123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727 |
- //===- LazyCallGraph.cpp - Analysis of a Module's call graph --------------===//
- //
- // The LLVM Compiler Infrastructure
- //
- // This file is distributed under the University of Illinois Open Source
- // License. See LICENSE.TXT for details.
- //
- //===----------------------------------------------------------------------===//
- #include "llvm/Analysis/LazyCallGraph.h"
- #include "llvm/ADT/STLExtras.h"
- #include "llvm/IR/CallSite.h"
- #include "llvm/IR/InstVisitor.h"
- #include "llvm/IR/Instructions.h"
- #include "llvm/IR/PassManager.h"
- #include "llvm/Support/Debug.h"
- #include "llvm/Support/raw_ostream.h"
- using namespace llvm;
- #define DEBUG_TYPE "lcg"
- static void findCallees(
- SmallVectorImpl<Constant *> &Worklist, SmallPtrSetImpl<Constant *> &Visited,
- SmallVectorImpl<PointerUnion<Function *, LazyCallGraph::Node *>> &Callees,
- DenseMap<Function *, size_t> &CalleeIndexMap) {
- while (!Worklist.empty()) {
- Constant *C = Worklist.pop_back_val();
- if (Function *F = dyn_cast<Function>(C)) {
- // Note that we consider *any* function with a definition to be a viable
- // edge. Even if the function's definition is subject to replacement by
- // some other module (say, a weak definition) there may still be
- // optimizations which essentially speculate based on the definition and
- // a way to check that the specific definition is in fact the one being
- // used. For example, this could be done by moving the weak definition to
- // a strong (internal) definition and making the weak definition be an
- // alias. Then a test of the address of the weak function against the new
- // strong definition's address would be an effective way to determine the
- // safety of optimizing a direct call edge.
- if (!F->isDeclaration() &&
- CalleeIndexMap.insert(std::make_pair(F, Callees.size())).second) {
- DEBUG(dbgs() << " Added callable function: " << F->getName()
- << "\n");
- Callees.push_back(F);
- }
- continue;
- }
- for (Value *Op : C->operand_values())
- if (Visited.insert(cast<Constant>(Op)).second)
- Worklist.push_back(cast<Constant>(Op));
- }
- }
- LazyCallGraph::Node::Node(LazyCallGraph &G, Function &F)
- : G(&G), F(F), DFSNumber(0), LowLink(0) {
- DEBUG(dbgs() << " Adding functions called by '" << F.getName()
- << "' to the graph.\n");
- SmallVector<Constant *, 16> Worklist;
- SmallPtrSet<Constant *, 16> Visited;
- // Find all the potential callees in this function. First walk the
- // instructions and add every operand which is a constant to the worklist.
- for (BasicBlock &BB : F)
- for (Instruction &I : BB)
- for (Value *Op : I.operand_values())
- if (Constant *C = dyn_cast<Constant>(Op))
- if (Visited.insert(C).second)
- Worklist.push_back(C);
- // We've collected all the constant (and thus potentially function or
- // function containing) operands to all of the instructions in the function.
- // Process them (recursively) collecting every function found.
- findCallees(Worklist, Visited, Callees, CalleeIndexMap);
- }
- void LazyCallGraph::Node::insertEdgeInternal(Function &Callee) {
- if (Node *N = G->lookup(Callee))
- return insertEdgeInternal(*N);
- CalleeIndexMap.insert(std::make_pair(&Callee, Callees.size()));
- Callees.push_back(&Callee);
- }
- void LazyCallGraph::Node::insertEdgeInternal(Node &CalleeN) {
- CalleeIndexMap.insert(std::make_pair(&CalleeN.getFunction(), Callees.size()));
- Callees.push_back(&CalleeN);
- }
- void LazyCallGraph::Node::removeEdgeInternal(Function &Callee) {
- auto IndexMapI = CalleeIndexMap.find(&Callee);
- assert(IndexMapI != CalleeIndexMap.end() &&
- "Callee not in the callee set for this caller?");
- Callees[IndexMapI->second] = nullptr;
- CalleeIndexMap.erase(IndexMapI);
- }
- LazyCallGraph::LazyCallGraph(Module &M) : NextDFSNumber(0) {
- DEBUG(dbgs() << "Building CG for module: " << M.getModuleIdentifier()
- << "\n");
- for (Function &F : M)
- if (!F.isDeclaration() && !F.hasLocalLinkage())
- if (EntryIndexMap.insert(std::make_pair(&F, EntryNodes.size())).second) {
- DEBUG(dbgs() << " Adding '" << F.getName()
- << "' to entry set of the graph.\n");
- EntryNodes.push_back(&F);
- }
- // Now add entry nodes for functions reachable via initializers to globals.
