123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911 |
- //===-- Lint.cpp - Check for common errors in LLVM IR ---------------------===//
- //
- // The LLVM Compiler Infrastructure
- //
- // This file is distributed under the University of Illinois Open Source
- // License. See LICENSE.TXT for details.
- //
- //===----------------------------------------------------------------------===//
- //
- // This pass statically checks for common and easily-identified constructs
- // which produce undefined or likely unintended behavior in LLVM IR.
- //
- // It is not a guarantee of correctness, in two ways. First, it isn't
- // comprehensive. There are checks which could be done statically which are
- // not yet implemented. Some of these are indicated by TODO comments, but
- // those aren't comprehensive either. Second, many conditions cannot be
- // checked statically. This pass does no dynamic instrumentation, so it
- // can't check for all possible problems.
- //
- // Another limitation is that it assumes all code will be executed. A store
- // through a null pointer in a basic block which is never reached is harmless,
- // but this pass will warn about it anyway. This is the main reason why most
- // of these checks live here instead of in the Verifier pass.
- //
- // Optimization passes may make conditions that this pass checks for more or
- // less obvious. If an optimization pass appears to be introducing a warning,
- // it may be that the optimization pass is merely exposing an existing
- // condition in the code.
- //
- // This code may be run before instcombine. In many cases, instcombine checks
- // for the same kinds of things and turns instructions with undefined behavior
- // into unreachable (or equivalent). Because of this, this pass makes some
- // effort to look through bitcasts and so on.
- //
- //===----------------------------------------------------------------------===//
- #include "llvm/Analysis/Lint.h"
- #include "llvm/ADT/STLExtras.h"
- #include "llvm/ADT/SmallSet.h"
- #include "llvm/Analysis/AliasAnalysis.h"
- #include "llvm/Analysis/AssumptionCache.h"
- #include "llvm/Analysis/ConstantFolding.h"
- #include "llvm/Analysis/InstructionSimplify.h"
- #include "llvm/Analysis/Loads.h"
- #include "llvm/Analysis/Passes.h"
- #include "llvm/Analysis/TargetLibraryInfo.h"
- #include "llvm/Analysis/ValueTracking.h"
- #include "llvm/IR/CallSite.h"
- #include "llvm/IR/DataLayout.h"
- #include "llvm/IR/Dominators.h"
- #include "llvm/IR/Function.h"
- #include "llvm/IR/InstVisitor.h"
- #include "llvm/IR/IntrinsicInst.h"
- #include "llvm/IR/LegacyPassManager.h"
- #include "llvm/Pass.h"
- #include "llvm/Support/Debug.h"
- #include "llvm/Support/raw_ostream.h"
- using namespace llvm;
- namespace {
- namespace MemRef {
- static const unsigned Read = 1;
- static const unsigned Write = 2;
- static const unsigned Callee = 4;
- static const unsigned Branchee = 8;
- }
- class Lint : public FunctionPass, public InstVisitor<Lint> {
- friend class InstVisitor<Lint>;
- void visitFunction(Function &F);
- void visitCallSite(CallSite CS);
- void visitMemoryReference(Instruction &I, Value *Ptr,
- uint64_t Size, unsigned Align,
- Type *Ty, unsigned Flags);
- void visitEHBeginCatch(IntrinsicInst *II);
- void visitEHEndCatch(IntrinsicInst *II);
- void visitCallInst(CallInst &I);
- void visitInvokeInst(InvokeInst &I);
- void visitReturnInst(ReturnInst &I);
- void visitLoadInst(LoadInst &I);
- void visitStoreInst(StoreInst &I);
- void visitXor(BinaryOperator &I);
- void visitSub(BinaryOperator &I);
- void visitLShr(BinaryOperator &I);
- void visitAShr(BinaryOperator &I);
- void visitShl(BinaryOperator &I);
- void visitSDiv(BinaryOperator &I);
- void visitUDiv(BinaryOperator &I);
- void visitSRem(BinaryOperator &I);
- void visitURem(BinaryOperator &I);
- void visitAllocaInst(AllocaInst &I);
- void visitVAArgInst(VAArgInst &I);
- void visitIndirectBrInst(IndirectBrInst &I);
- void visitExtractElementInst(ExtractElementInst &I);
- void visitInsertElementInst(InsertElementInst &I);
- void visitUnreachableInst(UnreachableInst &I);
- Value *findValue(Value *V, const DataLayout &DL, bool OffsetOk) const;
- Value *findValueImpl(Value *V, const DataLayout &DL, bool OffsetOk,
- SmallPtrSetImpl<Value *> &Visited) const;
- public:
- Module *Mod;
- AliasAnalysis *AA;
- AssumptionCache *AC;
- DominatorTree *DT;
- TargetLibraryInfo *TLI;
- std::string Messages;
- raw_string_ostream MessagesStr;
- static char ID; // Pass identification, replacement for typeid
- Lint() : FunctionPass(ID), MessagesStr(Messages) {
- initializeLintPass(*PassRegistry::getPassRegistry());
- }
- bool runOnFunction(Function &F) override;
- void getAnalysisUsage(AnalysisUsage &AU) const override {
- AU.setPreservesAll();
- AU.addRequired<AliasAnalysis>();
- AU.addRequired<AssumptionCacheTracker>();
- AU.addRequired<TargetLibraryInfoWrapperPass>();
- AU.addRequired<DominatorTreeWrapperPass>();
- }
- void print(raw_ostream &O, const Module *M) const override {}
- void WriteValues(ArrayRef<const Value *> Vs) {
- for (const Value *V : Vs) {
- if (!V)
- continue;
- if (isa<Instruction>(V)) {
- MessagesStr << *V << '\n';
- } else {
- V->printAsOperand(MessagesStr, true, Mod);
- MessagesStr << '\n';
- }
- }
- }
- /// \brief A check failed, so printout out the condition and the message.
