInst::makeCmpResultType(Op->getType());
- }
- /// ExtractEquivalentCondition - Rummage around inside V looking for something
- /// equivalent to the comparison "LHS Pred RHS". Return such a value if found,
- /// otherwise return null. Helper function for analyzing max/min idioms.
- static Value *ExtractEquivalentCondition(Value *V, CmpInst::Predicate Pred,
- Value *LHS, Value *RHS) {
- SelectInst *SI = dyn_cast<SelectInst>(V);
- if (!SI)
- return nullptr;
- CmpInst *Cmp = dyn_cast<CmpInst>(SI->getCondition());
- if (!Cmp)
- return nullptr;
- Value *CmpLHS = Cmp->getOperand(0), *CmpRHS = Cmp->getOperand(1);
- if (Pred == Cmp->getPredicate() && LHS == CmpLHS && RHS == CmpRHS)
- return Cmp;
- if (Pred == CmpInst::getSwappedPredicate(Cmp->getPredicate()) &&
- LHS == CmpRHS && RHS == CmpLHS)
- return Cmp;
- return nullptr;
- }
- // A significant optimization not implemented here is assuming that alloca
- // addresses are not equal to incoming argument values. They don't *alias*,
- // as we say, but that doesn't mean they aren't equal, so we take a
- // conservative approach.
- //
- // This is inspired in part by C++11 5.10p1:
- // "Two pointers of the same type compare equal if and only if they are both
- // null, both point to the same function, or both represent the same
- // address."
- //
- // This is pretty permissive.
- //
- // It's also partly due to C11 6.5.9p6:
- // "Two pointers compare equal if and only if both are null pointers, both are
- // pointers to the same object (including a pointer to an object and a
- // subobject at its beginning) or function, both are pointers to one past the
- // last element of the same array object, or one is a pointer to one past the
- // end of one array object and the other is a pointer to the start of a
- // different array object that happens to immediately follow the first array
- // object in the address space.)
- //
- // C11's version is more restrictive, however there's no reason why an argument
- // couldn't be a one-past-the-end value for a stack object in the caller and be
- // equal to the beginning of a stack object in the callee.
- //
- // If the C and C++ standards are ever made sufficiently restrictive in this
- // area, it may be possible to update LLVM's semantics accordingly and reinstate
- // this optimization.
- static Constant *computePointerICmp(const DataLayout &DL,
- const TargetLibraryInfo *TLI,
- CmpInst::Predicate Pred, Value *LHS,
- Value *RHS) {
- // First, skip past any trivial no-ops.
- LHS = LHS->stripPointerCasts();
- RHS = RHS->stripPointerCasts();
- // A non-null pointer is not equal to a null pointer.
- if (llvm::isKnownNonNull(LHS, TLI) && isa<ConstantPointerNull>(RHS) &&
- (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_NE))
- return ConstantInt::get(GetCompareTy(LHS),
- !CmpInst::isTrueWhenEqual(Pred));
- // We can only fold certain predicates on pointer comparisons.
- switch (Pred) {
- default:
- return nullptr;
- // Equality comaprisons are easy to fold.
- case CmpInst::ICMP_EQ:
- case CmpInst::ICMP_NE:
- break;
- // We can only handle unsigned relational comparisons because 'inbounds' on
- // a GEP only protects against unsigned wrapping.
- case CmpInst::ICMP_UGT:
- case CmpInst::ICMP_UGE:
- case CmpInst::ICMP_ULT:
- case CmpInst::ICMP_ULE:
- // However, we have to switch them to their signed variants to handle
- // negative indices from the base pointer.
- Pred = ICmpInst::getSignedPredicate(Pred);
- break;
- }
- // Strip off any constant offsets so that we can reason about them.
- // It's tempting to use getUnderlyingObject or even just stripInBoundsOffsets
- // here and compare base addresses like AliasAnalysis does, however there are
- // numerous hazards. AliasAnalysis and its utilities rely on special rules
- // governing loads and stores which don't apply to icmps. Also, AliasAnalysis
- // doesn't need to guarantee pointer inequality when it says NoAlias.
- Constant *LHSOffset = stripAndComputeConstantOffsets(DL, LHS);
- Constant *RHSOffset = stripAndComputeConstantOffsets(DL, RHS);
- // If LHS and RHS are related via constant offsets to the same base
- // value, we can replace it with an icmp which just compares the offsets.
- if (LHS == RHS)
- return ConstantExpr::getICmp(Pred, LHSOffset, RHSOffset);
- // Various optimizations for (in)equality comparisons.
- if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_NE) {
- // Different non-empty allocations that exist at the same time have
- // different addresses (if the program can tell). Global variables always
- // exist, so they always exist during the lifetime of each other and all
- // allocas. Two different allocas usually have different addresses...
- //
- // However, if there's an @llvm.stackrestore dynamically in between two
- // allocas, they may have the same address. It's tempting to reduce the
- // scope of the problem by only looking at *static* allocas here. That would
- // cover the majority of allocas while significantly reducing the likelihood
- // of having an @llvm.stackrestore pop up in the middle. However, it's not
- // actually impossible for an @llvm.stackrestore to pop up in the middle of
- // an entry block. Also, if we have a block that's not attached to a
- // function, we can't tell if it's "static" under the current definition.
- // Theoretically, this problem could be fixed by creating a new kind of
- // instruction kind specifically for static allocas. Such a new instruction
- // could be required to be at the top of the entry block, thus preventing it
- // from being subject to a @llvm.stackrestore. Instcombine could even
- // convert regular allocas into these special allocas. It'd be nifty.
- // However, until then, this problem remains open.
- //
- // So, we'll assume that two non-empty allocas have different addresses
- // for now.
- //
- // With all that, if the offsets are within the bounds of their allocations
- // (and not one-past-the-end! so we can't use inbounds!), and their
- // allocations aren't the same, the pointers are not equal.
- //
- // Note that it's not necessary to check for LHS being a global variable
- // address, due to canonicalization and constant folding.
- if (isa<AllocaInst>(LHS) &&
- (isa<AllocaInst>(RHS) || isa<GlobalVariable>(RHS))) {
- ConstantInt *LHSOffsetCI = dyn_cast<ConstantInt>(LHSOffset);
- ConstantInt *RHSOffsetCI = dyn_cast<ConstantInt>(RHSOffset);
- uint64_t LHSSize, RHSSize;
- if (LHSOffsetCI && RHSOffsetCI &&
- getObjectSize(LHS, LHSSize, DL, TLI) &&
- getObjectSize(RHS, RHSSize, DL, TLI)) {
- const APInt &LHSOffsetValue = LHSOffsetCI->getValue();
- const APInt &RHSOffsetValue = RHSOffsetCI->getValue();
- if (!LHSOffsetValue.isNegative() &&
- !RHSOffsetValue.isNegative() &&
- LHSOffsetValue.ult(LHSSize) &&
- RHSOffsetValue.ult(RHSSize)) {
- return ConstantInt::get(GetCompareTy(LHS),
- !CmpInst::isTrueWhenEqual(Pred));
- }
- }
- // Repeat the above check but this time without depending on DataLayout
- // or being able to compute a precise size.
- if (!cast<PointerType>(LHS->getType())->isEmptyTy() &&
- !cast<PointerType>(RHS->getType())->isEmptyTy() &&
- LHSOffset->isNullValue() &&
- RHSOffset->isNullValue())
- return ConstantInt::get(GetCompareTy(LHS),
- !CmpInst::isTrueWhenEqual(Pred));
- }
- // Even if an non-inbounds GEP occurs along the path we can still optimize
- // equality comparisons concerning the result. We avoid walking the whole
- // chain again by starting where the last calls to
- // stripAndComputeConstantOffsets left off and accumulate the offsets.
- Constant *LHSNoBound = stripAndComputeConstantOffsets(DL, LHS, true);
- Constant *RHSNoBound = stripAndComputeConstantOffsets(DL, RHS, true);
- if (LHS == RHS)
- return ConstantExpr::getICmp(Pred,
- ConstantExpr::getAdd(LHSOffset, LHSNoBound),
- ConstantExpr::getAdd(RHSOffset, RHSNoBound));
- // If one side of the equality comparison must come from a noalias call
- // (meaning a system memory allocation function), and the other side must
- // come from a pointer that cannot overlap with dynamically-allocated
- // memory within the lifetime of the current function (allocas, byval
- // arguments, globals), then determine the comparison result here.
- SmallVector<Value *, 8> LHSUObjs, RHSUObjs;
- GetUnderlyingObjects(LHS, LHSUObjs, DL);
- GetUnderlyingObjects(RHS, RHSUObjs, DL);
- // Is the set of underlying objects all noalias calls?
- auto IsNAC = [](SmallVectorImpl<Value *> &Objects) {
- return std::all_of(Objects.begin(), Objects.end(),
- [](Value *V){ return isNoAliasCall(V); });
- };
- // Is the set of underlying objects all things which must be disjoint from
- // noalias calls. For allocas, we consider only static ones (dynamic
- // allocas might be transformed into calls to malloc not simultaneously
- // live with the compared-to allocation). For globals, we exclude symbols
- // that might be resolve lazily to symbols in another dynamically-loaded
- // library (and, thus, could be malloc'ed by the implementation).
- auto IsAllocDisjoint = [](SmallVectorImpl<Value *> &Objects) {
- return std::all_of(Objects.begin(), Objects.end(),
- [](Value *V){
- if (const AllocaInst *AI = dyn_cast<AllocaInst>(V))
- return AI->getParent() && AI->getParent()->getParent() &&
- AI->isStaticAlloca();
- if (const GlobalValue *GV = dyn_cast<GlobalValue>(V))
- return (GV->hasLocalLinkage() ||
- GV->hasHiddenVisibility() ||
- GV->hasProtectedVisibility() ||
- GV->hasUnnamedAddr()) &&
- !GV->isThreadLocal();
- if (const Argument *A = dyn_cast<Argument>(V))
- return A->hasByValAttr();
- return false;
- });
- };
- if ((IsNAC(LHSUObjs) && IsAllocDisjoint(RHSUObjs)) ||
- (IsNAC(RHSUObjs) && IsAllocDisjoint(LHSUObjs)))
- return ConstantInt::get(GetCompareTy(LHS),
- !CmpInst::isTrueWhenEqual(Pred));
- }
- // Otherwise, fail.
- return nullptr;
- }
- /// SimplifyICmpInst - Given operands for an ICmpInst, see if we can
- /// fold the result. If not, this returns null.
- static Value *SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS,
- const Query &Q, unsigned MaxRecurse) {
- CmpInst::Predicate Pred = (CmpInst::Predicate)Predicate;
- assert(CmpInst::isIntPredicate(Pred) && "Not an integer compare!");
- if (Constant *CLHS = dyn_cast<Constant>(LHS)) {
- if (Constant *CRHS = dyn_cast<Constant>(RHS))
- return ConstantFoldCompareInstOperands(Pred, CLHS, CRHS, Q.DL, Q.TLI);
- // If we have a constant, make sure it is on the RHS.
- std::swap(LHS, RHS);
- Pred = CmpInst::getSwappedPredicate(Pred);
- }
- Type *ITy = GetCompareTy(LHS); // The return type.
- Type *OpTy = LHS->getType(); // The operand type.
- // icmp X, X -> true/false
- // X icmp undef -> true/false. For example, icmp ugt %X, undef -> false
- // because X could be 0.
- if (LHS == RHS || isa<UndefValue>(RHS))
- return ConstantInt::get(ITy, CmpInst::isTrueWhenEqual(Pred));
- // Special case logic when the operands have i1 type.
- if (OpTy->getScalarType()->isIntegerTy(1)) {
- switch (Pred) {
- default: break;
- case ICmpInst::ICMP_EQ:
- // X == 1 -> X
- if (match(RHS, m_One()))
- return LHS;
- break;
- case ICmpInst::ICMP_NE:
- // X != 0 -> X
- if (match(RHS, m_Zero()))
- return LHS;
- break;
- case ICmpInst::ICMP_UGT:
- // X >u 0 -> X
- if (match(RHS, m_Zero()))
- return LHS;
- break;
- case ICmpInst::ICMP_UGE:
- // X >=u 1 -> X
- if (match(RHS, m_One()))
- return LHS;
- break;
- case ICmpInst::ICMP_SLT:
- // X <s 0 -> X
- if (match(RHS, m_Zero()))
- return LHS;
- break;
- case ICmpInst::ICMP_SLE:
- // X <=s -1 -> X
- if (match(RHS, m_One()))
- return LHS;
- break;
- }
- }
- // If we are comparing with zero then try hard since this is a common case.
- if (match(RHS, m_Zero())) {
- bool LHSKnownNonNegative, LHSKnownNegative;
- switch (Pred) {
- default: llvm_unreachable("Unknown ICmp predicate!");
- case ICmpInst::ICMP_ULT:
- return getFalse(ITy);
- case ICmpInst::ICMP_UGE:
- return getTrue(ITy);
- case ICmpInst::ICMP_EQ:
- case ICmpInst::ICMP_ULE:
- if (isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT))
- return getFalse(ITy);
- break;
- case ICmpInst::ICMP_NE:
- case ICmpInst::ICMP_UGT:
- if (isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT))
- return getTrue(ITy);
- break;
- case ICmpInst::ICMP_SLT:
- ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, Q.DL, 0, Q.AC,
- Q.CxtI, Q.DT);
- if (LHSKnownNegative)
- return getTrue(ITy);
- if (LHSKnownNonNegative)
- return getFalse(ITy);
- break;
- case ICmpInst::ICMP_SLE:
- ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, Q.DL, 0, Q.AC,
- Q.CxtI, Q.DT);
- if (LHSKnownNegative)
- return getTrue(ITy);
- if (LHSKnownNonNegative &&
- isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT))
- return getFalse(ITy);
- break;
- case ICmpInst::ICMP_SGE:
- ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, Q.DL, 0, Q.AC,
- Q.CxtI, Q.DT);
- if (LHSKnownNegative)
- return getFalse(ITy);
- if (LHSKnownNonNegative)
- return getTrue(ITy);
- break;
- case ICmpInst::ICMP_SGT:
- ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, Q.DL, 0, Q.AC,
- Q.CxtI, Q.DT);
- if (LHSKnownNegative)
- return getFalse(ITy);
- if (LHSKnownNonNegative &&
- isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT))
- return getTrue(ITy);
- break;
- }
- }
- // See if we are doing a comparison with a constant integer.
