12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685 |
- //===- MemoryDependenceAnalysis.cpp - Mem Deps Implementation -------------===//
- //
- // The LLVM Compiler Infrastructure
- //
- // This file is distributed under the University of Illinois Open Source
- // License. See LICENSE.TXT for details.
- //
- //===----------------------------------------------------------------------===//
- //
- // This file implements an analysis that determines, for a given memory
- // operation, what preceding memory operations it depends on. It builds on
- // alias analysis information, and tries to provide a lazy, caching interface to
- // a common kind of alias information query.
- //
- //===----------------------------------------------------------------------===//
- #include "llvm/Analysis/MemoryDependenceAnalysis.h"
- #include "llvm/ADT/STLExtras.h"
- #include "llvm/ADT/Statistic.h"
- #include "llvm/Analysis/AliasAnalysis.h"
- #include "llvm/Analysis/AssumptionCache.h"
- #include "llvm/Analysis/InstructionSimplify.h"
- #include "llvm/Analysis/MemoryBuiltins.h"
- #include "llvm/Analysis/PHITransAddr.h"
- #include "llvm/Analysis/ValueTracking.h"
- #include "llvm/IR/DataLayout.h"
- #include "llvm/IR/Dominators.h"
- #include "llvm/IR/Function.h"
- #include "llvm/IR/Instructions.h"
- #include "llvm/IR/IntrinsicInst.h"
- #include "llvm/IR/LLVMContext.h"
- #include "llvm/IR/PredIteratorCache.h"
- #include "llvm/Support/Debug.h"
- using namespace llvm;
- #define DEBUG_TYPE "memdep"
- STATISTIC(NumCacheNonLocal, "Number of fully cached non-local responses");
- STATISTIC(NumCacheDirtyNonLocal, "Number of dirty cached non-local responses");
- STATISTIC(NumUncacheNonLocal, "Number of uncached non-local responses");
- STATISTIC(NumCacheNonLocalPtr,
- "Number of fully cached non-local ptr responses");
- STATISTIC(NumCacheDirtyNonLocalPtr,
- "Number of cached, but dirty, non-local ptr responses");
- STATISTIC(NumUncacheNonLocalPtr,
- "Number of uncached non-local ptr responses");
- STATISTIC(NumCacheCompleteNonLocalPtr,
- "Number of block queries that were completely cached");
- // Limit for the number of instructions to scan in a block.
- static const unsigned int BlockScanLimit = 500;
- // Limit on the number of memdep results to process.
- static const unsigned int NumResultsLimit = 100;
- char MemoryDependenceAnalysis::ID = 0;
- // Register this pass...
- INITIALIZE_PASS_BEGIN(MemoryDependenceAnalysis, "memdep",
- "Memory Dependence Analysis", false, true)
- INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
- INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
- INITIALIZE_PASS_END(MemoryDependenceAnalysis, "memdep",
- "Memory Dependence Analysis", false, true)
- MemoryDependenceAnalysis::MemoryDependenceAnalysis()
- : FunctionPass(ID) {
- initializeMemoryDependenceAnalysisPass(*PassRegistry::getPassRegistry());
- }
- MemoryDependenceAnalysis::~MemoryDependenceAnalysis() {
- }
- /// Clean up memory in between runs
- void MemoryDependenceAnalysis::releaseMemory() {
- LocalDeps.clear();
- NonLocalDeps.clear();
- NonLocalPointerDeps.clear();
- ReverseLocalDeps.clear();
- ReverseNonLocalDeps.clear();
- ReverseNonLocalPtrDeps.clear();
- PredCache.clear();
- }
- /// getAnalysisUsage - Does not modify anything. It uses Alias Analysis.
- ///
- void MemoryDependenceAnalysis::getAnalysisUsage(AnalysisUsage &AU) const {
- AU.setPreservesAll();
- AU.addRequired<AssumptionCacheTracker>();
- AU.addRequiredTransitive<AliasAnalysis>();
- }
- bool MemoryDependenceAnalysis::runOnFunction(Function &F) {
- AA = &getAnalysis<AliasAnalysis>();
- AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
- DominatorTreeWrapperPass *DTWP =
- getAnalysisIfAvailable<DominatorTreeWrapperPass>();
- DT = DTWP ? &DTWP->getDomTree() : nullptr;
- return false;
- }
- /// RemoveFromReverseMap - This is a helper function that removes Val from
- /// 'Inst's set in ReverseMap. If the set becomes empty, remove Inst's entry.
- template <typename KeyTy>
- static void RemoveFromReverseMap(DenseMap<Instruction*,
- SmallPtrSet<KeyTy, 4> > &ReverseMap,
- Instruction *Inst, KeyTy Val) {
- typename DenseMap<Instruction*, SmallPtrSet<KeyTy, 4> >::iterator
- InstIt = ReverseMap.find(Inst);
- assert(InstIt != ReverseMap.end() && "Reverse map out of sync?");
- bool Found = InstIt->second.erase(Val);
- assert(Found && "Invalid reverse map!"); (void)Found;
- if (InstIt->second.empty())
- ReverseMap.erase(InstIt);
- }
- /// GetLocation - If the given instruction references a specific memory
- /// location, fill in Loc with the details, otherwise set Loc.Ptr to null.
- /// Return a ModRefInfo value describing the general behavior of the
- /// instruction.
- static AliasAnalysis::ModRefResult
- GetLocation(const Instruction *Inst, MemoryLocation &Loc, AliasAnalysis *AA) {
- if (const LoadInst *LI = dyn_cast<LoadInst>(Inst)) {
- if (LI->isUnordered()) {
- Loc = MemoryLocation::get(LI);
- return AliasAnalysis::Ref;
- }
- if (LI->getOrdering() == Monotonic) {
- Loc = MemoryLocation::get(LI);
- return AliasAnalysis::ModRef;
- }
- Loc = MemoryLocation();
- return AliasAnalysis::ModRef;
- }
- if (const StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
- if (SI->isUnordered()) {
- Loc = MemoryLocation::get(SI);
- return AliasAnalysis::Mod;
- }
- if (SI->getOrdering() == Monotonic) {
- Loc = MemoryLocation::get(SI);
- return AliasAnalysis::ModRef;
- }
- Loc = MemoryLocation();
- return AliasAnalysis::ModRef;
- }
- if (const VAArgInst *V = dyn_cast<VAArgInst>(Inst)) {
- Loc = MemoryLocation::get(V);
- return AliasAnalysis::ModRef;
- }
- if (const CallInst *CI = isFreeCall(Inst, AA->getTargetLibraryInfo())) {
- // calls to free() deallocate the entire structure
- Loc = MemoryLocation(CI->getArgOperand(0));
- return AliasAnalysis::Mod;
- }
- if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
- AAMDNodes AAInfo;
- switch (II->getIntrinsicID()) {
- case Intrinsic::lifetime_start:
- case Intrinsic::lifetime_end:
- case Intrinsic::invariant_start:
- II->getAAMetadata(AAInfo);
- Loc = MemoryLocation(
- II->getArgOperand(1),
- cast<ConstantInt>(II->getArgOperand(0))->getZExtValue(), AAInfo);
- // These intrinsics don't really modify the memory, but returning Mod
- // will allow them to be handled conservatively.
- return AliasAnalysis::Mod;
- case Intrinsic::invariant_end:
- II->getAAMetadata(AAInfo);
- Loc = MemoryLocation(
- II->getArgOperand(2),
- cast<ConstantInt>(II->getArgOperand(1))->getZExtValue(), AAInfo);
- // These intrinsics don't really modify the memory, but returning Mod
- // will allow them to be handled conservatively.
- return AliasAnalysis::Mod;
- default:
- break;
- }
- }
- // Otherwise, just do the coarse-grained thing that always works.
- if (Inst->mayWriteToMemory())
- return AliasAnalysis::ModRef;
- if (Inst->mayReadFromMemory())
- return AliasAnalysis::Ref;
- return AliasAnalysis::NoModRef;
- }
- /// getCallSiteDependencyFrom - Private helper for finding the local
- /// dependencies of a call site.
- MemDepResult MemoryDependenceAnalysis::
- getCallSiteDependencyFrom(CallSite CS, bool isReadOnlyCall,
- BasicBlock::iterator ScanIt, BasicBlock *BB) {
- unsigned Limit = BlockScanLimit;
- // Walk backwards through the block, looking for dependencies
- while (ScanIt != BB->begin()) {
- // HLSL Change - Begin
- // Skip debug info
- if (isa<DbgInfoIntrinsic>(*std::prev(ScanIt))) {
- ScanIt--; continue;
- }
- // HLSL Change - End
- // Limit the amount of scanning we do so we don't end up with quadratic
- // running time on extreme testcases.
- --Limit;
- if (!Limit)
- return MemDepResult::getUnknown();
- Instruction *Inst = --ScanIt;
- // If this inst is a memory op, get the pointer it accessed
- MemoryLocation Loc;
- AliasAnalysis::ModRefResult MR = GetLocation(Inst, Loc, AA);
- if (Loc.Ptr) {
- // A simple instruction.
