1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783 |
- //===- LoopAccessAnalysis.cpp - Loop Access Analysis Implementation --------==//
- //
- // The LLVM Compiler Infrastructure
- //
- // This file is distributed under the University of Illinois Open Source
- // License. See LICENSE.TXT for details.
- //
- //===----------------------------------------------------------------------===//
- //
- // The implementation for the loop memory dependence that was originally
- // developed for the loop vectorizer.
- //
- //===----------------------------------------------------------------------===//
- #include "llvm/Analysis/LoopAccessAnalysis.h"
- #include "llvm/Analysis/LoopInfo.h"
- #include "llvm/Analysis/ScalarEvolutionExpander.h"
- #include "llvm/Analysis/TargetLibraryInfo.h"
- #include "llvm/Analysis/ValueTracking.h"
- #include "llvm/IR/DiagnosticInfo.h"
- #include "llvm/IR/Dominators.h"
- #include "llvm/IR/IRBuilder.h"
- #include "llvm/Support/Debug.h"
- #include "llvm/Support/raw_ostream.h"
- #include "llvm/Analysis/VectorUtils.h"
- using namespace llvm;
- #define DEBUG_TYPE "loop-accesses"
- #if 0 // HLSL Change Starts - option pending
- static cl::opt<unsigned, true>
- VectorizationFactor("force-vector-width", cl::Hidden,
- cl::desc("Sets the SIMD width. Zero is autoselect."),
- cl::location(VectorizerParams::VectorizationFactor));
- unsigned VectorizerParams::VectorizationFactor;
- static cl::opt<unsigned, true>
- VectorizationInterleave("force-vector-interleave", cl::Hidden,
- cl::desc("Sets the vectorization interleave count. "
- "Zero is autoselect."),
- cl::location(
- VectorizerParams::VectorizationInterleave));
- unsigned VectorizerParams::VectorizationInterleave;
- static cl::opt<unsigned, true> RuntimeMemoryCheckThreshold(
- "runtime-memory-check-threshold", cl::Hidden,
- cl::desc("When performing memory disambiguation checks at runtime do not "
- "generate more than this number of comparisons (default = 8)."),
- cl::location(VectorizerParams::RuntimeMemoryCheckThreshold), cl::init(8));
- unsigned VectorizerParams::RuntimeMemoryCheckThreshold;
- /// \brief The maximum iterations used to merge memory checks
- static cl::opt<unsigned> MemoryCheckMergeThreshold(
- "memory-check-merge-threshold", cl::Hidden,
- cl::desc("Maximum number of comparisons done when trying to merge "
- "runtime memory checks. (default = 100)"),
- cl::init(100));
- /// Maximum SIMD width.
- const unsigned VectorizerParams::MaxVectorWidth = 64;
- /// \brief We collect interesting dependences up to this threshold.
- static cl::opt<unsigned> MaxInterestingDependence(
- "max-interesting-dependences", cl::Hidden,
- cl::desc("Maximum number of interesting dependences collected by "
- "loop-access analysis (default = 100)"),
- cl::init(100));
- #else
- unsigned VectorizerParams::VectorizationInterleave;
- unsigned VectorizerParams::VectorizationFactor;
- unsigned VectorizerParams::RuntimeMemoryCheckThreshold = 8;
- static const unsigned MemoryCheckMergeThreshold = 100;
- const unsigned VectorizerParams::MaxVectorWidth = 64;
- static const unsigned MaxInterestingDependence = 100;
- #endif // HLSL Change Ends
- bool VectorizerParams::isInterleaveForced() {
- return false; // HLSL Change - instead of return ::VectorizationInterleave.getNumOccurrences() > 0;
- }
- void LoopAccessReport::emitAnalysis(const LoopAccessReport &Message,
- const Function *TheFunction,
- const Loop *TheLoop,
- const char *PassName) {
- DebugLoc DL = TheLoop->getStartLoc();
- if (const Instruction *I = Message.getInstr())
- DL = I->getDebugLoc();
- emitOptimizationRemarkAnalysis(TheFunction->getContext(), PassName,
- *TheFunction, DL, Message.str());
- }
- Value *llvm::stripIntegerCast(Value *V) {
- if (CastInst *CI = dyn_cast<CastInst>(V))
- if (CI->getOperand(0)->getType()->isIntegerTy())
- return CI->getOperand(0);
- return V;
- }
- const SCEV *llvm::replaceSymbolicStrideSCEV(ScalarEvolution *SE,
- const ValueToValueMap &PtrToStride,
- Value *Ptr, Value *OrigPtr) {
- const SCEV *OrigSCEV = SE->getSCEV(Ptr);
- // If there is an entry in the map return the SCEV of the pointer with the
- // symbolic stride replaced by one.
- ValueToValueMap::const_iterator SI =
- PtrToStride.find(OrigPtr ? OrigPtr : Ptr);
- if (SI != PtrToStride.end()) {
- Value *StrideVal = SI->second;
- // Strip casts.
- StrideVal = stripIntegerCast(StrideVal);
- // Replace symbolic stride by one.
- Value *One = ConstantInt::get(StrideVal->getType(), 1);
- ValueToValueMap RewriteMap;
- RewriteMap[StrideVal] = One;
- const SCEV *ByOne =
- SCEVParameterRewriter::rewrite(OrigSCEV, *SE, RewriteMap, true);
- DEBUG(dbgs() << "LAA: Replacing SCEV: " << *OrigSCEV << " by: " << *ByOne
- << "\n");
- return ByOne;
- }
- // Otherwise, just return the SCEV of the original pointer.
- return SE->getSCEV(Ptr);
- }
- void RuntimePointerChecking::insert(Loop *Lp, Value *Ptr, bool WritePtr,
- unsigned DepSetId, unsigned ASId,
- const ValueToValueMap &Strides) {
- // Get the stride replaced scev.
- const SCEV *Sc = replaceSymbolicStrideSCEV(SE, Strides, Ptr);
- const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Sc);
- assert(AR && "Invalid addrec expression");
- const SCEV *Ex = SE->getBackedgeTakenCount(Lp);
- const SCEV *ScEnd = AR->evaluateAtIteration(Ex, *SE);
- Pointers.emplace_back(Ptr, AR->getStart(), ScEnd, WritePtr, DepSetId, ASId,
- Sc);
- }
- bool RuntimePointerChecking::needsChecking(
- const CheckingPtrGroup &M, const CheckingPtrGroup &N,
- const SmallVectorImpl<int> *PtrPartition) const {
- for (unsigned I = 0, EI = M.Members.size(); EI != I; ++I)
- for (unsigned J = 0, EJ = N.Members.size(); EJ != J; ++J)
- if (needsChecking(M.Members[I], N.Members[J], PtrPartition))
- return true;
- return false;
- }
- /// Compare \p I and \p J and return the minimum.
- /// Return nullptr in case we couldn't find an answer.
- static const SCEV *getMinFromExprs(const SCEV *I, const SCEV *J,
- ScalarEvolution *SE) {
- const SCEV *Diff = SE->getMinusSCEV(J, I);
- const SCEVConstant *C = dyn_cast<const SCEVConstant>(Diff);
- if (!C)
- return nullptr;
- if (C->getValue()->isNegative())
- return J;
- return I;
- }
- bool RuntimePointerChecking::CheckingPtrGroup::addPointer(unsigned Index) {
- const SCEV *Start = RtCheck.Pointers[Index].Start;
- const SCEV *End = RtCheck.Pointers[Index].End;
- // Compare the starts and ends with the known minimum and maximum
- // of this set. We need to know how we compare against the min/max
- // of the set in order to be able to emit memchecks.
- const SCEV *Min0 = getMinFromExprs(Start, Low, RtCheck.SE);
- if (!Min0)
- return false;
- const SCEV *Min1 = getMinFromExprs(End, High, RtCheck.SE);
- if (!Min1)
- return false;
- // Update the low bound expression if we've found a new min value.
- if (Min0 == Start)
- Low = Start;
- // Update the high bound expression if we've found a new max value.
- if (Min1 != End)
- High = End;
- Members.push_back(Index);
- return true;
- }
- void RuntimePointerChecking::groupChecks(
- MemoryDepChecker::DepCandidates &DepCands, bool UseDependencies) {
- // We build the groups from dependency candidates equivalence classes
- // because:
- // - We know that pointers in the same equivalence class share
- // the same underlying object and therefore there is a chance
- // that we can compare pointers
- // - We wouldn't be able to merge two pointers for which we need
- // to emit a memcheck. The classes in DepCands are already
- // conveniently built such that no two pointers in the same
- // class need checking against each other.
- // We use the following (greedy) algorithm to construct the groups
- // For every pointer in the equivalence class:
- // For each existing group:
- // - if the difference between this pointer and the min/max bounds
- // of the group is a constant, then make the pointer part of the
- // group and update the min/max bounds of that group as required.
- CheckingGroups.clear();
- // If we don't have the dependency partitions, construct a new
- // checking pointer group for each pointer.