- if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) {
- // Rule out tautological comparisons (eg., ult 0 or uge 0).
- ConstantRange RHS_CR = ICmpInst::makeConstantRange(Pred, CI->getValue());
- if (RHS_CR.isEmptySet())
- return ConstantInt::getFalse(CI->getContext());
- if (RHS_CR.isFullSet())
- return ConstantInt::getTrue(CI->getContext());
- // Many binary operators with constant RHS have easy to compute constant
- // range. Use them to check whether the comparison is a tautology.
- unsigned Width = CI->getBitWidth();
- APInt Lower = APInt(Width, 0);
- APInt Upper = APInt(Width, 0);
- ConstantInt *CI2;
- if (match(LHS, m_URem(m_Value(), m_ConstantInt(CI2)))) {
- // 'urem x, CI2' produces [0, CI2).
- Upper = CI2->getValue();
- } else if (match(LHS, m_SRem(m_Value(), m_ConstantInt(CI2)))) {
- // 'srem x, CI2' produces (-|CI2|, |CI2|).
- Upper = CI2->getValue().abs();
- Lower = (-Upper) + 1;
- } else if (match(LHS, m_UDiv(m_ConstantInt(CI2), m_Value()))) {
- // 'udiv CI2, x' produces [0, CI2].
- Upper = CI2->getValue() + 1;
- } else if (match(LHS, m_UDiv(m_Value(), m_ConstantInt(CI2)))) {
- // 'udiv x, CI2' produces [0, UINT_MAX / CI2].
- APInt NegOne = APInt::getAllOnesValue(Width);
- if (!CI2->isZero())
- Upper = NegOne.udiv(CI2->getValue()) + 1;
- } else if (match(LHS, m_SDiv(m_ConstantInt(CI2), m_Value()))) {
- if (CI2->isMinSignedValue()) {
- // 'sdiv INT_MIN, x' produces [INT_MIN, INT_MIN / -2].
- Lower = CI2->getValue();
- Upper = Lower.lshr(1) + 1;
- } else {
- // 'sdiv CI2, x' produces [-|CI2|, |CI2|].
- Upper = CI2->getValue().abs() + 1;
- Lower = (-Upper) + 1;
- }
- } else if (match(LHS, m_SDiv(m_Value(), m_ConstantInt(CI2)))) {
- APInt IntMin = APInt::getSignedMinValue(Width);
- APInt IntMax = APInt::getSignedMaxValue(Width);
- APInt Val = CI2->getValue();
- if (Val.isAllOnesValue()) {
- // 'sdiv x, -1' produces [INT_MIN + 1, INT_MAX]
- // where CI2 != -1 and CI2 != 0 and CI2 != 1
- Lower = IntMin + 1;
- Upper = IntMax + 1;
- } else if (Val.countLeadingZeros() < Width - 1) {
- // 'sdiv x, CI2' produces [INT_MIN / CI2, INT_MAX / CI2]
- // where CI2 != -1 and CI2 != 0 and CI2 != 1
- Lower = IntMin.sdiv(Val);
- Upper = IntMax.sdiv(Val);
- if (Lower.sgt(Upper))
- std::swap(Lower, Upper);
- Upper = Upper + 1;
- assert(Upper != Lower && "Upper part of range has wrapped!");
- }
- } else if (match(LHS, m_NUWShl(m_ConstantInt(CI2), m_Value()))) {
- // 'shl nuw CI2, x' produces [CI2, CI2 << CLZ(CI2)]
- Lower = CI2->getValue();
- Upper = Lower.shl(Lower.countLeadingZeros()) + 1;
- } else if (match(LHS, m_NSWShl(m_ConstantInt(CI2), m_Value()))) {
- if (CI2->isNegative()) {
- // 'shl nsw CI2, x' produces [CI2 << CLO(CI2)-1, CI2]
- unsigned ShiftAmount = CI2->getValue().countLeadingOnes() - 1;
- Lower = CI2->getValue().shl(ShiftAmount);
- Upper = CI2->getValue() + 1;
- } else {
- // 'shl nsw CI2, x' produces [CI2, CI2 << CLZ(CI2)-1]
- unsigned ShiftAmount = CI2->getValue().countLeadingZeros() - 1;
- Lower = CI2->getValue();
- Upper = CI2->getValue().shl(ShiftAmount) + 1;
- }
- } else if (match(LHS, m_LShr(m_Value(), m_ConstantInt(CI2)))) {
- // 'lshr x, CI2' produces [0, UINT_MAX >> CI2].
- APInt NegOne = APInt::getAllOnesValue(Width);
- if (CI2->getValue().ult(Width))
- Upper = NegOne.lshr(CI2->getValue()) + 1;
- } else if (match(LHS, m_LShr(m_ConstantInt(CI2), m_Value()))) {
- // 'lshr CI2, x' produces [CI2 >> (Width-1), CI2].
- unsigned ShiftAmount = Width - 1;
- if (!CI2->isZero() && cast<BinaryOperator>(LHS)->isExact())
- ShiftAmount = CI2->getValue().countTrailingZeros();
- Lower = CI2->getValue().lshr(ShiftAmount);
- Upper = CI2->getValue() + 1;
- } else if (match(LHS, m_AShr(m_Value(), m_ConstantInt(CI2)))) {
- // 'ashr x, CI2' produces [INT_MIN >> CI2, INT_MAX >> CI2].
- APInt IntMin = APInt::getSignedMinValue(Width);
- APInt IntMax = APInt::getSignedMaxValue(Width);
- if (CI2->getValue().ult(Width)) {
- Lower = IntMin.ashr(CI2->getValue());
- Upper = IntMax.ashr(CI2->getValue()) + 1;
- }
- } else if (match(LHS, m_AShr(m_ConstantInt(CI2), m_Value()))) {
- unsigned ShiftAmount = Width - 1;
- if (!CI2->isZero() && cast<BinaryOperator>(LHS)->isExact())
- ShiftAmount = CI2->getValue().countTrailingZeros();
- if (CI2->isNegative()) {
- // 'ashr CI2, x' produces [CI2, CI2 >> (Width-1)]
- Lower = CI2->getValue();
- Upper = CI2->getValue().ashr(ShiftAmount) + 1;
- } else {
- // 'ashr CI2, x' produces [CI2 >> (Width-1), CI2]
- Lower = CI2->getValue().ashr(ShiftAmount);
- Upper = CI2->getValue() + 1;
- }
- } else if (match(LHS, m_Or(m_Value(), m_ConstantInt(CI2)))) {
- // 'or x, CI2' produces [CI2, UINT_MAX].
- Lower = CI2->getValue();
- } else if (match(LHS, m_And(m_Value(), m_ConstantInt(CI2)))) {
- // 'and x, CI2' produces [0, CI2].
- Upper = CI2->getValue() + 1;
- }
- if (Lower != Upper) {
- ConstantRange LHS_CR = ConstantRange(Lower, Upper);
- if (RHS_CR.contains(LHS_CR))
- return ConstantInt::getTrue(RHS->getContext());
- if (RHS_CR.inverse().contains(LHS_CR))
- return ConstantInt::getFalse(RHS->getContext());
- }
- }
- // Compare of cast, for example (zext X) != 0 -> X != 0
- if (isa<CastInst>(LHS) && (isa<Constant>(RHS) || isa<CastInst>(RHS))) {
- Instruction *LI = cast<CastInst>(LHS);
- Value *SrcOp = LI->getOperand(0);
- Type *SrcTy = SrcOp->getType();
- Type *DstTy = LI->getType();
- // Turn icmp (ptrtoint x), (ptrtoint/constant) into a compare of the input
- // if the integer type is the same size as the pointer type.
- if (MaxRecurse && isa<PtrToIntInst>(LI) &&
- Q.DL.getTypeSizeInBits(SrcTy) == DstTy->getPrimitiveSizeInBits()) {
- if (Constant *RHSC = dyn_cast<Constant>(RHS)) {
- // Transfer the cast to the constant.
- if (Value *V = SimplifyICmpInst(Pred, SrcOp,
- ConstantExpr::getIntToPtr(RHSC, SrcTy),
- Q, MaxRecurse-1))
- return V;
- } else if (PtrToIntInst *RI = dyn_cast<PtrToIntInst>(RHS)) {
- if (RI->getOperand(0)->getType() == SrcTy)
- // Compare without the cast.
- if (Value *V = SimplifyICmpInst(Pred, SrcOp, RI->getOperand(0),
- Q, MaxRecurse-1))
- return V;
- }
- }
- if (isa<ZExtInst>(LHS)) {
- // Turn icmp (zext X), (zext Y) into a compare of X and Y if they have the
- // same type.
- if (ZExtInst *RI = dyn_cast<ZExtInst>(RHS)) {
- if (MaxRecurse && SrcTy == RI->getOperand(0)->getType())
- // Compare X and Y. Note that signed predicates become unsigned.
- if (Value *V = SimplifyICmpInst(ICmpInst::getUnsignedPredicate(Pred),
- SrcOp, RI->getOperand(0), Q,
- MaxRecurse-1))
- return V;
- }
- // Turn icmp (zext X), Cst into a compare of X and Cst if Cst is extended
- // too. If not, then try to deduce the result of the comparison.
- else if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) {
- // Compute the constant that would happen if we truncated to SrcTy then
- // reextended to DstTy.
- Constant *Trunc = ConstantExpr::getTrunc(CI, SrcTy);
- Constant *RExt = ConstantExpr::getCast(CastInst::ZExt, Trunc, DstTy);
- // If the re-extended constant didn't change then this is effectively
- // also a case of comparing two zero-extended values.
- if (RExt == CI && MaxRecurse)
- if (Value *V = SimplifyICmpInst(ICmpInst::getUnsignedPredicate(Pred),
- SrcOp, Trunc, Q, MaxRecurse-1))
- return V;
- // Otherwise the upper bits of LHS are zero while RHS has a non-zero bit
- // there. Use this to work out the result of the comparison.
- if (RExt != CI) {
- switch (Pred) {
- default: llvm_unreachable("Unknown ICmp predicate!");
- // LHS <u RHS.
- case ICmpInst::ICMP_EQ:
- case ICmpInst::ICMP_UGT:
- case ICmpInst::ICMP_UGE:
- return ConstantInt::getFalse(CI->getContext());
- case ICmpInst::ICMP_NE:
- case ICmpInst::ICMP_ULT:
- case ICmpInst::ICMP_ULE:
- return ConstantInt::getTrue(CI->getContext());
- // LHS is non-negative. If RHS is negative then LHS >s LHS. If RHS
- // is non-negative then LHS <s RHS.
- case ICmpInst::ICMP_SGT:
- case ICmpInst::ICMP_SGE:
- return CI->getValue().isNegative() ?
- ConstantInt::getTrue(CI->getContext()) :
- ConstantInt::getFalse(CI->getContext());
- case ICmpInst::ICMP_SLT:
- case ICmpInst::ICMP_SLE:
- return CI->getValue().isNegative() ?
- ConstantInt::getFalse(CI->getContext()) :
- ConstantInt::getTrue(CI->getContext());
- }
- }
- }
- }
- if (isa<SExtInst>(LHS)) {
- // Turn icmp (sext X), (sext Y) into a compare of X and Y if they have the
- // same type.
- if (SExtInst *RI = dyn_cast<SExtInst>(RHS)) {
- if (MaxRecurse && SrcTy == RI->getOperand(0)->getType())
- // Compare X and Y. Note that the predicate does not change.
- if (Value *V = SimplifyICmpInst(Pred, SrcOp, RI->getOperand(0),
- Q, MaxRecurse-1))
- return V;
- }
- // Turn icmp (sext X), Cst into a compare of X and Cst if Cst is extended
- // too. If not, then try to deduce the result of the comparison.
- else if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) {
- // Compute the constant that would happen if we truncated to SrcTy then
- // reextended to DstTy.
- Constant *Trunc = ConstantExpr::getTrunc(CI, SrcTy);
- Constant *RExt = ConstantExpr::getCast(CastInst::SExt, Trunc, DstTy);
- // If the re-extended constant didn't change then this is effectively
- // also a case of comparing two sign-extended values.
- if (RExt == CI && MaxRecurse)
- if (Value *V = SimplifyICmpInst(Pred, SrcOp, Trunc, Q, MaxRecurse-1))
- return V;
- // Otherwise the upper bits of LHS are all equal, while RHS has varying
- // bits there. Use this to work out the result of the comparison.
- if (RExt != CI) {
- switch (Pred) {
- default: llvm_unreachable("Unknown ICmp predicate!");
- case ICmpInst::ICMP_EQ:
- return ConstantInt::getFalse(CI->getContext());
- case ICmpInst::ICMP_NE:
- return ConstantInt::getTrue(CI->getContext());
- // If RHS is non-negative then LHS <s RHS. If RHS is negative then
- // LHS >s RHS.
- case ICmpInst::ICMP_SGT:
- case ICmpInst::ICMP_SGE:
- return CI->getValue().isNegative() ?
- ConstantInt::getTrue(CI->getContext()) :
- ConstantInt::getFalse(CI->getContext());
- case ICmpInst::ICMP_SLT:
- case ICmpInst::ICMP_SLE:
- return CI->getValue().isNegative() ?
- ConstantInt::getFalse(CI->getContext()) :
- ConstantInt::getTrue(CI->getContext());
- // If LHS is non-negative then LHS <u RHS. If LHS is negative then
- // LHS >u RHS.
- case ICmpInst::ICMP_UGT:
- case ICmpInst::ICMP_UGE:
- // Comparison is true iff the LHS <s 0.