- SmallVector<Constant *, 16> Worklist;
- SmallPtrSet<Constant *, 16> Visited;
- for (GlobalVariable &GV : M.globals())
- if (GV.hasInitializer())
- if (Visited.insert(GV.getInitializer()).second)
- Worklist.push_back(GV.getInitializer());
- DEBUG(dbgs() << " Adding functions referenced by global initializers to the "
- "entry set.\n");
- findCallees(Worklist, Visited, EntryNodes, EntryIndexMap);
- for (auto &Entry : EntryNodes) {
- assert(!Entry.isNull() &&
- "We can't have removed edges before we finish the constructor!");
- if (Function *F = Entry.dyn_cast<Function *>())
- SCCEntryNodes.push_back(F);
- else
- SCCEntryNodes.push_back(&Entry.get<Node *>()->getFunction());
- }
- }
- LazyCallGraph::LazyCallGraph(LazyCallGraph &&G)
- : BPA(std::move(G.BPA)), NodeMap(std::move(G.NodeMap)),
- EntryNodes(std::move(G.EntryNodes)),
- EntryIndexMap(std::move(G.EntryIndexMap)), SCCBPA(std::move(G.SCCBPA)),
- SCCMap(std::move(G.SCCMap)), LeafSCCs(std::move(G.LeafSCCs)),
- DFSStack(std::move(G.DFSStack)),
- SCCEntryNodes(std::move(G.SCCEntryNodes)),
- NextDFSNumber(G.NextDFSNumber) {
- updateGraphPtrs();
- }
- LazyCallGraph &LazyCallGraph::operator=(LazyCallGraph &&G) {
- BPA = std::move(G.BPA);
- NodeMap = std::move(G.NodeMap);
- EntryNodes = std::move(G.EntryNodes);
- EntryIndexMap = std::move(G.EntryIndexMap);
- SCCBPA = std::move(G.SCCBPA);
- SCCMap = std::move(G.SCCMap);
- LeafSCCs = std::move(G.LeafSCCs);
- DFSStack = std::move(G.DFSStack);
- SCCEntryNodes = std::move(G.SCCEntryNodes);
- NextDFSNumber = G.NextDFSNumber;
- updateGraphPtrs();
- return *this;
- }
- void LazyCallGraph::SCC::insert(Node &N) {
- N.DFSNumber = N.LowLink = -1;
- Nodes.push_back(&N);
- G->SCCMap[&N] = this;
- }
- bool LazyCallGraph::SCC::isDescendantOf(const SCC &C) const {
- // Walk up the parents of this SCC and verify that we eventually find C.
- SmallVector<const SCC *, 4> AncestorWorklist;
- AncestorWorklist.push_back(this);
- do {
- const SCC *AncestorC = AncestorWorklist.pop_back_val();
- if (AncestorC->isChildOf(C))
- return true;
- for (const SCC *ParentC : AncestorC->ParentSCCs)
- AncestorWorklist.push_back(ParentC);
- } while (!AncestorWorklist.empty());
- return false;
- }
- void LazyCallGraph::SCC::insertIntraSCCEdge(Node &CallerN, Node &CalleeN) {
- // First insert it into the caller.
- CallerN.insertEdgeInternal(CalleeN);
- assert(G->SCCMap.lookup(&CallerN) == this && "Caller must be in this SCC.");
- assert(G->SCCMap.lookup(&CalleeN) == this && "Callee must be in this SCC.");
- // Nothing changes about this SCC or any other.
- }
- void LazyCallGraph::SCC::insertOutgoingEdge(Node &CallerN, Node &CalleeN) {
- // First insert it into the caller.
- CallerN.insertEdgeInternal(CalleeN);
- assert(G->SCCMap.lookup(&CallerN) == this && "Caller must be in this SCC.");
- SCC &CalleeC = *G->SCCMap.lookup(&CalleeN);
- assert(&CalleeC != this && "Callee must not be in this SCC.");
- assert(CalleeC.isDescendantOf(*this) &&
- "Callee must be a descendant of the Caller.");
- // The only change required is to add this SCC to the parent set of the callee.