- ///
- /// This provides a nice place to put a breakpoint if you want to see why
- /// something is not correct.
- void CheckFailed(const Twine &Message) { MessagesStr << Message << '\n'; }
- /// \brief A check failed (with values to print).
- ///
- /// This calls the Message-only version so that the above is easier to set
- /// a breakpoint on.
- template <typename T1, typename... Ts>
- void CheckFailed(const Twine &Message, const T1 &V1, const Ts &...Vs) {
- CheckFailed(Message);
- WriteValues({V1, Vs...});
- }
- };
- }
- char Lint::ID = 0;
- INITIALIZE_PASS_BEGIN(Lint, "lint", "Statically lint-checks LLVM IR",
- false, true)
- INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
- INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
- INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
- INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
- INITIALIZE_PASS_END(Lint, "lint", "Statically lint-checks LLVM IR",
- false, true)
- // Assert - We know that cond should be true, if not print an error message.
- #define Assert(C, ...) \
- do { if (!(C)) { CheckFailed(__VA_ARGS__); return; } } while (0)
- // Lint::run - This is the main Analysis entry point for a
- // function.
- //
- bool Lint::runOnFunction(Function &F) {
- Mod = F.getParent();
- AA = &getAnalysis<AliasAnalysis>();
- AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
- DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
- TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
- visit(F);
- dbgs() << MessagesStr.str();
- Messages.clear();
- return false;
- }
- void Lint::visitFunction(Function &F) {
- // This isn't undefined behavior, it's just a little unusual, and it's a
- // fairly common mistake to neglect to name a function.
- Assert(F.hasName() || F.hasLocalLinkage(),
- "Unusual: Unnamed function with non-local linkage", &F);
- // TODO: Check for irreducible control flow.
- }
- void Lint::visitCallSite(CallSite CS) {
- Instruction &I = *CS.getInstruction();
- Value *Callee = CS.getCalledValue();
- const DataLayout &DL = CS->getModule()->getDataLayout();
- visitMemoryReference(I, Callee, MemoryLocation::UnknownSize, 0, nullptr,
- MemRef::Callee);
- if (Function *F = dyn_cast<Function>(findValue(Callee, DL,
- /*OffsetOk=*/false))) {
- Assert(CS.getCallingConv() == F->getCallingConv(),
- "Undefined behavior: Caller and callee calling convention differ",
- &I);
- FunctionType *FT = F->getFunctionType();
- unsigned NumActualArgs = CS.arg_size();
- Assert(FT->isVarArg() ? FT->getNumParams() <= NumActualArgs
- : FT->getNumParams() == NumActualArgs,
- "Undefined behavior: Call argument count mismatches callee "
- "argument count",
- &I);
- Assert(FT->getReturnType() == I.getType(),
- "Undefined behavior: Call return type mismatches "
- "callee return type",
- &I);
- // Check argument types (in case the callee was casted) and attributes.
- // TODO: Verify that caller and callee attributes are compatible.
- Function::arg_iterator PI = F->arg_begin(), PE = F->arg_end();
- CallSite::arg_iterator AI = CS.arg_begin(), AE = CS.arg_end();
- for (; AI != AE; ++AI) {
- Value *Actual = *AI;
- if (PI != PE) {
- Argument *Formal = PI++;
- Assert(Formal->getType() == Actual->getType(),
- "Undefined behavior: Call argument type mismatches "
- "callee parameter type",
- &I);
- // Check that noalias arguments don't alias other arguments. This is
- // not fully precise because we don't know the sizes of the dereferenced
- // memory regions.