- if (MaxRecurse)
- if (Value *V = SimplifyICmpInst(ICmpInst::ICMP_SLT, SrcOp,
- Constant::getNullValue(SrcTy),
- Q, MaxRecurse-1))
- return V;
- break;
- case ICmpInst::ICMP_ULT:
- case ICmpInst::ICMP_ULE:
- // Comparison is true iff the LHS >=s 0.
- if (MaxRecurse)
- if (Value *V = SimplifyICmpInst(ICmpInst::ICMP_SGE, SrcOp,
- Constant::getNullValue(SrcTy),
- Q, MaxRecurse-1))
- return V;
- break;
- }
- }
- }
- }
- }
- // Special logic for binary operators.
- BinaryOperator *LBO = dyn_cast<BinaryOperator>(LHS);
- BinaryOperator *RBO = dyn_cast<BinaryOperator>(RHS);
- if (MaxRecurse && (LBO || RBO)) {
- // Analyze the case when either LHS or RHS is an add instruction.
- Value *A = nullptr, *B = nullptr, *C = nullptr, *D = nullptr;
- // LHS = A + B (or A and B are null); RHS = C + D (or C and D are null).
- bool NoLHSWrapProblem = false, NoRHSWrapProblem = false;
- if (LBO && LBO->getOpcode() == Instruction::Add) {
- A = LBO->getOperand(0); B = LBO->getOperand(1);
- NoLHSWrapProblem = ICmpInst::isEquality(Pred) ||
- (CmpInst::isUnsigned(Pred) && LBO->hasNoUnsignedWrap()) ||
- (CmpInst::isSigned(Pred) && LBO->hasNoSignedWrap());
- }
- if (RBO && RBO->getOpcode() == Instruction::Add) {
- C = RBO->getOperand(0); D = RBO->getOperand(1);
- NoRHSWrapProblem = ICmpInst::isEquality(Pred) ||
- (CmpInst::isUnsigned(Pred) && RBO->hasNoUnsignedWrap()) ||
- (CmpInst::isSigned(Pred) && RBO->hasNoSignedWrap());
- }
- // icmp (X+Y), X -> icmp Y, 0 for equalities or if there is no overflow.
- if ((A == RHS || B == RHS) && NoLHSWrapProblem)
- if (Value *V = SimplifyICmpInst(Pred, A == RHS ? B : A,
- Constant::getNullValue(RHS->getType()),
- Q, MaxRecurse-1))
- return V;
- // icmp X, (X+Y) -> icmp 0, Y for equalities or if there is no overflow.
- if ((C == LHS || D == LHS) && NoRHSWrapProblem)
- if (Value *V = SimplifyICmpInst(Pred,
- Constant::getNullValue(LHS->getType()),
- C == LHS ? D : C, Q, MaxRecurse-1))
- return V;
- // icmp (X+Y), (X+Z) -> icmp Y,Z for equalities or if there is no overflow.
- if (A && C && (A == C || A == D || B == C || B == D) &&
- NoLHSWrapProblem && NoRHSWrapProblem) {
- // Determine Y and Z in the form icmp (X+Y), (X+Z).
- Value *Y, *Z;
- if (A == C) {
- // C + B == C + D -> B == D
- Y = B;
- Z = D;
- } else if (A == D) {
- // D + B == C + D -> B == C
- Y = B;
- Z = C;
- } else if (B == C) {
- // A + C == C + D -> A == D
- Y = A;
- Z = D;
- } else {
- assert(B == D);
- // A + D == C + D -> A == C
- Y = A;
- Z = C;
- }
- if (Value *V = SimplifyICmpInst(Pred, Y, Z, Q, MaxRecurse-1))
- return V;
- }
- }
- // icmp pred (or X, Y), X
- if (LBO && match(LBO, m_CombineOr(m_Or(m_Value(), m_Specific(RHS)),
- m_Or(m_Specific(RHS), m_Value())))) {
- if (Pred == ICmpInst::ICMP_ULT)
- return getFalse(ITy);
- if (Pred == ICmpInst::ICMP_UGE)
- return getTrue(ITy);
- }
- // icmp pred X, (or X, Y)
- if (RBO && match(RBO, m_CombineOr(m_Or(m_Value(), m_Specific(LHS)),
- m_Or(m_Specific(LHS), m_Value())))) {
- if (Pred == ICmpInst::ICMP_ULE)
- return getTrue(ITy);
- if (Pred == ICmpInst::ICMP_UGT)
- return getFalse(ITy);
- }
- // icmp pred (and X, Y), X
- if (LBO && match(LBO, m_CombineOr(m_And(m_Value(), m_Specific(RHS)),
- m_And(m_Specific(RHS), m_Value())))) {
- if (Pred == ICmpInst::ICMP_UGT)
- return getFalse(ITy);
- if (Pred == ICmpInst::ICMP_ULE)
- return getTrue(ITy);
- }
- // icmp pred X, (and X, Y)
- if (RBO && match(RBO, m_CombineOr(m_And(m_Value(), m_Specific(LHS)),
- m_And(m_Specific(LHS), m_Value())))) {
- if (Pred == ICmpInst::ICMP_UGE)
- return getTrue(ITy);
- if (Pred == ICmpInst::ICMP_ULT)
- return getFalse(ITy);
- }
- // 0 - (zext X) pred C
- if (!CmpInst::isUnsigned(Pred) && match(LHS, m_Neg(m_ZExt(m_Value())))) {
- if (ConstantInt *RHSC = dyn_cast<ConstantInt>(RHS)) {
- if (RHSC->getValue().isStrictlyPositive()) {
- if (Pred == ICmpInst::ICMP_SLT)
- return ConstantInt::getTrue(RHSC->getContext());
- if (Pred == ICmpInst::ICMP_SGE)
- return ConstantInt::getFalse(RHSC->getContext());
- if (Pred == ICmpInst::ICMP_EQ)
- return ConstantInt::getFalse(RHSC->getContext());
- if (Pred == ICmpInst::ICMP_NE)
- return ConstantInt::getTrue(RHSC->getContext());
- }
- if (RHSC->getValue().isNonNegative()) {
- if (Pred == ICmpInst::ICMP_SLE)
- return ConstantInt::getTrue(RHSC->getContext());
- if (Pred == ICmpInst::ICMP_SGT)
- return ConstantInt::getFalse(RHSC->getContext());
- }
- }
- }
- // icmp pred (urem X, Y), Y
- if (LBO && match(LBO, m_URem(m_Value(), m_Specific(RHS)))) {
- bool KnownNonNegative, KnownNegative;
- switch (Pred) {
- default:
- break;
- case ICmpInst::ICMP_SGT:
- case ICmpInst::ICMP_SGE:
- ComputeSignBit(RHS, KnownNonNegative, KnownNegative, Q.DL, 0, Q.AC,
- Q.CxtI, Q.DT);
- if (!KnownNonNegative)
- break;
- // fall-through
- case ICmpInst::ICMP_EQ:
- case ICmpInst::ICMP_UGT:
- case ICmpInst::ICMP_UGE:
- return getFalse(ITy);
- case ICmpInst::ICMP_SLT:
- case ICmpInst::ICMP_SLE:
- ComputeSignBit(RHS, KnownNonNegative, KnownNegative, Q.DL, 0, Q.AC,
- Q.CxtI, Q.DT);
- if (!KnownNonNegative)
- break;
- // fall-through
- case ICmpInst::ICMP_NE:
- case ICmpInst::ICMP_ULT:
- case ICmpInst::ICMP_ULE:
- return getTrue(ITy);
- }
- }
- // icmp pred X, (urem Y, X)
- if (RBO && match(RBO, m_URem(m_Value(), m_Specific(LHS)))) {
- bool KnownNonNegative, KnownNegative;
- switch (Pred) {
- default:
- break;
- case ICmpInst::ICMP_SGT:
- case ICmpInst::ICMP_SGE:
- ComputeSignBit(LHS, KnownNonNegative, KnownNegative, Q.DL, 0, Q.AC,
- Q.CxtI, Q.DT);
- if (!KnownNonNegative)
- break;
- // fall-through
- case ICmpInst::ICMP_NE:
- case ICmpInst::ICMP_UGT:
- case ICmpInst::ICMP_UGE:
- return getTrue(ITy);
- case ICmpInst::ICMP_SLT:
- case ICmpInst::ICMP_SLE:
- ComputeSignBit(LHS, KnownNonNegative, KnownNegative, Q.DL, 0, Q.AC,
- Q.CxtI, Q.DT);
- if (!KnownNonNegative)
- break;
- // fall-through
- case ICmpInst::ICMP_EQ:
- case ICmpInst::ICMP_ULT:
- case ICmpInst::ICMP_ULE:
- return getFalse(ITy);
- }
- }
- // x udiv y <=u x.
- if (LBO && match(LBO, m_UDiv(m_Specific(RHS), m_Value()))) {
- // icmp pred (X /u Y), X
- if (Pred == ICmpInst::ICMP_UGT)
- return getFalse(ITy);
- if (Pred == ICmpInst::ICMP_ULE)
- return getTrue(ITy);
- }
- // handle:
- // CI2 << X == CI
- // CI2 << X != CI
- //
- // where CI2 is a power of 2 and CI isn't
- if (auto *CI = dyn_cast<ConstantInt>(RHS)) {
- const APInt *CI2Val, *CIVal = &CI->getValue();
- if (LBO && match(LBO, m_Shl(m_APInt(CI2Val), m_Value())) &&
- CI2Val->isPowerOf2()) {
- if (!CIVal->isPowerOf2()) {
- // CI2 << X can equal zero in some circumstances,
- // this simplification is unsafe if CI is zero.
- //
- // We know it is safe if:
- // - The shift is nsw, we can't shift out the one bit.
- // - The shift is nuw, we can't shift out the one bit.
- // - CI2 is one
- // - CI isn't zero
- if (LBO->hasNoSignedWrap() || LBO->hasNoUnsignedWrap() ||
- *CI2Val == 1 || !CI->isZero()) {
- if (Pred == ICmpInst::ICMP_EQ)
- return ConstantInt::getFalse(RHS->getContext());
- if (Pred == ICmpInst::ICMP_NE)
- return ConstantInt::getTrue(RHS->getContext());
- }
- }
- if (CIVal->isSignBit() && *CI2Val == 1) {
- if (Pred == ICmpInst::ICMP_UGT)
- return ConstantInt::getFalse(RHS->getContext());
- if (Pred == ICmpInst::ICMP_ULE)
- return ConstantInt::getTrue(RHS->getContext());
- }
- }
- }
- if (MaxRecurse && LBO && RBO && LBO->getOpcode() == RBO->getOpcode() &&
- LBO->getOperand(1) == RBO->getOperand(1)) {
- switch (LBO->getOpcode()) {
- default: break;
- case Instruction::UDiv:
- case Instruction::LShr:
- if (ICmpInst::isSigned(Pred))
- break;
- // fall-through
- case Instruction::SDiv:
- case Instruction::AShr:
- if (!LBO->isExact() || !RBO->isExact())
- break;
- if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0),
- RBO->getOperand(0), Q, MaxRecurse-1))
- return V;
- break;
- case Instruction::Shl: {
- bool NUW = LBO->hasNoUnsignedWrap() && RBO->hasNoUnsignedWrap();
- bool NSW = LBO->hasNoSignedWrap() && RBO->hasNoSignedWrap();
- if (!NUW && !NSW)
- break;
- if (!NSW && ICmpInst::isSigned(Pred))
- break;
- if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0),
- RBO->getOperand(0), Q, MaxRecurse-1))
- return V;
- break;
- }
- }
- }
- // Simplify comparisons involving max/min.
- Value *A, *B;
- CmpInst::Predicate P = CmpInst::BAD_ICMP_PREDICATE;
- CmpInst::Predicate EqP; // Chosen so that "A == max/min(A,B)" iff "A EqP B".
- // Signed variants on "max(a,b)>=a -> true".
- if (match(LHS, m_SMax(m_Value(A), m_Value(B))) && (A == RHS || B == RHS)) {
- if (A != RHS) std::swap(A, B); // smax(A, B) pred A.
- EqP = CmpInst::ICMP_SGE; // "A == smax(A, B)" iff "A sge B".
- // We analyze this as smax(A, B) pred A.
- P = Pred;
- } else if (match(RHS, m_SMax(m_Value(A), m_Value(B))) &&
- (A == LHS || B == LHS)) {
- if (A != LHS) std::swap(A, B); // A pred smax(A, B).
- EqP = CmpInst::ICMP_SGE; // "A == smax(A, B)" iff "A sge B".
- // We analyze this as smax(A, B) swapped-pred A.
- P = CmpInst::getSwappedPredicate(Pred);
- } else if (match(LHS, m_SMin(m_Value(A), m_Value(B))) &&
- (A == RHS || B == RHS)) {
- if (A != RHS) std::swap(A, B); // smin(A, B) pred A.
- EqP = CmpInst::ICMP_SLE; // "A == smin(A, B)" iff "A sle B".
- // We analyze this as smax(-A, -B) swapped-pred -A.
- // Note that we do not need to actually form -A or -B thanks to EqP.
- P = CmpInst::getSwappedPredicate(Pred);
- } else if (match(RHS, m_SMin(m_Value(A), m_Value(B))) &&
- (A == LHS || B == LHS)) {
- if (A != LHS) std::swap(A, B); // A pred smin(A, B).
- EqP = CmpInst::ICMP_SLE; // "A == smin(A, B)" iff "A sle B".
- // We analyze this as smax(-A, -B) pred -A.
- // Note that we do not need to actually form -A or -B thanks to EqP.
- P = Pred;
- }
- if (P != CmpInst::BAD_ICMP_PREDICATE) {
- // Cases correspond to "max(A, B) p A".
- switch (P) {
- default:
- break;
- case CmpInst::ICMP_EQ:
- case CmpInst::ICMP_SLE:
- // Equivalent to "A EqP B". This may be the same as the condition tested
- // in the max/min; if so, we can just return that.
- if (Value *V = ExtractEquivalentCondition(LHS, EqP, A, B))
- return V;
- if (Value *V = ExtractEquivalentCondition(RHS, EqP, A, B))
- return V;
- // Otherwise, see if "A EqP B" simplifies.