- CalleeC.ParentSCCs.insert(this);
- }
- SmallVector<LazyCallGraph::SCC *, 1>
- LazyCallGraph::SCC::insertIncomingEdge(Node &CallerN, Node &CalleeN) {
- // First insert it into the caller.
- CallerN.insertEdgeInternal(CalleeN);
- assert(G->SCCMap.lookup(&CalleeN) == this && "Callee must be in this SCC.");
- SCC &CallerC = *G->SCCMap.lookup(&CallerN);
- assert(&CallerC != this && "Caller must not be in this SCC.");
- assert(CallerC.isDescendantOf(*this) &&
- "Caller must be a descendant of the Callee.");
- // The algorithm we use for merging SCCs based on the cycle introduced here
- // is to walk the SCC inverted DAG formed by the parent SCC sets. The inverse
- // graph has the same cycle properties as the actual DAG of the SCCs, and
- // when forming SCCs lazily by a DFS, the bottom of the graph won't exist in
- // many cases which should prune the search space.
- //
- // FIXME: We can get this pruning behavior even after the incremental SCC
- // formation by leaving behind (conservative) DFS numberings in the nodes,
- // and pruning the search with them. These would need to be cleverly updated
- // during the removal of intra-SCC edges, but could be preserved
- // conservatively.
- // The set of SCCs that are connected to the caller, and thus will
- // participate in the merged connected component.
- SmallPtrSet<SCC *, 8> ConnectedSCCs;
- ConnectedSCCs.insert(this);
- ConnectedSCCs.insert(&CallerC);
- // We build up a DFS stack of the parents chains.
- SmallVector<std::pair<SCC *, SCC::parent_iterator>, 8> DFSSCCs;
- SmallPtrSet<SCC *, 8> VisitedSCCs;
- int ConnectedDepth = -1;
- SCC *C = this;
- parent_iterator I = parent_begin(), E = parent_end();
- for (;;) {
- while (I != E) {
- SCC &ParentSCC = *I++;
- // If we have already processed this parent SCC, skip it, and remember
- // whether it was connected so we don't have to check the rest of the
- // stack. This also handles when we reach a child of the 'this' SCC (the
- // callee) which terminates the search.
- if (ConnectedSCCs.count(&ParentSCC)) {
- ConnectedDepth = std::max<int>(ConnectedDepth, DFSSCCs.size());
- continue;
- }
- if (VisitedSCCs.count(&ParentSCC))
- continue;
- // We fully explore the depth-first space, adding nodes to the connected
- // set only as we pop them off, so "recurse" by rotating to the parent.
- DFSSCCs.push_back(std::make_pair(C, I));
- C = &ParentSCC;
- I = ParentSCC.parent_begin();
- E = ParentSCC.parent_end();
- }
- // If we've found a connection anywhere below this point on the stack (and
- // thus up the parent graph from the caller), the current node needs to be
- // added to the connected set now that we've processed all of its parents.
- if ((int)DFSSCCs.size() == ConnectedDepth) {
- --ConnectedDepth; // We're finished with this connection.
- ConnectedSCCs.insert(C);
- } else {
- // Otherwise remember that its parents don't ever connect.
- assert(ConnectedDepth < (int)DFSSCCs.size() &&
- "Cannot have a connected depth greater than the DFS depth!");
- VisitedSCCs.insert(C);
- }
- if (DFSSCCs.empty())
- break; // We've walked all the parents of the caller transitively.
- // Pop off the prior node and position to unwind the depth first recursion.
- std::tie(C, I) = DFSSCCs.pop_back_val();
- E = C->parent_end();
- }
- // Now that we have identified all of the SCCs which need to be merged into
- // a connected set with the inserted edge, merge all of them into this SCC.
- // FIXME: This operation currently creates ordering stability problems
- // because we don't use stably ordered containers for the parent SCCs or the
- // connected SCCs.