- if (Formal->hasNoAliasAttr() && Actual->getType()->isPointerTy())
- for (CallSite::arg_iterator BI = CS.arg_begin(); BI != AE; ++BI)
- if (AI != BI && (*BI)->getType()->isPointerTy()) {
- AliasResult Result = AA->alias(*AI, *BI);
- Assert(Result != MustAlias && Result != PartialAlias,
- "Unusual: noalias argument aliases another argument", &I);
- }
- // Check that an sret argument points to valid memory.
- if (Formal->hasStructRetAttr() && Actual->getType()->isPointerTy()) {
- Type *Ty =
- cast<PointerType>(Formal->getType())->getElementType();
- visitMemoryReference(I, Actual, AA->getTypeStoreSize(Ty),
- DL.getABITypeAlignment(Ty), Ty,
- MemRef::Read | MemRef::Write);
- }
- }
- }
- }
- if (CS.isCall() && cast<CallInst>(CS.getInstruction())->isTailCall())
- for (CallSite::arg_iterator AI = CS.arg_begin(), AE = CS.arg_end();
- AI != AE; ++AI) {
- Value *Obj = findValue(*AI, DL, /*OffsetOk=*/true);
- Assert(!isa<AllocaInst>(Obj),
- "Undefined behavior: Call with \"tail\" keyword references "
- "alloca",
- &I);
- }
- if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(&I))
- switch (II->getIntrinsicID()) {
- default: break;
- // TODO: Check more intrinsics
- case Intrinsic::memcpy: {
- MemCpyInst *MCI = cast<MemCpyInst>(&I);
- // TODO: If the size is known, use it.
- visitMemoryReference(I, MCI->getDest(), MemoryLocation::UnknownSize,
- MCI->getAlignment(), nullptr, MemRef::Write);
- visitMemoryReference(I, MCI->getSource(), MemoryLocation::UnknownSize,
- MCI->getAlignment(), nullptr, MemRef::Read);
- // Check that the memcpy arguments don't overlap. The AliasAnalysis API
- // isn't expressive enough for what we really want to do. Known partial
- // overlap is not distinguished from the case where nothing is known.
- uint64_t Size = 0;
- if (const ConstantInt *Len =
- dyn_cast<ConstantInt>(findValue(MCI->getLength(), DL,
- /*OffsetOk=*/false)))
- if (Len->getValue().isIntN(32))
- Size = Len->getValue().getZExtValue();
- Assert(AA->alias(MCI->getSource(), Size, MCI->getDest(), Size) !=
- MustAlias,
- "Undefined behavior: memcpy source and destination overlap", &I);
- break;
- }
- case Intrinsic::memmove: {
- MemMoveInst *MMI = cast<MemMoveInst>(&I);
- // TODO: If the size is known, use it.
- visitMemoryReference(I, MMI->getDest(), MemoryLocation::UnknownSize,
- MMI->getAlignment(), nullptr, MemRef::Write);
- visitMemoryReference(I, MMI->getSource(), MemoryLocation::UnknownSize,
- MMI->getAlignment(), nullptr, MemRef::Read);
- break;
- }
- case Intrinsic::memset: {
- MemSetInst *MSI = cast<MemSetInst>(&I);
- // TODO: If the size is known, use it.
- visitMemoryReference(I, MSI->getDest(), MemoryLocation::UnknownSize,
- MSI->getAlignment(), nullptr, MemRef::Write);
- break;
- }
- case Intrinsic::vastart:
- Assert(I.getParent()->getParent()->isVarArg(),
- "Undefined behavior: va_start called in a non-varargs function",
- &I);
- visitMemoryReference(I, CS.getArgument(0), MemoryLocation::UnknownSize, 0,
- nullptr, MemRef::Read | MemRef::Write);
- break;
- case Intrinsic::vacopy:
- visitMemoryReference(I, CS.getArgument(0), MemoryLocation::UnknownSize, 0,
- nullptr, MemRef::Write);
- visitMemoryReference(I, CS.getArgument(1), MemoryLocation::UnknownSize, 0,
- nullptr, MemRef::Read);
- break;
- case Intrinsic::vaend:
- visitMemoryReference(I, CS.getArgument(0), MemoryLocation::UnknownSize, 0,
- nullptr, MemRef::Read | MemRef::Write);
- break;
- case Intrinsic::stackrestore:
- // Stackrestore doesn't read or write memory, but it sets the
- // stack pointer, which the compiler may read from or write to
- // at any time, so check it for both readability and writeability.