- if (MaxRecurse)
- if (Value *V = SimplifyICmpInst(EqP, A, B, Q, MaxRecurse-1))
- return V;
- break;
- case CmpInst::ICMP_NE:
- case CmpInst::ICMP_SGT: {
- CmpInst::Predicate InvEqP = CmpInst::getInversePredicate(EqP);
- // Equivalent to "A InvEqP B". This may be the same as the condition
- // tested in the max/min; if so, we can just return that.
- if (Value *V = ExtractEquivalentCondition(LHS, InvEqP, A, B))
- return V;
- if (Value *V = ExtractEquivalentCondition(RHS, InvEqP, A, B))
- return V;
- // Otherwise, see if "A InvEqP B" simplifies.
- if (MaxRecurse)
- if (Value *V = SimplifyICmpInst(InvEqP, A, B, Q, MaxRecurse-1))
- return V;
- break;
- }
- case CmpInst::ICMP_SGE:
- // Always true.
- return getTrue(ITy);
- case CmpInst::ICMP_SLT:
- // Always false.
- return getFalse(ITy);
- }
- }
- // Unsigned variants on "max(a,b)>=a -> true".
- P = CmpInst::BAD_ICMP_PREDICATE;
- if (match(LHS, m_UMax(m_Value(A), m_Value(B))) && (A == RHS || B == RHS)) {
- if (A != RHS) std::swap(A, B); // umax(A, B) pred A.
- EqP = CmpInst::ICMP_UGE; // "A == umax(A, B)" iff "A uge B".
- // We analyze this as umax(A, B) pred A.
- P = Pred;
- } else if (match(RHS, m_UMax(m_Value(A), m_Value(B))) &&
- (A == LHS || B == LHS)) {
- if (A != LHS) std::swap(A, B); // A pred umax(A, B).
- EqP = CmpInst::ICMP_UGE; // "A == umax(A, B)" iff "A uge B".
- // We analyze this as umax(A, B) swapped-pred A.
- P = CmpInst::getSwappedPredicate(Pred);
- } else if (match(LHS, m_UMin(m_Value(A), m_Value(B))) &&
- (A == RHS || B == RHS)) {
- if (A != RHS) std::swap(A, B); // umin(A, B) pred A.
- EqP = CmpInst::ICMP_ULE; // "A == umin(A, B)" iff "A ule B".
- // We analyze this as umax(-A, -B) swapped-pred -A.
- // Note that we do not need to actually form -A or -B thanks to EqP.
- P = CmpInst::getSwappedPredicate(Pred);
- } else if (match(RHS, m_UMin(m_Value(A), m_Value(B))) &&
- (A == LHS || B == LHS)) {
- if (A != LHS) std::swap(A, B); // A pred umin(A, B).
- EqP = CmpInst::ICMP_ULE; // "A == umin(A, B)" iff "A ule B".
- // We analyze this as umax(-A, -B) pred -A.
- // Note that we do not need to actually form -A or -B thanks to EqP.
- P = Pred;
- }
- if (P != CmpInst::BAD_ICMP_PREDICATE) {
- // Cases correspond to "max(A, B) p A".
- switch (P) {
- default:
- break;
- case CmpInst::ICMP_EQ:
- case CmpInst::ICMP_ULE:
- // Equivalent to "A EqP B". This may be the same as the condition tested
- // in the max/min; if so, we can just return that.
- if (Value *V = ExtractEquivalentCondition(LHS, EqP, A, B))
- return V;
- if (Value *V = ExtractEquivalentCondition(RHS, EqP, A, B))
- return V;
- // Otherwise, see if "A EqP B" simplifies.
- if (MaxRecurse)
- if (Value *V = SimplifyICmpInst(EqP, A, B, Q, MaxRecurse-1))
- return V;
- break;
- case CmpInst::ICMP_NE:
- case CmpInst::ICMP_UGT: {
- CmpInst::Predicate InvEqP = CmpInst::getInversePredicate(EqP);
- // Equivalent to "A InvEqP B". This may be the same as the condition
- // tested in the max/min; if so, we can just return that.
- if (Value *V = ExtractEquivalentCondition(LHS, InvEqP, A, B))
- return V;
- if (Value *V = ExtractEquivalentCondition(RHS, InvEqP, A, B))
- return V;
- // Otherwise, see if "A InvEqP B" simplifies.
- if (MaxRecurse)
- if (Value *V = SimplifyICmpInst(InvEqP, A, B, Q, MaxRecurse-1))
- return V;
- break;
- }
- case CmpInst::ICMP_UGE:
- // Always true.
- return getTrue(ITy);
- case CmpInst::ICMP_ULT:
- // Always false.
- return getFalse(ITy);
- }
- }
- // Variants on "max(x,y) >= min(x,z)".
- Value *C, *D;
- if (match(LHS, m_SMax(m_Value(A), m_Value(B))) &&
- match(RHS, m_SMin(m_Value(C), m_Value(D))) &&
- (A == C || A == D || B == C || B == D)) {
- // max(x, ?) pred min(x, ?).
- if (Pred == CmpInst::ICMP_SGE)
- // Always true.
- return getTrue(ITy);
- if (Pred == CmpInst::ICMP_SLT)
- // Always false.
- return getFalse(ITy);
- } else if (match(LHS, m_SMin(m_Value(A), m_Value(B))) &&
- match(RHS, m_SMax(m_Value(C), m_Value(D))) &&
- (A == C || A == D || B == C || B == D)) {
- // min(x, ?) pred max(x, ?).
- if (Pred == CmpInst::ICMP_SLE)
- // Always true.
- return getTrue(ITy);
- if (Pred == CmpInst::ICMP_SGT)
- // Always false.
- return getFalse(ITy);
- } else if (match(LHS, m_UMax(m_Value(A), m_Value(B))) &&
- match(RHS, m_UMin(m_Value(C), m_Value(D))) &&
- (A == C || A == D || B == C || B == D)) {
- // max(x, ?) pred min(x, ?).
- if (Pred == CmpInst::ICMP_UGE)
- // Always true.
- return getTrue(ITy);
- if (Pred == CmpInst::ICMP_ULT)
- // Always false.
- return getFalse(ITy);
- } else if (match(LHS, m_UMin(m_Value(A), m_Value(B))) &&
- match(RHS, m_UMax(m_Value(C), m_Value(D))) &&
- (A == C || A == D || B == C || B == D)) {
- // min(x, ?) pred max(x, ?).
- if (Pred == CmpInst::ICMP_ULE)
- // Always true.
- return getTrue(ITy);
- if (Pred == CmpInst::ICMP_UGT)
- // Always false.
- return getFalse(ITy);
- }
- // Simplify comparisons of related pointers using a powerful, recursive
- // GEP-walk when we have target data available..
- if (LHS->getType()->isPointerTy())
- if (Constant *C = computePointerICmp(Q.DL, Q.TLI, Pred, LHS, RHS))
- return C;
- if (GetElementPtrInst *GLHS = dyn_cast<GetElementPtrInst>(LHS)) {
- if (GEPOperator *GRHS = dyn_cast<GEPOperator>(RHS)) {
- if (GLHS->getPointerOperand() == GRHS->getPointerOperand() &&
- GLHS->hasAllConstantIndices() && GRHS->hasAllConstantIndices() &&
- (ICmpInst::isEquality(Pred) ||
- (GLHS->isInBounds() && GRHS->isInBounds() &&
- Pred == ICmpInst::getSignedPredicate(Pred)))) {
- // The bases are equal and the indices are constant. Build a constant
- // expression GEP with the same indices and a null base pointer to see
- // what constant folding can make out of it.
- Constant *Null = Constant::getNullValue(GLHS->getPointerOperandType());
- SmallVector<Value *, 4> IndicesLHS(GLHS->idx_begin(), GLHS->idx_end());
- Constant *NewLHS = ConstantExpr::getGetElementPtr(
- GLHS->getSourceElementType(), Null, IndicesLHS);
- SmallVector<Value *, 4> IndicesRHS(GRHS->idx_begin(), GRHS->idx_end());
- Constant *NewRHS = ConstantExpr::getGetElementPtr(
- GLHS->getSourceElementType(), Null, IndicesRHS);
- return ConstantExpr::getICmp(Pred, NewLHS, NewRHS);
- }
- }
- }
- // If a bit is known to be zero for A and known to be one for B,
- // then A and B cannot be equal.
- if (ICmpInst::isEquality(Pred)) {
- if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) {
- uint32_t BitWidth = CI->getBitWidth();
- APInt LHSKnownZero(BitWidth, 0);
- APInt LHSKnownOne(BitWidth, 0);
- computeKnownBits(LHS, LHSKnownZero, LHSKnownOne, Q.DL, /*Depth=*/0, Q.AC,
- Q.CxtI, Q.DT);
- const APInt &RHSVal = CI->getValue();
- if (((LHSKnownZero & RHSVal) != 0) || ((LHSKnownOne & ~RHSVal) != 0))
- return Pred == ICmpInst::ICMP_EQ
- ? ConstantInt::getFalse(CI->getContext())
- : ConstantInt::getTrue(CI->getContext());
- }
- }
- // If the comparison is with the result of a select instruction, check whether
- // comparing with either branch of the select always yields the same value.
- if (isa<SelectInst>(LHS) || isa<SelectInst>(RHS))
- if (Value *V = ThreadCmpOverSelect(Pred, LHS, RHS, Q, MaxRecurse))
- return V;
- // If the comparison is with the result of a phi instruction, check whether
- // doing the compare with each incoming phi value yields a common result.
- if (isa<PHINode>(LHS) || isa<PHINode>(RHS))
- if (Value *V = ThreadCmpOverPHI(Pred, LHS, RHS, Q, MaxRecurse))
- return V;
- return nullptr;
- }
- Value *llvm::SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS,
- const DataLayout &DL,
- const TargetLibraryInfo *TLI,
- const DominatorTree *DT, AssumptionCache *AC,
- Instruction *CxtI) {
- return ::SimplifyICmpInst(Predicate, LHS, RHS, Query(DL, TLI, DT, AC, CxtI),
- RecursionLimit);
- }
- /// SimplifyFCmpInst - Given operands for an FCmpInst, see if we can
- /// fold the result. If not, this returns null.
- static Value *SimplifyFCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
- FastMathFlags FMF, const Query &Q,
- unsigned MaxRecurse) {
- CmpInst::Predicate Pred = (CmpInst::Predicate)Predicate;
- assert(CmpInst::isFPPredicate(Pred) && "Not an FP compare!");
- if (Constant *CLHS = dyn_cast<Constant>(LHS)) {
- if (Constant *CRHS = dyn_cast<Constant>(RHS))
- return ConstantFoldCompareInstOperands(Pred, CLHS, CRHS, Q.DL, Q.TLI);
- // If we have a constant, make sure it is on the RHS.
- std::swap(LHS, RHS);
- Pred = CmpInst::getSwappedPredicate(Pred);
- }
- // Fold trivial predicates.
- if (Pred == FCmpInst::FCMP_FALSE)
- return ConstantInt::get(GetCompareTy(LHS), 0);
- if (Pred == FCmpInst::FCMP_TRUE)
- return ConstantInt::get(GetCompareTy(LHS), 1);
- // UNO/ORD predicates can be trivially folded if NaNs are ignored.
- if (FMF.noNaNs()) {
- if (Pred == FCmpInst::FCMP_UNO)
- return ConstantInt::get(GetCompareTy(LHS), 0);
- if (Pred == FCmpInst::FCMP_ORD)
- return ConstantInt::get(GetCompareTy(LHS), 1);
- }
- // fcmp pred x, undef and fcmp pred undef, x
- // fold to true if unordered, false if ordered
- if (isa<UndefValue>(LHS) || isa<UndefValue>(RHS)) {
- // Choosing NaN for the undef will always make unordered comparison succeed
- // and ordered comparison fail.
- return ConstantInt::get(GetCompareTy(LHS), CmpInst::isUnordered(Pred));
- }
- // fcmp x,x -> true/false. Not all compares are foldable.
- if (LHS == RHS) {
- if (CmpInst::isTrueWhenEqual(Pred))
- return ConstantInt::get(GetCompareTy(LHS), 1);
- if (CmpInst::isFalseWhenEqual(Pred))
- return ConstantInt::get(GetCompareTy(LHS), 0);
- }
- // Handle fcmp with constant RHS
- if (ConstantFP *CFP = dyn_cast<ConstantFP>(RHS)) {
- // If the constant is a nan, see if we can fold the comparison based on it.
- if (CFP->getValueAPF().isNaN()) {
- if (FCmpInst::isOrdered(Pred)) // True "if ordered and foo"
- return ConstantInt::getFalse(CFP->getContext());
- assert(FCmpInst::isUnordered(Pred) &&
- "Comparison must be either ordered or unordered!");
- // True if unordered.
- return ConstantInt::getTrue(CFP->getContext());
- }
- // Check whether the constant is an infinity.
- if (CFP->getValueAPF().isInfinity()) {
- if (CFP->getValueAPF().isNegative()) {
- switch (Pred) {
- case FCmpInst::FCMP_OLT:
- // No value is ordered and less than negative infinity.
- return ConstantInt::getFalse(CFP->getContext());
- case FCmpInst::FCMP_UGE:
- // All values are unordered with or at least negative infinity.
- return ConstantInt::getTrue(CFP->getContext());
- default:
- break;
- }
- } else {
- switch (Pred) {
- case FCmpInst::FCMP_OGT:
- // No value is ordered and greater than infinity.
- return ConstantInt::getFalse(CFP->getContext());
- case FCmpInst::FCMP_ULE:
- // All values are unordered with and at most infinity.