- unsigned NewNodeBeginIdx = Nodes.size();
- for (SCC *C : ConnectedSCCs) {
- if (C == this)
- continue;
- for (SCC *ParentC : C->ParentSCCs)
- if (!ConnectedSCCs.count(ParentC))
- ParentSCCs.insert(ParentC);
- C->ParentSCCs.clear();
- for (Node *N : *C) {
- for (Node &ChildN : *N) {
- SCC &ChildC = *G->SCCMap.lookup(&ChildN);
- if (&ChildC != C)
- ChildC.ParentSCCs.erase(C);
- }
- G->SCCMap[N] = this;
- Nodes.push_back(N);
- }
- C->Nodes.clear();
- }
- for (auto I = Nodes.begin() + NewNodeBeginIdx, E = Nodes.end(); I != E; ++I)
- for (Node &ChildN : **I) {
- SCC &ChildC = *G->SCCMap.lookup(&ChildN);
- if (&ChildC != this)
- ChildC.ParentSCCs.insert(this);
- }
- // We return the list of SCCs which were merged so that callers can
- // invalidate any data they have associated with those SCCs. Note that these
- // SCCs are no longer in an interesting state (they are totally empty) but
- // the pointers will remain stable for the life of the graph itself.
- return SmallVector<SCC *, 1>(ConnectedSCCs.begin(), ConnectedSCCs.end());
- }
- void LazyCallGraph::SCC::removeInterSCCEdge(Node &CallerN, Node &CalleeN) {
- // First remove it from the node.
- CallerN.removeEdgeInternal(CalleeN.getFunction());
- assert(G->SCCMap.lookup(&CallerN) == this &&
- "The caller must be a member of this SCC.");
- SCC &CalleeC = *G->SCCMap.lookup(&CalleeN);
- assert(&CalleeC != this &&
- "This API only supports the rmoval of inter-SCC edges.");
- assert(std::find(G->LeafSCCs.begin(), G->LeafSCCs.end(), this) ==
- G->LeafSCCs.end() &&
- "Cannot have a leaf SCC caller with a different SCC callee.");
- bool HasOtherCallToCalleeC = false;
- bool HasOtherCallOutsideSCC = false;
- for (Node *N : *this) {
- for (Node &OtherCalleeN : *N) {
- SCC &OtherCalleeC = *G->SCCMap.lookup(&OtherCalleeN);
- if (&OtherCalleeC == &CalleeC) {
- HasOtherCallToCalleeC = true;
- break;
- }
- if (&OtherCalleeC != this)
- HasOtherCallOutsideSCC = true;
- }
- if (HasOtherCallToCalleeC)
- break;
- }
- // Because the SCCs form a DAG, deleting such an edge cannot change the set
- // of SCCs in the graph. However, it may cut an edge of the SCC DAG, making
- // the caller no longer a parent of the callee. Walk the other call edges
- // in the caller to tell.
- if (!HasOtherCallToCalleeC) {
- bool Removed = CalleeC.ParentSCCs.erase(this);
- (void)Removed;
- assert(Removed &&
- "Did not find the caller SCC in the callee SCC's parent list!");
- // It may orphan an SCC if it is the last edge reaching it, but that does
- // not violate any invariants of the graph.
- if (CalleeC.ParentSCCs.empty())
- DEBUG(dbgs() << "LCG: Update removing " << CallerN.getFunction().getName()
- << " -> " << CalleeN.getFunction().getName()
- << " edge orphaned the callee's SCC!\n");
- }
- // It may make the Caller SCC a leaf SCC.
- if (!HasOtherCallOutsideSCC)
- G->LeafSCCs.push_back(this);
- }
- void LazyCallGraph::SCC::internalDFS(
- SmallVectorImpl<std::pair<Node *, Node::iterator>> &DFSStack,
- SmallVectorImpl<Node *> &PendingSCCStack, Node *N,
- SmallVectorImpl<SCC *> &ResultSCCs) {
- Node::iterator I = N->begin();
- N->LowLink = N->DFSNumber = 1;
- int NextDFSNumber = 2;
- for (;;) {
- assert(N->DFSNumber != 0 && "We should always assign a DFS number "
- "before processing a node.");
- // We simulate recursion by popping out of the nested loop and continuing.
- Node::iterator E = N->end();
- while (I != E) {
- Node &ChildN = *I;
- if (SCC *ChildSCC = G->SCCMap.lookup(&ChildN)) {
- // Check if we have reached a node in the new (known connected) set of
- // this SCC. If so, the entire stack is necessarily in that set and we
- // can re-start.