- visitMemoryReference(I, CS.getArgument(0), MemoryLocation::UnknownSize, 0,
- nullptr, MemRef::Read | MemRef::Write);
- break;
- case Intrinsic::eh_begincatch:
- visitEHBeginCatch(II);
- break;
- case Intrinsic::eh_endcatch:
- visitEHEndCatch(II);
- break;
- }
- }
- void Lint::visitCallInst(CallInst &I) {
- return visitCallSite(&I);
- }
- void Lint::visitInvokeInst(InvokeInst &I) {
- return visitCallSite(&I);
- }
- void Lint::visitReturnInst(ReturnInst &I) {
- Function *F = I.getParent()->getParent();
- Assert(!F->doesNotReturn(),
- "Unusual: Return statement in function with noreturn attribute", &I);
- if (Value *V = I.getReturnValue()) {
- Value *Obj =
- findValue(V, F->getParent()->getDataLayout(), /*OffsetOk=*/true);
- Assert(!isa<AllocaInst>(Obj), "Unusual: Returning alloca value", &I);
- }
- }
- // TODO: Check that the reference is in bounds.
- // TODO: Check readnone/readonly function attributes.
- void Lint::visitMemoryReference(Instruction &I,
- Value *Ptr, uint64_t Size, unsigned Align,
- Type *Ty, unsigned Flags) {
- // If no memory is being referenced, it doesn't matter if the pointer
- // is valid.
- if (Size == 0)
- return;
- Value *UnderlyingObject =
- findValue(Ptr, I.getModule()->getDataLayout(), /*OffsetOk=*/true);
- Assert(!isa<ConstantPointerNull>(UnderlyingObject),
- "Undefined behavior: Null pointer dereference", &I);
- Assert(!isa<UndefValue>(UnderlyingObject),
- "Undefined behavior: Undef pointer dereference", &I);
- Assert(!isa<ConstantInt>(UnderlyingObject) ||
- !cast<ConstantInt>(UnderlyingObject)->isAllOnesValue(),
- "Unusual: All-ones pointer dereference", &I);
- Assert(!isa<ConstantInt>(UnderlyingObject) ||
- !cast<ConstantInt>(UnderlyingObject)->isOne(),
- "Unusual: Address one pointer dereference", &I);
- if (Flags & MemRef::Write) {
- if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(UnderlyingObject))
- Assert(!GV->isConstant(), "Undefined behavior: Write to read-only memory",
- &I);
- Assert(!isa<Function>(UnderlyingObject) &&
- !isa<BlockAddress>(UnderlyingObject),
- "Undefined behavior: Write to text section", &I);
- }
- if (Flags & MemRef::Read) {
- Assert(!isa<Function>(UnderlyingObject), "Unusual: Load from function body",
- &I);
- Assert(!isa<BlockAddress>(UnderlyingObject),
- "Undefined behavior: Load from block address", &I);
- }
- if (Flags & MemRef::Callee) {
- Assert(!isa<BlockAddress>(UnderlyingObject),
- "Undefined behavior: Call to block address", &I);
- }
- if (Flags & MemRef::Branchee) {
- Assert(!isa<Constant>(UnderlyingObject) ||
- isa<BlockAddress>(UnderlyingObject),
- "Undefined behavior: Branch to non-blockaddress", &I);
- }
- // Check for buffer overflows and misalignment.
- // Only handles memory references that read/write something simple like an
- // alloca instruction or a global variable.
- auto &DL = I.getModule()->getDataLayout();
- int64_t Offset = 0;
- if (Value *Base = GetPointerBaseWithConstantOffset(Ptr, Offset, DL)) {
- // OK, so the access is to a constant offset from Ptr. Check that Ptr is
- // something we can handle and if so extract the size of this base object
- // along with its alignment.
- uint64_t BaseSize = MemoryLocation::UnknownSize;
- unsigned BaseAlign = 0;
- if (AllocaInst *AI = dyn_cast<AllocaInst>(Base)) {
- Type *ATy = AI->getAllocatedType();
- if (!AI->isArrayAllocation() && ATy->isSized())
- BaseSize = DL.getTypeAllocSize(ATy);
- BaseAlign = AI->getAlignment();
- if (BaseAlign == 0 && ATy->isSized())
- BaseAlign = DL.getABITypeAlignment(ATy);
- } else if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Base)) {
- // If the global may be defined differently in another compilation unit
- // then don't warn about funky memory accesses.
- if (GV->hasDefinitiveInitializer()) {
- Type *GTy = GV->getType()->getElementType();
- if (GTy->isSized())
- BaseSize = DL.getTypeAllocSize(GTy);
- BaseAlign = GV->getAlignment();
- if (BaseAlign == 0 && GTy->isSized())
- BaseAlign = DL.getABITypeAlignment(GTy);
- }
- }
- // Accesses from before the start or after the end of the object are not
- // defined.
- Assert(Size == MemoryLocation::UnknownSize ||
- BaseSize == MemoryLocation::UnknownSize ||
- (Offset >= 0 && Offset + Size <= BaseSize),
- "Undefined behavior: Buffer overflow", &I);
- // Accesses that say that the memory is more aligned than it is are not
- // defined.