- if (!UseDependencies) {
- for (unsigned I = 0; I < Pointers.size(); ++I)
- CheckingGroups.push_back(CheckingPtrGroup(I, *this));
- return;
- }
- unsigned TotalComparisons = 0;
- DenseMap<Value *, unsigned> PositionMap;
- for (unsigned Index = 0; Index < Pointers.size(); ++Index)
- PositionMap[Pointers[Index].PointerValue] = Index;
- // We need to keep track of what pointers we've already seen so we
- // don't process them twice.
- SmallSet<unsigned, 2> Seen;
- // Go through all equivalence classes, get the the "pointer check groups"
- // and add them to the overall solution. We use the order in which accesses
- // appear in 'Pointers' to enforce determinism.
- for (unsigned I = 0; I < Pointers.size(); ++I) {
- // We've seen this pointer before, and therefore already processed
- // its equivalence class.
- if (Seen.count(I))
- continue;
- MemoryDepChecker::MemAccessInfo Access(Pointers[I].PointerValue,
- Pointers[I].IsWritePtr);
- SmallVector<CheckingPtrGroup, 2> Groups;
- auto LeaderI = DepCands.findValue(DepCands.getLeaderValue(Access));
- // Because DepCands is constructed by visiting accesses in the order in
- // which they appear in alias sets (which is deterministic) and the
- // iteration order within an equivalence class member is only dependent on
- // the order in which unions and insertions are performed on the
- // equivalence class, the iteration order is deterministic.
- for (auto MI = DepCands.member_begin(LeaderI), ME = DepCands.member_end();
- MI != ME; ++MI) {
- unsigned Pointer = PositionMap[MI->getPointer()];
- bool Merged = false;
- // Mark this pointer as seen.
- Seen.insert(Pointer);
- // Go through all the existing sets and see if we can find one
- // which can include this pointer.
- for (CheckingPtrGroup &Group : Groups) {
- // Don't perform more than a certain amount of comparisons.
- // This should limit the cost of grouping the pointers to something
- // reasonable. If we do end up hitting this threshold, the algorithm
- // will create separate groups for all remaining pointers.
- if (TotalComparisons > MemoryCheckMergeThreshold)
- break;
- TotalComparisons++;
- if (Group.addPointer(Pointer)) {
- Merged = true;
- break;
- }
- }
- if (!Merged)
- // We couldn't add this pointer to any existing set or the threshold
- // for the number of comparisons has been reached. Create a new group
- // to hold the current pointer.
- Groups.push_back(CheckingPtrGroup(Pointer, *this));
- }
- // We've computed the grouped checks for this partition.
- // Save the results and continue with the next one.
- std::copy(Groups.begin(), Groups.end(), std::back_inserter(CheckingGroups));
- }
- }
- bool RuntimePointerChecking::needsChecking(
- unsigned I, unsigned J, const SmallVectorImpl<int> *PtrPartition) const {
- const PointerInfo &PointerI = Pointers[I];
- const PointerInfo &PointerJ = Pointers[J];
- // No need to check if two readonly pointers intersect.
- if (!PointerI.IsWritePtr && !PointerJ.IsWritePtr)
- return false;
- // Only need to check pointers between two different dependency sets.
- if (PointerI.DependencySetId == PointerJ.DependencySetId)
- return false;
- // Only need to check pointers in the same alias set.
- if (PointerI.AliasSetId != PointerJ.AliasSetId)
- return false;
- // If PtrPartition is set omit checks between pointers of the same partition.
- // Partition number -1 means that the pointer is used in multiple partitions.
- // In this case we can't omit the check.
- if (PtrPartition && (*PtrPartition)[I] != -1 &&
- (*PtrPartition)[I] == (*PtrPartition)[J])
- return false;
- return true;
- }
- void RuntimePointerChecking::print(
- raw_ostream &OS, unsigned Depth,
- const SmallVectorImpl<int> *PtrPartition) const {
- OS.indent(Depth) << "Run-time memory checks:\n";
- unsigned N = 0;
- for (unsigned I = 0; I < CheckingGroups.size(); ++I)
- for (unsigned J = I + 1; J < CheckingGroups.size(); ++J)
- if (needsChecking(CheckingGroups[I], CheckingGroups[J], PtrPartition)) {
- OS.indent(Depth) << "Check " << N++ << ":\n";
- OS.indent(Depth + 2) << "Comparing group " << I << ":\n";
- for (unsigned K = 0; K < CheckingGroups[I].Members.size(); ++K) {
- OS.indent(Depth + 2)
- << *Pointers[CheckingGroups[I].Members[K]].PointerValue << "\n";
- if (PtrPartition)
- OS << " (Partition: "
- << (*PtrPartition)[CheckingGroups[I].Members[K]] << ")"
- << "\n";
- }
- OS.indent(Depth + 2) << "Against group " << J << ":\n";
- for (unsigned K = 0; K < CheckingGroups[J].Members.size(); ++K) {
- OS.indent(Depth + 2)
- << *Pointers[CheckingGroups[J].Members[K]].PointerValue << "\n";
- if (PtrPartition)
- OS << " (Partition: "
- << (*PtrPartition)[CheckingGroups[J].Members[K]] << ")"
- << "\n";
- }
- }
- OS.indent(Depth) << "Grouped accesses:\n";
- for (unsigned I = 0; I < CheckingGroups.size(); ++I) {
- OS.indent(Depth + 2) << "Group " << I << ":\n";
- OS.indent(Depth + 4) << "(Low: " << *CheckingGroups[I].Low
- << " High: " << *CheckingGroups[I].High << ")\n";
- for (unsigned J = 0; J < CheckingGroups[I].Members.size(); ++J) {
- OS.indent(Depth + 6) << "Member: "
- << *Pointers[CheckingGroups[I].Members[J]].Expr
- << "\n";
- }
- }
- }
- unsigned RuntimePointerChecking::getNumberOfChecks(
- const SmallVectorImpl<int> *PtrPartition) const {
- unsigned NumPartitions = CheckingGroups.size();
- unsigned CheckCount = 0;
- for (unsigned I = 0; I < NumPartitions; ++I)
- for (unsigned J = I + 1; J < NumPartitions; ++J)
- if (needsChecking(CheckingGroups[I], CheckingGroups[J], PtrPartition))
- CheckCount++;
- return CheckCount;
- }
- bool RuntimePointerChecking::needsAnyChecking(
- const SmallVectorImpl<int> *PtrPartition) const {
- unsigned NumPointers = Pointers.size();
- for (unsigned I = 0; I < NumPointers; ++I)
- for (unsigned J = I + 1; J < NumPointers; ++J)
- if (needsChecking(I, J, PtrPartition))
- return true;
- return false;
- }
- namespace {
- /// \brief Analyses memory accesses in a loop.
- ///
- /// Checks whether run time pointer checks are needed and builds sets for data
- /// dependence checking.
- class AccessAnalysis {
- public:
- /// \brief Read or write access location.
- typedef PointerIntPair<Value *, 1, bool> MemAccessInfo;
- typedef SmallPtrSet<MemAccessInfo, 8> MemAccessInfoSet;
- AccessAnalysis(const DataLayout &Dl, AliasAnalysis *AA, LoopInfo *LI,
- MemoryDepChecker::DepCandidates &DA)
- : DL(Dl), AST(*AA), LI(LI), DepCands(DA),
- IsRTCheckAnalysisNeeded(false) {}
- /// \brief Register a load and whether it is only read from.
- void addLoad(MemoryLocation &Loc, bool IsReadOnly) {
- Value *Ptr = const_cast<Value*>(Loc.Ptr);
- AST.add(Ptr, MemoryLocation::UnknownSize, Loc.AATags);
- Accesses.insert(MemAccessInfo(Ptr, false));
- if (IsReadOnly)
- ReadOnlyPtr.insert(Ptr);
- }
- /// \brief Register a store.
- void addStore(MemoryLocation &Loc) {
- Value *Ptr = const_cast<Value*>(Loc.Ptr);
- AST.add(Ptr, MemoryLocation::UnknownSize, Loc.AATags);
- Accesses.insert(MemAccessInfo(Ptr, true));
- }
- /// \brief Check whether we can check the pointers at runtime for
- /// non-intersection.
- ///
- /// Returns true if we need no check or if we do and we can generate them
- /// (i.e. the pointers have computable bounds).
- bool canCheckPtrAtRT(RuntimePointerChecking &RtCheck, ScalarEvolution *SE,
- Loop *TheLoop, const ValueToValueMap &Strides,
- bool ShouldCheckStride = false);
- /// \brief Goes over all memory accesses, checks whether a RT check is needed
- /// and builds sets of dependent accesses.
- void buildDependenceSets() {
- processMemAccesses();
- }
- /// \brief Initial processing of memory accesses determined that we need to
- /// perform dependency checking.
- ///
- /// Note that this can later be cleared if we retry memcheck analysis without
- /// dependency checking (i.e. ShouldRetryWithRuntimeCheck).
- bool isDependencyCheckNeeded() { return !CheckDeps.empty(); }
- /// We decided that no dependence analysis would be used. Reset the state.