- if (AA->getModRefInfo(CS, Loc) != AliasAnalysis::NoModRef)
- return MemDepResult::getClobber(Inst);
- continue;
- }
- if (auto InstCS = CallSite(Inst)) {
- // Debug intrinsics don't cause dependences.
- if (isa<DbgInfoIntrinsic>(Inst)) continue;
- // If these two calls do not interfere, look past it.
- switch (AA->getModRefInfo(CS, InstCS)) {
- case AliasAnalysis::NoModRef:
- // If the two calls are the same, return InstCS as a Def, so that
- // CS can be found redundant and eliminated.
- if (isReadOnlyCall && !(MR & AliasAnalysis::Mod) &&
- CS.getInstruction()->isIdenticalToWhenDefined(Inst))
- return MemDepResult::getDef(Inst);
- // Otherwise if the two calls don't interact (e.g. InstCS is readnone)
- // keep scanning.
- continue;
- default:
- return MemDepResult::getClobber(Inst);
- }
- }
- // If we could not obtain a pointer for the instruction and the instruction
- // touches memory then assume that this is a dependency.
- if (MR != AliasAnalysis::NoModRef)
- return MemDepResult::getClobber(Inst);
- }
- // No dependence found. If this is the entry block of the function, it is
- // unknown, otherwise it is non-local.
- if (BB != &BB->getParent()->getEntryBlock())
- return MemDepResult::getNonLocal();
- return MemDepResult::getNonFuncLocal();
- }
- /// isLoadLoadClobberIfExtendedToFullWidth - Return true if LI is a load that
- /// would fully overlap MemLoc if done as a wider legal integer load.
- ///
- /// MemLocBase, MemLocOffset are lazily computed here the first time the
- /// base/offs of memloc is needed.
- static bool isLoadLoadClobberIfExtendedToFullWidth(const MemoryLocation &MemLoc,
- const Value *&MemLocBase,
- int64_t &MemLocOffs,
- const LoadInst *LI) {
- const DataLayout &DL = LI->getModule()->getDataLayout();
- // If we haven't already computed the base/offset of MemLoc, do so now.
- if (!MemLocBase)
- MemLocBase = GetPointerBaseWithConstantOffset(MemLoc.Ptr, MemLocOffs, DL);
- unsigned Size = MemoryDependenceAnalysis::getLoadLoadClobberFullWidthSize(
- MemLocBase, MemLocOffs, MemLoc.Size, LI);
- return Size != 0;
- }
- /// getLoadLoadClobberFullWidthSize - This is a little bit of analysis that
- /// looks at a memory location for a load (specified by MemLocBase, Offs,
- /// and Size) and compares it against a load. If the specified load could
- /// be safely widened to a larger integer load that is 1) still efficient,
- /// 2) safe for the target, and 3) would provide the specified memory
- /// location value, then this function returns the size in bytes of the
- /// load width to use. If not, this returns zero.
- unsigned MemoryDependenceAnalysis::getLoadLoadClobberFullWidthSize(
- const Value *MemLocBase, int64_t MemLocOffs, unsigned MemLocSize,
- const LoadInst *LI) {
- // We can only extend simple integer loads.
- if (!isa<IntegerType>(LI->getType()) || !LI->isSimple()) return 0;
- // Load widening is hostile to ThreadSanitizer: it may cause false positives
- // or make the reports more cryptic (access sizes are wrong).
- if (LI->getParent()->getParent()->hasFnAttribute(Attribute::SanitizeThread))
- return 0;
- const DataLayout &DL = LI->getModule()->getDataLayout();
- // Get the base of this load.
- int64_t LIOffs = 0;
- const Value *LIBase =
- GetPointerBaseWithConstantOffset(LI->getPointerOperand(), LIOffs, DL);
- // If the two pointers are not based on the same pointer, we can't tell that
- // they are related.
- if (LIBase != MemLocBase) return 0;
- // Okay, the two values are based on the same pointer, but returned as
- // no-alias. This happens when we have things like two byte loads at "P+1"
- // and "P+3". Check to see if increasing the size of the "LI" load up to its
- // alignment (or the largest native integer type) will allow us to load all
- // the bits required by MemLoc.
- // If MemLoc is before LI, then no widening of LI will help us out.
- if (MemLocOffs < LIOffs) return 0;
- // Get the alignment of the load in bytes. We assume that it is safe to load
- // any legal integer up to this size without a problem. For example, if we're
- // looking at an i8 load on x86-32 that is known 1024 byte aligned, we can
- // widen it up to an i32 load. If it is known 2-byte aligned, we can widen it
- // to i16.
- unsigned LoadAlign = LI->getAlignment();
- int64_t MemLocEnd = MemLocOffs+MemLocSize;
- // If no amount of rounding up will let MemLoc fit into LI, then bail out.
- if (LIOffs+LoadAlign < MemLocEnd) return 0;
- // This is the size of the load to try. Start with the next larger power of
- // two.
- unsigned NewLoadByteSize = LI->getType()->getPrimitiveSizeInBits()/8U;
- NewLoadByteSize = NextPowerOf2(NewLoadByteSize);
- while (1) {
- // If this load size is bigger than our known alignment or would not fit
- // into a native integer register, then we fail.
- if (NewLoadByteSize > LoadAlign ||
- !DL.fitsInLegalInteger(NewLoadByteSize*8))
- return 0;
- if (LIOffs + NewLoadByteSize > MemLocEnd &&
- LI->getParent()->getParent()->hasFnAttribute(
- Attribute::SanitizeAddress))
- // We will be reading past the location accessed by the original program.
- // While this is safe in a regular build, Address Safety analysis tools
- // may start reporting false warnings. So, don't do widening.
- return 0;
- // If a load of this width would include all of MemLoc, then we succeed.
- if (LIOffs+NewLoadByteSize >= MemLocEnd)
- return NewLoadByteSize;
- NewLoadByteSize <<= 1;
- }
- }
- static bool isVolatile(Instruction *Inst) {
- if (LoadInst *LI = dyn_cast<LoadInst>(Inst))
- return LI->isVolatile();
- else if (StoreInst *SI = dyn_cast<StoreInst>(Inst))
- return SI->isVolatile();
- else if (AtomicCmpXchgInst *AI = dyn_cast<AtomicCmpXchgInst>(Inst))
- return AI->isVolatile();
- return false;
- }
- /// getPointerDependencyFrom - Return the instruction on which a memory
- /// location depends. If isLoad is true, this routine ignores may-aliases with
- /// read-only operations. If isLoad is false, this routine ignores may-aliases
- /// with reads from read-only locations. If possible, pass the query
- /// instruction as well; this function may take advantage of the metadata
- /// annotated to the query instruction to refine the result.
- MemDepResult MemoryDependenceAnalysis::getPointerDependencyFrom(
- const MemoryLocation &MemLoc, bool isLoad, BasicBlock::iterator ScanIt,
- BasicBlock *BB, Instruction *QueryInst, unsigned Limit) {
- const Value *MemLocBase = nullptr;
- int64_t MemLocOffset = 0;
- bool isInvariantLoad = false;
- unsigned DefaultLimit = BlockScanLimit;
- if (Limit == 0)
- Limit = DefaultLimit;
- // We must be careful with atomic accesses, as they may allow another thread
- // to touch this location, cloberring it. We are conservative: if the
- // QueryInst is not a simple (non-atomic) memory access, we automatically
- // return getClobber.
- // If it is simple, we know based on the results of
- // "Compiler testing via a theory of sound optimisations in the C11/C++11
- // memory model" in PLDI 2013, that a non-atomic location can only be
- // clobbered between a pair of a release and an acquire action, with no
- // access to the location in between.
- // Here is an example for giving the general intuition behind this rule.
- // In the following code:
- // store x 0;
- // release action; [1]
- // acquire action; [4]
- // %val = load x;
- // It is unsafe to replace %val by 0 because another thread may be running:
- // acquire action; [2]
- // store x 42;
- // release action; [3]
- // with synchronization from 1 to 2 and from 3 to 4, resulting in %val
- // being 42. A key property of this program however is that if either
- // 1 or 4 were missing, there would be a race between the store of 42
- // either the store of 0 or the load (making the whole progam racy).
- // The paper mentionned above shows that the same property is respected
- // by every program that can detect any optimisation of that kind: either
- // it is racy (undefined) or there is a release followed by an acquire
- // between the pair of accesses under consideration.
- // If the load is invariant, we "know" that it doesn't alias *any* write. We
- // do want to respect mustalias results since defs are useful for value
- // forwarding, but any mayalias write can be assumed to be noalias.
- // Arguably, this logic should be pushed inside AliasAnalysis itself.