- return ConstantInt::getTrue(CFP->getContext());
- default:
- break;
- }
- }
- }
- if (CFP->getValueAPF().isZero()) {
- switch (Pred) {
- case FCmpInst::FCMP_UGE:
- if (CannotBeOrderedLessThanZero(LHS))
- return ConstantInt::getTrue(CFP->getContext());
- break;
- case FCmpInst::FCMP_OLT:
- // X < 0
- if (CannotBeOrderedLessThanZero(LHS))
- return ConstantInt::getFalse(CFP->getContext());
- break;
- default:
- break;
- }
- }
- }
- // If the comparison is with the result of a select instruction, check whether
- // comparing with either branch of the select always yields the same value.
- if (isa<SelectInst>(LHS) || isa<SelectInst>(RHS))
- if (Value *V = ThreadCmpOverSelect(Pred, LHS, RHS, Q, MaxRecurse))
- return V;
- // If the comparison is with the result of a phi instruction, check whether
- // doing the compare with each incoming phi value yields a common result.
- if (isa<PHINode>(LHS) || isa<PHINode>(RHS))
- if (Value *V = ThreadCmpOverPHI(Pred, LHS, RHS, Q, MaxRecurse))
- return V;
- return nullptr;
- }
- Value *llvm::SimplifyFCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
- FastMathFlags FMF, const DataLayout &DL,
- const TargetLibraryInfo *TLI,
- const DominatorTree *DT, AssumptionCache *AC,
- const Instruction *CxtI) {
- return ::SimplifyFCmpInst(Predicate, LHS, RHS, FMF,
- Query(DL, TLI, DT, AC, CxtI), RecursionLimit);
- }
- /// SimplifyWithOpReplaced - See if V simplifies when its operand Op is
- /// replaced with RepOp.
- static const Value *SimplifyWithOpReplaced(Value *V, Value *Op, Value *RepOp,
- const Query &Q,
- unsigned MaxRecurse) {
- // Trivial replacement.
- if (V == Op)
- return RepOp;
- auto *I = dyn_cast<Instruction>(V);
- if (!I)
- return nullptr;
- // If this is a binary operator, try to simplify it with the replaced op.
- if (auto *B = dyn_cast<BinaryOperator>(I)) {
- // Consider:
- // %cmp = icmp eq i32 %x, 2147483647
- // %add = add nsw i32 %x, 1
- // %sel = select i1 %cmp, i32 -2147483648, i32 %add
- //
- // We can't replace %sel with %add unless we strip away the flags.
- if (isa<OverflowingBinaryOperator>(B))
- if (B->hasNoSignedWrap() || B->hasNoUnsignedWrap())
- return nullptr;
- if (isa<PossiblyExactOperator>(B))
- if (B->isExact())
- return nullptr;
- if (MaxRecurse) {
- if (B->getOperand(0) == Op)
- return SimplifyBinOp(B->getOpcode(), RepOp, B->getOperand(1), Q,
- MaxRecurse - 1);
- if (B->getOperand(1) == Op)
- return SimplifyBinOp(B->getOpcode(), B->getOperand(0), RepOp, Q,
- MaxRecurse - 1);
- }
- }
- // Same for CmpInsts.
- if (CmpInst *C = dyn_cast<CmpInst>(I)) {
- if (MaxRecurse) {
- if (C->getOperand(0) == Op)
- return SimplifyCmpInst(C->getPredicate(), RepOp, C->getOperand(1), Q,
- MaxRecurse - 1);
- if (C->getOperand(1) == Op)
- return SimplifyCmpInst(C->getPredicate(), C->getOperand(0), RepOp, Q,
- MaxRecurse - 1);
- }
- }
- // TODO: We could hand off more cases to instsimplify here.
- // If all operands are constant after substituting Op for RepOp then we can
- // constant fold the instruction.
- if (Constant *CRepOp = dyn_cast<Constant>(RepOp)) {
- // Build a list of all constant operands.
- SmallVector<Constant *, 8> ConstOps;
- for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
- if (I->getOperand(i) == Op)
- ConstOps.push_back(CRepOp);
- else if (Constant *COp = dyn_cast<Constant>(I->getOperand(i)))
- ConstOps.push_back(COp);
- else
- break;
- }
- // All operands were constants, fold it.
- if (ConstOps.size() == I->getNumOperands()) {
- if (CmpInst *C = dyn_cast<CmpInst>(I))
- return ConstantFoldCompareInstOperands(C->getPredicate(), ConstOps[0],
- ConstOps[1], Q.DL, Q.TLI);
- if (LoadInst *LI = dyn_cast<LoadInst>(I))
- if (!LI->isVolatile())
- return ConstantFoldLoadFromConstPtr(ConstOps[0], Q.DL);
- return ConstantFoldInstOperands(I->getOpcode(), I->getType(), ConstOps,
- Q.DL, Q.TLI);
- }
- }
- return nullptr;
- }
- /// SimplifySelectInst - Given operands for a SelectInst, see if we can fold
- /// the result. If not, this returns null.
- static Value *SimplifySelectInst(Value *CondVal, Value *TrueVal,
- Value *FalseVal, const Query &Q,
- unsigned MaxRecurse) {
- // select true, X, Y -> X
- // select false, X, Y -> Y
- if (Constant *CB = dyn_cast<Constant>(CondVal)) {
- if (CB->isAllOnesValue())
- return TrueVal;
- if (CB->isNullValue())
- return FalseVal;
- }
- // select C, X, X -> X
- if (TrueVal == FalseVal)
- return TrueVal;
- if (isa<UndefValue>(CondVal)) { // select undef, X, Y -> X or Y
- if (isa<Constant>(TrueVal))
- return TrueVal;
- return FalseVal;
- }
- if (isa<UndefValue>(TrueVal)) // select C, undef, X -> X
- return FalseVal;
- if (isa<UndefValue>(FalseVal)) // select C, X, undef -> X
- return TrueVal;
- if (const auto *ICI = dyn_cast<ICmpInst>(CondVal)) {
- unsigned BitWidth = Q.DL.getTypeSizeInBits(TrueVal->getType());
- ICmpInst::Predicate Pred = ICI->getPredicate();
- Value *CmpLHS = ICI->getOperand(0);
- Value *CmpRHS = ICI->getOperand(1);
- APInt MinSignedValue = APInt::getSignBit(BitWidth);
- Value *X;
- const APInt *Y;
- bool TrueWhenUnset;
- bool IsBitTest = false;
- if (ICmpInst::isEquality(Pred) &&
- match(CmpLHS, m_And(m_Value(X), m_APInt(Y))) &&
- match(CmpRHS, m_Zero())) {
- IsBitTest = true;
- TrueWhenUnset = Pred == ICmpInst::ICMP_EQ;
- } else if (Pred == ICmpInst::ICMP_SLT && match(CmpRHS, m_Zero())) {
- X = CmpLHS;
- Y = &MinSignedValue;
- IsBitTest = true;
- TrueWhenUnset = false;
- } else if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, m_AllOnes())) {
- X = CmpLHS;
- Y = &MinSignedValue;
- IsBitTest = true;
- TrueWhenUnset = true;
- }
- if (IsBitTest) {
- const APInt *C;
- // (X & Y) == 0 ? X & ~Y : X --> X
- // (X & Y) != 0 ? X & ~Y : X --> X & ~Y
- if (FalseVal == X && match(TrueVal, m_And(m_Specific(X), m_APInt(C))) &&
- *Y == ~*C)
- return TrueWhenUnset ? FalseVal : TrueVal;
- // (X & Y) == 0 ? X : X & ~Y --> X & ~Y
- // (X & Y) != 0 ? X : X & ~Y --> X
- if (TrueVal == X && match(FalseVal, m_And(m_Specific(X), m_APInt(C))) &&
- *Y == ~*C)
- return TrueWhenUnset ? FalseVal : TrueVal;
- if (Y->isPowerOf2()) {
- // (X & Y) == 0 ? X | Y : X --> X | Y
- // (X & Y) != 0 ? X | Y : X --> X
- if (FalseVal == X && match(TrueVal, m_Or(m_Specific(X), m_APInt(C))) &&
- *Y == *C)
- return TrueWhenUnset ? TrueVal : FalseVal;
- // (X & Y) == 0 ? X : X | Y --> X
- // (X & Y) != 0 ? X : X | Y --> X | Y
- if (TrueVal == X && match(FalseVal, m_Or(m_Specific(X), m_APInt(C))) &&
- *Y == *C)
- return TrueWhenUnset ? TrueVal : FalseVal;
- }
- }
- if (ICI->hasOneUse()) {
- const APInt *C;
- if (match(CmpRHS, m_APInt(C))) {
- // X < MIN ? T : F --> F
- if (Pred == ICmpInst::ICMP_SLT && C->isMinSignedValue())
- return FalseVal;
- // X < MIN ? T : F --> F
- if (Pred == ICmpInst::ICMP_ULT && C->isMinValue())
- return FalseVal;
- // X > MAX ? T : F --> F
- if (Pred == ICmpInst::ICMP_SGT && C->isMaxSignedValue())
- return FalseVal;
- // X > MAX ? T : F --> F
- if (Pred == ICmpInst::ICMP_UGT && C->isMaxValue())
- return FalseVal;
- }
- }
- // If we have an equality comparison then we know the value in one of the
- // arms of the select. See if substituting this value into the arm and
- // simplifying the result yields the same value as the other arm.
- if (Pred == ICmpInst::ICMP_EQ) {
- if (SimplifyWithOpReplaced(FalseVal, CmpLHS, CmpRHS, Q, MaxRecurse) ==
- TrueVal ||
- SimplifyWithOpReplaced(FalseVal, CmpRHS, CmpLHS, Q, MaxRecurse) ==
- TrueVal)
- return FalseVal;
- if (SimplifyWithOpReplaced(TrueVal, CmpLHS, CmpRHS, Q, MaxRecurse) ==
- FalseVal ||
- SimplifyWithOpReplaced(TrueVal, CmpRHS, CmpLHS, Q, MaxRecurse) ==
- FalseVal)
- return FalseVal;
- } else if (Pred == ICmpInst::ICMP_NE) {
- if (SimplifyWithOpReplaced(TrueVal, CmpLHS, CmpRHS, Q, MaxRecurse) ==
- FalseVal ||
- SimplifyWithOpReplaced(TrueVal, CmpRHS, CmpLHS, Q, MaxRecurse) ==
- FalseVal)
- return TrueVal;
- if (SimplifyWithOpReplaced(FalseVal, CmpLHS, CmpRHS, Q, MaxRecurse) ==
- TrueVal ||
- SimplifyWithOpReplaced(FalseVal, CmpRHS, CmpLHS, Q, MaxRecurse) ==
- TrueVal)
- return TrueVal;
- }
- }
- return nullptr;
- }
- Value *llvm::SimplifySelectInst(Value *Cond, Value *TrueVal, Value *FalseVal,
- const DataLayout &DL,
- const TargetLibraryInfo *TLI,
- const DominatorTree *DT, AssumptionCache *AC,
- const Instruction *CxtI) {
- return ::SimplifySelectInst(Cond, TrueVal, FalseVal,
- Query(DL, TLI, DT, AC, CxtI), RecursionLimit);
- }
- /// SimplifyGEPInst - Given operands for an GetElementPtrInst, see if we can
- /// fold the result. If not, this returns null.
- static Value *SimplifyGEPInst(Type *SrcTy, ArrayRef<Value *> Ops,
- const Query &Q, unsigned) {
- // The type of the GEP pointer operand.
- unsigned AS =
- cast<PointerType>(Ops[0]->getType()->getScalarType())->getAddressSpace();
- // getelementptr P -> P.
- if (Ops.size() == 1)
- return Ops[0];
- // Compute the (pointer) type returned by the GEP instruction.
- Type *LastType = GetElementPtrInst::getIndexedType(SrcTy, Ops.slice(1));
- Type *GEPTy = PointerType::get(LastType, AS);
- if (VectorType *VT = dyn_cast<VectorType>(Ops[0]->getType()))
- GEPTy = VectorType::get(GEPTy, VT->getNumElements());
- if (isa<UndefValue>(Ops[0]))
- return UndefValue::get(GEPTy);
- if (Ops.size() == 2) {
- // getelementptr P, 0 -> P.
- if (match(Ops[1], m_Zero()))
- return Ops[0];
- Type *Ty = SrcTy;
- if (Ty->isSized()) {
- Value *P;
- uint64_t C;
- uint64_t TyAllocSize = Q.DL.getTypeAllocSize(Ty);
- // getelementptr P, N -> P if P points to a type of zero size.
- if (TyAllocSize == 0)
- return Ops[0];
- // The following transforms are only safe if the ptrtoint cast
- // doesn't truncate the pointers.
- if (Ops[1]->getType()->getScalarSizeInBits() ==
- Q.DL.getPointerSizeInBits(AS)) {
- auto PtrToIntOrZero = [GEPTy](Value *P) -> Value * {
- if (match(P, m_Zero()))
- return Constant::getNullValue(GEPTy);
- Value *Temp;
- if (match(P, m_PtrToInt(m_Value(Temp))))
- if (Temp->getType() == GEPTy)
- return Temp;
- return nullptr;
- };
- // getelementptr V, (sub P, V) -> P if P points to a type of size 1.
- if (TyAllocSize == 1 &&
- match(Ops[1], m_Sub(m_Value(P), m_PtrToInt(m_Specific(Ops[0])))))
- if (Value *R = PtrToIntOrZero(P))
- return R;
- // getelementptr V, (ashr (sub P, V), C) -> Q
- // if P points to a type of size 1 << C.
- if (match(Ops[1],
- m_AShr(m_Sub(m_Value(P), m_PtrToInt(m_Specific(Ops[0]))),
- m_ConstantInt(C))) &&
- TyAllocSize == 1ULL << C)
- if (Value *R = PtrToIntOrZero(P))
- return R;
- // getelementptr V, (sdiv (sub P, V), C) -> Q
- // if P points to a type of size C.
- if (match(Ops[1],
- m_SDiv(m_Sub(m_Value(P), m_PtrToInt(m_Specific(Ops[0]))),
- m_SpecificInt(TyAllocSize))))
- if (Value *R = PtrToIntOrZero(P))
- return R;
- }
- }
- }
- // Check to see if this is constant foldable.