- void resetDepChecks(MemoryDepChecker &DepChecker) {
- CheckDeps.clear();
- DepChecker.clearInterestingDependences();
- }
- MemAccessInfoSet &getDependenciesToCheck() { return CheckDeps; }
- private:
- typedef SetVector<MemAccessInfo> PtrAccessSet;
- /// \brief Go over all memory access and check whether runtime pointer checks
- /// are needed and build sets of dependency check candidates.
- void processMemAccesses();
- /// Set of all accesses.
- PtrAccessSet Accesses;
- const DataLayout &DL;
- /// Set of accesses that need a further dependence check.
- MemAccessInfoSet CheckDeps;
- /// Set of pointers that are read only.
- SmallPtrSet<Value*, 16> ReadOnlyPtr;
- /// An alias set tracker to partition the access set by underlying object and
- //intrinsic property (such as TBAA metadata).
- AliasSetTracker AST;
- LoopInfo *LI;
- /// Sets of potentially dependent accesses - members of one set share an
- /// underlying pointer. The set "CheckDeps" identfies which sets really need a
- /// dependence check.
- MemoryDepChecker::DepCandidates &DepCands;
- /// \brief Initial processing of memory accesses determined that we may need
- /// to add memchecks. Perform the analysis to determine the necessary checks.
- ///
- /// Note that, this is different from isDependencyCheckNeeded. When we retry
- /// memcheck analysis without dependency checking
- /// (i.e. ShouldRetryWithRuntimeCheck), isDependencyCheckNeeded is cleared
- /// while this remains set if we have potentially dependent accesses.
- bool IsRTCheckAnalysisNeeded;
- };
- } // end anonymous namespace
- /// \brief Check whether a pointer can participate in a runtime bounds check.
- static bool hasComputableBounds(ScalarEvolution *SE,
- const ValueToValueMap &Strides, Value *Ptr) {
- const SCEV *PtrScev = replaceSymbolicStrideSCEV(SE, Strides, Ptr);
- const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PtrScev);
- if (!AR)
- return false;
- return AR->isAffine();
- }
- bool AccessAnalysis::canCheckPtrAtRT(RuntimePointerChecking &RtCheck,
- ScalarEvolution *SE, Loop *TheLoop,
- const ValueToValueMap &StridesMap,
- bool ShouldCheckStride) {
- // Find pointers with computable bounds. We are going to use this information
- // to place a runtime bound check.
- bool CanDoRT = true;
- bool NeedRTCheck = false;
- if (!IsRTCheckAnalysisNeeded) return true;
- bool IsDepCheckNeeded = isDependencyCheckNeeded();
- // We assign a consecutive id to access from different alias sets.
- // Accesses between different groups doesn't need to be checked.
- unsigned ASId = 1;
- for (auto &AS : AST) {
- int NumReadPtrChecks = 0;
- int NumWritePtrChecks = 0;
- // We assign consecutive id to access from different dependence sets.
- // Accesses within the same set don't need a runtime check.
- unsigned RunningDepId = 1;
- DenseMap<Value *, unsigned> DepSetId;
- for (auto A : AS) {
- Value *Ptr = A.getValue();
- bool IsWrite = Accesses.count(MemAccessInfo(Ptr, true));
- MemAccessInfo Access(Ptr, IsWrite);
- if (IsWrite)
- ++NumWritePtrChecks;
- else
- ++NumReadPtrChecks;
- if (hasComputableBounds(SE, StridesMap, Ptr) &&
- // When we run after a failing dependency check we have to make sure
- // we don't have wrapping pointers.
- (!ShouldCheckStride ||
- isStridedPtr(SE, Ptr, TheLoop, StridesMap) == 1)) {
- // The id of the dependence set.
- unsigned DepId;
- if (IsDepCheckNeeded) {
- Value *Leader = DepCands.getLeaderValue(Access).getPointer();
- unsigned &LeaderId = DepSetId[Leader];
- if (!LeaderId)
- LeaderId = RunningDepId++;
- DepId = LeaderId;
- } else
- // Each access has its own dependence set.
- DepId = RunningDepId++;
- RtCheck.insert(TheLoop, Ptr, IsWrite, DepId, ASId, StridesMap);
- DEBUG(dbgs() << "LAA: Found a runtime check ptr:" << *Ptr << '\n');
- } else {
- DEBUG(dbgs() << "LAA: Can't find bounds for ptr:" << *Ptr << '\n');
- CanDoRT = false;
- }
- }
- // If we have at least two writes or one write and a read then we need to
- // check them. But there is no need to checks if there is only one
- // dependence set for this alias set.
- //
- // Note that this function computes CanDoRT and NeedRTCheck independently.
- // For example CanDoRT=false, NeedRTCheck=false means that we have a pointer
- // for which we couldn't find the bounds but we don't actually need to emit
- // any checks so it does not matter.
- if (!(IsDepCheckNeeded && CanDoRT && RunningDepId == 2))
- NeedRTCheck |= (NumWritePtrChecks >= 2 || (NumReadPtrChecks >= 1 &&
- NumWritePtrChecks >= 1));
- ++ASId;
- }
- // If the pointers that we would use for the bounds comparison have different
- // address spaces, assume the values aren't directly comparable, so we can't
- // use them for the runtime check. We also have to assume they could
- // overlap. In the future there should be metadata for whether address spaces
- // are disjoint.
- unsigned NumPointers = RtCheck.Pointers.size();
- for (unsigned i = 0; i < NumPointers; ++i) {
- for (unsigned j = i + 1; j < NumPointers; ++j) {
- // Only need to check pointers between two different dependency sets.
- if (RtCheck.Pointers[i].DependencySetId ==
- RtCheck.Pointers[j].DependencySetId)
- continue;
- // Only need to check pointers in the same alias set.
- if (RtCheck.Pointers[i].AliasSetId != RtCheck.Pointers[j].AliasSetId)
- continue;
- Value *PtrI = RtCheck.Pointers[i].PointerValue;
- Value *PtrJ = RtCheck.Pointers[j].PointerValue;
- unsigned ASi = PtrI->getType()->getPointerAddressSpace();
- unsigned ASj = PtrJ->getType()->getPointerAddressSpace();
- if (ASi != ASj) {
- DEBUG(dbgs() << "LAA: Runtime check would require comparison between"
- " different address spaces\n");
- return false;
- }
- }
- }
- if (NeedRTCheck && CanDoRT)
- RtCheck.groupChecks(DepCands, IsDepCheckNeeded);
- DEBUG(dbgs() << "LAA: We need to do " << RtCheck.getNumberOfChecks(nullptr)
- << " pointer comparisons.\n");
- RtCheck.Need = NeedRTCheck;
- bool CanDoRTIfNeeded = !NeedRTCheck || CanDoRT;
- if (!CanDoRTIfNeeded)
- RtCheck.reset();
- return CanDoRTIfNeeded;
- }
- void AccessAnalysis::processMemAccesses() {
- // We process the set twice: first we process read-write pointers, last we
- // process read-only pointers. This allows us to skip dependence tests for
- // read-only pointers.
- DEBUG(dbgs() << "LAA: Processing memory accesses...\n");
- DEBUG(dbgs() << " AST: "; AST.dump());
- DEBUG(dbgs() << "LAA: Accesses(" << Accesses.size() << "):\n");
- DEBUG({
- for (auto A : Accesses)
- dbgs() << "\t" << *A.getPointer() << " (" <<
- (A.getInt() ? "write" : (ReadOnlyPtr.count(A.getPointer()) ?
- "read-only" : "read")) << ")\n";
- });
- // The AliasSetTracker has nicely partitioned our pointers by metadata
- // compatibility and potential for underlying-object overlap. As a result, we
- // only need to check for potential pointer dependencies within each alias
- // set.
- for (auto &AS : AST) {
- // Note that both the alias-set tracker and the alias sets themselves used
- // linked lists internally and so the iteration order here is deterministic
- // (matching the original instruction order within each set).
- bool SetHasWrite = false;
- // Map of pointers to last access encountered.
- typedef DenseMap<Value*, MemAccessInfo> UnderlyingObjToAccessMap;
- UnderlyingObjToAccessMap ObjToLastAccess;
- // Set of access to check after all writes have been processed.
- PtrAccessSet DeferredAccesses;
- // Iterate over each alias set twice, once to process read/write pointers,
- // and then to process read-only pointers.
- for (int SetIteration = 0; SetIteration < 2; ++SetIteration) {
- bool UseDeferred = SetIteration > 0;
- PtrAccessSet &S = UseDeferred ? DeferredAccesses : Accesses;
- for (auto AV : AS) {
- Value *Ptr = AV.getValue();
- // For a single memory access in AliasSetTracker, Accesses may contain
- // both read and write, and they both need to be handled for CheckDeps.
- for (auto AC : S) {
- if (AC.getPointer() != Ptr)
- continue;
- bool IsWrite = AC.getInt();
- // If we're using the deferred access set, then it contains only
- // reads.
- bool IsReadOnlyPtr = ReadOnlyPtr.count(Ptr) && !IsWrite;
- if (UseDeferred && !IsReadOnlyPtr)
- continue;
- // Otherwise, the pointer must be in the PtrAccessSet, either as a
- // read or a write.