- if (Align == 0 && Ty && Ty->isSized())
- Align = DL.getABITypeAlignment(Ty);
- Assert(!BaseAlign || Align <= MinAlign(BaseAlign, Offset),
- "Undefined behavior: Memory reference address is misaligned", &I);
- }
- }
- void Lint::visitLoadInst(LoadInst &I) {
- visitMemoryReference(I, I.getPointerOperand(),
- AA->getTypeStoreSize(I.getType()), I.getAlignment(),
- I.getType(), MemRef::Read);
- }
- void Lint::visitStoreInst(StoreInst &I) {
- visitMemoryReference(I, I.getPointerOperand(),
- AA->getTypeStoreSize(I.getOperand(0)->getType()),
- I.getAlignment(),
- I.getOperand(0)->getType(), MemRef::Write);
- }
- void Lint::visitXor(BinaryOperator &I) {
- Assert(!isa<UndefValue>(I.getOperand(0)) || !isa<UndefValue>(I.getOperand(1)),
- "Undefined result: xor(undef, undef)", &I);
- }
- void Lint::visitSub(BinaryOperator &I) {
- Assert(!isa<UndefValue>(I.getOperand(0)) || !isa<UndefValue>(I.getOperand(1)),
- "Undefined result: sub(undef, undef)", &I);
- }
- void Lint::visitLShr(BinaryOperator &I) {
- if (ConstantInt *CI = dyn_cast<ConstantInt>(
- findValue(I.getOperand(1), I.getModule()->getDataLayout(),
- /*OffsetOk=*/false)))
- Assert(CI->getValue().ult(cast<IntegerType>(I.getType())->getBitWidth()),
- "Undefined result: Shift count out of range", &I);
- }
- void Lint::visitAShr(BinaryOperator &I) {
- if (ConstantInt *CI = dyn_cast<ConstantInt>(findValue(
- I.getOperand(1), I.getModule()->getDataLayout(), /*OffsetOk=*/false)))
- Assert(CI->getValue().ult(cast<IntegerType>(I.getType())->getBitWidth()),
- "Undefined result: Shift count out of range", &I);
- }
- void Lint::visitShl(BinaryOperator &I) {
- if (ConstantInt *CI = dyn_cast<ConstantInt>(findValue(
- I.getOperand(1), I.getModule()->getDataLayout(), /*OffsetOk=*/false)))
- Assert(CI->getValue().ult(cast<IntegerType>(I.getType())->getBitWidth()),
- "Undefined result: Shift count out of range", &I);
- }
- static bool
- allPredsCameFromLandingPad(BasicBlock *BB,
- SmallSet<BasicBlock *, 4> &VisitedBlocks) {
- VisitedBlocks.insert(BB);
- if (BB->isLandingPad())
- return true;
- // If we find a block with no predecessors, the search failed.
- if (pred_empty(BB))
- return false;
- for (BasicBlock *Pred : predecessors(BB)) {
- if (VisitedBlocks.count(Pred))
- continue;
- if (!allPredsCameFromLandingPad(Pred, VisitedBlocks))
- return false;
- }
- return true;
- }
- static bool
- allSuccessorsReachEndCatch(BasicBlock *BB, BasicBlock::iterator InstBegin,
- IntrinsicInst **SecondBeginCatch,
- SmallSet<BasicBlock *, 4> &VisitedBlocks) {
- VisitedBlocks.insert(BB);
- for (BasicBlock::iterator I = InstBegin, E = BB->end(); I != E; ++I) {
- IntrinsicInst *IC = dyn_cast<IntrinsicInst>(I);
- if (IC && IC->getIntrinsicID() == Intrinsic::eh_endcatch)
- return true;
- // If we find another begincatch while looking for an endcatch,
- // that's also an error.
- if (IC && IC->getIntrinsicID() == Intrinsic::eh_begincatch) {
- *SecondBeginCatch = IC;
- return false;
- }
- }
- // If we reach a block with no successors while searching, the
- // search has failed.
- if (succ_empty(BB))
- return false;
- // Otherwise, search all of the successors.
- for (BasicBlock *Succ : successors(BB)) {
- if (VisitedBlocks.count(Succ))
- continue;
- if (!allSuccessorsReachEndCatch(Succ, Succ->begin(), SecondBeginCatch,
- VisitedBlocks))
- return false;
- }
- return true;
- }
- void Lint::visitEHBeginCatch(IntrinsicInst *II) {
- // The checks in this function make a potentially dubious assumption about
- // the CFG, namely that any block involved in a catch is only used for the
- // catch. This will very likely be true of IR generated by a front end,
- // but it may cease to be true, for example, if the IR is run through a
- // pass which combines similar blocks.
