1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054705570567057705870597060706170627063706470657066706770687069707070717072707370747075707670777078707970807081708270837084708570867087708870897090709170927093709470957096709770987099710071017102710371047105710671077108710971107111711271137114711571167117711871197120712171227123712471257126712771287129713071317132713371347135713671377138713971407141714271437144714571467147714871497150715171527153715471557156715771587159716071617162716371647165716671677168716971707171717271737174717571767177717871797180718171827183718471857186718771887189719071917192719371947195719671977198719972007201720272037204720572067207720872097210721172127213721472157216721772187219722072217222722372247225722672277228722972307231723272337234723572367237723872397240724172427243724472457246724772487249725072517252725372547255725672577258725972607261726272637264726572667267726872697270727172727273727472757276727772787279728072817282728372847285728672877288728972907291729272937294729572967297729872997300730173027303730473057306730773087309731073117312731373147315731673177318731973207321732273237324732573267327732873297330733173327333733473357336733773387339734073417342734373447345734673477348734973507351735273537354735573567357735873597360736173627363736473657366736773687369737073717372737373747375737673777378737973807381738273837384738573867387738873897390739173927393739473957396739773987399740074017402740374047405740674077408740974107411741274137414741574167417741874197420742174227423742474257426742774287429743074317432743374347435743674377438743974407441744274437444744574467447744874497450745174527453745474557456745774587459746074617462746374647465746674677468746974707471747274737474747574767477747874797480748174827483748474857486748774887489749074917492749374947495749674977498749975007501750275037504750575067507750875097510751175127513751475157516751775187519752075217522752375247525752675277528752975307531753275337534753575367537753875397540754175427543754475457546754775487549755075517552755375547555755675577558755975607561756275637564756575667567756875697570757175727573757475757576757775787579758075817582758375847585758675877588758975907591759275937594759575967597759875997600760176027603760476057606760776087609761076117612761376147615761676177618761976207621762276237624762576267627762876297630763176327633763476357636763776387639764076417642764376447645764676477648764976507651765276537654765576567657765876597660766176627663766476657666766776687669767076717672767376747675767676777678767976807681768276837684768576867687768876897690769176927693769476957696769776987699770077017702770377047705770677077708770977107711771277137714771577167717771877197720772177227723772477257726772777287729773077317732773377347735773677377738773977407741774277437744774577467747774877497750775177527753775477557756775777587759776077617762776377647765776677677768776977707771777277737774777577767777777877797780778177827783778477857786778777887789779077917792779377947795779677977798779978007801780278037804780578067807780878097810781178127813781478157816781778187819782078217822782378247825782678277828782978307831783278337834783578367837783878397840784178427843784478457846784778487849785078517852785378547855785678577858785978607861786278637864786578667867786878697870787178727873787478757876787778787879788078817882788378847885788678877888788978907891789278937894789578967897789878997900790179027903790479057906790779087909791079117912791379147915791679177918791979207921792279237924792579267927792879297930793179327933793479357936793779387939794079417942794379447945794679477948794979507951795279537954795579567957795879597960796179627963796479657966796779687969797079717972797379747975797679777978797979807981798279837984798579867987798879897990799179927993799479957996799779987999800080018002800380048005800680078008800980108011801280138014801580168017801880198020802180228023802480258026802780288029803080318032803380348035803680378038803980408041804280438044804580468047804880498050805180528053805480558056805780588059806080618062806380648065806680678068806980708071807280738074807580768077807880798080808180828083808480858086808780888089809080918092809380948095809680978098809981008101810281038104810581068107810881098110811181128113811481158116811781188119812081218122812381248125812681278128812981308131813281338134813581368137813881398140814181428143814481458146814781488149815081518152815381548155815681578158815981608161816281638164816581668167816881698170817181728173817481758176817781788179818081818182818381848185818681878188818981908191819281938194819581968197819881998200820182028203820482058206820782088209821082118212821382148215821682178218821982208221822282238224822582268227822882298230823182328233823482358236823782388239824082418242824382448245824682478248824982508251825282538254825582568257825882598260826182628263826482658266826782688269827082718272827382748275827682778278827982808281828282838284828582868287828882898290829182928293829482958296829782988299830083018302830383048305830683078308830983108311831283138314831583168317831883198320832183228323832483258326832783288329833083318332833383348335833683378338833983408341834283438344834583468347834883498350835183528353835483558356835783588359836083618362836383648365836683678368836983708371837283738374837583768377837883798380838183828383838483858386838783888389839083918392839383948395839683978398839984008401840284038404840584068407840884098410841184128413841484158416841784188419842084218422842384248425842684278428842984308431843284338434843584368437843884398440844184428443844484458446844784488449845084518452845384548455845684578458845984608461846284638464846584668467846884698470847184728473847484758476847784788479848084818482848384848485848684878488848984908491849284938494849584968497849884998500850185028503850485058506850785088509851085118512851385148515851685178518851985208521852285238524852585268527852885298530853185328533853485358536853785388539854085418542854385448545854685478548854985508551855285538554855585568557855885598560856185628563856485658566856785688569857085718572857385748575857685778578857985808581858285838584858585868587858885898590859185928593859485958596859785988599860086018602 |
- //===- ScalarEvolution.cpp - Scalar Evolution Analysis --------------------===//
- //
- // The LLVM Compiler Infrastructure
- //
- // This file is distributed under the University of Illinois Open Source
- // License. See LICENSE.TXT for details.