- if (isLoad && QueryInst) {
- LoadInst *LI = dyn_cast<LoadInst>(QueryInst);
- if (LI && LI->getMetadata(LLVMContext::MD_invariant_load) != nullptr)
- isInvariantLoad = true;
- }
- const DataLayout &DL = BB->getModule()->getDataLayout();
- // Walk backwards through the basic block, looking for dependencies.
- while (ScanIt != BB->begin()) {
- Instruction *Inst = --ScanIt;
- if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst))
- // Debug intrinsics don't (and can't) cause dependencies.
- if (isa<DbgInfoIntrinsic>(II)) continue;
- // Limit the amount of scanning we do so we don't end up with quadratic
- // running time on extreme testcases.
- --Limit;
- if (!Limit)
- return MemDepResult::getUnknown();
- if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
- // If we reach a lifetime begin or end marker, then the query ends here
- // because the value is undefined.
- if (II->getIntrinsicID() == Intrinsic::lifetime_start) {
- // FIXME: This only considers queries directly on the invariant-tagged
- // pointer, not on query pointers that are indexed off of them. It'd
- // be nice to handle that at some point (the right approach is to use
- // GetPointerBaseWithConstantOffset).
- if (AA->isMustAlias(MemoryLocation(II->getArgOperand(1)), MemLoc))
- return MemDepResult::getDef(II);
- continue;
- }
- }
- // Values depend on loads if the pointers are must aliased. This means that
- // a load depends on another must aliased load from the same value.
- // One exception is atomic loads: a value can depend on an atomic load that it
- // does not alias with when this atomic load indicates that another thread may
- // be accessing the location.
- if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) {
- // While volatile access cannot be eliminated, they do not have to clobber
- // non-aliasing locations, as normal accesses, for example, can be safely
- // reordered with volatile accesses.
- if (LI->isVolatile()) {
- if (!QueryInst)
- // Original QueryInst *may* be volatile
- return MemDepResult::getClobber(LI);
- if (isVolatile(QueryInst))
- // Ordering required if QueryInst is itself volatile
- return MemDepResult::getClobber(LI);
- // Otherwise, volatile doesn't imply any special ordering
- }
-
- // Atomic loads have complications involved.
- // A Monotonic (or higher) load is OK if the query inst is itself not atomic.
- // FIXME: This is overly conservative.
- if (LI->isAtomic() && LI->getOrdering() > Unordered) {
- if (!QueryInst)
- return MemDepResult::getClobber(LI);
- if (LI->getOrdering() != Monotonic)
- return MemDepResult::getClobber(LI);
- if (auto *QueryLI = dyn_cast<LoadInst>(QueryInst)) {
- if (!QueryLI->isSimple())
- return MemDepResult::getClobber(LI);
- } else if (auto *QuerySI = dyn_cast<StoreInst>(QueryInst)) {
- if (!QuerySI->isSimple())
- return MemDepResult::getClobber(LI);
- } else if (QueryInst->mayReadOrWriteMemory()) {
- return MemDepResult::getClobber(LI);
- }
- }
- MemoryLocation LoadLoc = MemoryLocation::get(LI);
- // If we found a pointer, check if it could be the same as our pointer.
- AliasResult R = AA->alias(LoadLoc, MemLoc);
- if (isLoad) {
- if (R == NoAlias) {
- // If this is an over-aligned integer load (for example,
- // "load i8* %P, align 4") see if it would obviously overlap with the
- // queried location if widened to a larger load (e.g. if the queried
- // location is 1 byte at P+1). If so, return it as a load/load
- // clobber result, allowing the client to decide to widen the load if
- // it wants to.
- if (IntegerType *ITy = dyn_cast<IntegerType>(LI->getType())) {
- if (LI->getAlignment() * 8 > ITy->getPrimitiveSizeInBits() &&
- isLoadLoadClobberIfExtendedToFullWidth(MemLoc, MemLocBase,
- MemLocOffset, LI))
- return MemDepResult::getClobber(Inst);
- }
- continue;
- }
- // Must aliased loads are defs of each other.
- if (R == MustAlias)
- return MemDepResult::getDef(Inst);
- #if 0 // FIXME: Temporarily disabled. GVN is cleverly rewriting loads
- // in terms of clobbering loads, but since it does this by looking
- // at the clobbering load directly, it doesn't know about any
- // phi translation that may have happened along the way.
- // If we have a partial alias, then return this as a clobber for the
- // client to handle.
- if (R == PartialAlias)
- return MemDepResult::getClobber(Inst);
- #endif
- // Random may-alias loads don't depend on each other without a
- // dependence.
- continue;
- }
- // Stores don't depend on other no-aliased accesses.
- if (R == NoAlias)
- continue;
- // Stores don't alias loads from read-only memory.
- if (AA->pointsToConstantMemory(LoadLoc))
- continue;
- // Stores depend on may/must aliased loads.
- return MemDepResult::getDef(Inst);
- }
- if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
- // Atomic stores have complications involved.
- // A Monotonic store is OK if the query inst is itself not atomic.
- // FIXME: This is overly conservative.
- if (!SI->isUnordered()) {
- if (!QueryInst)
- return MemDepResult::getClobber(SI);
- if (SI->getOrdering() != Monotonic)
- return MemDepResult::getClobber(SI);
- if (auto *QueryLI = dyn_cast<LoadInst>(QueryInst)) {
- if (!QueryLI->isSimple())
- return MemDepResult::getClobber(SI);
- } else if (auto *QuerySI = dyn_cast<StoreInst>(QueryInst)) {
- if (!QuerySI->isSimple())
- return MemDepResult::getClobber(SI);
- } else if (QueryInst->mayReadOrWriteMemory()) {
- return MemDepResult::getClobber(SI);
- }
- }
- // FIXME: this is overly conservative.
- // While volatile access cannot be eliminated, they do not have to clobber
- // non-aliasing locations, as normal accesses can for example be reordered
- // with volatile accesses.
- if (SI->isVolatile())
- return MemDepResult::getClobber(SI);
- // If alias analysis can tell that this store is guaranteed to not modify
- // the query pointer, ignore it. Use getModRefInfo to handle cases where
- // the query pointer points to constant memory etc.
- if (AA->getModRefInfo(SI, MemLoc) == AliasAnalysis::NoModRef)
- continue;
- // Ok, this store might clobber the query pointer. Check to see if it is
- // a must alias: in this case, we want to return this as a def.
- MemoryLocation StoreLoc = MemoryLocation::get(SI);
- // If we found a pointer, check if it could be the same as our pointer.
- AliasResult R = AA->alias(StoreLoc, MemLoc);
- if (R == NoAlias)
- continue;
- if (R == MustAlias)
- return MemDepResult::getDef(Inst);
- if (isInvariantLoad)
- continue;
- return MemDepResult::getClobber(Inst);
- }
- // If this is an allocation, and if we know that the accessed pointer is to
- // the allocation, return Def. This means that there is no dependence and
- // the access can be optimized based on that. For example, a load could
- // turn into undef.
- // Note: Only determine this to be a malloc if Inst is the malloc call, not
- // a subsequent bitcast of the malloc call result. There can be stores to
- // the malloced memory between the malloc call and its bitcast uses, and we
- // need to continue scanning until the malloc call.
- const TargetLibraryInfo *TLI = AA->getTargetLibraryInfo();
- if (isa<AllocaInst>(Inst) || isNoAliasFn(Inst, TLI)) {
- const Value *AccessPtr = GetUnderlyingObject(MemLoc.Ptr, DL);
- if (AccessPtr == Inst || AA->isMustAlias(Inst, AccessPtr))
- return MemDepResult::getDef(Inst);
- if (isInvariantLoad)
- continue;
- // Be conservative if the accessed pointer may alias the allocation.
- if (AA->alias(Inst, AccessPtr) != NoAlias)
- return MemDepResult::getClobber(Inst);
- // If the allocation is not aliased and does not read memory (like
- // strdup), it is safe to ignore.
- if (isa<AllocaInst>(Inst) ||
- isMallocLikeFn(Inst, TLI) || isCallocLikeFn(Inst, TLI))
- continue;
- }
- if (isInvariantLoad)
- continue;
- // See if this instruction (e.g. a call or vaarg) mod/ref's the pointer.
- AliasAnalysis::ModRefResult MR = AA->getModRefInfo(Inst, MemLoc);
- // If necessary, perform additional analysis.
- if (MR == AliasAnalysis::ModRef)
- MR = AA->callCapturesBefore(Inst, MemLoc, DT);
- switch (MR) {
- case AliasAnalysis::NoModRef:
- // If the call has no effect on the queried pointer, just ignore it.
- continue;
- case AliasAnalysis::Mod:
- return MemDepResult::getClobber(Inst);
- case AliasAnalysis::Ref:
- // If the call is known to never store to the pointer, and if this is a
- // load query, we can safely ignore it (scan past it).
- if (isLoad)
- continue;
- default:
- // Otherwise, there is a potential dependence. Return a clobber.
- return MemDepResult::getClobber(Inst);
- }
- }
- // No dependence found. If this is the entry block of the function, it is
- // unknown, otherwise it is non-local.