- if (ChildSCC == this) {
- insert(*N);
- while (!PendingSCCStack.empty())
- insert(*PendingSCCStack.pop_back_val());
- while (!DFSStack.empty())
- insert(*DFSStack.pop_back_val().first);
- return;
- }
- // If this child isn't currently in this SCC, no need to process it.
- // However, we do need to remove this SCC from its SCC's parent set.
- ChildSCC->ParentSCCs.erase(this);
- ++I;
- continue;
- }
- if (ChildN.DFSNumber == 0) {
- // Mark that we should start at this child when next this node is the
- // top of the stack. We don't start at the next child to ensure this
- // child's lowlink is reflected.
- DFSStack.push_back(std::make_pair(N, I));
- // Continue, resetting to the child node.
- ChildN.LowLink = ChildN.DFSNumber = NextDFSNumber++;
- N = &ChildN;
- I = ChildN.begin();
- E = ChildN.end();
- continue;
- }
- // Track the lowest link of the children, if any are still in the stack.
- // Any child not on the stack will have a LowLink of -1.
- assert(ChildN.LowLink != 0 &&
- "Low-link must not be zero with a non-zero DFS number.");
- if (ChildN.LowLink >= 0 && ChildN.LowLink < N->LowLink)
- N->LowLink = ChildN.LowLink;
- ++I;
- }
- if (N->LowLink == N->DFSNumber) {
- ResultSCCs.push_back(G->formSCC(N, PendingSCCStack));
- if (DFSStack.empty())
- return;
- } else {
- // At this point we know that N cannot ever be an SCC root. Its low-link
- // is not its dfs-number, and we've processed all of its children. It is
- // just sitting here waiting until some node further down the stack gets
- // low-link == dfs-number and pops it off as well. Move it to the pending
- // stack which is pulled into the next SCC to be formed.
- PendingSCCStack.push_back(N);
- assert(!DFSStack.empty() && "We shouldn't have an empty stack!");
- }
- N = DFSStack.back().first;
- I = DFSStack.back().second;
- DFSStack.pop_back();
- }
- }
- SmallVector<LazyCallGraph::SCC *, 1>
- LazyCallGraph::SCC::removeIntraSCCEdge(Node &CallerN,
- Node &CalleeN) {
- // First remove it from the node.
- CallerN.removeEdgeInternal(CalleeN.getFunction());
- // We return a list of the resulting *new* SCCs in postorder.
- SmallVector<SCC *, 1> ResultSCCs;
- // Direct recursion doesn't impact the SCC graph at all.
- if (&CallerN == &CalleeN)
- return ResultSCCs;
- // The worklist is every node in the original SCC.
- SmallVector<Node *, 1> Worklist;
- Worklist.swap(Nodes);
- for (Node *N : Worklist) {
- // The nodes formerly in this SCC are no longer in any SCC.
- N->DFSNumber = 0;
- N->LowLink = 0;
- G->SCCMap.erase(N);
- }
- assert(Worklist.size() > 1 && "We have to have at least two nodes to have an "
- "edge between them that is within the SCC.");
- // The callee can already reach every node in this SCC (by definition). It is
- // the only node we know will stay inside this SCC. Everything which
- // transitively reaches Callee will also remain in the SCC. To model this we
- // incrementally add any chain of nodes which reaches something in the new
- // node set to the new node set. This short circuits one side of the Tarjan's
- // walk.
- insert(CalleeN);
- // We're going to do a full mini-Tarjan's walk using a local stack here.
- SmallVector<std::pair<Node *, Node::iterator>, 4> DFSStack;
- SmallVector<Node *, 4> PendingSCCStack;
- do {
- Node *N = Worklist.pop_back_val();
- if (N->DFSNumber == 0)
- internalDFS(DFSStack, PendingSCCStack, N, ResultSCCs);
- assert(DFSStack.empty() && "Didn't flush the entire DFS stack!");
- assert(PendingSCCStack.empty() && "Didn't flush all pending SCC nodes!");
- } while (!Worklist.empty());
- // Now we need to reconnect the current SCC to the graph.