- //
- //===----------------------------------------------------------------------===//
- //
- // This file contains the implementation of the scalar evolution analysis
- // engine, which is used primarily to analyze expressions involving induction
- // variables in loops.
- //
- // There are several aspects to this library. First is the representation of
- // scalar expressions, which are represented as subclasses of the SCEV class.
- // These classes are used to represent certain types of subexpressions that we
- // can handle. We only create one SCEV of a particular shape, so
- // pointer-comparisons for equality are legal.
- //
- // One important aspect of the SCEV objects is that they are never cyclic, even
- // if there is a cycle in the dataflow for an expression (ie, a PHI node). If
- // the PHI node is one of the idioms that we can represent (e.g., a polynomial
- // recurrence) then we represent it directly as a recurrence node, otherwise we
- // represent it as a SCEVUnknown node.
- //
- // In addition to being able to represent expressions of various types, we also
- // have folders that are used to build the *canonical* representation for a
- // particular expression. These folders are capable of using a variety of
- // rewrite rules to simplify the expressions.
- //
- // Once the folders are defined, we can implement the more interesting
- // higher-level code, such as the code that recognizes PHI nodes of various
- // types, computes the execution count of a loop, etc.
- //
- // TODO: We should use these routines and value representations to implement
- // dependence analysis!
- //
- //===----------------------------------------------------------------------===//
- //
- // There are several good references for the techniques used in this analysis.
- //
- // Chains of recurrences -- a method to expedite the evaluation
- // of closed-form functions
- // Olaf Bachmann, Paul S. Wang, Eugene V. Zima
- //
- // On computational properties of chains of recurrences
- // Eugene V. Zima
- //
- // Symbolic Evaluation of Chains of Recurrences for Loop Optimization
- // Robert A. van Engelen
- //
- // Efficient Symbolic Analysis for Optimizing Compilers
- // Robert A. van Engelen
- //
- // Using the chains of recurrences algebra for data dependence testing and
- // induction variable substitution
- // MS Thesis, Johnie Birch
- //
- //===----------------------------------------------------------------------===//
- #include "llvm/Analysis/ScalarEvolution.h"
- #include "llvm/ADT/Optional.h"
- #include "llvm/ADT/STLExtras.h"
- #include "llvm/ADT/SmallPtrSet.h"
- #include "llvm/ADT/Statistic.h"
- #include "llvm/Analysis/AssumptionCache.h"
- #include "llvm/Analysis/ConstantFolding.h"
- #include "llvm/Analysis/InstructionSimplify.h"
- #include "llvm/Analysis/LoopInfo.h"
- #include "llvm/Analysis/ScalarEvolutionExpressions.h"
- #include "llvm/Analysis/TargetLibraryInfo.h"
- #include "llvm/Analysis/ValueTracking.h"
- #include "llvm/IR/ConstantRange.h"
- #include "llvm/IR/Constants.h"
- #include "llvm/IR/DataLayout.h"
- #include "llvm/IR/DerivedTypes.h"
- #include "llvm/IR/Dominators.h"
- #include "llvm/IR/GetElementPtrTypeIterator.h"
- #include "llvm/IR/GlobalAlias.h"
- #include "llvm/IR/GlobalVariable.h"
- #include "llvm/IR/InstIterator.h"
- #include "llvm/IR/Instructions.h"
- #include "llvm/IR/LLVMContext.h"
- #include "llvm/IR/Metadata.h"
- #include "llvm/IR/Operator.h"