- if (BB != &BB->getParent()->getEntryBlock())
- return MemDepResult::getNonLocal();
- return MemDepResult::getNonFuncLocal();
- }
- /// getDependency - Return the instruction on which a memory operation
- /// depends.
- MemDepResult MemoryDependenceAnalysis::getDependency(Instruction *QueryInst, unsigned ScanLimit) {
- Instruction *ScanPos = QueryInst;
- // Check for a cached result
- MemDepResult &LocalCache = LocalDeps[QueryInst];
- // If the cached entry is non-dirty, just return it. Note that this depends
- // on MemDepResult's default constructing to 'dirty'.
- if (!LocalCache.isDirty())
- return LocalCache;
- // Otherwise, if we have a dirty entry, we know we can start the scan at that
- // instruction, which may save us some work.
- if (Instruction *Inst = LocalCache.getInst()) {
- ScanPos = Inst;
- RemoveFromReverseMap(ReverseLocalDeps, Inst, QueryInst);
- }
- BasicBlock *QueryParent = QueryInst->getParent();
- // Do the scan.
- if (BasicBlock::iterator(QueryInst) == QueryParent->begin()) {
- // No dependence found. If this is the entry block of the function, it is
- // unknown, otherwise it is non-local.
- if (QueryParent != &QueryParent->getParent()->getEntryBlock())
- LocalCache = MemDepResult::getNonLocal();
- else
- LocalCache = MemDepResult::getNonFuncLocal();
- } else {
- MemoryLocation MemLoc;
- AliasAnalysis::ModRefResult MR = GetLocation(QueryInst, MemLoc, AA);
- if (MemLoc.Ptr) {
- // If we can do a pointer scan, make it happen.
- bool isLoad = !(MR & AliasAnalysis::Mod);
- if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(QueryInst))
- isLoad |= II->getIntrinsicID() == Intrinsic::lifetime_start;
- LocalCache = getPointerDependencyFrom(MemLoc, isLoad, ScanPos,
- QueryParent, QueryInst, ScanLimit);
- } else if (isa<CallInst>(QueryInst) || isa<InvokeInst>(QueryInst)) {
- CallSite QueryCS(QueryInst);
- bool isReadOnly = AA->onlyReadsMemory(QueryCS);
- LocalCache = getCallSiteDependencyFrom(QueryCS, isReadOnly, ScanPos,
- QueryParent);
- } else
- // Non-memory instruction.
- LocalCache = MemDepResult::getUnknown();
- }
- // Remember the result!
- if (Instruction *I = LocalCache.getInst())
- ReverseLocalDeps[I].insert(QueryInst);
- return LocalCache;
- }
- #ifndef NDEBUG
- /// AssertSorted - This method is used when -debug is specified to verify that
- /// cache arrays are properly kept sorted.
- static void AssertSorted(MemoryDependenceAnalysis::NonLocalDepInfo &Cache,
- int Count = -1) {
- if (Count == -1) Count = Cache.size();
- if (Count == 0) return;
- for (unsigned i = 1; i != unsigned(Count); ++i)
- assert(!(Cache[i] < Cache[i-1]) && "Cache isn't sorted!");
- }
- #endif
- /// getNonLocalCallDependency - Perform a full dependency query for the
- /// specified call, returning the set of blocks that the value is
- /// potentially live across. The returned set of results will include a
- /// "NonLocal" result for all blocks where the value is live across.
- ///
- /// This method assumes the instruction returns a "NonLocal" dependency
- /// within its own block.
- ///
- /// This returns a reference to an internal data structure that may be
- /// invalidated on the next non-local query or when an instruction is
- /// removed. Clients must copy this data if they want it around longer than
- /// that.
- const MemoryDependenceAnalysis::NonLocalDepInfo &
- MemoryDependenceAnalysis::getNonLocalCallDependency(CallSite QueryCS) {
- assert(getDependency(QueryCS.getInstruction()).isNonLocal() &&
- "getNonLocalCallDependency should only be used on calls with non-local deps!");
- PerInstNLInfo &CacheP = NonLocalDeps[QueryCS.getInstruction()];
- NonLocalDepInfo &Cache = CacheP.first;
- /// DirtyBlocks - This is the set of blocks that need to be recomputed. In
- /// the cached case, this can happen due to instructions being deleted etc. In
- /// the uncached case, this starts out as the set of predecessors we care
- /// about.
- SmallVector<BasicBlock*, 32> DirtyBlocks;
- if (!Cache.empty()) {
- // Okay, we have a cache entry. If we know it is not dirty, just return it
- // with no computation.
- if (!CacheP.second) {
- ++NumCacheNonLocal;
- return Cache;
- }
- // If we already have a partially computed set of results, scan them to
- // determine what is dirty, seeding our initial DirtyBlocks worklist.
- for (NonLocalDepInfo::iterator I = Cache.begin(), E = Cache.end();
- I != E; ++I)
- if (I->getResult().isDirty())
- DirtyBlocks.push_back(I->getBB());
- // Sort the cache so that we can do fast binary search lookups below.
- std::sort(Cache.begin(), Cache.end());
- ++NumCacheDirtyNonLocal;
- //cerr << "CACHED CASE: " << DirtyBlocks.size() << " dirty: "
- // << Cache.size() << " cached: " << *QueryInst;
- } else {
- // Seed DirtyBlocks with each of the preds of QueryInst's block.
- BasicBlock *QueryBB = QueryCS.getInstruction()->getParent();
- for (BasicBlock *Pred : PredCache.get(QueryBB))
- DirtyBlocks.push_back(Pred);
- ++NumUncacheNonLocal;
- }
- // isReadonlyCall - If this is a read-only call, we can be more aggressive.
- bool isReadonlyCall = AA->onlyReadsMemory(QueryCS);
- SmallPtrSet<BasicBlock*, 64> Visited;
- unsigned NumSortedEntries = Cache.size();
- DEBUG(AssertSorted(Cache));
- // Iterate while we still have blocks to update.
- while (!DirtyBlocks.empty()) {
- BasicBlock *DirtyBB = DirtyBlocks.back();
- DirtyBlocks.pop_back();
- // Already processed this block?
- if (!Visited.insert(DirtyBB).second)
- continue;
- // Do a binary search to see if we already have an entry for this block in
- // the cache set. If so, find it.
- DEBUG(AssertSorted(Cache, NumSortedEntries));
- NonLocalDepInfo::iterator Entry =
- std::upper_bound(Cache.begin(), Cache.begin()+NumSortedEntries,
- NonLocalDepEntry(DirtyBB));
- if (Entry != Cache.begin() && std::prev(Entry)->getBB() == DirtyBB)
- --Entry;
- NonLocalDepEntry *ExistingResult = nullptr;
- if (Entry != Cache.begin()+NumSortedEntries &&
- Entry->getBB() == DirtyBB) {
- // If we already have an entry, and if it isn't already dirty, the block
- // is done.
- if (!Entry->getResult().isDirty())
- continue;
- // Otherwise, remember this slot so we can update the value.
- ExistingResult = &*Entry;
- }
- // If the dirty entry has a pointer, start scanning from it so we don't have
- // to rescan the entire block.
- BasicBlock::iterator ScanPos = DirtyBB->end();
- if (ExistingResult) {
- if (Instruction *Inst = ExistingResult->getResult().getInst()) {
- ScanPos = Inst;
- // We're removing QueryInst's use of Inst.
- RemoveFromReverseMap(ReverseNonLocalDeps, Inst,
- QueryCS.getInstruction());
- }
- }
- // Find out if this block has a local dependency for QueryInst.
- MemDepResult Dep;
- if (ScanPos != DirtyBB->begin()) {
- Dep = getCallSiteDependencyFrom(QueryCS, isReadonlyCall,ScanPos, DirtyBB);
- } else if (DirtyBB != &DirtyBB->getParent()->getEntryBlock()) {
- // No dependence found. If this is the entry block of the function, it is
- // a clobber, otherwise it is unknown.
- Dep = MemDepResult::getNonLocal();
- } else {
- Dep = MemDepResult::getNonFuncLocal();
- }
- // If we had a dirty entry for the block, update it. Otherwise, just add
- // a new entry.
- if (ExistingResult)
- ExistingResult->setResult(Dep);
- else
- Cache.push_back(NonLocalDepEntry(DirtyBB, Dep));
- // If the block has a dependency (i.e. it isn't completely transparent to
- // the value), remember the association!
- if (!Dep.isNonLocal()) {
- // Keep the ReverseNonLocalDeps map up to date so we can efficiently
- // update this when we remove instructions.
- if (Instruction *Inst = Dep.getInst())
- ReverseNonLocalDeps[Inst].insert(QueryCS.getInstruction());
- } else {
- // If the block *is* completely transparent to the load, we need to check
- // the predecessors of this block. Add them to our worklist.