- //
- // In general, if we encounter a block the isn't dominated by the catch
- // block while we are searching the catch block's successors for a call
- // to end catch intrinsic, then it is possible that it will be legal for
- // a path through this block to never reach a call to llvm.eh.endcatch.
- // An analogous statement could be made about our search for a landing
- // pad among the catch block's predecessors.
- //
- // What is actually required is that no path is possible at runtime that
- // reaches a call to llvm.eh.begincatch without having previously visited
- // a landingpad instruction and that no path is possible at runtime that
- // calls llvm.eh.begincatch and does not subsequently call llvm.eh.endcatch
- // (mentally adjusting for the fact that in reality these calls will be
- // removed before code generation).
- //
- // Because this is a lint check, we take a pessimistic approach and warn if
- // the control flow is potentially incorrect.
- SmallSet<BasicBlock *, 4> VisitedBlocks;
- BasicBlock *CatchBB = II->getParent();
- // The begin catch must occur in a landing pad block or all paths
- // to it must have come from a landing pad.
- Assert(allPredsCameFromLandingPad(CatchBB, VisitedBlocks),
- "llvm.eh.begincatch may be reachable without passing a landingpad",
- II);
- // Reset the visited block list.
- VisitedBlocks.clear();
- IntrinsicInst *SecondBeginCatch = nullptr;
- // This has to be called before it is asserted. Otherwise, the first assert
- // below can never be hit.
- bool EndCatchFound = allSuccessorsReachEndCatch(
- CatchBB, std::next(static_cast<BasicBlock::iterator>(II)),
- &SecondBeginCatch, VisitedBlocks);
- Assert(
- SecondBeginCatch == nullptr,
- "llvm.eh.begincatch may be called a second time before llvm.eh.endcatch",
- II, SecondBeginCatch);
- Assert(EndCatchFound,
- "Some paths from llvm.eh.begincatch may not reach llvm.eh.endcatch",
- II);
- }
- static bool allPredCameFromBeginCatch(
- BasicBlock *BB, BasicBlock::reverse_iterator InstRbegin,
- IntrinsicInst **SecondEndCatch, SmallSet<BasicBlock *, 4> &VisitedBlocks) {
- VisitedBlocks.insert(BB);
- // Look for a begincatch in this block.
- for (BasicBlock::reverse_iterator RI = InstRbegin, RE = BB->rend(); RI != RE;
- ++RI) {
- IntrinsicInst *IC = dyn_cast<IntrinsicInst>(&*RI);
- if (IC && IC->getIntrinsicID() == Intrinsic::eh_begincatch)
- return true;
- // If we find another end catch before we find a begin catch, that's
- // an error.
- if (IC && IC->getIntrinsicID() == Intrinsic::eh_endcatch) {
- *SecondEndCatch = IC;
- return false;
- }
- // If we encounter a landingpad instruction, the search failed.
- if (isa<LandingPadInst>(*RI))
- return false;
- }
- // If while searching we find a block with no predeccesors,
- // the search failed.
- if (pred_empty(BB))
- return false;
- // Search any predecessors we haven't seen before.
- for (BasicBlock *Pred : predecessors(BB)) {
- if (VisitedBlocks.count(Pred))
- continue;
- if (!allPredCameFromBeginCatch(Pred, Pred->rbegin(), SecondEndCatch,
- VisitedBlocks))
- return false;
- }
- return true;
- }
- void Lint::visitEHEndCatch(IntrinsicInst *II) {
- // The check in this function makes a potentially dubious assumption about
- // the CFG, namely that any block involved in a catch is only used for the
- // catch. This will very likely be true of IR generated by a front end,
- // but it may cease to be true, for example, if the IR is run through a
- // pass which combines similar blocks.
- //
- // In general, if we encounter a block the isn't post-dominated by the
- // end catch block while we are searching the end catch block's predecessors
- // for a call to the begin catch intrinsic, then it is possible that it will
- // be legal for a path to reach the end catch block without ever having
- // called llvm.eh.begincatch.
- //
- // What is actually required is that no path is possible at runtime that
- // reaches a call to llvm.eh.endcatch without having previously visited
- // a call to llvm.eh.begincatch (mentally adjusting for the fact that in
- // reality these calls will be removed before code generation).
- //
- // Because this is a lint check, we take a pessimistic approach and warn if
- // the control flow is potentially incorrect.
- BasicBlock *EndCatchBB = II->getParent();
- // Alls paths to the end catch call must pass through a begin catch call.
- // If llvm.eh.begincatch wasn't called in the current block, we'll use this
- // lambda to recursively look for it in predecessors.
- SmallSet<BasicBlock *, 4> VisitedBlocks;
- IntrinsicInst *SecondEndCatch = nullptr;
- // This has to be called before it is asserted. Otherwise, the first assert
- // below can never be hit.