- #include "llvm/Support/CommandLine.h"
- #include "llvm/Support/Debug.h"
- #include "llvm/Support/ErrorHandling.h"
- #include "llvm/Support/MathExtras.h"
- #include "llvm/Support/raw_ostream.h"
- #include "llvm/Analysis/DxilValueCache.h" // HLSL Change
- #include <algorithm>
- using namespace llvm;
- #define DEBUG_TYPE "scalar-evolution"
- STATISTIC(NumArrayLenItCounts,
- "Number of trip counts computed with array length");
- STATISTIC(NumTripCountsComputed,
- "Number of loops with predictable loop counts");
- STATISTIC(NumTripCountsNotComputed,
- "Number of loops without predictable loop counts");
- STATISTIC(NumBruteForceTripCountsComputed,
- "Number of loops with trip counts computed by force");
- #if 0 // HLSL Change Starts - option pending
- static cl::opt<unsigned>
- MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden,
- cl::desc("Maximum number of iterations SCEV will "
- "symbolically execute a constant "
- "derived loop"),
- cl::init(100));
- // FIXME: Enable this with XDEBUG when the test suite is clean.
- static cl::opt<bool>
- VerifySCEV("verify-scev",
- cl::desc("Verify ScalarEvolution's backedge taken counts (slow)"));
- #else
- static const unsigned MaxBruteForceIterations = 100;
- static const bool VerifySCEV = false;
- #endif // HLSL Change Ends
- INITIALIZE_PASS_BEGIN(ScalarEvolution, "scalar-evolution",
- "Scalar Evolution Analysis", false, true)
- INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
- INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
- INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
- INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
- INITIALIZE_PASS_DEPENDENCY(DxilValueCache) // HLSL Change
- INITIALIZE_PASS_END(ScalarEvolution, "scalar-evolution",
- "Scalar Evolution Analysis", false, true)
- char ScalarEvolution::ID = 0;
- //===----------------------------------------------------------------------===//
- // SCEV class definitions
- //===----------------------------------------------------------------------===//
- //===----------------------------------------------------------------------===//
- // Implementation of the SCEV class.
- //
- #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
- void SCEV::dump() const {
- print(dbgs());
- dbgs() << '\n';
- }
- #endif
- void SCEV::print(raw_ostream &OS) const {
- switch (static_cast<SCEVTypes>(getSCEVType())) {
- case scConstant:
- cast<SCEVConstant>(this)->getValue()->printAsOperand(OS, false);
- return;
- case scTruncate: {
- const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(this);
- const SCEV *Op = Trunc->getOperand();
- OS << "(trunc " << *Op->getType() << " " << *Op << " to "
- << *Trunc->getType() << ")";
- return;
- }
- case scZeroExtend: {
- const SCEVZeroExtendExpr *ZExt = cast<SCEVZeroExtendExpr>(this);
- const SCEV *Op = ZExt->getOperand();
- OS << "(zext " << *Op->getType() << " " << *Op << " to "
- << *ZExt->getType() << ")";
- return;
- }
- case scSignExtend: {
- const SCEVSignExtendExpr *SExt = cast<SCEVSignExtendExpr>(this);
- const SCEV *Op = SExt->getOperand();
- OS << "(sext " << *Op->getType() << " " << *Op << " to "
- << *SExt->getType() << ")";
- return;
- }
- case scAddRecExpr: {
- const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(this);
- OS << "{" << *AR->getOperand(0);
- for (unsigned i = 1, e = AR->getNumOperands(); i != e; ++i)
- OS << ",+," << *AR->getOperand(i);
- OS << "}<";
- if (AR->getNoWrapFlags(FlagNUW))