- for (BasicBlock *Pred : PredCache.get(DirtyBB))
- DirtyBlocks.push_back(Pred);
- }
- }
- return Cache;
- }
- /// getNonLocalPointerDependency - Perform a full dependency query for an
- /// access to the specified (non-volatile) memory location, returning the
- /// set of instructions that either define or clobber the value.
- ///
- /// This method assumes the pointer has a "NonLocal" dependency within its
- /// own block.
- ///
- void MemoryDependenceAnalysis::
- getNonLocalPointerDependency(Instruction *QueryInst,
- SmallVectorImpl<NonLocalDepResult> &Result) {
- const MemoryLocation Loc = MemoryLocation::get(QueryInst);
- bool isLoad = isa<LoadInst>(QueryInst);
- BasicBlock *FromBB = QueryInst->getParent();
- assert(FromBB);
- assert(Loc.Ptr->getType()->isPointerTy() &&
- "Can't get pointer deps of a non-pointer!");
- Result.clear();
-
- // This routine does not expect to deal with volatile instructions.
- // Doing so would require piping through the QueryInst all the way through.
- // TODO: volatiles can't be elided, but they can be reordered with other
- // non-volatile accesses.
- // We currently give up on any instruction which is ordered, but we do handle
- // atomic instructions which are unordered.
- // TODO: Handle ordered instructions
- auto isOrdered = [](Instruction *Inst) {
- if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) {
- return !LI->isUnordered();
- } else if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
- return !SI->isUnordered();
- }
- return false;
- };
- if (isVolatile(QueryInst) || isOrdered(QueryInst)) {
- Result.push_back(NonLocalDepResult(FromBB,
- MemDepResult::getUnknown(),
- const_cast<Value *>(Loc.Ptr)));
- return;
- }
- const DataLayout &DL = FromBB->getModule()->getDataLayout();
- PHITransAddr Address(const_cast<Value *>(Loc.Ptr), DL, AC);
- // This is the set of blocks we've inspected, and the pointer we consider in
- // each block. Because of critical edges, we currently bail out if querying
- // a block with multiple different pointers. This can happen during PHI
- // translation.
- DenseMap<BasicBlock*, Value*> Visited;
- if (!getNonLocalPointerDepFromBB(QueryInst, Address, Loc, isLoad, FromBB,
- Result, Visited, true))
- return;
- Result.clear();
- Result.push_back(NonLocalDepResult(FromBB,
- MemDepResult::getUnknown(),
- const_cast<Value *>(Loc.Ptr)));
- }
- /// GetNonLocalInfoForBlock - Compute the memdep value for BB with
- /// Pointer/PointeeSize using either cached information in Cache or by doing a
- /// lookup (which may use dirty cache info if available). If we do a lookup,
- /// add the result to the cache.
- MemDepResult MemoryDependenceAnalysis::GetNonLocalInfoForBlock(
- Instruction *QueryInst, const MemoryLocation &Loc, bool isLoad,
- BasicBlock *BB, NonLocalDepInfo *Cache, unsigned NumSortedEntries) {
- // Do a binary search to see if we already have an entry for this block in
- // the cache set. If so, find it.
- NonLocalDepInfo::iterator Entry =
- std::upper_bound(Cache->begin(), Cache->begin()+NumSortedEntries,
- NonLocalDepEntry(BB));
- if (Entry != Cache->begin() && (Entry-1)->getBB() == BB)
- --Entry;
- NonLocalDepEntry *ExistingResult = nullptr;
- if (Entry != Cache->begin()+NumSortedEntries && Entry->getBB() == BB)
- ExistingResult = &*Entry;
- // If we have a cached entry, and it is non-dirty, use it as the value for
- // this dependency.
- if (ExistingResult && !ExistingResult->getResult().isDirty()) {
- ++NumCacheNonLocalPtr;
- return ExistingResult->getResult();
- }
- // Otherwise, we have to scan for the value. If we have a dirty cache
- // entry, start scanning from its position, otherwise we scan from the end
- // of the block.
- BasicBlock::iterator ScanPos = BB->end();
- if (ExistingResult && ExistingResult->getResult().getInst()) {
- assert(ExistingResult->getResult().getInst()->getParent() == BB &&
- "Instruction invalidated?");
- ++NumCacheDirtyNonLocalPtr;
- ScanPos = ExistingResult->getResult().getInst();
- // Eliminating the dirty entry from 'Cache', so update the reverse info.
- ValueIsLoadPair CacheKey(Loc.Ptr, isLoad);
- RemoveFromReverseMap(ReverseNonLocalPtrDeps, ScanPos, CacheKey);
- } else {
- ++NumUncacheNonLocalPtr;
- }
- // Scan the block for the dependency.
- MemDepResult Dep = getPointerDependencyFrom(Loc, isLoad, ScanPos, BB,
- QueryInst);
- // If we had a dirty entry for the block, update it. Otherwise, just add
- // a new entry.
- if (ExistingResult)
- ExistingResult->setResult(Dep);
- else
- Cache->push_back(NonLocalDepEntry(BB, Dep));
- // If the block has a dependency (i.e. it isn't completely transparent to
- // the value), remember the reverse association because we just added it
- // to Cache!
- if (!Dep.isDef() && !Dep.isClobber())
- return Dep;
- // Keep the ReverseNonLocalPtrDeps map up to date so we can efficiently
- // update MemDep when we remove instructions.
- Instruction *Inst = Dep.getInst();
- assert(Inst && "Didn't depend on anything?");
- ValueIsLoadPair CacheKey(Loc.Ptr, isLoad);
- ReverseNonLocalPtrDeps[Inst].insert(CacheKey);
- return Dep;
- }
- /// SortNonLocalDepInfoCache - Sort the NonLocalDepInfo cache, given a certain
- /// number of elements in the array that are already properly ordered. This is
- /// optimized for the case when only a few entries are added.
- static void
- SortNonLocalDepInfoCache(MemoryDependenceAnalysis::NonLocalDepInfo &Cache,
- unsigned NumSortedEntries) {
- switch (Cache.size() - NumSortedEntries) {
- case 0:
- // done, no new entries.
- break;
- case 2: {
- // Two new entries, insert the last one into place.
- NonLocalDepEntry Val = Cache.back();
- Cache.pop_back();
- MemoryDependenceAnalysis::NonLocalDepInfo::iterator Entry =
- std::upper_bound(Cache.begin(), Cache.end()-1, Val);
- Cache.insert(Entry, Val);
- // FALL THROUGH.
- }
- case 1:
- // One new entry, Just insert the new value at the appropriate position.
- if (Cache.size() != 1) {
- NonLocalDepEntry Val = Cache.back();
- Cache.pop_back();
- MemoryDependenceAnalysis::NonLocalDepInfo::iterator Entry =
- std::upper_bound(Cache.begin(), Cache.end(), Val);
- Cache.insert(Entry, Val);
- }
- break;
- default:
- // Added many values, do a full scale sort.
- std::sort(Cache.begin(), Cache.end());
- break;
- }
- }
- /// getNonLocalPointerDepFromBB - Perform a dependency query based on
- /// pointer/pointeesize starting at the end of StartBB. Add any clobber/def
- /// results to the results vector and keep track of which blocks are visited in
- /// 'Visited'.
- ///
- /// This has special behavior for the first block queries (when SkipFirstBlock
- /// is true). In this special case, it ignores the contents of the specified
- /// block and starts returning dependence info for its predecessors.
- ///
- /// This function returns false on success, or true to indicate that it could
- /// not compute dependence information for some reason. This should be treated
- /// as a clobber dependence on the first instruction in the predecessor block.
- bool MemoryDependenceAnalysis::getNonLocalPointerDepFromBB(
- Instruction *QueryInst, const PHITransAddr &Pointer,
- const MemoryLocation &Loc, bool isLoad, BasicBlock *StartBB,
- SmallVectorImpl<NonLocalDepResult> &Result,
- DenseMap<BasicBlock *, Value *> &Visited, bool SkipFirstBlock) {
- // Look up the cached info for Pointer.
- ValueIsLoadPair CacheKey(Pointer.getAddr(), isLoad);
- // Set up a temporary NLPI value. If the map doesn't yet have an entry for
- // CacheKey, this value will be inserted as the associated value. Otherwise,
- // it'll be ignored, and we'll have to check to see if the cached size and
- // aa tags are consistent with the current query.
- NonLocalPointerInfo InitialNLPI;
- InitialNLPI.Size = Loc.Size;
- InitialNLPI.AATags = Loc.AATags;
- // Get the NLPI for CacheKey, inserting one into the map if it doesn't
- // already have one.
- std::pair<CachedNonLocalPointerInfo::iterator, bool> Pair =
- NonLocalPointerDeps.insert(std::make_pair(CacheKey, InitialNLPI));
- NonLocalPointerInfo *CacheInfo = &Pair.first->second;
- // If we already have a cache entry for this CacheKey, we may need to do some
- // work to reconcile the cache entry and the current query.