- assert(((IsReadOnlyPtr && UseDeferred) || IsWrite ||
- S.count(MemAccessInfo(Ptr, false))) &&
- "Alias-set pointer not in the access set?");
- MemAccessInfo Access(Ptr, IsWrite);
- DepCands.insert(Access);
- // Memorize read-only pointers for later processing and skip them in
- // the first round (they need to be checked after we have seen all
- // write pointers). Note: we also mark pointer that are not
- // consecutive as "read-only" pointers (so that we check
- // "a[b[i]] +="). Hence, we need the second check for "!IsWrite".
- if (!UseDeferred && IsReadOnlyPtr) {
- DeferredAccesses.insert(Access);
- continue;
- }
- // If this is a write - check other reads and writes for conflicts. If
- // this is a read only check other writes for conflicts (but only if
- // there is no other write to the ptr - this is an optimization to
- // catch "a[i] = a[i] + " without having to do a dependence check).
- if ((IsWrite || IsReadOnlyPtr) && SetHasWrite) {
- CheckDeps.insert(Access);
- IsRTCheckAnalysisNeeded = true;
- }
- if (IsWrite)
- SetHasWrite = true;
- // Create sets of pointers connected by a shared alias set and
- // underlying object.
- typedef SmallVector<Value *, 16> ValueVector;
- ValueVector TempObjects;
- GetUnderlyingObjects(Ptr, TempObjects, DL, LI);
- DEBUG(dbgs() << "Underlying objects for pointer " << *Ptr << "\n");
- for (Value *UnderlyingObj : TempObjects) {
- UnderlyingObjToAccessMap::iterator Prev =
- ObjToLastAccess.find(UnderlyingObj);
- if (Prev != ObjToLastAccess.end())
- DepCands.unionSets(Access, Prev->second);
- ObjToLastAccess[UnderlyingObj] = Access;
- DEBUG(dbgs() << " " << *UnderlyingObj << "\n");
- }
- }
- }
- }
- }
- }
- static bool isInBoundsGep(Value *Ptr) {
- if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr))
- return GEP->isInBounds();
- return false;
- }
- /// \brief Return true if an AddRec pointer \p Ptr is unsigned non-wrapping,
- /// i.e. monotonically increasing/decreasing.
- static bool isNoWrapAddRec(Value *Ptr, const SCEVAddRecExpr *AR,
- ScalarEvolution *SE, const Loop *L) {
- // FIXME: This should probably only return true for NUW.
- if (AR->getNoWrapFlags(SCEV::NoWrapMask))
- return true;
- // Scalar evolution does not propagate the non-wrapping flags to values that
- // are derived from a non-wrapping induction variable because non-wrapping
- // could be flow-sensitive.
- //
- // Look through the potentially overflowing instruction to try to prove
- // non-wrapping for the *specific* value of Ptr.
- // The arithmetic implied by an inbounds GEP can't overflow.
- auto *GEP = dyn_cast<GetElementPtrInst>(Ptr);
- if (!GEP || !GEP->isInBounds())
- return false;
- // Make sure there is only one non-const index and analyze that.
- Value *NonConstIndex = nullptr;
- for (auto Index = GEP->idx_begin(); Index != GEP->idx_end(); ++Index)
- if (!isa<ConstantInt>(*Index)) {
- if (NonConstIndex)
- return false;
- NonConstIndex = *Index;
- }
- if (!NonConstIndex)
- // The recurrence is on the pointer, ignore for now.
- return false;
- // The index in GEP is signed. It is non-wrapping if it's derived from a NSW
- // AddRec using a NSW operation.
- if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(NonConstIndex))
- if (OBO->hasNoSignedWrap() &&
- // Assume constant for other the operand so that the AddRec can be
- // easily found.
- isa<ConstantInt>(OBO->getOperand(1))) {
- auto *OpScev = SE->getSCEV(OBO->getOperand(0));
- if (auto *OpAR = dyn_cast<SCEVAddRecExpr>(OpScev))
- return OpAR->getLoop() == L && OpAR->getNoWrapFlags(SCEV::FlagNSW);
- }
- return false;
- }
- /// \brief Check whether the access through \p Ptr has a constant stride.
- int llvm::isStridedPtr(ScalarEvolution *SE, Value *Ptr, const Loop *Lp,
- const ValueToValueMap &StridesMap) {
- const Type *Ty = Ptr->getType();
- assert(Ty->isPointerTy() && "Unexpected non-ptr");
- // Make sure that the pointer does not point to aggregate types.
- const PointerType *PtrTy = cast<PointerType>(Ty);
- if (PtrTy->getElementType()->isAggregateType()) {
- DEBUG(dbgs() << "LAA: Bad stride - Not a pointer to a scalar type"
- << *Ptr << "\n");
- return 0;
- }
- const SCEV *PtrScev = replaceSymbolicStrideSCEV(SE, StridesMap, Ptr);
- const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PtrScev);
- if (!AR) {
- DEBUG(dbgs() << "LAA: Bad stride - Not an AddRecExpr pointer "
- << *Ptr << " SCEV: " << *PtrScev << "\n");
- return 0;
- }
- // The accesss function must stride over the innermost loop.
- if (Lp != AR->getLoop()) {
- DEBUG(dbgs() << "LAA: Bad stride - Not striding over innermost loop " <<
- *Ptr << " SCEV: " << *PtrScev << "\n");
- }
- // The address calculation must not wrap. Otherwise, a dependence could be
- // inverted.
- // An inbounds getelementptr that is a AddRec with a unit stride
- // cannot wrap per definition. The unit stride requirement is checked later.
- // An getelementptr without an inbounds attribute and unit stride would have
- // to access the pointer value "0" which is undefined behavior in address
- // space 0, therefore we can also vectorize this case.
- bool IsInBoundsGEP = isInBoundsGep(Ptr);
- bool IsNoWrapAddRec = isNoWrapAddRec(Ptr, AR, SE, Lp);
- bool IsInAddressSpaceZero = PtrTy->getAddressSpace() == 0;
- if (!IsNoWrapAddRec && !IsInBoundsGEP && !IsInAddressSpaceZero) {
- DEBUG(dbgs() << "LAA: Bad stride - Pointer may wrap in the address space "
- << *Ptr << " SCEV: " << *PtrScev << "\n");
- return 0;
- }
- // Check the step is constant.
- const SCEV *Step = AR->getStepRecurrence(*SE);
- // Calculate the pointer stride and check if it is constant.
- const SCEVConstant *C = dyn_cast<SCEVConstant>(Step);
- if (!C) {
- DEBUG(dbgs() << "LAA: Bad stride - Not a constant strided " << *Ptr <<
- " SCEV: " << *PtrScev << "\n");
- return 0;
- }
- auto &DL = Lp->getHeader()->getModule()->getDataLayout();
- int64_t Size = DL.getTypeAllocSize(PtrTy->getElementType());
- const APInt &APStepVal = C->getValue()->getValue();
- // Huge step value - give up.
- if (APStepVal.getBitWidth() > 64)
- return 0;
- int64_t StepVal = APStepVal.getSExtValue();
- // Strided access.
- int64_t Stride = StepVal / Size;
- int64_t Rem = StepVal % Size;
- if (Rem)
- return 0;
- // If the SCEV could wrap but we have an inbounds gep with a unit stride we
- // know we can't "wrap around the address space". In case of address space
- // zero we know that this won't happen without triggering undefined behavior.
- if (!IsNoWrapAddRec && (IsInBoundsGEP || IsInAddressSpaceZero) &&
- Stride != 1 && Stride != -1)
- return 0;
- return Stride;
- }
- bool MemoryDepChecker::Dependence::isSafeForVectorization(DepType Type) {
- switch (Type) {
- case NoDep:
- case Forward:
- case BackwardVectorizable:
- return true;
- case Unknown:
- case ForwardButPreventsForwarding:
- case Backward:
- case BackwardVectorizableButPreventsForwarding:
- return false;
- }
- llvm_unreachable("unexpected DepType!");
- }
- bool MemoryDepChecker::Dependence::isInterestingDependence(DepType Type) {
- switch (Type) {
- case NoDep:
- case Forward:
- return false;
- case BackwardVectorizable:
- case Unknown:
- case ForwardButPreventsForwarding:
- case Backward:
- case BackwardVectorizableButPreventsForwarding:
- return true;
- }
- llvm_unreachable("unexpected DepType!");
- }
- bool MemoryDepChecker::Dependence::isPossiblyBackward() const {
- switch (Type) {
- case NoDep:
- case Forward:
- case ForwardButPreventsForwarding:
- return false;
- case Unknown:
- case BackwardVectorizable:
- case Backward:
- case BackwardVectorizableButPreventsForwarding:
- return true;
- }
- llvm_unreachable("unexpected DepType!");
- }
- bool MemoryDepChecker::couldPreventStoreLoadForward(unsigned Distance,
- unsigned TypeByteSize) {
- // If loads occur at a distance that is not a multiple of a feasible vector
- // factor store-load forwarding does not take place.