- OS << "nuw><";
- if (AR->getNoWrapFlags(FlagNSW))
- OS << "nsw><";
- if (AR->getNoWrapFlags(FlagNW) &&
- !AR->getNoWrapFlags((NoWrapFlags)(FlagNUW | FlagNSW)))
- OS << "nw><";
- AR->getLoop()->getHeader()->printAsOperand(OS, /*PrintType=*/false);
- OS << ">";
- return;
- }
- case scAddExpr:
- case scMulExpr:
- case scUMaxExpr:
- case scSMaxExpr: {
- const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(this);
- const char *OpStr = nullptr;
- switch (NAry->getSCEVType()) {
- case scAddExpr: OpStr = " + "; break;
- case scMulExpr: OpStr = " * "; break;
- case scUMaxExpr: OpStr = " umax "; break;
- case scSMaxExpr: OpStr = " smax "; break;
- }
- OS << "(";
- for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
- I != E; ++I) {
- OS << **I;
- if (std::next(I) != E)
- OS << OpStr;
- }
- OS << ")";
- switch (NAry->getSCEVType()) {
- case scAddExpr:
- case scMulExpr:
- if (NAry->getNoWrapFlags(FlagNUW))
- OS << "<nuw>";
- if (NAry->getNoWrapFlags(FlagNSW))
- OS << "<nsw>";
- }
- return;
- }
- case scUDivExpr: {
- const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(this);
- OS << "(" << *UDiv->getLHS() << " /u " << *UDiv->getRHS() << ")";
- return;
- }
- case scUnknown: {
- const SCEVUnknown *U = cast<SCEVUnknown>(this);
- Type *AllocTy;
- if (U->isSizeOf(AllocTy)) {
- OS << "sizeof(" << *AllocTy << ")";
- return;
- }
- if (U->isAlignOf(AllocTy)) {
- OS << "alignof(" << *AllocTy << ")";
- return;
- }
- Type *CTy;
- Constant *FieldNo;
- if (U->isOffsetOf(CTy, FieldNo)) {
- OS << "offsetof(" << *CTy << ", ";
- FieldNo->printAsOperand(OS, false);
- OS << ")";
- return;
- }
- // Otherwise just print it normally.
- U->getValue()->printAsOperand(OS, false);
- return;
- }
- case scCouldNotCompute:
- OS << "***COULDNOTCOMPUTE***";
- return;
- }
- llvm_unreachable("Unknown SCEV kind!");
- }
- Type *SCEV::getType() const {
- switch (static_cast<SCEVTypes>(getSCEVType())) {
- case scConstant:
- return cast<SCEVConstant>(this)->getType();
- case scTruncate:
- case scZeroExtend:
- case scSignExtend:
- return cast<SCEVCastExpr>(this)->getType();
- case scAddRecExpr:
- case scMulExpr:
- case scUMaxExpr:
- case scSMaxExpr:
- return cast<SCEVNAryExpr>(this)->getType();
- case scAddExpr:
- return cast<SCEVAddExpr>(this)->getType();
- case scUDivExpr:
- return cast<SCEVUDivExpr>(this)->getType();
- case scUnknown:
- return cast<SCEVUnknown>(this)->getType();
- case scCouldNotCompute:
- llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
- }
- llvm_unreachable("Unknown SCEV kind!");
- }
- bool SCEV::isZero() const {
- if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
- return SC->getValue()->isZero();
- return false;
- }
- bool SCEV::isOne() const {
- if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
- return SC->getValue()->isOne();
- return false;
- }
- bool SCEV::isAllOnesValue() const {
- if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
- return SC->getValue()->isAllOnesValue();
- return false;
- }
- /// isNonConstantNegative - Return true if the specified scev is negated, but
- /// not a constant.
- bool SCEV::isNonConstantNegative() const {
- const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(this);
- if (!Mul) return false;
- // If there is a constant factor, it will be first.
- const SCEVConstant *SC = dyn_cast<SCEVConstant>(Mul->getOperand(0));
- if (!SC) return false;
- // Return true if the value is negative, this matches things like (-42 * V).