- if (!Pair.second) {
- if (CacheInfo->Size < Loc.Size) {
- // The query's Size is greater than the cached one. Throw out the
- // cached data and proceed with the query at the greater size.
- CacheInfo->Pair = BBSkipFirstBlockPair();
- CacheInfo->Size = Loc.Size;
- for (NonLocalDepInfo::iterator DI = CacheInfo->NonLocalDeps.begin(),
- DE = CacheInfo->NonLocalDeps.end(); DI != DE; ++DI)
- if (Instruction *Inst = DI->getResult().getInst())
- RemoveFromReverseMap(ReverseNonLocalPtrDeps, Inst, CacheKey);
- CacheInfo->NonLocalDeps.clear();
- } else if (CacheInfo->Size > Loc.Size) {
- // This query's Size is less than the cached one. Conservatively restart
- // the query using the greater size.
- return getNonLocalPointerDepFromBB(QueryInst, Pointer,
- Loc.getWithNewSize(CacheInfo->Size),
- isLoad, StartBB, Result, Visited,
- SkipFirstBlock);
- }
- // If the query's AATags are inconsistent with the cached one,
- // conservatively throw out the cached data and restart the query with
- // no tag if needed.
- if (CacheInfo->AATags != Loc.AATags) {
- if (CacheInfo->AATags) {
- CacheInfo->Pair = BBSkipFirstBlockPair();
- CacheInfo->AATags = AAMDNodes();
- for (NonLocalDepInfo::iterator DI = CacheInfo->NonLocalDeps.begin(),
- DE = CacheInfo->NonLocalDeps.end(); DI != DE; ++DI)
- if (Instruction *Inst = DI->getResult().getInst())
- RemoveFromReverseMap(ReverseNonLocalPtrDeps, Inst, CacheKey);
- CacheInfo->NonLocalDeps.clear();
- }
- if (Loc.AATags)
- return getNonLocalPointerDepFromBB(QueryInst,
- Pointer, Loc.getWithoutAATags(),
- isLoad, StartBB, Result, Visited,
- SkipFirstBlock);
- }
- }
- NonLocalDepInfo *Cache = &CacheInfo->NonLocalDeps;
- // If we have valid cached information for exactly the block we are
- // investigating, just return it with no recomputation.
- if (CacheInfo->Pair == BBSkipFirstBlockPair(StartBB, SkipFirstBlock)) {
- // We have a fully cached result for this query then we can just return the
- // cached results and populate the visited set. However, we have to verify
- // that we don't already have conflicting results for these blocks. Check
- // to ensure that if a block in the results set is in the visited set that
- // it was for the same pointer query.
- if (!Visited.empty()) {
- for (NonLocalDepInfo::iterator I = Cache->begin(), E = Cache->end();
- I != E; ++I) {
- DenseMap<BasicBlock*, Value*>::iterator VI = Visited.find(I->getBB());
- if (VI == Visited.end() || VI->second == Pointer.getAddr())
- continue;
- // We have a pointer mismatch in a block. Just return clobber, saying
- // that something was clobbered in this result. We could also do a
- // non-fully cached query, but there is little point in doing this.
- return true;
- }
- }
- Value *Addr = Pointer.getAddr();
- for (NonLocalDepInfo::iterator I = Cache->begin(), E = Cache->end();
- I != E; ++I) {
- Visited.insert(std::make_pair(I->getBB(), Addr));
- if (I->getResult().isNonLocal()) {
- continue;
- }
- if (!DT) {
- Result.push_back(NonLocalDepResult(I->getBB(),
- MemDepResult::getUnknown(),
- Addr));
- } else if (DT->isReachableFromEntry(I->getBB())) {
- Result.push_back(NonLocalDepResult(I->getBB(), I->getResult(), Addr));
- }
- }
- ++NumCacheCompleteNonLocalPtr;
- return false;
- }
- // Otherwise, either this is a new block, a block with an invalid cache
- // pointer or one that we're about to invalidate by putting more info into it
- // than its valid cache info. If empty, the result will be valid cache info,
- // otherwise it isn't.
- if (Cache->empty())
- CacheInfo->Pair = BBSkipFirstBlockPair(StartBB, SkipFirstBlock);
- else
- CacheInfo->Pair = BBSkipFirstBlockPair();
- SmallVector<BasicBlock*, 32> Worklist;
- Worklist.push_back(StartBB);
- // PredList used inside loop.
- SmallVector<std::pair<BasicBlock*, PHITransAddr>, 16> PredList;
- // Keep track of the entries that we know are sorted. Previously cached
- // entries will all be sorted. The entries we add we only sort on demand (we
- // don't insert every element into its sorted position). We know that we
- // won't get any reuse from currently inserted values, because we don't
- // revisit blocks after we insert info for them.
- unsigned NumSortedEntries = Cache->size();
- DEBUG(AssertSorted(*Cache));
- while (!Worklist.empty()) {
- BasicBlock *BB = Worklist.pop_back_val();
- // If we do process a large number of blocks it becomes very expensive and
- // likely it isn't worth worrying about
- if (Result.size() > NumResultsLimit) {
- Worklist.clear();
- // Sort it now (if needed) so that recursive invocations of
- // getNonLocalPointerDepFromBB and other routines that could reuse the
- // cache value will only see properly sorted cache arrays.
- if (Cache && NumSortedEntries != Cache->size()) {
- SortNonLocalDepInfoCache(*Cache, NumSortedEntries);
- }
- // Since we bail out, the "Cache" set won't contain all of the
- // results for the query. This is ok (we can still use it to accelerate
- // specific block queries) but we can't do the fastpath "return all
- // results from the set". Clear out the indicator for this.
- CacheInfo->Pair = BBSkipFirstBlockPair();
- return true;
- }
- // Skip the first block if we have it.
- if (!SkipFirstBlock) {
- // Analyze the dependency of *Pointer in FromBB. See if we already have
- // been here.
- assert(Visited.count(BB) && "Should check 'visited' before adding to WL");
- // Get the dependency info for Pointer in BB. If we have cached
- // information, we will use it, otherwise we compute it.
- DEBUG(AssertSorted(*Cache, NumSortedEntries));
- MemDepResult Dep = GetNonLocalInfoForBlock(QueryInst,
- Loc, isLoad, BB, Cache,
- NumSortedEntries);
- // If we got a Def or Clobber, add this to the list of results.
- if (!Dep.isNonLocal()) {
- if (!DT) {
- Result.push_back(NonLocalDepResult(BB,
- MemDepResult::getUnknown(),
- Pointer.getAddr()));
- continue;
- } else if (DT->isReachableFromEntry(BB)) {
- Result.push_back(NonLocalDepResult(BB, Dep, Pointer.getAddr()));
- continue;
- }
- }
- }
- // If 'Pointer' is an instruction defined in this block, then we need to do
- // phi translation to change it into a value live in the predecessor block.
- // If not, we just add the predecessors to the worklist and scan them with
- // the same Pointer.
- if (!Pointer.NeedsPHITranslationFromBlock(BB)) {
- SkipFirstBlock = false;
- SmallVector<BasicBlock*, 16> NewBlocks;
- for (BasicBlock *Pred : PredCache.get(BB)) {
- // Verify that we haven't looked at this block yet.
- std::pair<DenseMap<BasicBlock*,Value*>::iterator, bool>
- InsertRes = Visited.insert(std::make_pair(Pred, Pointer.getAddr()));
- if (InsertRes.second) {
- // First time we've looked at *PI.
- NewBlocks.push_back(Pred);
- continue;
- }
- // If we have seen this block before, but it was with a different
- // pointer then we have a phi translation failure and we have to treat
- // this as a clobber.
- if (InsertRes.first->second != Pointer.getAddr()) {
- // Make sure to clean up the Visited map before continuing on to
- // PredTranslationFailure.
- for (unsigned i = 0; i < NewBlocks.size(); i++)
- Visited.erase(NewBlocks[i]);
- goto PredTranslationFailure;
- }
- }
- Worklist.append(NewBlocks.begin(), NewBlocks.end());
- continue;
- }
- // We do need to do phi translation, if we know ahead of time we can't phi
- // translate this value, don't even try.
- if (!Pointer.IsPotentiallyPHITranslatable())
- goto PredTranslationFailure;
- // We may have added values to the cache list before this PHI translation.
- // If so, we haven't done anything to ensure that the cache remains sorted.
- // Sort it now (if needed) so that recursive invocations of
- // getNonLocalPointerDepFromBB and other routines that could reuse the cache
- // value will only see properly sorted cache arrays.
- if (Cache && NumSortedEntries != Cache->size()) {
- SortNonLocalDepInfoCache(*Cache, NumSortedEntries);
- NumSortedEntries = Cache->size();
- }
- Cache = nullptr;
- PredList.clear();
- for (BasicBlock *Pred : PredCache.get(BB)) {
- PredList.push_back(std::make_pair(Pred, Pointer));
- // Get the PHI translated pointer in this predecessor. This can fail if
- // not translatable, in which case the getAddr() returns null.