- for (unsigned i = 0, e = Ops.size(); i != e; ++i)
- if (!isa<Constant>(Ops[i]))
- return nullptr;
- return ConstantExpr::getGetElementPtr(SrcTy, cast<Constant>(Ops[0]),
- Ops.slice(1));
- }
- Value *llvm::SimplifyGEPInst(ArrayRef<Value *> Ops, const DataLayout &DL,
- const TargetLibraryInfo *TLI,
- const DominatorTree *DT, AssumptionCache *AC,
- const Instruction *CxtI) {
- return ::SimplifyGEPInst(
- cast<PointerType>(Ops[0]->getType()->getScalarType())->getElementType(),
- Ops, Query(DL, TLI, DT, AC, CxtI), RecursionLimit);
- }
- /// SimplifyInsertValueInst - Given operands for an InsertValueInst, see if we
- /// can fold the result. If not, this returns null.
- static Value *SimplifyInsertValueInst(Value *Agg, Value *Val,
- ArrayRef<unsigned> Idxs, const Query &Q,
- unsigned) {
- if (Constant *CAgg = dyn_cast<Constant>(Agg))
- if (Constant *CVal = dyn_cast<Constant>(Val))
- return ConstantFoldInsertValueInstruction(CAgg, CVal, Idxs);
- // insertvalue x, undef, n -> x
- if (match(Val, m_Undef()))
- return Agg;
- // insertvalue x, (extractvalue y, n), n
- if (ExtractValueInst *EV = dyn_cast<ExtractValueInst>(Val))
- if (EV->getAggregateOperand()->getType() == Agg->getType() &&
- EV->getIndices() == Idxs) {
- // insertvalue undef, (extractvalue y, n), n -> y
- if (match(Agg, m_Undef()))
- return EV->getAggregateOperand();
- // insertvalue y, (extractvalue y, n), n -> y
- if (Agg == EV->getAggregateOperand())
- return Agg;
- }
- return nullptr;
- }
- Value *llvm::SimplifyInsertValueInst(
- Value *Agg, Value *Val, ArrayRef<unsigned> Idxs, const DataLayout &DL,
- const TargetLibraryInfo *TLI, const DominatorTree *DT, AssumptionCache *AC,
- const Instruction *CxtI) {
- return ::SimplifyInsertValueInst(Agg, Val, Idxs, Query(DL, TLI, DT, AC, CxtI),
- RecursionLimit);
- }
- /// SimplifyExtractValueInst - Given operands for an ExtractValueInst, see if we
- /// can fold the result. If not, this returns null.
- static Value *SimplifyExtractValueInst(Value *Agg, ArrayRef<unsigned> Idxs,
- const Query &, unsigned) {
- if (auto *CAgg = dyn_cast<Constant>(Agg))
- return ConstantFoldExtractValueInstruction(CAgg, Idxs);
- // extractvalue x, (insertvalue y, elt, n), n -> elt
- unsigned NumIdxs = Idxs.size();
- for (auto *IVI = dyn_cast<InsertValueInst>(Agg); IVI != nullptr;
- IVI = dyn_cast<InsertValueInst>(IVI->getAggregateOperand())) {
- ArrayRef<unsigned> InsertValueIdxs = IVI->getIndices();
- unsigned NumInsertValueIdxs = InsertValueIdxs.size();
- unsigned NumCommonIdxs = std::min(NumInsertValueIdxs, NumIdxs);
- if (InsertValueIdxs.slice(0, NumCommonIdxs) ==
- Idxs.slice(0, NumCommonIdxs)) {
- if (NumIdxs == NumInsertValueIdxs)
- return IVI->getInsertedValueOperand();
- break;
- }
- }
- return nullptr;
- }
- Value *llvm::SimplifyExtractValueInst(Value *Agg, ArrayRef<unsigned> Idxs,
- const DataLayout &DL,
- const TargetLibraryInfo *TLI,
- const DominatorTree *DT,
- AssumptionCache *AC,
- const Instruction *CxtI) {
- return ::SimplifyExtractValueInst(Agg, Idxs, Query(DL, TLI, DT, AC, CxtI),
- RecursionLimit);
- }
- /// SimplifyExtractElementInst - Given operands for an ExtractElementInst, see if we
- /// can fold the result. If not, this returns null.
- static Value *SimplifyExtractElementInst(Value *Vec, Value *Idx, const Query &,
- unsigned) {
- if (auto *CVec = dyn_cast<Constant>(Vec)) {
- if (auto *CIdx = dyn_cast<Constant>(Idx))
- return ConstantFoldExtractElementInstruction(CVec, CIdx);
- // The index is not relevant if our vector is a splat.
- if (auto *Splat = CVec->getSplatValue())
- return Splat;
- if (isa<UndefValue>(Vec))
- return UndefValue::get(Vec->getType()->getVectorElementType());
- }
- // If extracting a specified index from the vector, see if we can recursively
- // find a previously computed scalar that was inserted into the vector.
- if (auto *IdxC = dyn_cast<ConstantInt>(Idx))
- if (Value *Elt = findScalarElement(Vec, IdxC->getZExtValue()))
- return Elt;
- return nullptr;
- }
- Value *llvm::SimplifyExtractElementInst(
- Value *Vec, Value *Idx, const DataLayout &DL, const TargetLibraryInfo *TLI,
- const DominatorTree *DT, AssumptionCache *AC, const Instruction *CxtI) {
- return ::SimplifyExtractElementInst(Vec, Idx, Query(DL, TLI, DT, AC, CxtI),
- RecursionLimit);
- }
- /// SimplifyPHINode - See if we can fold the given phi. If not, returns null.
- static Value *SimplifyPHINode(PHINode *PN, const Query &Q) {
- // If all of the PHI's incoming values are the same then replace the PHI node
- // with the common value.
- Value *CommonValue = nullptr;
- bool HasUndefInput = false;
- for (Value *Incoming : PN->incoming_values()) {
- // If the incoming value is the phi node itself, it can safely be skipped.
- if (Incoming == PN) continue;
- if (isa<UndefValue>(Incoming)) {
- // Remember that we saw an undef value, but otherwise ignore them.
- HasUndefInput = true;
- continue;
- }
- if (CommonValue && Incoming != CommonValue)
- return nullptr; // Not the same, bail out.
- CommonValue = Incoming;
- }
- // If CommonValue is null then all of the incoming values were either undef or
- // equal to the phi node itself.
- if (!CommonValue)
- return UndefValue::get(PN->getType());
- // If we have a PHI node like phi(X, undef, X), where X is defined by some
- // instruction, we cannot return X as the result of the PHI node unless it
- // dominates the PHI block.
- if (HasUndefInput)
- return ValueDominatesPHI(CommonValue, PN, Q.DT) ? CommonValue : nullptr;
- return CommonValue;
- }
- static Value *SimplifyTruncInst(Value *Op, Type *Ty, const Query &Q, unsigned) {
- if (Constant *C = dyn_cast<Constant>(Op))
- return ConstantFoldInstOperands(Instruction::Trunc, Ty, C, Q.DL, Q.TLI);
- return nullptr;
- }
- Value *llvm::SimplifyTruncInst(Value *Op, Type *Ty, const DataLayout &DL,
- const TargetLibraryInfo *TLI,
- const DominatorTree *DT, AssumptionCache *AC,
- const Instruction *CxtI) {
- return ::SimplifyTruncInst(Op, Ty, Query(DL, TLI, DT, AC, CxtI),
- RecursionLimit);
- }
- //=== Helper functions for higher up the class hierarchy.
- /// SimplifyBinOp - Given operands for a BinaryOperator, see if we can
- /// fold the result. If not, this returns null.
- static Value *SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS,
- const Query &Q, unsigned MaxRecurse) {
- switch (Opcode) {
- case Instruction::Add:
- return SimplifyAddInst(LHS, RHS, /*isNSW*/false, /*isNUW*/false,
- Q, MaxRecurse);
- case Instruction::FAdd:
- return SimplifyFAddInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse);
- case Instruction::Sub:
- return SimplifySubInst(LHS, RHS, /*isNSW*/false, /*isNUW*/false,
- Q, MaxRecurse);
- case Instruction::FSub:
- return SimplifyFSubInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse);
- case Instruction::Mul: return SimplifyMulInst (LHS, RHS, Q, MaxRecurse);
- case Instruction::FMul:
- return SimplifyFMulInst (LHS, RHS, FastMathFlags(), Q, MaxRecurse);
- case Instruction::SDiv: return SimplifySDivInst(LHS, RHS, Q, MaxRecurse);
- case Instruction::UDiv: return SimplifyUDivInst(LHS, RHS, Q, MaxRecurse);
- case Instruction::FDiv:
- return SimplifyFDivInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse);
- case Instruction::SRem: return SimplifySRemInst(LHS, RHS, Q, MaxRecurse);
- case Instruction::URem: return SimplifyURemInst(LHS, RHS, Q, MaxRecurse);
- case Instruction::FRem:
- return SimplifyFRemInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse);
- case Instruction::Shl:
- return SimplifyShlInst(LHS, RHS, /*isNSW*/false, /*isNUW*/false,
- Q, MaxRecurse);
- case Instruction::LShr:
- return SimplifyLShrInst(LHS, RHS, /*isExact*/false, Q, MaxRecurse);
- case Instruction::AShr:
- return SimplifyAShrInst(LHS, RHS, /*isExact*/false, Q, MaxRecurse);
- case Instruction::And: return SimplifyAndInst(LHS, RHS, Q, MaxRecurse);
- case Instruction::Or: return SimplifyOrInst (LHS, RHS, Q, MaxRecurse);
- case Instruction::Xor: return SimplifyXorInst(LHS, RHS, Q, MaxRecurse);
- default:
- if (Constant *CLHS = dyn_cast<Constant>(LHS))
- if (Constant *CRHS = dyn_cast<Constant>(RHS)) {
- Constant *COps[] = {CLHS, CRHS};
- return ConstantFoldInstOperands(Opcode, LHS->getType(), COps, Q.DL,
- Q.TLI);
- }
- // If the operation is associative, try some generic simplifications.
- if (Instruction::isAssociative(Opcode))
- if (Value *V = SimplifyAssociativeBinOp(Opcode, LHS, RHS, Q, MaxRecurse))
- return V;
- // If the operation is with the result of a select instruction check whether
- // operating on either branch of the select always yields the same value.
- if (isa<SelectInst>(LHS) || isa<SelectInst>(RHS))
- if (Value *V = ThreadBinOpOverSelect(Opcode, LHS, RHS, Q, MaxRecurse))
- return V;
- // If the operation is with the result of a phi instruction, check whether
- // operating on all incoming values of the phi always yields the same value.
- if (isa<PHINode>(LHS) || isa<PHINode>(RHS))
- if (Value *V = ThreadBinOpOverPHI(Opcode, LHS, RHS, Q, MaxRecurse))
- return V;
- return nullptr;
- }
- }
- /// SimplifyFPBinOp - Given operands for a BinaryOperator, see if we can
- /// fold the result. If not, this returns null.
- /// In contrast to SimplifyBinOp, try to use FastMathFlag when folding the
- /// result. In case we don't need FastMathFlags, simply fall to SimplifyBinOp.
- static Value *SimplifyFPBinOp(unsigned Opcode, Value *LHS, Value *RHS,
- const FastMathFlags &FMF, const Query &Q,
- unsigned MaxRecurse) {
- switch (Opcode) {
- case Instruction::FAdd:
- return SimplifyFAddInst(LHS, RHS, FMF, Q, MaxRecurse);
- case Instruction::FSub:
- return SimplifyFSubInst(LHS, RHS, FMF, Q, MaxRecurse);
- case Instruction::FMul:
- return SimplifyFMulInst(LHS, RHS, FMF, Q, MaxRecurse);
- default:
- return SimplifyBinOp(Opcode, LHS, RHS, Q, MaxRecurse);
- }
- }
- Value *llvm::SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS,
- const DataLayout &DL, const TargetLibraryInfo *TLI,
- const DominatorTree *DT, AssumptionCache *AC,
- const Instruction *CxtI) {
- return ::SimplifyBinOp(Opcode, LHS, RHS, Query(DL, TLI, DT, AC, CxtI),
- RecursionLimit);
- }
- Value *llvm::SimplifyFPBinOp(unsigned Opcode, Value *LHS, Value *RHS,
- const FastMathFlags &FMF, const DataLayout &DL,
- const TargetLibraryInfo *TLI,
- const DominatorTree *DT, AssumptionCache *AC,
- const Instruction *CxtI) {
- return ::SimplifyFPBinOp(Opcode, LHS, RHS, FMF, Query(DL, TLI, DT, AC, CxtI),
- RecursionLimit);
- }
- /// SimplifyCmpInst - Given operands for a CmpInst, see if we can
- /// fold the result.