- return SC->getValue()->getValue().isNegative();
- }
- SCEVCouldNotCompute::SCEVCouldNotCompute() :
- SCEV(FoldingSetNodeIDRef(), scCouldNotCompute) {}
- bool SCEVCouldNotCompute::classof(const SCEV *S) {
- return S->getSCEVType() == scCouldNotCompute;
- }
- const SCEV *ScalarEvolution::getConstant(ConstantInt *V) {
- FoldingSetNodeID ID;
- ID.AddInteger(scConstant);
- ID.AddPointer(V);
- void *IP = nullptr;
- if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
- SCEV *S = new (SCEVAllocator) SCEVConstant(ID.Intern(SCEVAllocator), V);
- UniqueSCEVs.InsertNode(S, IP);
- return S;
- }
- const SCEV *ScalarEvolution::getConstant(const APInt &Val) {
- return getConstant(ConstantInt::get(getContext(), Val));
- }
- const SCEV *
- ScalarEvolution::getConstant(Type *Ty, uint64_t V, bool isSigned) {
- IntegerType *ITy = cast<IntegerType>(getEffectiveSCEVType(Ty));
- return getConstant(ConstantInt::get(ITy, V, isSigned));
- }
- SCEVCastExpr::SCEVCastExpr(const FoldingSetNodeIDRef ID,
- unsigned SCEVTy, const SCEV *op, Type *ty)
- : SCEV(ID, SCEVTy), Op(op), Ty(ty) {}
- SCEVTruncateExpr::SCEVTruncateExpr(const FoldingSetNodeIDRef ID,
- const SCEV *op, Type *ty)
- : SCEVCastExpr(ID, scTruncate, op, ty) {
- assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
- (Ty->isIntegerTy() || Ty->isPointerTy()) &&
- "Cannot truncate non-integer value!");
- }
- SCEVZeroExtendExpr::SCEVZeroExtendExpr(const FoldingSetNodeIDRef ID,
- const SCEV *op, Type *ty)
- : SCEVCastExpr(ID, scZeroExtend, op, ty) {
- assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
- (Ty->isIntegerTy() || Ty->isPointerTy()) &&
- "Cannot zero extend non-integer value!");
- }
- SCEVSignExtendExpr::SCEVSignExtendExpr(const FoldingSetNodeIDRef ID,
- const SCEV *op, Type *ty)
- : SCEVCastExpr(ID, scSignExtend, op, ty) {
- assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
- (Ty->isIntegerTy() || Ty->isPointerTy()) &&
- "Cannot sign extend non-integer value!");
- }
- void SCEVUnknown::deleted() {
- // Clear this SCEVUnknown from various maps.
- SE->forgetMemoizedResults(this);
- // Remove this SCEVUnknown from the uniquing map.
- SE->UniqueSCEVs.RemoveNode(this);
- // Release the value.
- setValPtr(nullptr);
- }
- void SCEVUnknown::allUsesReplacedWith(Value *New) {
- // Clear this SCEVUnknown from various maps.
- SE->forgetMemoizedResults(this);
- // Remove this SCEVUnknown from the uniquing map.
- SE->UniqueSCEVs.RemoveNode(this);
- // Update this SCEVUnknown to point to the new value. This is needed
- // because there may still be outstanding SCEVs which still point to
- // this SCEVUnknown.
- setValPtr(New);
- }
- bool SCEVUnknown::isSizeOf(Type *&AllocTy) const {
- if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
- if (VCE->getOpcode() == Instruction::PtrToInt)
- if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
- if (CE->getOpcode() == Instruction::GetElementPtr &&
- CE->getOperand(0)->isNullValue() &&
- CE->getNumOperands() == 2)
- if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(1)))
- if (CI->isOne()) {
- AllocTy = cast<PointerType>(CE->getOperand(0)->getType())
- ->getElementType();
- return true;
- }
- return false;
- }
- bool SCEVUnknown::isAlignOf(Type *&AllocTy) const {
- if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
- if (VCE->getOpcode() == Instruction::PtrToInt)
- if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
- if (CE->getOpcode() == Instruction::GetElementPtr &&
- CE->getOperand(0)->isNullValue()) {
- Type *Ty =
- cast<PointerType>(CE->getOperand(0)->getType())->getElementType();
- if (StructType *STy = dyn_cast<StructType>(Ty))
- if (!STy->isPacked() &&
- CE->getNumOperands() == 3 &&
- CE->getOperand(1)->isNullValue()) {
- if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(2)))
- if (CI->isOne() &&
- STy->getNumElements() == 2 &&
- STy->getElementType(0)->isIntegerTy(1)) {
- AllocTy = STy->getElementType(1);
- return true;
- }
- }
- }
- return false;
- }
- bool SCEVUnknown::isOffsetOf(Type *&CTy, Constant *&FieldNo) const {
- if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
- if (VCE->getOpcode() == Instruction::PtrToInt)
- if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
- if (CE->getOpcode() == Instruction::GetElementPtr &&
- CE->getNumOperands() == 3 &&
- CE->getOperand(0)->isNullValue() &&
- CE->getOperand(1)->isNullValue()) {
- Type *Ty =
- cast<PointerType>(CE->getOperand(0)->getType())->getElementType();
- // Ignore vector types here so that ScalarEvolutionExpander doesn't
- // emit getelementptrs that index into vectors.