- bool IsLeafSCC = true;
- for (Node *N : Nodes) {
- for (Node &ChildN : *N) {
- SCC &ChildSCC = *G->SCCMap.lookup(&ChildN);
- if (&ChildSCC == this)
- continue;
- ChildSCC.ParentSCCs.insert(this);
- IsLeafSCC = false;
- }
- }
- #ifndef NDEBUG
- if (!ResultSCCs.empty())
- assert(!IsLeafSCC && "This SCC cannot be a leaf as we have split out new "
- "SCCs by removing this edge.");
- if (!std::any_of(G->LeafSCCs.begin(), G->LeafSCCs.end(),
- [&](SCC *C) { return C == this; }))
- assert(!IsLeafSCC && "This SCC cannot be a leaf as it already had child "
- "SCCs before we removed this edge.");
- #endif
- // If this SCC stopped being a leaf through this edge removal, remove it from
- // the leaf SCC list.
- if (!IsLeafSCC && !ResultSCCs.empty())
- G->LeafSCCs.erase(std::remove(G->LeafSCCs.begin(), G->LeafSCCs.end(), this),
- G->LeafSCCs.end());
- // Return the new list of SCCs.
- return ResultSCCs;
- }
- void LazyCallGraph::insertEdge(Node &CallerN, Function &Callee) {
- assert(SCCMap.empty() && DFSStack.empty() &&
- "This method cannot be called after SCCs have been formed!");
- return CallerN.insertEdgeInternal(Callee);
- }
- void LazyCallGraph::removeEdge(Node &CallerN, Function &Callee) {
- assert(SCCMap.empty() && DFSStack.empty() &&
- "This method cannot be called after SCCs have been formed!");
- return CallerN.removeEdgeInternal(Callee);
- }
- LazyCallGraph::Node &LazyCallGraph::insertInto(Function &F, Node *&MappedN) {
- return *new (MappedN = BPA.Allocate()) Node(*this, F);
- }
- void LazyCallGraph::updateGraphPtrs() {
- // Process all nodes updating the graph pointers.
- {
- SmallVector<Node *, 16> Worklist;
- for (auto &Entry : EntryNodes)
- if (Node *EntryN = Entry.dyn_cast<Node *>())
- Worklist.push_back(EntryN);
- while (!Worklist.empty()) {
- Node *N = Worklist.pop_back_val();
- N->G = this;
- for (auto &Callee : N->Callees)
- if (!Callee.isNull())
- if (Node *CalleeN = Callee.dyn_cast<Node *>())
- Worklist.push_back(CalleeN);
- }
- }
- // Process all SCCs updating the graph pointers.
- {
- SmallVector<SCC *, 16> Worklist(LeafSCCs.begin(), LeafSCCs.end());
- while (!Worklist.empty()) {
- SCC *C = Worklist.pop_back_val();
- C->G = this;
- Worklist.insert(Worklist.end(), C->ParentSCCs.begin(),
- C->ParentSCCs.end());
- }
- }
- }
- LazyCallGraph::SCC *LazyCallGraph::formSCC(Node *RootN,
- SmallVectorImpl<Node *> &NodeStack) {
- // The tail of the stack is the new SCC. Allocate the SCC and pop the stack
- // into it.
- SCC *NewSCC = new (SCCBPA.Allocate()) SCC(*this);
- while (!NodeStack.empty() && NodeStack.back()->DFSNumber > RootN->DFSNumber) {
- assert(NodeStack.back()->LowLink >= RootN->LowLink &&
- "We cannot have a low link in an SCC lower than its root on the "
- "stack!");
- NewSCC->insert(*NodeStack.pop_back_val());
- }
- NewSCC->insert(*RootN);
- // A final pass over all edges in the SCC (this remains linear as we only
- // do this once when we build the SCC) to connect it to the parent sets of
- // its children.
- bool IsLeafSCC = true;
- for (Node *SCCN : NewSCC->Nodes)
- for (Node &SCCChildN : *SCCN) {
- SCC &ChildSCC = *SCCMap.lookup(&SCCChildN);
- if (&ChildSCC == NewSCC)
- continue;
- ChildSCC.ParentSCCs.insert(NewSCC);
- IsLeafSCC = false;
- }
- // For the SCCs where we fine no child SCCs, add them to the leaf list.