- static Value *SimplifyCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
- const Query &Q, unsigned MaxRecurse) {
- if (CmpInst::isIntPredicate((CmpInst::Predicate)Predicate))
- return SimplifyICmpInst(Predicate, LHS, RHS, Q, MaxRecurse);
- return SimplifyFCmpInst(Predicate, LHS, RHS, FastMathFlags(), Q, MaxRecurse);
- }
- Value *llvm::SimplifyCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
- const DataLayout &DL, const TargetLibraryInfo *TLI,
- const DominatorTree *DT, AssumptionCache *AC,
- const Instruction *CxtI) {
- return ::SimplifyCmpInst(Predicate, LHS, RHS, Query(DL, TLI, DT, AC, CxtI),
- RecursionLimit);
- }
- static bool IsIdempotent(Intrinsic::ID ID) {
- switch (ID) {
- default: return false;
- // Unary idempotent: f(f(x)) = f(x)
- case Intrinsic::fabs:
- case Intrinsic::floor:
- case Intrinsic::ceil:
- case Intrinsic::trunc:
- case Intrinsic::rint:
- case Intrinsic::nearbyint:
- case Intrinsic::round:
- return true;
- }
- }
- template <typename IterTy>
- static Value *SimplifyIntrinsic(Function *F, IterTy ArgBegin, IterTy ArgEnd,
- const Query &Q, unsigned MaxRecurse) {
- Intrinsic::ID IID = F->getIntrinsicID();
- unsigned NumOperands = std::distance(ArgBegin, ArgEnd);
- Type *ReturnType = F->getReturnType();
- // Binary Ops
- if (NumOperands == 2) {
- Value *LHS = *ArgBegin;
- Value *RHS = *(ArgBegin + 1);
- if (IID == Intrinsic::usub_with_overflow ||
- IID == Intrinsic::ssub_with_overflow) {
- // X - X -> { 0, false }
- if (LHS == RHS)
- return Constant::getNullValue(ReturnType);
- // X - undef -> undef
- // undef - X -> undef
- if (isa<UndefValue>(LHS) || isa<UndefValue>(RHS))
- return UndefValue::get(ReturnType);
- }
- if (IID == Intrinsic::uadd_with_overflow ||
- IID == Intrinsic::sadd_with_overflow) {
- // X + undef -> undef
- if (isa<UndefValue>(RHS))
- return UndefValue::get(ReturnType);
- }
- if (IID == Intrinsic::umul_with_overflow ||
- IID == Intrinsic::smul_with_overflow) {
- // X * 0 -> { 0, false }
- if (match(RHS, m_Zero()))
- return Constant::getNullValue(ReturnType);
- // X * undef -> { 0, false }
- if (match(RHS, m_Undef()))
- return Constant::getNullValue(ReturnType);
- }
- }
- // Perform idempotent optimizations
- if (!IsIdempotent(IID))
- return nullptr;
- // Unary Ops
- if (NumOperands == 1)
- if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(*ArgBegin))
- if (II->getIntrinsicID() == IID)
- return II;
- return nullptr;
- }
- template <typename IterTy>
- static Value *SimplifyCall(Value *V, IterTy ArgBegin, IterTy ArgEnd,
- const Query &Q, unsigned MaxRecurse) {
- Type *Ty = V->getType();
- if (PointerType *PTy = dyn_cast<PointerType>(Ty))
- Ty = PTy->getElementType();
- FunctionType *FTy = cast<FunctionType>(Ty);
- // call undef -> undef
- if (isa<UndefValue>(V))
- return UndefValue::get(FTy->getReturnType());
- Function *F = dyn_cast<Function>(V);
- if (!F)
- return nullptr;
- if (F->isIntrinsic())
- if (Value *Ret = SimplifyIntrinsic(F, ArgBegin, ArgEnd, Q, MaxRecurse))
- return Ret;
- if (!canConstantFoldCallTo(F))
- return nullptr;
- SmallVector<Constant *, 4> ConstantArgs;
- ConstantArgs.reserve(ArgEnd - ArgBegin);
- for (IterTy I = ArgBegin, E = ArgEnd; I != E; ++I) {
- Constant *C = dyn_cast<Constant>(*I);
- if (!C)
- return nullptr;
- ConstantArgs.push_back(C);
- }
- return ConstantFoldCall(F, ConstantArgs, Q.TLI);
- }
- Value *llvm::SimplifyCall(Value *V, User::op_iterator ArgBegin,
- User::op_iterator ArgEnd, const DataLayout &DL,
- const TargetLibraryInfo *TLI, const DominatorTree *DT,
- AssumptionCache *AC, const Instruction *CxtI) {
- return ::SimplifyCall(V, ArgBegin, ArgEnd, Query(DL, TLI, DT, AC, CxtI),
- RecursionLimit);
- }
- Value *llvm::SimplifyCall(Value *V, ArrayRef<Value *> Args,
- const DataLayout &DL, const TargetLibraryInfo *TLI,
- const DominatorTree *DT, AssumptionCache *AC,
- const Instruction *CxtI) {
- return ::SimplifyCall(V, Args.begin(), Args.end(),
- Query(DL, TLI, DT, AC, CxtI), RecursionLimit);
- }
- // HLSL Change - Begin
- // Copied CastInst simplification from LLVM 8
- static
- Constant *foldConstVectorToAPInt(APInt &Result, Type *DestTy,
- Constant *C, Type *SrcEltTy,
- unsigned NumSrcElts,
- const DataLayout &DL) {
- // Now that we know that the input value is a vector of integers, just shift
- // and insert them into our result.
- unsigned BitShift = DL.getTypeSizeInBits(SrcEltTy);
- for (unsigned i = 0; i != NumSrcElts; ++i) {
- Constant *Element;
- if (DL.isLittleEndian())
- Element = C->getAggregateElement(NumSrcElts - i - 1);
- else
- Element = C->getAggregateElement(i);
- if (Element && isa<UndefValue>(Element)) {
- Result <<= BitShift;
- continue;
- }
- auto *ElementCI = dyn_cast_or_null<ConstantInt>(Element);
- if (!ElementCI)
- return ConstantExpr::getBitCast(C, DestTy);
- Result <<= BitShift;
- Result |= ElementCI->getValue().zextOrSelf(Result.getBitWidth());
- }
- return nullptr;
- }
- /// Constant fold bitcast, symbolically evaluating it with DataLayout.
- /// This always returns a non-null constant, but it may be a
- /// ConstantExpr if unfoldable.
- static
- Constant *FoldBitCast(Constant *C, Type *DestTy, const DataLayout &DL) {
- // Catch the obvious splat cases.
- if (C->isNullValue() && !DestTy->isX86_MMXTy())
- return Constant::getNullValue(DestTy);
- if (C->isAllOnesValue() && !DestTy->isX86_MMXTy() &&
- !DestTy->isPtrOrPtrVectorTy()) // Don't get ones for ptr types!
- return Constant::getAllOnesValue(DestTy);
- if (auto *VTy = dyn_cast<VectorType>(C->getType())) {
- // Handle a vector->scalar integer/fp cast.
- if (isa<IntegerType>(DestTy) || DestTy->isFloatingPointTy()) {
- unsigned NumSrcElts = VTy->getNumElements();
- Type *SrcEltTy = VTy->getElementType();
- // If the vector is a vector of floating point, convert it to vector of int
- // to simplify things.
- if (SrcEltTy->isFloatingPointTy()) {
- unsigned FPWidth = SrcEltTy->getPrimitiveSizeInBits();
- Type *SrcIVTy =
- VectorType::get(IntegerType::get(C->getContext(), FPWidth), NumSrcElts);
- // Ask IR to do the conversion now that #elts line up.
- C = ConstantExpr::getBitCast(C, SrcIVTy);
- }
- APInt Result(DL.getTypeSizeInBits(DestTy), 0);
- if (Constant *CE = foldConstVectorToAPInt(Result, DestTy, C,
- SrcEltTy, NumSrcElts, DL))
- return CE;
- if (isa<IntegerType>(DestTy))
- return ConstantInt::get(DestTy, Result);
- APFloat FP(DestTy->getFltSemantics(), Result);
- return ConstantFP::get(DestTy->getContext(), FP);
- }
- }
- // The code below only handles casts to vectors currently.
- auto *DestVTy = dyn_cast<VectorType>(DestTy);
- if (!DestVTy)
- return ConstantExpr::getBitCast(C, DestTy);
- // If this is a scalar -> vector cast, convert the input into a <1 x scalar>
- // vector so the code below can handle it uniformly.
- if (isa<ConstantFP>(C) || isa<ConstantInt>(C)) {
- Constant *Ops = C; // don't take the address of C!
- return FoldBitCast(ConstantVector::get(Ops), DestTy, DL);
- }
- // If this is a bitcast from constant vector -> vector, fold it.
- if (!isa<ConstantDataVector>(C) && !isa<ConstantVector>(C))
- return ConstantExpr::getBitCast(C, DestTy);
- // If the element types match, IR can fold it.
- unsigned NumDstElt = DestVTy->getNumElements();
- unsigned NumSrcElt = C->getType()->getVectorNumElements();
- if (NumDstElt == NumSrcElt)
- return ConstantExpr::getBitCast(C, DestTy);
- Type *SrcEltTy = C->getType()->getVectorElementType();
- Type *DstEltTy = DestVTy->getElementType();
- // Otherwise, we're changing the number of elements in a vector, which
- // requires endianness information to do the right thing. For example,
- // bitcast (<2 x i64> <i64 0, i64 1> to <4 x i32>)
- // folds to (little endian):
- // <4 x i32> <i32 0, i32 0, i32 1, i32 0>
- // and to (big endian):
- // <4 x i32> <i32 0, i32 0, i32 0, i32 1>
- // First thing is first. We only want to think about integer here, so if
- // we have something in FP form, recast it as integer.
- if (DstEltTy->isFloatingPointTy()) {
- // Fold to an vector of integers with same size as our FP type.
- unsigned FPWidth = DstEltTy->getPrimitiveSizeInBits();
- Type *DestIVTy =
- VectorType::get(IntegerType::get(C->getContext(), FPWidth), NumDstElt);
- // Recursively handle this integer conversion, if possible.
- C = FoldBitCast(C, DestIVTy, DL);
- // Finally, IR can handle this now that #elts line up.
- return ConstantExpr::getBitCast(C, DestTy);
- }
- // Okay, we know the destination is integer, if the input is FP, convert
- // it to integer first.
- if (SrcEltTy->isFloatingPointTy()) {
- unsigned FPWidth = SrcEltTy->getPrimitiveSizeInBits();
- Type *SrcIVTy =
- VectorType::get(IntegerType::get(C->getContext(), FPWidth), NumSrcElt);
- // Ask IR to do the conversion now that #elts line up.
- C = ConstantExpr::getBitCast(C, SrcIVTy);
- // If IR wasn't able to fold it, bail out.
- if (!isa<ConstantVector>(C) && // FIXME: Remove ConstantVector.
- !isa<ConstantDataVector>(C))
- return C;
- }
- // Now we know that the input and output vectors are both integer vectors
- // of the same size, and that their #elements is not the same. Do the
- // conversion here, which depends on whether the input or output has
- // more elements.
- bool isLittleEndian = DL.isLittleEndian();
- SmallVector<Constant*, 32> Result;
- if (NumDstElt < NumSrcElt) {
- // Handle: bitcast (<4 x i32> <i32 0, i32 1, i32 2, i32 3> to <2 x i64>)
- Constant *Zero = Constant::getNullValue(DstEltTy);
- unsigned Ratio = NumSrcElt/NumDstElt;
- unsigned SrcBitSize = SrcEltTy->getPrimitiveSizeInBits();
- unsigned SrcElt = 0;
- for (unsigned i = 0; i != NumDstElt; ++i) {
- // Build each element of the result.
- Constant *Elt = Zero;
- unsigned ShiftAmt = isLittleEndian ? 0 : SrcBitSize*(Ratio-1);
- for (unsigned j = 0; j != Ratio; ++j) {
- Constant *Src = C->getAggregateElement(SrcElt++);
- if (Src && isa<UndefValue>(Src))
- Src = Constant::getNullValue(C->getType()->getVectorElementType());
- else
- Src = dyn_cast_or_null<ConstantInt>(Src);
- if (!Src) // Reject constantexpr elements.
- return ConstantExpr::getBitCast(C, DestTy);
- // Zero extend the element to the right size.
- Src = ConstantExpr::getZExt(Src, Elt->getType());
- // Shift it to the right place, depending on endianness.
- Src = ConstantExpr::getShl(Src,
- ConstantInt::get(Src->getType(), ShiftAmt));
- ShiftAmt += isLittleEndian ? SrcBitSize : -SrcBitSize;
- // Mix it in.
- Elt = ConstantExpr::getOr(Elt, Src);
- }
- Result.push_back(Elt);
- }
- return ConstantVector::get(Result);
- }
- // Handle: bitcast (<2 x i64> <i64 0, i64 1> to <4 x i32>)
- unsigned Ratio = NumDstElt/NumSrcElt;
- unsigned DstBitSize = DL.getTypeSizeInBits(DstEltTy);
- // Loop over each source value, expanding into multiple results.
- for (unsigned i = 0; i != NumSrcElt; ++i) {
- auto *Element = C->getAggregateElement(i);
- if (!Element) // Reject constantexpr elements.
- return ConstantExpr::getBitCast(C, DestTy);
- if (isa<UndefValue>(Element)) {
- // Correctly Propagate undef values.
- Result.append(Ratio, UndefValue::get(DstEltTy));
- continue;
- }
- auto *Src = dyn_cast<ConstantInt>(Element);
- if (!Src)
- return ConstantExpr::getBitCast(C, DestTy);
- unsigned ShiftAmt = isLittleEndian ? 0 : DstBitSize*(Ratio-1);
- for (unsigned j = 0; j != Ratio; ++j) {
- // Shift the piece of the value into the right place, depending on
- // endianness.
- Constant *Elt = ConstantExpr::getLShr(Src,
- ConstantInt::get(Src->getType(), ShiftAmt));
- ShiftAmt += isLittleEndian ? DstBitSize : -DstBitSize;
- // Truncate the element to an integer with the same pointer size and
- // convert the element back to a pointer using a inttoptr.
- if (DstEltTy->isPointerTy()) {
- IntegerType *DstIntTy = Type::getIntNTy(C->getContext(), DstBitSize);
- Constant *CE = ConstantExpr::getTrunc(Elt, DstIntTy);
- Result.push_back(ConstantExpr::getIntToPtr(CE, DstEltTy));
- continue;
- }
- // Truncate and remember this piece.
- Result.push_back(ConstantExpr::getTrunc(Elt, DstEltTy));
- }
- }
- return ConstantVector::get(Result);
- }
- static
- Constant *ConstantFoldCastOperand(unsigned Opcode, Constant *C,
- Type *DestTy, const DataLayout &DL) {
- assert(Instruction::isCast(Opcode));
- switch (Opcode) {
- default:
- llvm_unreachable("Missing case");
- case Instruction::PtrToInt:
- // If the input is a inttoptr, eliminate the pair. This requires knowing
- // the width of a pointer, so it can't be done in ConstantExpr::getCast.