- if (Ty->isStructTy() || Ty->isArrayTy()) {
- CTy = Ty;
- FieldNo = CE->getOperand(2);
- return true;
- }
- }
- return false;
- }
- //===----------------------------------------------------------------------===//
- // SCEV Utilities
- //===----------------------------------------------------------------------===//
- namespace {
- /// SCEVComplexityCompare - Return true if the complexity of the LHS is less
- /// than the complexity of the RHS. This comparator is used to canonicalize
- /// expressions.
- class SCEVComplexityCompare {
- const LoopInfo *const LI;
- public:
- explicit SCEVComplexityCompare(const LoopInfo *li) : LI(li) {}
- // Return true or false if LHS is less than, or at least RHS, respectively.
- bool operator()(const SCEV *LHS, const SCEV *RHS) const {
- return compare(LHS, RHS) < 0;
- }
- // Return negative, zero, or positive, if LHS is less than, equal to, or
- // greater than RHS, respectively. A three-way result allows recursive
- // comparisons to be more efficient.
- int compare(const SCEV *LHS, const SCEV *RHS) const {
- // Fast-path: SCEVs are uniqued so we can do a quick equality check.
- if (LHS == RHS)
- return 0;
- // Primarily, sort the SCEVs by their getSCEVType().
- unsigned LType = LHS->getSCEVType(), RType = RHS->getSCEVType();
- if (LType != RType)
- return (int)LType - (int)RType;
- // Aside from the getSCEVType() ordering, the particular ordering
- // isn't very important except that it's beneficial to be consistent,
- // so that (a + b) and (b + a) don't end up as different expressions.
- switch (static_cast<SCEVTypes>(LType)) {
- case scUnknown: {
- const SCEVUnknown *LU = cast<SCEVUnknown>(LHS);
- const SCEVUnknown *RU = cast<SCEVUnknown>(RHS);
- // Sort SCEVUnknown values with some loose heuristics. TODO: This is
- // not as complete as it could be.
- const Value *LV = LU->getValue(), *RV = RU->getValue();
- // Order pointer values after integer values. This helps SCEVExpander
- // form GEPs.
- bool LIsPointer = LV->getType()->isPointerTy(),
- RIsPointer = RV->getType()->isPointerTy();
- if (LIsPointer != RIsPointer)
- return (int)LIsPointer - (int)RIsPointer;
- // Compare getValueID values.
- unsigned LID = LV->getValueID(),
- RID = RV->getValueID();
- if (LID != RID)
- return (int)LID - (int)RID;
- // Sort arguments by their position.
- if (const Argument *LA = dyn_cast<Argument>(LV)) {
- const Argument *RA = cast<Argument>(RV);
- unsigned LArgNo = LA->getArgNo(), RArgNo = RA->getArgNo();
- return (int)LArgNo - (int)RArgNo;
- }
- // For instructions, compare their loop depth, and their operand
- // count. This is pretty loose.
- if (const Instruction *LInst = dyn_cast<Instruction>(LV)) {
- const Instruction *RInst = cast<Instruction>(RV);
- // Compare loop depths.
- const BasicBlock *LParent = LInst->getParent(),
- *RParent = RInst->getParent();
- if (LParent != RParent) {
- unsigned LDepth = LI->getLoopDepth(LParent),
- RDepth = LI->getLoopDepth(RParent);
- if (LDepth != RDepth)
- return (int)LDepth - (int)RDepth;
- }
- // Compare the number of operands.
- unsigned LNumOps = LInst->getNumOperands(),
- RNumOps = RInst->getNumOperands();
- return (int)LNumOps - (int)RNumOps;
- }
- return 0;
- }
- case scConstant: {
- const SCEVConstant *LC = cast<SCEVConstant>(LHS);
- const SCEVConstant *RC = cast<SCEVConstant>(RHS);
- // Compare constant values.
- const APInt &LA = LC->getValue()->getValue();
- const APInt &RA = RC->getValue()->getValue();
- unsigned LBitWidth = LA.getBitWidth(), RBitWidth = RA.getBitWidth();
- if (LBitWidth != RBitWidth)
- return (int)LBitWidth - (int)RBitWidth;
- return LA.ult(RA) ? -1 : 1;
- }
- case scAddRecExpr: {
- const SCEVAddRecExpr *LA = cast<SCEVAddRecExpr>(LHS);
- const SCEVAddRecExpr *RA = cast<SCEVAddRecExpr>(RHS);
- // Compare addrec loop depths.