- // Positive dependences might cause troubles because vectorizing them might
- // prevent store-load forwarding making vectorized code run a lot slower.
- // a[i] = a[i-3] ^ a[i-8];
- // The stores to a[i:i+1] don't align with the stores to a[i-3:i-2] and
- // hence on your typical architecture store-load forwarding does not take
- // place. Vectorizing in such cases does not make sense.
- // Store-load forwarding distance.
- const unsigned NumCyclesForStoreLoadThroughMemory = 8*TypeByteSize;
- // Maximum vector factor.
- unsigned MaxVFWithoutSLForwardIssues =
- VectorizerParams::MaxVectorWidth * TypeByteSize;
- if(MaxSafeDepDistBytes < MaxVFWithoutSLForwardIssues)
- MaxVFWithoutSLForwardIssues = MaxSafeDepDistBytes;
- for (unsigned vf = 2*TypeByteSize; vf <= MaxVFWithoutSLForwardIssues;
- vf *= 2) {
- if (Distance % vf && Distance / vf < NumCyclesForStoreLoadThroughMemory) {
- MaxVFWithoutSLForwardIssues = (vf >>=1);
- break;
- }
- }
- if (MaxVFWithoutSLForwardIssues< 2*TypeByteSize) {
- DEBUG(dbgs() << "LAA: Distance " << Distance <<
- " that could cause a store-load forwarding conflict\n");
- return true;
- }
- if (MaxVFWithoutSLForwardIssues < MaxSafeDepDistBytes &&
- MaxVFWithoutSLForwardIssues !=
- VectorizerParams::MaxVectorWidth * TypeByteSize)
- MaxSafeDepDistBytes = MaxVFWithoutSLForwardIssues;
- return false;
- }
- /// \brief Check the dependence for two accesses with the same stride \p Stride.
- /// \p Distance is the positive distance and \p TypeByteSize is type size in
- /// bytes.
- ///
- /// \returns true if they are independent.
- static bool areStridedAccessesIndependent(unsigned Distance, unsigned Stride,
- unsigned TypeByteSize) {
- assert(Stride > 1 && "The stride must be greater than 1");
- assert(TypeByteSize > 0 && "The type size in byte must be non-zero");
- assert(Distance > 0 && "The distance must be non-zero");
- // Skip if the distance is not multiple of type byte size.
- if (Distance % TypeByteSize)
- return false;
- unsigned ScaledDist = Distance / TypeByteSize;
- // No dependence if the scaled distance is not multiple of the stride.
- // E.g.
- // for (i = 0; i < 1024 ; i += 4)
- // A[i+2] = A[i] + 1;
- //
- // Two accesses in memory (scaled distance is 2, stride is 4):
- // | A[0] | | | | A[4] | | | |
- // | | | A[2] | | | | A[6] | |
- //
- // E.g.
- // for (i = 0; i < 1024 ; i += 3)
- // A[i+4] = A[i] + 1;
- //
- // Two accesses in memory (scaled distance is 4, stride is 3):
- // | A[0] | | | A[3] | | | A[6] | | |
- // | | | | | A[4] | | | A[7] | |
- return ScaledDist % Stride;
- }
- MemoryDepChecker::Dependence::DepType
- MemoryDepChecker::isDependent(const MemAccessInfo &A, unsigned AIdx,
- const MemAccessInfo &B, unsigned BIdx,
- const ValueToValueMap &Strides) {
- assert (AIdx < BIdx && "Must pass arguments in program order");
- Value *APtr = A.getPointer();
- Value *BPtr = B.getPointer();
- bool AIsWrite = A.getInt();
- bool BIsWrite = B.getInt();
- // Two reads are independent.
- if (!AIsWrite && !BIsWrite)
- return Dependence::NoDep;
- // We cannot check pointers in different address spaces.
- if (APtr->getType()->getPointerAddressSpace() !=
- BPtr->getType()->getPointerAddressSpace())
- return Dependence::Unknown;
- const SCEV *AScev = replaceSymbolicStrideSCEV(SE, Strides, APtr);
- const SCEV *BScev = replaceSymbolicStrideSCEV(SE, Strides, BPtr);
- int StrideAPtr = isStridedPtr(SE, APtr, InnermostLoop, Strides);
- int StrideBPtr = isStridedPtr(SE, BPtr, InnermostLoop, Strides);
- const SCEV *Src = AScev;
- const SCEV *Sink = BScev;
- // If the induction step is negative we have to invert source and sink of the
- // dependence.
- if (StrideAPtr < 0) {
- //Src = BScev;
- //Sink = AScev;
- std::swap(APtr, BPtr);
- std::swap(Src, Sink);
- std::swap(AIsWrite, BIsWrite);
- std::swap(AIdx, BIdx);
- std::swap(StrideAPtr, StrideBPtr);
- }
- const SCEV *Dist = SE->getMinusSCEV(Sink, Src);
- DEBUG(dbgs() << "LAA: Src Scev: " << *Src << "Sink Scev: " << *Sink
- << "(Induction step: " << StrideAPtr << ")\n");
- DEBUG(dbgs() << "LAA: Distance for " << *InstMap[AIdx] << " to "
- << *InstMap[BIdx] << ": " << *Dist << "\n");
- // Need accesses with constant stride. We don't want to vectorize
- // "A[B[i]] += ..." and similar code or pointer arithmetic that could wrap in
- // the address space.
- if (!StrideAPtr || !StrideBPtr || StrideAPtr != StrideBPtr){
- DEBUG(dbgs() << "Pointer access with non-constant stride\n");
- return Dependence::Unknown;
- }
- const SCEVConstant *C = dyn_cast<SCEVConstant>(Dist);
- if (!C) {
- DEBUG(dbgs() << "LAA: Dependence because of non-constant distance\n");
- ShouldRetryWithRuntimeCheck = true;
- return Dependence::Unknown;
- }
- Type *ATy = APtr->getType()->getPointerElementType();
- Type *BTy = BPtr->getType()->getPointerElementType();
- auto &DL = InnermostLoop->getHeader()->getModule()->getDataLayout();
- unsigned TypeByteSize = DL.getTypeAllocSize(ATy);
- // Negative distances are not plausible dependencies.
- const APInt &Val = C->getValue()->getValue();
- if (Val.isNegative()) {
- bool IsTrueDataDependence = (AIsWrite && !BIsWrite);
- if (IsTrueDataDependence &&
- (couldPreventStoreLoadForward(Val.abs().getZExtValue(), TypeByteSize) ||
- ATy != BTy))
- return Dependence::ForwardButPreventsForwarding;
- DEBUG(dbgs() << "LAA: Dependence is negative: NoDep\n");
- return Dependence::Forward;
- }
- // Write to the same location with the same size.
- // Could be improved to assert type sizes are the same (i32 == float, etc).
- if (Val == 0) {
- if (ATy == BTy)
- return Dependence::NoDep;
- DEBUG(dbgs() << "LAA: Zero dependence difference but different types\n");
- return Dependence::Unknown;
- }
- assert(Val.isStrictlyPositive() && "Expect a positive value");
- if (ATy != BTy) {
- DEBUG(dbgs() <<
- "LAA: ReadWrite-Write positive dependency with different types\n");
- return Dependence::Unknown;
- }
- unsigned Distance = (unsigned) Val.getZExtValue();
- unsigned Stride = std::abs(StrideAPtr);
- if (Stride > 1 &&
- areStridedAccessesIndependent(Distance, Stride, TypeByteSize)) {
- DEBUG(dbgs() << "LAA: Strided accesses are independent\n");
- return Dependence::NoDep;
- }
- // Bail out early if passed-in parameters make vectorization not feasible.
- unsigned ForcedFactor = (VectorizerParams::VectorizationFactor ?
- VectorizerParams::VectorizationFactor : 1);
- unsigned ForcedUnroll = (VectorizerParams::VectorizationInterleave ?
- VectorizerParams::VectorizationInterleave : 1);
- // The minimum number of iterations for a vectorized/unrolled version.
- unsigned MinNumIter = std::max(ForcedFactor * ForcedUnroll, 2U);
- // It's not vectorizable if the distance is smaller than the minimum distance
- // needed for a vectroized/unrolled version. Vectorizing one iteration in
- // front needs TypeByteSize * Stride. Vectorizing the last iteration needs
- // TypeByteSize (No need to plus the last gap distance).
- //
- // E.g. Assume one char is 1 byte in memory and one int is 4 bytes.
- // foo(int *A) {
- // int *B = (int *)((char *)A + 14);
- // for (i = 0 ; i < 1024 ; i += 2)
- // B[i] = A[i] + 1;
- // }
- //
- // Two accesses in memory (stride is 2):
- // | A[0] | | A[2] | | A[4] | | A[6] | |
- // | B[0] | | B[2] | | B[4] |
- //
- // Distance needs for vectorizing iterations except the last iteration:
- // 4 * 2 * (MinNumIter - 1). Distance needs for the last iteration: 4.
- // So the minimum distance needed is: 4 * 2 * (MinNumIter - 1) + 4.
- //
- // If MinNumIter is 2, it is vectorizable as the minimum distance needed is
- // 12, which is less than distance.