- PHITransAddr &PredPointer = PredList.back().second;
- PredPointer.PHITranslateValue(BB, Pred, DT, /*MustDominate=*/false);
- Value *PredPtrVal = PredPointer.getAddr();
- // Check to see if we have already visited this pred block with another
- // pointer. If so, we can't do this lookup. This failure can occur
- // with PHI translation when a critical edge exists and the PHI node in
- // the successor translates to a pointer value different than the
- // pointer the block was first analyzed with.
- std::pair<DenseMap<BasicBlock*,Value*>::iterator, bool>
- InsertRes = Visited.insert(std::make_pair(Pred, PredPtrVal));
- if (!InsertRes.second) {
- // We found the pred; take it off the list of preds to visit.
- PredList.pop_back();
- // If the predecessor was visited with PredPtr, then we already did
- // the analysis and can ignore it.
- if (InsertRes.first->second == PredPtrVal)
- continue;
- // Otherwise, the block was previously analyzed with a different
- // pointer. We can't represent the result of this case, so we just
- // treat this as a phi translation failure.
- // Make sure to clean up the Visited map before continuing on to
- // PredTranslationFailure.
- for (unsigned i = 0, n = PredList.size(); i < n; ++i)
- Visited.erase(PredList[i].first);
- goto PredTranslationFailure;
- }
- }
- // Actually process results here; this need to be a separate loop to avoid
- // calling getNonLocalPointerDepFromBB for blocks we don't want to return
- // any results for. (getNonLocalPointerDepFromBB will modify our
- // datastructures in ways the code after the PredTranslationFailure label
- // doesn't expect.)
- for (unsigned i = 0, n = PredList.size(); i < n; ++i) {
- BasicBlock *Pred = PredList[i].first;
- PHITransAddr &PredPointer = PredList[i].second;
- Value *PredPtrVal = PredPointer.getAddr();
- bool CanTranslate = true;
- // If PHI translation was unable to find an available pointer in this
- // predecessor, then we have to assume that the pointer is clobbered in
- // that predecessor. We can still do PRE of the load, which would insert
- // a computation of the pointer in this predecessor.
- if (!PredPtrVal)
- CanTranslate = false;
- // FIXME: it is entirely possible that PHI translating will end up with
- // the same value. Consider PHI translating something like:
- // X = phi [x, bb1], [y, bb2]. PHI translating for bb1 doesn't *need*
- // to recurse here, pedantically speaking.
- // If getNonLocalPointerDepFromBB fails here, that means the cached
- // result conflicted with the Visited list; we have to conservatively
- // assume it is unknown, but this also does not block PRE of the load.
- if (!CanTranslate ||
- getNonLocalPointerDepFromBB(QueryInst, PredPointer,
- Loc.getWithNewPtr(PredPtrVal),
- isLoad, Pred,
- Result, Visited)) {
- // Add the entry to the Result list.
- NonLocalDepResult Entry(Pred, MemDepResult::getUnknown(), PredPtrVal);
- Result.push_back(Entry);
- // Since we had a phi translation failure, the cache for CacheKey won't
- // include all of the entries that we need to immediately satisfy future
- // queries. Mark this in NonLocalPointerDeps by setting the
- // BBSkipFirstBlockPair pointer to null. This requires reuse of the
- // cached value to do more work but not miss the phi trans failure.
- NonLocalPointerInfo &NLPI = NonLocalPointerDeps[CacheKey];
- NLPI.Pair = BBSkipFirstBlockPair();
- continue;
- }
- }
- // Refresh the CacheInfo/Cache pointer so that it isn't invalidated.
- CacheInfo = &NonLocalPointerDeps[CacheKey];
- Cache = &CacheInfo->NonLocalDeps;
- NumSortedEntries = Cache->size();
- // Since we did phi translation, the "Cache" set won't contain all of the
- // results for the query. This is ok (we can still use it to accelerate
- // specific block queries) but we can't do the fastpath "return all
- // results from the set" Clear out the indicator for this.
- CacheInfo->Pair = BBSkipFirstBlockPair();
- SkipFirstBlock = false;
- continue;
- PredTranslationFailure:
- // The following code is "failure"; we can't produce a sane translation
- // for the given block. It assumes that we haven't modified any of
- // our datastructures while processing the current block.
- if (!Cache) {
- // Refresh the CacheInfo/Cache pointer if it got invalidated.
- CacheInfo = &NonLocalPointerDeps[CacheKey];
- Cache = &CacheInfo->NonLocalDeps;
- NumSortedEntries = Cache->size();
- }
- // Since we failed phi translation, the "Cache" set won't contain all of the
- // results for the query. This is ok (we can still use it to accelerate
- // specific block queries) but we can't do the fastpath "return all
- // results from the set". Clear out the indicator for this.
- CacheInfo->Pair = BBSkipFirstBlockPair();
- // If *nothing* works, mark the pointer as unknown.
- //
- // If this is the magic first block, return this as a clobber of the whole
- // incoming value. Since we can't phi translate to one of the predecessors,
- // we have to bail out.
- if (SkipFirstBlock)
- return true;
- for (NonLocalDepInfo::reverse_iterator I = Cache->rbegin(); ; ++I) {
- assert(I != Cache->rend() && "Didn't find current block??");
- if (I->getBB() != BB)
- continue;
- assert((I->getResult().isNonLocal() || !DT->isReachableFromEntry(BB)) &&
- "Should only be here with transparent block");
- I->setResult(MemDepResult::getUnknown());
- Result.push_back(NonLocalDepResult(I->getBB(), I->getResult(),
- Pointer.getAddr()));
- break;
- }
- }
- // Okay, we're done now. If we added new values to the cache, re-sort it.
- SortNonLocalDepInfoCache(*Cache, NumSortedEntries);
- DEBUG(AssertSorted(*Cache));
- return false;
- }
- /// RemoveCachedNonLocalPointerDependencies - If P exists in
- /// CachedNonLocalPointerInfo, remove it.
- void MemoryDependenceAnalysis::
- RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair P) {
- CachedNonLocalPointerInfo::iterator It =
- NonLocalPointerDeps.find(P);
- if (It == NonLocalPointerDeps.end()) return;
- // Remove all of the entries in the BB->val map. This involves removing
- // instructions from the reverse map.
- NonLocalDepInfo &PInfo = It->second.NonLocalDeps;
- for (unsigned i = 0, e = PInfo.size(); i != e; ++i) {
- Instruction *Target = PInfo[i].getResult().getInst();
- if (!Target) continue; // Ignore non-local dep results.
- assert(Target->getParent() == PInfo[i].getBB());
- // Eliminating the dirty entry from 'Cache', so update the reverse info.
- RemoveFromReverseMap(ReverseNonLocalPtrDeps, Target, P);
- }
- // Remove P from NonLocalPointerDeps (which deletes NonLocalDepInfo).
- NonLocalPointerDeps.erase(It);
- }
- /// invalidateCachedPointerInfo - This method is used to invalidate cached
- /// information about the specified pointer, because it may be too
- /// conservative in memdep. This is an optional call that can be used when
- /// the client detects an equivalence between the pointer and some other
- /// value and replaces the other value with ptr. This can make Ptr available
- /// in more places that cached info does not necessarily keep.
- void MemoryDependenceAnalysis::invalidateCachedPointerInfo(Value *Ptr) {
- // If Ptr isn't really a pointer, just ignore it.
- if (!Ptr->getType()->isPointerTy()) return;
- // Flush store info for the pointer.
- RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair(Ptr, false));
- // Flush load info for the pointer.
- RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair(Ptr, true));
- }
- /// invalidateCachedPredecessors - Clear the PredIteratorCache info.
- /// This needs to be done when the CFG changes, e.g., due to splitting
- /// critical edges.
- void MemoryDependenceAnalysis::invalidateCachedPredecessors() {
- PredCache.clear();
- }
- /// removeInstruction - Remove an instruction from the dependence analysis,
- /// updating the dependence of instructions that previously depended on it.
- /// This method attempts to keep the cache coherent using the reverse map.
- void MemoryDependenceAnalysis::removeInstruction(Instruction *RemInst) {
- // Walk through the Non-local dependencies, removing this one as the value
- // for any cached queries.
- NonLocalDepMapType::iterator NLDI = NonLocalDeps.find(RemInst);
- if (NLDI != NonLocalDeps.end()) {
- NonLocalDepInfo &BlockMap = NLDI->second.first;
- for (NonLocalDepInfo::iterator DI = BlockMap.begin(), DE = BlockMap.end();
- DI != DE; ++DI)
- if (Instruction *Inst = DI->getResult().getInst())
- RemoveFromReverseMap(ReverseNonLocalDeps, Inst, RemInst);
- NonLocalDeps.erase(NLDI);
- }
- // If we have a cached local dependence query for this instruction, remove it.