- if (auto *CE = dyn_cast<ConstantExpr>(C)) {
- if (CE->getOpcode() == Instruction::IntToPtr) {
- Constant *Input = CE->getOperand(0);
- unsigned InWidth = Input->getType()->getScalarSizeInBits();
- unsigned PtrWidth = DL.getPointerTypeSizeInBits(CE->getType());
- if (PtrWidth < InWidth) {
- Constant *Mask =
- ConstantInt::get(CE->getContext(),
- APInt::getLowBitsSet(InWidth, PtrWidth));
- Input = ConstantExpr::getAnd(Input, Mask);
- }
- // Do a zext or trunc to get to the dest size.
- return ConstantExpr::getIntegerCast(Input, DestTy, false);
- }
- }
- return ConstantExpr::getCast(Opcode, C, DestTy);
- case Instruction::IntToPtr:
- // If the input is a ptrtoint, turn the pair into a ptr to ptr bitcast if
- // the int size is >= the ptr size and the address spaces are the same.
- // This requires knowing the width of a pointer, so it can't be done in
- // ConstantExpr::getCast.
- if (auto *CE = dyn_cast<ConstantExpr>(C)) {
- if (CE->getOpcode() == Instruction::PtrToInt) {
- Constant *SrcPtr = CE->getOperand(0);
- unsigned SrcPtrSize = DL.getPointerTypeSizeInBits(SrcPtr->getType());
- unsigned MidIntSize = CE->getType()->getScalarSizeInBits();
- if (MidIntSize >= SrcPtrSize) {
- unsigned SrcAS = SrcPtr->getType()->getPointerAddressSpace();
- if (SrcAS == DestTy->getPointerAddressSpace())
- return FoldBitCast(CE->getOperand(0), DestTy, DL);
- }
- }
- }
- return ConstantExpr::getCast(Opcode, C, DestTy);
- case Instruction::Trunc:
- case Instruction::ZExt:
- case Instruction::SExt:
- case Instruction::FPTrunc:
- case Instruction::FPExt:
- case Instruction::UIToFP:
- case Instruction::SIToFP:
- case Instruction::FPToUI:
- case Instruction::FPToSI:
- case Instruction::AddrSpaceCast:
- return ConstantExpr::getCast(Opcode, C, DestTy);
- case Instruction::BitCast:
- return FoldBitCast(C, DestTy, DL);
- }
- }
- static Value *SimplifyCastInst(unsigned CastOpc, Value *Op,
- Type *Ty, const DataLayout &DL) {
- if (auto *C = dyn_cast<Constant>(Op))
- return ConstantFoldCastOperand(CastOpc, C, Ty, DL);
- if (auto *CI = dyn_cast<CastInst>(Op)) {
- auto *Src = CI->getOperand(0);
- Type *SrcTy = Src->getType();
- Type *MidTy = CI->getType();
- Type *DstTy = Ty;
- if (Src->getType() == Ty) {
- auto FirstOp = static_cast<Instruction::CastOps>(CI->getOpcode());
- auto SecondOp = static_cast<Instruction::CastOps>(CastOpc);
- Type *SrcIntPtrTy =
- SrcTy->isPtrOrPtrVectorTy() ? DL.getIntPtrType(SrcTy) : nullptr;
- Type *MidIntPtrTy =
- MidTy->isPtrOrPtrVectorTy() ? DL.getIntPtrType(MidTy) : nullptr;
- Type *DstIntPtrTy =
- DstTy->isPtrOrPtrVectorTy() ? DL.getIntPtrType(DstTy) : nullptr;
- if (CastInst::isEliminableCastPair(FirstOp, SecondOp, SrcTy, MidTy, DstTy,
- SrcIntPtrTy, MidIntPtrTy,
- DstIntPtrTy) == Instruction::BitCast)
- return Src;
- }
- }
- // bitcast x -> x
- if (CastOpc == Instruction::BitCast)
- if (Op->getType() == Ty)
- return Op;
- return nullptr;
- }
- Value *llvm::SimplifyCastInst(unsigned CastOpc, Value *Op,
- Type *Ty, const DataLayout &DL) {
- return ::SimplifyCastInst(CastOpc, Op, Ty, DL);
- }
- // HLSL Change - End
- /// SimplifyInstruction - See if we can compute a simplified version of this
- /// instruction. If not, this returns null.
- Value *llvm::SimplifyInstruction(Instruction *I, const DataLayout &DL,
- const TargetLibraryInfo *TLI,
- const DominatorTree *DT, AssumptionCache *AC) {
- Value *Result;
- switch (I->getOpcode()) {
- default:
- Result = ConstantFoldInstruction(I, DL, TLI);
- break;
- case Instruction::FAdd:
- Result = SimplifyFAddInst(I->getOperand(0), I->getOperand(1),
- I->getFastMathFlags(), DL, TLI, DT, AC, I);
- break;
- case Instruction::Add:
- Result = SimplifyAddInst(I->getOperand(0), I->getOperand(1),
- cast<BinaryOperator>(I)->hasNoSignedWrap(),
- cast<BinaryOperator>(I)->hasNoUnsignedWrap(), DL,
- TLI, DT, AC, I);
- break;
- case Instruction::FSub:
- Result = SimplifyFSubInst(I->getOperand(0), I->getOperand(1),
- I->getFastMathFlags(), DL, TLI, DT, AC, I);
- break;
- case Instruction::Sub:
- Result = SimplifySubInst(I->getOperand(0), I->getOperand(1),
- cast<BinaryOperator>(I)->hasNoSignedWrap(),
- cast<BinaryOperator>(I)->hasNoUnsignedWrap(), DL,
- TLI, DT, AC, I);
- break;
- case Instruction::FMul:
- Result = SimplifyFMulInst(I->getOperand(0), I->getOperand(1),
- I->getFastMathFlags(), DL, TLI, DT, AC, I);
- break;
- case Instruction::Mul:
- Result =
- SimplifyMulInst(I->getOperand(0), I->getOperand(1), DL, TLI, DT, AC, I);
- break;
- case Instruction::SDiv:
- Result = SimplifySDivInst(I->getOperand(0), I->getOperand(1), DL, TLI, DT,
- AC, I);
- break;
- case Instruction::UDiv:
- Result = SimplifyUDivInst(I->getOperand(0), I->getOperand(1), DL, TLI, DT,
- AC, I);
- break;
- case Instruction::FDiv:
- Result = SimplifyFDivInst(I->getOperand(0), I->getOperand(1),
- I->getFastMathFlags(), DL, TLI, DT, AC, I);
- break;
- case Instruction::SRem:
- Result = SimplifySRemInst(I->getOperand(0), I->getOperand(1), DL, TLI, DT,
- AC, I);
- break;
- case Instruction::URem:
- Result = SimplifyURemInst(I->getOperand(0), I->getOperand(1), DL, TLI, DT,
- AC, I);
- break;
- case Instruction::FRem:
- Result = SimplifyFRemInst(I->getOperand(0), I->getOperand(1),
- I->getFastMathFlags(), DL, TLI, DT, AC, I);
- break;
- case Instruction::Shl:
- Result = SimplifyShlInst(I->getOperand(0), I->getOperand(1),
- cast<BinaryOperator>(I)->hasNoSignedWrap(),
- cast<BinaryOperator>(I)->hasNoUnsignedWrap(), DL,
- TLI, DT, AC, I);
- break;
- case Instruction::LShr:
- Result = SimplifyLShrInst(I->getOperand(0), I->getOperand(1),
- cast<BinaryOperator>(I)->isExact(), DL, TLI, DT,
- AC, I);
- break;
- case Instruction::AShr:
- Result = SimplifyAShrInst(I->getOperand(0), I->getOperand(1),
- cast<BinaryOperator>(I)->isExact(), DL, TLI, DT,
- AC, I);
- break;
- case Instruction::And:
- Result =
- SimplifyAndInst(I->getOperand(0), I->getOperand(1), DL, TLI, DT, AC, I);
- break;
- case Instruction::Or:
- Result =
- SimplifyOrInst(I->getOperand(0), I->getOperand(1), DL, TLI, DT, AC, I);
- break;
- case Instruction::Xor:
- Result =
- SimplifyXorInst(I->getOperand(0), I->getOperand(1), DL, TLI, DT, AC, I);
- break;
- case Instruction::ICmp:
- Result =
- SimplifyICmpInst(cast<ICmpInst>(I)->getPredicate(), I->getOperand(0),
- I->getOperand(1), DL, TLI, DT, AC, I);
- break;
- case Instruction::FCmp:
- Result = SimplifyFCmpInst(cast<FCmpInst>(I)->getPredicate(),
- I->getOperand(0), I->getOperand(1),
- I->getFastMathFlags(), DL, TLI, DT, AC, I);
- break;
- case Instruction::Select:
- Result = SimplifySelectInst(I->getOperand(0), I->getOperand(1),
- I->getOperand(2), DL, TLI, DT, AC, I);
- break;
- case Instruction::GetElementPtr: {
- SmallVector<Value*, 8> Ops(I->op_begin(), I->op_end());
- Result = SimplifyGEPInst(Ops, DL, TLI, DT, AC, I);
- break;
- }
- case Instruction::InsertValue: {
- InsertValueInst *IV = cast<InsertValueInst>(I);
- Result = SimplifyInsertValueInst(IV->getAggregateOperand(),
- IV->getInsertedValueOperand(),
- IV->getIndices(), DL, TLI, DT, AC, I);
- break;
- }
- case Instruction::ExtractValue: {
- auto *EVI = cast<ExtractValueInst>(I);
- Result = SimplifyExtractValueInst(EVI->getAggregateOperand(),
- EVI->getIndices(), DL, TLI, DT, AC, I);
- break;
- }
- case Instruction::ExtractElement: {
- auto *EEI = cast<ExtractElementInst>(I);
- Result = SimplifyExtractElementInst(
- EEI->getVectorOperand(), EEI->getIndexOperand(), DL, TLI, DT, AC, I);
- break;
- }
- case Instruction::PHI:
- Result = SimplifyPHINode(cast<PHINode>(I), Query(DL, TLI, DT, AC, I));
- break;
- case Instruction::Call: {
- CallSite CS(cast<CallInst>(I));
- // HLSL Change Begin - simplify dxil calls.
- if (Function *Callee = CS.getCalledFunction()) {
- if (hlsl::CanSimplify(Callee)) {
- SmallVector<Value *, 4> Args(CS.arg_begin(), CS.arg_end());
- if (Value *DxilResult = hlsl::SimplifyDxilCall(CS.getCalledFunction(), Args, I, /* MayInsert */ true)) {
- Result = DxilResult;
- break;
- }
- }
- }
- // HLSL Change End.
- Result = SimplifyCall(CS.getCalledValue(), CS.arg_begin(), CS.arg_end(), DL,
- TLI, DT, AC, I);
- break;
- }
- case Instruction::Trunc:
- Result =
- SimplifyTruncInst(I->getOperand(0), I->getType(), DL, TLI, DT, AC, I);
- break;
- }
- /// If called on unreachable code, the above logic may report that the
- /// instruction simplified to itself. Make life easier for users by
- /// detecting that case here, returning a safe value instead.
- return Result == I ? UndefValue::get(I->getType()) : Result;
- }
- /// \brief Implementation of recursive simplification through an instructions
- /// uses.
- ///
- /// This is the common implementation of the recursive simplification routines.
- /// If we have a pre-simplified value in 'SimpleV', that is forcibly used to
- /// replace the instruction 'I'. Otherwise, we simply add 'I' to the list of
- /// instructions to process and attempt to simplify it using
- /// InstructionSimplify.
- ///
- /// This routine returns 'true' only when *it* simplifies something. The passed
- /// in simplified value does not count toward this.
- static bool replaceAndRecursivelySimplifyImpl(Instruction *I, Value *SimpleV,
- const TargetLibraryInfo *TLI,
- const DominatorTree *DT,
- AssumptionCache *AC) {
- bool Simplified = false;
- SmallSetVector<Instruction *, 8> Worklist;
- const DataLayout &DL = I->getModule()->getDataLayout();
- // If we have an explicit value to collapse to, do that round of the
- // simplification loop by hand initially.
- if (SimpleV) {
- for (User *U : I->users())
- if (U != I)
- Worklist.insert(cast<Instruction>(U));
- // Replace the instruction with its simplified value.
- I->replaceAllUsesWith(SimpleV);
- // Gracefully handle edge cases where the instruction is not wired into any
- // parent block.
- if (I->getParent())
- I->eraseFromParent();
- } else {
- Worklist.insert(I);
- }
- // Note that we must test the size on each iteration, the worklist can grow.
- for (unsigned Idx = 0; Idx != Worklist.size(); ++Idx) {
- I = Worklist[Idx];
- // See if this instruction simplifies.
- SimpleV = SimplifyInstruction(I, DL, TLI, DT, AC);
- if (!SimpleV)
- continue;
- Simplified = true;
- // Stash away all the uses of the old instruction so we can check them for
- // recursive simplifications after a RAUW. This is cheaper than checking all
- // uses of To on the recursive step in most cases.
- for (User *U : I->users())
- Worklist.insert(cast<Instruction>(U));
- // Replace the instruction with its simplified value.
- I->replaceAllUsesWith(SimpleV);
- // Gracefully handle edge cases where the instruction is not wired into any
- // parent block.
- if (I->getParent())
- I->eraseFromParent();
- }
- return Simplified;
- }
- bool llvm::recursivelySimplifyInstruction(Instruction *I,
- const TargetLibraryInfo *TLI,
- const DominatorTree *DT,
- AssumptionCache *AC) {
- return replaceAndRecursivelySimplifyImpl(I, nullptr, TLI, DT, AC);
- }
- bool llvm::replaceAndRecursivelySimplify(Instruction *I, Value *SimpleV,
- const TargetLibraryInfo *TLI,
- const DominatorTree *DT,
- AssumptionCache *AC) {
- assert(I != SimpleV && "replaceAndRecursivelySimplify(X,X) is not valid!");
- assert(SimpleV && "Must provide a simplified value.");
- return replaceAndRecursivelySimplifyImpl(I, SimpleV, TLI, DT, AC);
- }
|