- bool BeginCatchFound =
- allPredCameFromBeginCatch(EndCatchBB, BasicBlock::reverse_iterator(II),
- &SecondEndCatch, VisitedBlocks);
- Assert(
- SecondEndCatch == nullptr,
- "llvm.eh.endcatch may be called a second time after llvm.eh.begincatch",
- II, SecondEndCatch);
- Assert(BeginCatchFound,
- "llvm.eh.endcatch may be reachable without passing llvm.eh.begincatch",
- II);
- }
- static bool isZero(Value *V, const DataLayout &DL, DominatorTree *DT,
- AssumptionCache *AC) {
- // Assume undef could be zero.
- if (isa<UndefValue>(V))
- return true;
- VectorType *VecTy = dyn_cast<VectorType>(V->getType());
- if (!VecTy) {
- unsigned BitWidth = V->getType()->getIntegerBitWidth();
- APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
- computeKnownBits(V, KnownZero, KnownOne, DL, 0, AC,
- dyn_cast<Instruction>(V), DT);
- return KnownZero.isAllOnesValue();
- }
- // Per-component check doesn't work with zeroinitializer
- Constant *C = dyn_cast<Constant>(V);
- if (!C)
- return false;
- if (C->isZeroValue())
- return true;
- // For a vector, KnownZero will only be true if all values are zero, so check
- // this per component
- unsigned BitWidth = VecTy->getElementType()->getIntegerBitWidth();
- for (unsigned I = 0, N = VecTy->getNumElements(); I != N; ++I) {
- Constant *Elem = C->getAggregateElement(I);
- if (isa<UndefValue>(Elem))
- return true;
- APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
- computeKnownBits(Elem, KnownZero, KnownOne, DL);
- if (KnownZero.isAllOnesValue())
- return true;
- }
- return false;
- }
- void Lint::visitSDiv(BinaryOperator &I) {
- Assert(!isZero(I.getOperand(1), I.getModule()->getDataLayout(), DT, AC),
- "Undefined behavior: Division by zero", &I);
- }
- void Lint::visitUDiv(BinaryOperator &I) {
- Assert(!isZero(I.getOperand(1), I.getModule()->getDataLayout(), DT, AC),
- "Undefined behavior: Division by zero", &I);
- }
- void Lint::visitSRem(BinaryOperator &I) {
- Assert(!isZero(I.getOperand(1), I.getModule()->getDataLayout(), DT, AC),
- "Undefined behavior: Division by zero", &I);
- }
- void Lint::visitURem(BinaryOperator &I) {
- Assert(!isZero(I.getOperand(1), I.getModule()->getDataLayout(), DT, AC),
- "Undefined behavior: Division by zero", &I);
- }
- void Lint::visitAllocaInst(AllocaInst &I) {
- if (isa<ConstantInt>(I.getArraySize()))
- // This isn't undefined behavior, it's just an obvious pessimization.
- Assert(&I.getParent()->getParent()->getEntryBlock() == I.getParent(),
- "Pessimization: Static alloca outside of entry block", &I);
- // TODO: Check for an unusual size (MSB set?)
- }
- void Lint::visitVAArgInst(VAArgInst &I) {
- visitMemoryReference(I, I.getOperand(0), MemoryLocation::UnknownSize, 0,
- nullptr, MemRef::Read | MemRef::Write);
- }
- void Lint::visitIndirectBrInst(IndirectBrInst &I) {
- visitMemoryReference(I, I.getAddress(), MemoryLocation::UnknownSize, 0,
- nullptr, MemRef::Branchee);
- Assert(I.getNumDestinations() != 0,
- "Undefined behavior: indirectbr with no destinations", &I);
- }
- void Lint::visitExtractElementInst(ExtractElementInst &I) {
- if (ConstantInt *CI = dyn_cast<ConstantInt>(
- findValue(I.getIndexOperand(), I.getModule()->getDataLayout(),
- /*OffsetOk=*/false)))
- Assert(CI->getValue().ult(I.getVectorOperandType()->getNumElements()),
- "Undefined result: extractelement index out of range", &I);
- }
- void Lint::visitInsertElementInst(InsertElementInst &I) {
- if (ConstantInt *CI = dyn_cast<ConstantInt>(
- findValue(I.getOperand(2), I.getModule()->getDataLayout(),
- /*OffsetOk=*/false)))
- Assert(CI->getValue().ult(I.getType()->getNumElements()),
- "Undefined result: insertelement index out of range", &I);
- }
- void Lint::visitUnreachableInst(UnreachableInst &I) {
- // This isn't undefined behavior, it's merely suspicious.
- Assert(&I == I.getParent()->begin() ||
- std::prev(BasicBlock::iterator(&I))->mayHaveSideEffects(),
- "Unusual: unreachable immediately preceded by instruction without "
- "side effects",
- &I);
- }
- /// findValue - Look through bitcasts and simple memory reference patterns
- /// to identify an equivalent, but more informative, value. If OffsetOk
- /// is true, look through getelementptrs with non-zero offsets too.