- //
- // If MinNumIter is 4 (Say if a user forces the vectorization factor to be 4),
- // the minimum distance needed is 28, which is greater than distance. It is
- // not safe to do vectorization.
- unsigned MinDistanceNeeded =
- TypeByteSize * Stride * (MinNumIter - 1) + TypeByteSize;
- if (MinDistanceNeeded > Distance) {
- DEBUG(dbgs() << "LAA: Failure because of positive distance " << Distance
- << '\n');
- return Dependence::Backward;
- }
- // Unsafe if the minimum distance needed is greater than max safe distance.
- if (MinDistanceNeeded > MaxSafeDepDistBytes) {
- DEBUG(dbgs() << "LAA: Failure because it needs at least "
- << MinDistanceNeeded << " size in bytes");
- return Dependence::Backward;
- }
- // Positive distance bigger than max vectorization factor.
- // FIXME: Should use max factor instead of max distance in bytes, which could
- // not handle different types.
- // E.g. Assume one char is 1 byte in memory and one int is 4 bytes.
- // void foo (int *A, char *B) {
- // for (unsigned i = 0; i < 1024; i++) {
- // A[i+2] = A[i] + 1;
- // B[i+2] = B[i] + 1;
- // }
- // }
- //
- // This case is currently unsafe according to the max safe distance. If we
- // analyze the two accesses on array B, the max safe dependence distance
- // is 2. Then we analyze the accesses on array A, the minimum distance needed
- // is 8, which is less than 2 and forbidden vectorization, But actually
- // both A and B could be vectorized by 2 iterations.
- MaxSafeDepDistBytes =
- Distance < MaxSafeDepDistBytes ? Distance : MaxSafeDepDistBytes;
- bool IsTrueDataDependence = (!AIsWrite && BIsWrite);
- if (IsTrueDataDependence &&
- couldPreventStoreLoadForward(Distance, TypeByteSize))
- return Dependence::BackwardVectorizableButPreventsForwarding;
- DEBUG(dbgs() << "LAA: Positive distance " << Val.getSExtValue()
- << " with max VF = "
- << MaxSafeDepDistBytes / (TypeByteSize * Stride) << '\n');
- return Dependence::BackwardVectorizable;
- }
- bool MemoryDepChecker::areDepsSafe(DepCandidates &AccessSets,
- MemAccessInfoSet &CheckDeps,
- const ValueToValueMap &Strides) {
- MaxSafeDepDistBytes = -1U;
- while (!CheckDeps.empty()) {
- MemAccessInfo CurAccess = *CheckDeps.begin();
- // Get the relevant memory access set.
- EquivalenceClasses<MemAccessInfo>::iterator I =
- AccessSets.findValue(AccessSets.getLeaderValue(CurAccess));
- // Check accesses within this set.
- EquivalenceClasses<MemAccessInfo>::member_iterator AI, AE;
- AI = AccessSets.member_begin(I), AE = AccessSets.member_end();
- // Check every access pair.
- while (AI != AE) {
- CheckDeps.erase(*AI);
- EquivalenceClasses<MemAccessInfo>::member_iterator OI = std::next(AI);
- while (OI != AE) {
- // Check every accessing instruction pair in program order.
- for (std::vector<unsigned>::iterator I1 = Accesses[*AI].begin(),
- I1E = Accesses[*AI].end(); I1 != I1E; ++I1)
- for (std::vector<unsigned>::iterator I2 = Accesses[*OI].begin(),
- I2E = Accesses[*OI].end(); I2 != I2E; ++I2) {
- auto A = std::make_pair(&*AI, *I1);
- auto B = std::make_pair(&*OI, *I2);
- assert(*I1 != *I2);
- if (*I1 > *I2)
- std::swap(A, B);
- Dependence::DepType Type =
- isDependent(*A.first, A.second, *B.first, B.second, Strides);
- SafeForVectorization &= Dependence::isSafeForVectorization(Type);
- // Gather dependences unless we accumulated MaxInterestingDependence
- // dependences. In that case return as soon as we find the first
- // unsafe dependence. This puts a limit on this quadratic
- // algorithm.
- if (RecordInterestingDependences) {
- if (Dependence::isInterestingDependence(Type))
- InterestingDependences.push_back(
- Dependence(A.second, B.second, Type));
- if (InterestingDependences.size() >= MaxInterestingDependence) {
- RecordInterestingDependences = false;
- InterestingDependences.clear();
- DEBUG(dbgs() << "Too many dependences, stopped recording\n");
- }
- }
- if (!RecordInterestingDependences && !SafeForVectorization)
- return false;
- }
- ++OI;
- }
- AI++;
- }
- }
- DEBUG(dbgs() << "Total Interesting Dependences: "
- << InterestingDependences.size() << "\n");
- return SafeForVectorization;
- }
- SmallVector<Instruction *, 4>
- MemoryDepChecker::getInstructionsForAccess(Value *Ptr, bool isWrite) const {
- MemAccessInfo Access(Ptr, isWrite);
- auto &IndexVector = Accesses.find(Access)->second;
- SmallVector<Instruction *, 4> Insts;
- std::transform(IndexVector.begin(), IndexVector.end(),
- std::back_inserter(Insts),
- [&](unsigned Idx) { return this->InstMap[Idx]; });
- return Insts;
- }
- const char *MemoryDepChecker::Dependence::DepName[] = {
- "NoDep", "Unknown", "Forward", "ForwardButPreventsForwarding", "Backward",
- "BackwardVectorizable", "BackwardVectorizableButPreventsForwarding"};
- void MemoryDepChecker::Dependence::print(
- raw_ostream &OS, unsigned Depth,
- const SmallVectorImpl<Instruction *> &Instrs) const {
- OS.indent(Depth) << DepName[Type] << ":\n";
- OS.indent(Depth + 2) << *Instrs[Source] << " -> \n";
- OS.indent(Depth + 2) << *Instrs[Destination] << "\n";
- }
- bool LoopAccessInfo::canAnalyzeLoop() {
- // We need to have a loop header.
- DEBUG(dbgs() << "LAA: Found a loop: " <<
- TheLoop->getHeader()->getName() << '\n');
- // We can only analyze innermost loops.
- if (!TheLoop->empty()) {
- DEBUG(dbgs() << "LAA: loop is not the innermost loop\n");
- emitAnalysis(LoopAccessReport() << "loop is not the innermost loop");
- return false;
- }
- // We must have a single backedge.
- if (TheLoop->getNumBackEdges() != 1) {
- DEBUG(dbgs() << "LAA: loop control flow is not understood by analyzer\n");
- emitAnalysis(
- LoopAccessReport() <<
- "loop control flow is not understood by analyzer");
- return false;
- }
- // We must have a single exiting block.
- if (!TheLoop->getExitingBlock()) {
- DEBUG(dbgs() << "LAA: loop control flow is not understood by analyzer\n");
- emitAnalysis(
- LoopAccessReport() <<
- "loop control flow is not understood by analyzer");
- return false;
- }
- // We only handle bottom-tested loops, i.e. loop in which the condition is
- // checked at the end of each iteration. With that we can assume that all
- // instructions in the loop are executed the same number of times.
- if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch()) {
- DEBUG(dbgs() << "LAA: loop control flow is not understood by analyzer\n");
- emitAnalysis(
- LoopAccessReport() <<
- "loop control flow is not understood by analyzer");
- return false;
- }
- // ScalarEvolution needs to be able to find the exit count.
- const SCEV *ExitCount = SE->getBackedgeTakenCount(TheLoop);
- if (ExitCount == SE->getCouldNotCompute()) {
- emitAnalysis(LoopAccessReport() <<
- "could not determine number of loop iterations");
- DEBUG(dbgs() << "LAA: SCEV could not compute the loop exit count.\n");
- return false;
- }
- return true;
- }
- void LoopAccessInfo::analyzeLoop(const ValueToValueMap &Strides) {
- typedef SmallVector<Value*, 16> ValueVector;
- typedef SmallPtrSet<Value*, 16> ValueSet;
- // Holds the Load and Store *instructions*.
- ValueVector Loads;
- ValueVector Stores;
- // Holds all the different accesses in the loop.
- unsigned NumReads = 0;
- unsigned NumReadWrites = 0;
- PtrRtChecking.Pointers.clear();
- PtrRtChecking.Need = false;
- const bool IsAnnotatedParallel = TheLoop->isAnnotatedParallel();
- // For each block.
- for (Loop::block_iterator bb = TheLoop->block_begin(),
- be = TheLoop->block_end(); bb != be; ++bb) {
- // Scan the BB and collect legal loads and stores.
- for (BasicBlock::iterator it = (*bb)->begin(), e = (*bb)->end(); it != e;
- ++it) {
- // If this is a load, save it. If this instruction can read from memory
- // but is not a load, then we quit. Notice that we don't handle function
- // calls that read or write.
- if (it->mayReadFromMemory()) {
- // Many math library functions read the rounding mode. We will only
- // vectorize a loop if it contains known function calls that don't set
- // the flag. Therefore, it is safe to ignore this read from memory.