- //
- LocalDepMapType::iterator LocalDepEntry = LocalDeps.find(RemInst);
- if (LocalDepEntry != LocalDeps.end()) {
- // Remove us from DepInst's reverse set now that the local dep info is gone.
- if (Instruction *Inst = LocalDepEntry->second.getInst())
- RemoveFromReverseMap(ReverseLocalDeps, Inst, RemInst);
- // Remove this local dependency info.
- LocalDeps.erase(LocalDepEntry);
- }
- // If we have any cached pointer dependencies on this instruction, remove
- // them. If the instruction has non-pointer type, then it can't be a pointer
- // base.
- // Remove it from both the load info and the store info. The instruction
- // can't be in either of these maps if it is non-pointer.
- if (RemInst->getType()->isPointerTy()) {
- RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair(RemInst, false));
- RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair(RemInst, true));
- }
- // Loop over all of the things that depend on the instruction we're removing.
- //
- SmallVector<std::pair<Instruction*, Instruction*>, 8> ReverseDepsToAdd;
- // If we find RemInst as a clobber or Def in any of the maps for other values,
- // we need to replace its entry with a dirty version of the instruction after
- // it. If RemInst is a terminator, we use a null dirty value.
- //
- // Using a dirty version of the instruction after RemInst saves having to scan
- // the entire block to get to this point.
- MemDepResult NewDirtyVal;
- if (!RemInst->isTerminator())
- NewDirtyVal = MemDepResult::getDirty(++BasicBlock::iterator(RemInst));
- ReverseDepMapType::iterator ReverseDepIt = ReverseLocalDeps.find(RemInst);
- if (ReverseDepIt != ReverseLocalDeps.end()) {
- // RemInst can't be the terminator if it has local stuff depending on it.
- assert(!ReverseDepIt->second.empty() && !isa<TerminatorInst>(RemInst) &&
- "Nothing can locally depend on a terminator");
- for (Instruction *InstDependingOnRemInst : ReverseDepIt->second) {
- assert(InstDependingOnRemInst != RemInst &&
- "Already removed our local dep info");
- LocalDeps[InstDependingOnRemInst] = NewDirtyVal;
- // Make sure to remember that new things depend on NewDepInst.
- assert(NewDirtyVal.getInst() && "There is no way something else can have "
- "a local dep on this if it is a terminator!");
- ReverseDepsToAdd.push_back(std::make_pair(NewDirtyVal.getInst(),
- InstDependingOnRemInst));
- }
- ReverseLocalDeps.erase(ReverseDepIt);
- // Add new reverse deps after scanning the set, to avoid invalidating the
- // 'ReverseDeps' reference.
- while (!ReverseDepsToAdd.empty()) {
- ReverseLocalDeps[ReverseDepsToAdd.back().first]
- .insert(ReverseDepsToAdd.back().second);
- ReverseDepsToAdd.pop_back();
- }
- }
- ReverseDepIt = ReverseNonLocalDeps.find(RemInst);
- if (ReverseDepIt != ReverseNonLocalDeps.end()) {
- for (Instruction *I : ReverseDepIt->second) {
- assert(I != RemInst && "Already removed NonLocalDep info for RemInst");
- PerInstNLInfo &INLD = NonLocalDeps[I];
- // The information is now dirty!
- INLD.second = true;
- for (NonLocalDepInfo::iterator DI = INLD.first.begin(),
- DE = INLD.first.end(); DI != DE; ++DI) {
- if (DI->getResult().getInst() != RemInst) continue;
- // Convert to a dirty entry for the subsequent instruction.
- DI->setResult(NewDirtyVal);
- if (Instruction *NextI = NewDirtyVal.getInst())
- ReverseDepsToAdd.push_back(std::make_pair(NextI, I));
- }
- }
- ReverseNonLocalDeps.erase(ReverseDepIt);
- // Add new reverse deps after scanning the set, to avoid invalidating 'Set'
- while (!ReverseDepsToAdd.empty()) {
- ReverseNonLocalDeps[ReverseDepsToAdd.back().first]
- .insert(ReverseDepsToAdd.back().second);
- ReverseDepsToAdd.pop_back();
- }
- }
- // If the instruction is in ReverseNonLocalPtrDeps then it appears as a
- // value in the NonLocalPointerDeps info.
- ReverseNonLocalPtrDepTy::iterator ReversePtrDepIt =
- ReverseNonLocalPtrDeps.find(RemInst);
- if (ReversePtrDepIt != ReverseNonLocalPtrDeps.end()) {
- SmallVector<std::pair<Instruction*, ValueIsLoadPair>,8> ReversePtrDepsToAdd;
- for (ValueIsLoadPair P : ReversePtrDepIt->second) {
- assert(P.getPointer() != RemInst &&
- "Already removed NonLocalPointerDeps info for RemInst");
- NonLocalDepInfo &NLPDI = NonLocalPointerDeps[P].NonLocalDeps;
- // The cache is not valid for any specific block anymore.
- NonLocalPointerDeps[P].Pair = BBSkipFirstBlockPair();
- // Update any entries for RemInst to use the instruction after it.
- for (NonLocalDepInfo::iterator DI = NLPDI.begin(), DE = NLPDI.end();
- DI != DE; ++DI) {
- if (DI->getResult().getInst() != RemInst) continue;
- // Convert to a dirty entry for the subsequent instruction.
- DI->setResult(NewDirtyVal);
- if (Instruction *NewDirtyInst = NewDirtyVal.getInst())
- ReversePtrDepsToAdd.push_back(std::make_pair(NewDirtyInst, P));
- }
- // Re-sort the NonLocalDepInfo. Changing the dirty entry to its
- // subsequent value may invalidate the sortedness.
- std::sort(NLPDI.begin(), NLPDI.end());
- }
- ReverseNonLocalPtrDeps.erase(ReversePtrDepIt);
- while (!ReversePtrDepsToAdd.empty()) {
- ReverseNonLocalPtrDeps[ReversePtrDepsToAdd.back().first]
- .insert(ReversePtrDepsToAdd.back().second);
- ReversePtrDepsToAdd.pop_back();
- }
- }
- assert(!NonLocalDeps.count(RemInst) && "RemInst got reinserted?");
- AA->deleteValue(RemInst);
- DEBUG(verifyRemoved(RemInst));
- }
- /// verifyRemoved - Verify that the specified instruction does not occur
- /// in our internal data structures. This function verifies by asserting in
- /// debug builds.
- void MemoryDependenceAnalysis::verifyRemoved(Instruction *D) const {
- #ifndef NDEBUG
- for (LocalDepMapType::const_iterator I = LocalDeps.begin(),
- E = LocalDeps.end(); I != E; ++I) {
- assert(I->first != D && "Inst occurs in data structures");
- assert(I->second.getInst() != D &&
- "Inst occurs in data structures");
- }
- for (CachedNonLocalPointerInfo::const_iterator I =NonLocalPointerDeps.begin(),
- E = NonLocalPointerDeps.end(); I != E; ++I) {
- assert(I->first.getPointer() != D && "Inst occurs in NLPD map key");
- const NonLocalDepInfo &Val = I->second.NonLocalDeps;
- for (NonLocalDepInfo::const_iterator II = Val.begin(), E = Val.end();
- II != E; ++II)
- assert(II->getResult().getInst() != D && "Inst occurs as NLPD value");
- }
- for (NonLocalDepMapType::const_iterator I = NonLocalDeps.begin(),
- E = NonLocalDeps.end(); I != E; ++I) {
- assert(I->first != D && "Inst occurs in data structures");
- const PerInstNLInfo &INLD = I->second;
- for (NonLocalDepInfo::const_iterator II = INLD.first.begin(),
- EE = INLD.first.end(); II != EE; ++II)
- assert(II->getResult().getInst() != D && "Inst occurs in data structures");
- }
- for (ReverseDepMapType::const_iterator I = ReverseLocalDeps.begin(),
- E = ReverseLocalDeps.end(); I != E; ++I) {
- assert(I->first != D && "Inst occurs in data structures");
- for (Instruction *Inst : I->second)
- assert(Inst != D && "Inst occurs in data structures");
- }
- for (ReverseDepMapType::const_iterator I = ReverseNonLocalDeps.begin(),
- E = ReverseNonLocalDeps.end();
- I != E; ++I) {
- assert(I->first != D && "Inst occurs in data structures");
- for (Instruction *Inst : I->second)
- assert(Inst != D && "Inst occurs in data structures");
- }
- for (ReverseNonLocalPtrDepTy::const_iterator
- I = ReverseNonLocalPtrDeps.begin(),
- E = ReverseNonLocalPtrDeps.end(); I != E; ++I) {
- assert(I->first != D && "Inst occurs in rev NLPD map");
- for (ValueIsLoadPair P : I->second)
- assert(P != ValueIsLoadPair(D, false) &&
- P != ValueIsLoadPair(D, true) &&
- "Inst occurs in ReverseNonLocalPtrDeps map");
- }
- #endif
- }
|