- if (IsLeafSCC)
- LeafSCCs.push_back(NewSCC);
- return NewSCC;
- }
- LazyCallGraph::SCC *LazyCallGraph::getNextSCCInPostOrder() {
- Node *N;
- Node::iterator I;
- if (!DFSStack.empty()) {
- N = DFSStack.back().first;
- I = DFSStack.back().second;
- DFSStack.pop_back();
- } else {
- // If we've handled all candidate entry nodes to the SCC forest, we're done.
- do {
- if (SCCEntryNodes.empty())
- return nullptr;
- N = &get(*SCCEntryNodes.pop_back_val());
- } while (N->DFSNumber != 0);
- I = N->begin();
- N->LowLink = N->DFSNumber = 1;
- NextDFSNumber = 2;
- }
- for (;;) {
- assert(N->DFSNumber != 0 && "We should always assign a DFS number "
- "before placing a node onto the stack.");
- Node::iterator E = N->end();
- while (I != E) {
- Node &ChildN = *I;
- if (ChildN.DFSNumber == 0) {
- // Mark that we should start at this child when next this node is the
- // top of the stack. We don't start at the next child to ensure this
- // child's lowlink is reflected.
- DFSStack.push_back(std::make_pair(N, N->begin()));
- // Recurse onto this node via a tail call.
- assert(!SCCMap.count(&ChildN) &&
- "Found a node with 0 DFS number but already in an SCC!");
- ChildN.LowLink = ChildN.DFSNumber = NextDFSNumber++;
- N = &ChildN;
- I = ChildN.begin();
- E = ChildN.end();
- continue;
- }
- // Track the lowest link of the children, if any are still in the stack.
- assert(ChildN.LowLink != 0 &&
- "Low-link must not be zero with a non-zero DFS number.");
- if (ChildN.LowLink >= 0 && ChildN.LowLink < N->LowLink)
- N->LowLink = ChildN.LowLink;
- ++I;
- }
- if (N->LowLink == N->DFSNumber)
- // Form the new SCC out of the top of the DFS stack.
- return formSCC(N, PendingSCCStack);
- // At this point we know that N cannot ever be an SCC root. Its low-link
- // is not its dfs-number, and we've processed all of its children. It is
- // just sitting here waiting until some node further down the stack gets
- // low-link == dfs-number and pops it off as well. Move it to the pending
- // stack which is pulled into the next SCC to be formed.
- PendingSCCStack.push_back(N);
- assert(!DFSStack.empty() && "We never found a viable root!");
- N = DFSStack.back().first;
- I = DFSStack.back().second;
- DFSStack.pop_back();
- }
- }
- char LazyCallGraphAnalysis::PassID;
- LazyCallGraphPrinterPass::LazyCallGraphPrinterPass(raw_ostream &OS) : OS(OS) {}
- static void printNodes(raw_ostream &OS, LazyCallGraph::Node &N,
- SmallPtrSetImpl<LazyCallGraph::Node *> &Printed) {
- // Recurse depth first through the nodes.
- for (LazyCallGraph::Node &ChildN : N)
- if (Printed.insert(&ChildN).second)
- printNodes(OS, ChildN, Printed);
- OS << " Call edges in function: " << N.getFunction().getName() << "\n";
- for (LazyCallGraph::iterator I = N.begin(), E = N.end(); I != E; ++I)
- OS << " -> " << I->getFunction().getName() << "\n";
- OS << "\n";
- }
- static void printSCC(raw_ostream &OS, LazyCallGraph::SCC &SCC) {
- ptrdiff_t SCCSize = std::distance(SCC.begin(), SCC.end());
- OS << " SCC with " << SCCSize << " functions:\n";
- for (LazyCallGraph::Node *N : SCC)
- OS << " " << N->getFunction().getName() << "\n";
- OS << "\n";
- }
- PreservedAnalyses LazyCallGraphPrinterPass::run(Module &M,
- ModuleAnalysisManager *AM) {
- LazyCallGraph &G = AM->getResult<LazyCallGraphAnalysis>(M);
- OS << "Printing the call graph for module: " << M.getModuleIdentifier()
- << "\n\n";
- SmallPtrSet<LazyCallGraph::Node *, 16> Printed;
- for (LazyCallGraph::Node &N : G)
- if (Printed.insert(&N).second)
- printNodes(OS, N, Printed);
- for (LazyCallGraph::SCC &SCC : G.postorder_sccs())
- printSCC(OS, SCC);
- return PreservedAnalyses::all();
- }
|