- ///
- /// Most analysis passes don't require this logic, because instcombine
- /// will simplify most of these kinds of things away. But it's a goal of
- /// this Lint pass to be useful even on non-optimized IR.
- Value *Lint::findValue(Value *V, const DataLayout &DL, bool OffsetOk) const {
- SmallPtrSet<Value *, 4> Visited;
- return findValueImpl(V, DL, OffsetOk, Visited);
- }
- /// findValueImpl - Implementation helper for findValue.
- Value *Lint::findValueImpl(Value *V, const DataLayout &DL, bool OffsetOk,
- SmallPtrSetImpl<Value *> &Visited) const {
- // Detect self-referential values.
- if (!Visited.insert(V).second)
- return UndefValue::get(V->getType());
- // TODO: Look through sext or zext cast, when the result is known to
- // be interpreted as signed or unsigned, respectively.
- // TODO: Look through eliminable cast pairs.
- // TODO: Look through calls with unique return values.
- // TODO: Look through vector insert/extract/shuffle.
- V = OffsetOk ? GetUnderlyingObject(V, DL) : V->stripPointerCasts();
- if (LoadInst *L = dyn_cast<LoadInst>(V)) {
- BasicBlock::iterator BBI = L;
- BasicBlock *BB = L->getParent();
- SmallPtrSet<BasicBlock *, 4> VisitedBlocks;
- for (;;) {
- if (!VisitedBlocks.insert(BB).second)
- break;
- if (Value *U = FindAvailableLoadedValue(L->getPointerOperand(),
- BB, BBI, 6, AA))
- return findValueImpl(U, DL, OffsetOk, Visited);
- if (BBI != BB->begin()) break;
- BB = BB->getUniquePredecessor();
- if (!BB) break;
- BBI = BB->end();
- }
- } else if (PHINode *PN = dyn_cast<PHINode>(V)) {
- if (Value *W = PN->hasConstantValue())
- if (W != V)
- return findValueImpl(W, DL, OffsetOk, Visited);
- } else if (CastInst *CI = dyn_cast<CastInst>(V)) {
- if (CI->isNoopCast(DL))
- return findValueImpl(CI->getOperand(0), DL, OffsetOk, Visited);
- } else if (ExtractValueInst *Ex = dyn_cast<ExtractValueInst>(V)) {
- if (Value *W = FindInsertedValue(Ex->getAggregateOperand(),
- Ex->getIndices()))
- if (W != V)
- return findValueImpl(W, DL, OffsetOk, Visited);
- } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
- // Same as above, but for ConstantExpr instead of Instruction.
- if (Instruction::isCast(CE->getOpcode())) {
- if (CastInst::isNoopCast(Instruction::CastOps(CE->getOpcode()),
- CE->getOperand(0)->getType(), CE->getType(),
- DL.getIntPtrType(V->getType())))
- return findValueImpl(CE->getOperand(0), DL, OffsetOk, Visited);
- } else if (CE->getOpcode() == Instruction::ExtractValue) {
- ArrayRef<unsigned> Indices = CE->getIndices();
- if (Value *W = FindInsertedValue(CE->getOperand(0), Indices))
- if (W != V)
- return findValueImpl(W, DL, OffsetOk, Visited);
- }
- }
- // As a last resort, try SimplifyInstruction or constant folding.
- if (Instruction *Inst = dyn_cast<Instruction>(V)) {
- if (Value *W = SimplifyInstruction(Inst, DL, TLI, DT, AC))
- return findValueImpl(W, DL, OffsetOk, Visited);
- } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
- if (Value *W = ConstantFoldConstantExpression(CE, DL, TLI))
- if (W != V)
- return findValueImpl(W, DL, OffsetOk, Visited);
- }
- return V;
- }
- //===----------------------------------------------------------------------===//
- // Implement the public interfaces to this file...
- //===----------------------------------------------------------------------===//
- FunctionPass *llvm::createLintPass() {
- return new Lint();
- }
- /// lintFunction - Check a function for errors, printing messages on stderr.
- ///
- void llvm::lintFunction(const Function &f) {
- Function &F = const_cast<Function&>(f);
- assert(!F.isDeclaration() && "Cannot lint external functions");
- legacy::FunctionPassManager FPM(F.getParent());
- Lint *V = new Lint();
- FPM.add(V);
- FPM.run(F);
- }
- /// lintModule - Check a module for errors, printing messages on stderr.
- ///
- void llvm::lintModule(const Module &M) {
- legacy::PassManager PM;
- Lint *V = new Lint();
- PM.add(V);
- PM.run(const_cast<Module&>(M));
- }
|