- CallInst *Call = dyn_cast<CallInst>(it);
- if (Call && getIntrinsicIDForCall(Call, TLI))
- continue;
- // If the function has an explicit vectorized counterpart, we can safely
- // assume that it can be vectorized.
- if (Call && !Call->isNoBuiltin() && Call->getCalledFunction() &&
- TLI->isFunctionVectorizable(Call->getCalledFunction()->getName()))
- continue;
- LoadInst *Ld = dyn_cast<LoadInst>(it);
- if (!Ld || (!Ld->isSimple() && !IsAnnotatedParallel)) {
- emitAnalysis(LoopAccessReport(Ld)
- << "read with atomic ordering or volatile read");
- DEBUG(dbgs() << "LAA: Found a non-simple load.\n");
- CanVecMem = false;
- return;
- }
- NumLoads++;
- Loads.push_back(Ld);
- DepChecker.addAccess(Ld);
- continue;
- }
- // Save 'store' instructions. Abort if other instructions write to memory.
- if (it->mayWriteToMemory()) {
- StoreInst *St = dyn_cast<StoreInst>(it);
- if (!St) {
- emitAnalysis(LoopAccessReport(it) <<
- "instruction cannot be vectorized");
- CanVecMem = false;
- return;
- }
- if (!St->isSimple() && !IsAnnotatedParallel) {
- emitAnalysis(LoopAccessReport(St)
- << "write with atomic ordering or volatile write");
- DEBUG(dbgs() << "LAA: Found a non-simple store.\n");
- CanVecMem = false;
- return;
- }
- NumStores++;
- Stores.push_back(St);
- DepChecker.addAccess(St);
- }
- } // Next instr.
- } // Next block.
- // Now we have two lists that hold the loads and the stores.
- // Next, we find the pointers that they use.
- // Check if we see any stores. If there are no stores, then we don't
- // care if the pointers are *restrict*.
- if (!Stores.size()) {
- DEBUG(dbgs() << "LAA: Found a read-only loop!\n");
- CanVecMem = true;
- return;
- }
- MemoryDepChecker::DepCandidates DependentAccesses;
- AccessAnalysis Accesses(TheLoop->getHeader()->getModule()->getDataLayout(),
- AA, LI, DependentAccesses);
- // Holds the analyzed pointers. We don't want to call GetUnderlyingObjects
- // multiple times on the same object. If the ptr is accessed twice, once
- // for read and once for write, it will only appear once (on the write
- // list). This is okay, since we are going to check for conflicts between
- // writes and between reads and writes, but not between reads and reads.
- ValueSet Seen;
- ValueVector::iterator I, IE;
- for (I = Stores.begin(), IE = Stores.end(); I != IE; ++I) {
- StoreInst *ST = cast<StoreInst>(*I);
- Value* Ptr = ST->getPointerOperand();
- // Check for store to loop invariant address.
- StoreToLoopInvariantAddress |= isUniform(Ptr);
- // If we did *not* see this pointer before, insert it to the read-write
- // list. At this phase it is only a 'write' list.
- if (Seen.insert(Ptr).second) {
- ++NumReadWrites;
- MemoryLocation Loc = MemoryLocation::get(ST);
- // The TBAA metadata could have a control dependency on the predication
- // condition, so we cannot rely on it when determining whether or not we
- // need runtime pointer checks.
- if (blockNeedsPredication(ST->getParent(), TheLoop, DT))
- Loc.AATags.TBAA = nullptr;
- Accesses.addStore(Loc);
- }
- }
- if (IsAnnotatedParallel) {
- DEBUG(dbgs()
- << "LAA: A loop annotated parallel, ignore memory dependency "
- << "checks.\n");
- CanVecMem = true;
- return;
- }
- for (I = Loads.begin(), IE = Loads.end(); I != IE; ++I) {
- LoadInst *LD = cast<LoadInst>(*I);
- Value* Ptr = LD->getPointerOperand();
- // If we did *not* see this pointer before, insert it to the
- // read list. If we *did* see it before, then it is already in
- // the read-write list. This allows us to vectorize expressions
- // such as A[i] += x; Because the address of A[i] is a read-write
- // pointer. This only works if the index of A[i] is consecutive.
- // If the address of i is unknown (for example A[B[i]]) then we may
- // read a few words, modify, and write a few words, and some of the
- // words may be written to the same address.
- bool IsReadOnlyPtr = false;
- if (Seen.insert(Ptr).second || !isStridedPtr(SE, Ptr, TheLoop, Strides)) {
- ++NumReads;
- IsReadOnlyPtr = true;
- }
- MemoryLocation Loc = MemoryLocation::get(LD);
- // The TBAA metadata could have a control dependency on the predication
- // condition, so we cannot rely on it when determining whether or not we
- // need runtime pointer checks.
- if (blockNeedsPredication(LD->getParent(), TheLoop, DT))
- Loc.AATags.TBAA = nullptr;
- Accesses.addLoad(Loc, IsReadOnlyPtr);
- }
- // If we write (or read-write) to a single destination and there are no
- // other reads in this loop then is it safe to vectorize.
- if (NumReadWrites == 1 && NumReads == 0) {
- DEBUG(dbgs() << "LAA: Found a write-only loop!\n");
- CanVecMem = true;
- return;
- }
- // Build dependence sets and check whether we need a runtime pointer bounds
- // check.
- Accesses.buildDependenceSets();
- // Find pointers with computable bounds. We are going to use this information
- // to place a runtime bound check.
- bool CanDoRTIfNeeded =
- Accesses.canCheckPtrAtRT(PtrRtChecking, SE, TheLoop, Strides);
- if (!CanDoRTIfNeeded) {
- emitAnalysis(LoopAccessReport() << "cannot identify array bounds");
- DEBUG(dbgs() << "LAA: We can't vectorize because we can't find "
- << "the array bounds.\n");
- CanVecMem = false;
- return;
- }
- DEBUG(dbgs() << "LAA: We can perform a memory runtime check if needed.\n");
- CanVecMem = true;
- if (Accesses.isDependencyCheckNeeded()) {
- DEBUG(dbgs() << "LAA: Checking memory dependencies\n");
- CanVecMem = DepChecker.areDepsSafe(
- DependentAccesses, Accesses.getDependenciesToCheck(), Strides);
- MaxSafeDepDistBytes = DepChecker.getMaxSafeDepDistBytes();
- if (!CanVecMem && DepChecker.shouldRetryWithRuntimeCheck()) {
- DEBUG(dbgs() << "LAA: Retrying with memory checks\n");
- // Clear the dependency checks. We assume they are not needed.
- Accesses.resetDepChecks(DepChecker);
- PtrRtChecking.reset();
- PtrRtChecking.Need = true;
- CanDoRTIfNeeded =
- Accesses.canCheckPtrAtRT(PtrRtChecking, SE, TheLoop, Strides, true);
- // Check that we found the bounds for the pointer.
- if (!CanDoRTIfNeeded) {
- emitAnalysis(LoopAccessReport()
- << "cannot check memory dependencies at runtime");
- DEBUG(dbgs() << "LAA: Can't vectorize with memory checks\n");
- CanVecMem = false;
- return;
- }
- CanVecMem = true;
- }
- }
- if (CanVecMem)
- DEBUG(dbgs() << "LAA: No unsafe dependent memory operations in loop. We"
- << (PtrRtChecking.Need ? "" : " don't")
- << " need runtime memory checks.\n");
- else {
- emitAnalysis(LoopAccessReport() <<
- "unsafe dependent memory operations in loop");
- DEBUG(dbgs() << "LAA: unsafe dependent memory operations in loop\n");
- }
- }
- bool LoopAccessInfo::blockNeedsPredication(BasicBlock *BB, Loop *TheLoop,
- DominatorTree *DT) {
- assert(TheLoop->contains(BB) && "Unknown block used");
- // Blocks that do not dominate the latch need predication.
- BasicBlock* Latch = TheLoop->getLoopLatch();
- return !DT->dominates(BB, Latch);
- }
- void LoopAccessInfo::emitAnalysis(LoopAccessReport &Message) {
- assert(!Report && "Multiple reports generated");
- Report = Message;
- }
- bool LoopAccessInfo::isUniform(Value *V) const {
- return (SE->isLoopInvariant(SE->getSCEV(V), TheLoop));
- }
- // FIXME: this function is currently a duplicate of the one in
- // LoopVectorize.cpp.
- static Instruction *getFirstInst(Instruction *FirstInst, Value *V,
- Instruction *Loc) {
- if (FirstInst)
- return FirstInst;
- if (Instruction *I = dyn_cast<Instruction>(V))
- return I->getParent() == Loc->getParent() ? I : nullptr;
- return nullptr;
- }
- std::pair<Instruction *, Instruction *> LoopAccessInfo::addRuntimeCheck(
- Instruction *Loc, const SmallVectorImpl<int> *PtrPartition) const {
- if (!PtrRtChecking.Need)
- return std::make_pair(nullptr, nullptr);
- SmallVector<TrackingVH<Value>, 2> Starts;
- SmallVector<TrackingVH<Value>, 2> Ends;
- LLVMContext &Ctx = Loc->getContext();
- SCEVExpander Exp(*SE, DL, "induction");
- Instruction *FirstInst = nullptr;
- for (unsigned i = 0; i < PtrRtChecking.CheckingGroups.size(); ++i) {
- const RuntimePointerChecking::CheckingPtrGroup &CG =
- PtrRtChecking.CheckingGroups[i];
- Value *Ptr = PtrRtChecking.Pointers[CG.Members[0]].PointerValue;
- const SCEV *Sc = SE->getSCEV(Ptr);
- if (SE->isLoopInvariant(Sc, TheLoop)) {
- DEBUG(dbgs() << "LAA: Adding RT check for a loop invariant ptr:" << *Ptr
- << "\n");
- Starts.push_back(Ptr);
- Ends.push_back(Ptr);
- } else {
- unsigned AS = Ptr->getType()->getPointerAddressSpace();
- // Use this type for pointer arithmetic.
- Type *PtrArithTy = Type::getInt8PtrTy(Ctx, AS);
- Value *Start = nullptr, *End = nullptr;
- DEBUG(dbgs() << "LAA: Adding RT check for range:\n");
- Start = Exp.expandCodeFor(CG.Low, PtrArithTy, Loc);
- End = Exp.expandCodeFor(CG.High, PtrArithTy, Loc);
- DEBUG(dbgs() << "Start: " << *CG.Low << " End: " << *CG.High << "\n");
- Starts.push_back(Start);
- Ends.push_back(End);
- }
- }
- IRBuilder<> ChkBuilder(Loc);
- // Our instructions might fold to a constant.
- Value *MemoryRuntimeCheck = nullptr;
- for (unsigned i = 0; i < PtrRtChecking.CheckingGroups.size(); ++i) {
- for (unsigned j = i + 1; j < PtrRtChecking.CheckingGroups.size(); ++j) {
- const RuntimePointerChecking::CheckingPtrGroup &CGI =
- PtrRtChecking.CheckingGroups[i];
- const RuntimePointerChecking::CheckingPtrGroup &CGJ =
- PtrRtChecking.CheckingGroups[j];
- if (!PtrRtChecking.needsChecking(CGI, CGJ, PtrPartition))
- continue;
- unsigned AS0 = Starts[i]->getType()->getPointerAddressSpace();
- unsigned AS1 = Starts[j]->getType()->getPointerAddressSpace();
- assert((AS0 == Ends[j]->getType()->getPointerAddressSpace()) &&
- (AS1 == Ends[i]->getType()->getPointerAddressSpace()) &&
- "Trying to bounds check pointers with different address spaces");
- Type *PtrArithTy0 = Type::getInt8PtrTy(Ctx, AS0);
- Type *PtrArithTy1 = Type::getInt8PtrTy(Ctx, AS1);
- Value *Start0 = ChkBuilder.CreateBitCast(Starts[i], PtrArithTy0, "bc");
- Value *Start1 = ChkBuilder.CreateBitCast(Starts[j], PtrArithTy1, "bc");
- Value *End0 = ChkBuilder.CreateBitCast(Ends[i], PtrArithTy1, "bc");
- Value *End1 = ChkBuilder.CreateBitCast(Ends[j], PtrArithTy0, "bc");
- Value *Cmp0 = ChkBuilder.CreateICmpULE(Start0, End1, "bound0");
- FirstInst = getFirstInst(FirstInst, Cmp0, Loc);
- Value *Cmp1 = ChkBuilder.CreateICmpULE(Start1, End0, "bound1");
- FirstInst = getFirstInst(FirstInst, Cmp1, Loc);
- Value *IsConflict = ChkBuilder.CreateAnd(Cmp0, Cmp1, "found.conflict");
- FirstInst = getFirstInst(FirstInst, IsConflict, Loc);
- if (MemoryRuntimeCheck) {
- IsConflict = ChkBuilder.CreateOr(MemoryRuntimeCheck, IsConflict,
- "conflict.rdx");
- FirstInst = getFirstInst(FirstInst, IsConflict, Loc);
- }
- MemoryRuntimeCheck = IsConflict;
- }
- }
- if (!MemoryRuntimeCheck)
- return std::make_pair(nullptr, nullptr);
- // We have to do this trickery because the IRBuilder might fold the check to a
- // constant expression in which case there is no Instruction anchored in a
- // the block.
- Instruction *Check = BinaryOperator::CreateAnd(MemoryRuntimeCheck,
- ConstantInt::getTrue(Ctx));
- ChkBuilder.Insert(Check, "memcheck.conflict");
- FirstInst = getFirstInst(FirstInst, Check, Loc);
- return std::make_pair(FirstInst, Check);
- }
- LoopAccessInfo::LoopAccessInfo(Loop *L, ScalarEvolution *SE,
- const DataLayout &DL,
- const TargetLibraryInfo *TLI, AliasAnalysis *AA,
- DominatorTree *DT, LoopInfo *LI,
- const ValueToValueMap &Strides)
- : PtrRtChecking(SE), DepChecker(SE, L), TheLoop(L), SE(SE), DL(DL),
- TLI(TLI), AA(AA), DT(DT), LI(LI), NumLoads(0), NumStores(0),
- MaxSafeDepDistBytes(-1U), CanVecMem(false),
- StoreToLoopInvariantAddress(false) {
- if (canAnalyzeLoop())
- analyzeLoop(Strides);
- }
- void LoopAccessInfo::print(raw_ostream &OS, unsigned Depth) const {
- if (CanVecMem) {
- if (PtrRtChecking.Need)
- OS.indent(Depth) << "Memory dependences are safe with run-time checks\n";
- else
- OS.indent(Depth) << "Memory dependences are safe\n";
- }
- if (Report)
- OS.indent(Depth) << "Report: " << Report->str() << "\n";
- if (auto *InterestingDependences = DepChecker.getInterestingDependences()) {
- OS.indent(Depth) << "Interesting Dependences:\n";
- for (auto &Dep : *InterestingDependences) {
- Dep.print(OS, Depth + 2, DepChecker.getMemoryInstructions());
- OS << "\n";
- }
- } else
- OS.indent(Depth) << "Too many interesting dependences, not recorded\n";
- // List the pair of accesses need run-time checks to prove independence.
- PtrRtChecking.print(OS, Depth);
- OS << "\n";
- OS.indent(Depth) << "Store to invariant address was "
- << (StoreToLoopInvariantAddress ? "" : "not ")
- << "found in loop.\n";
- }
- const LoopAccessInfo &
- LoopAccessAnalysis::getInfo(Loop *L, const ValueToValueMap &Strides) {
- auto &LAI = LoopAccessInfoMap[L];
- #ifndef NDEBUG
- assert((!LAI || LAI->NumSymbolicStrides == Strides.size()) &&
- "Symbolic strides changed for loop");
- #endif
- if (!LAI) {
- const DataLayout &DL = L->getHeader()->getModule()->getDataLayout();
- LAI = llvm::make_unique<LoopAccessInfo>(L, SE, DL, TLI, AA, DT, LI,
- Strides);
- #ifndef NDEBUG
- LAI->NumSymbolicStrides = Strides.size();
- #endif
- }
- return *LAI.get();
- }
- void LoopAccessAnalysis::print(raw_ostream &OS, const Module *M) const {
- LoopAccessAnalysis &LAA = *const_cast<LoopAccessAnalysis *>(this);
- ValueToValueMap NoSymbolicStrides;
- for (Loop *TopLevelLoop : *LI)
- for (Loop *L : depth_first(TopLevelLoop)) {
- OS.indent(2) << L->getHeader()->getName() << ":\n";
- auto &LAI = LAA.getInfo(L, NoSymbolicStrides);
- LAI.print(OS, 4);
- }
- }
- bool LoopAccessAnalysis::runOnFunction(Function &F) {
- SE = &getAnalysis<ScalarEvolution>();
- auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>();
- TLI = TLIP ? &TLIP->getTLI() : nullptr;
- AA = &getAnalysis<AliasAnalysis>();
- DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
- LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
- return false;
- }
- void LoopAccessAnalysis::getAnalysisUsage(AnalysisUsage &AU) const {
- AU.addRequired<ScalarEvolution>();
- AU.addRequired<AliasAnalysis>();
- AU.addRequired<DominatorTreeWrapperPass>();
- AU.addRequired<LoopInfoWrapperPass>();
- AU.setPreservesAll();
- }
- char LoopAccessAnalysis::ID = 0;
- static const char laa_name[] = "Loop Access Analysis";
- #define LAA_NAME "loop-accesses"
- INITIALIZE_PASS_BEGIN(LoopAccessAnalysis, LAA_NAME, laa_name, false, true)
- INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
- INITIALIZE_PASS_DEPENDENCY(ScalarEvolution)
- INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
- INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
- INITIALIZE_PASS_END(LoopAccessAnalysis, LAA_NAME, laa_name, false, true)
- namespace llvm {
- Pass *createLAAPass() {
- return new LoopAccessAnalysis();
- }
- }
|