- const Loop *LLoop = LA->getLoop(), *RLoop = RA->getLoop();
- if (LLoop != RLoop) {
- unsigned LDepth = LLoop->getLoopDepth(),
- RDepth = RLoop->getLoopDepth();
- if (LDepth != RDepth)
- return (int)LDepth - (int)RDepth;
- }
- // Addrec complexity grows with operand count.
- unsigned LNumOps = LA->getNumOperands(), RNumOps = RA->getNumOperands();
- if (LNumOps != RNumOps)
- return (int)LNumOps - (int)RNumOps;
- // Lexicographically compare.
- for (unsigned i = 0; i != LNumOps; ++i) {
- long X = compare(LA->getOperand(i), RA->getOperand(i));
- if (X != 0)
- return X;
- }
- return 0;
- }
- case scAddExpr:
- case scMulExpr:
- case scSMaxExpr:
- case scUMaxExpr: {
- const SCEVNAryExpr *LC = cast<SCEVNAryExpr>(LHS);
- const SCEVNAryExpr *RC = cast<SCEVNAryExpr>(RHS);
- // Lexicographically compare n-ary expressions.
- unsigned LNumOps = LC->getNumOperands(), RNumOps = RC->getNumOperands();
- if (LNumOps != RNumOps)
- return (int)LNumOps - (int)RNumOps;
- for (unsigned i = 0; i != LNumOps; ++i) {
- if (i >= RNumOps)
- return 1;
- long X = compare(LC->getOperand(i), RC->getOperand(i));
- if (X != 0)
- return X;
- }
- return (int)LNumOps - (int)RNumOps;
- }
- case scUDivExpr: {
- const SCEVUDivExpr *LC = cast<SCEVUDivExpr>(LHS);
- const SCEVUDivExpr *RC = cast<SCEVUDivExpr>(RHS);
- // Lexicographically compare udiv expressions.
- long X = compare(LC->getLHS(), RC->getLHS());
- if (X != 0)
- return X;
- return compare(LC->getRHS(), RC->getRHS());
- }
- case scTruncate:
- case scZeroExtend:
- case scSignExtend: {
- const SCEVCastExpr *LC = cast<SCEVCastExpr>(LHS);
- const SCEVCastExpr *RC = cast<SCEVCastExpr>(RHS);
- // Compare cast expressions by operand.
- return compare(LC->getOperand(), RC->getOperand());
- }
- case scCouldNotCompute:
- llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
- }
- llvm_unreachable("Unknown SCEV kind!");
- }
- };
- }
- /// GroupByComplexity - Given a list of SCEV objects, order them by their
- /// complexity, and group objects of the same complexity together by value.
- /// When this routine is finished, we know that any duplicates in the vector are
- /// consecutive and that complexity is monotonically increasing.
- ///
- /// Note that we go take special precautions to ensure that we get deterministic
- /// results from this routine. In other words, we don't want the results of
- /// this to depend on where the addresses of various SCEV objects happened to
- /// land in memory.
- ///
- static void GroupByComplexity(SmallVectorImpl<const SCEV *> &Ops,
- LoopInfo *LI) {
- if (Ops.size() < 2) return; // Noop
- if (Ops.size() == 2) {
- // This is the common case, which also happens to be trivially simple.
- // Special case it.
- const SCEV *&LHS = Ops[0], *&RHS = Ops[1];
- if (SCEVComplexityCompare(LI)(RHS, LHS))
- std::swap(LHS, RHS);
- return;
- }
- // Do the rough sort by complexity.
- std::stable_sort(Ops.begin(), Ops.end(), SCEVComplexityCompare(LI));
- // Now that we are sorted by complexity, group elements of the same
- // complexity. Note that this is, at worst, N^2, but the vector is likely to
- // be extremely short in practice. Note that we take this approach because we
- // do not want to depend on the addresses of the objects we are grouping.
- for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) {
- const SCEV *S = Ops[i];
- unsigned Complexity = S->getSCEVType();
- // If there are any objects of the same complexity and same value as this
- // one, group them.
- for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) {
- if (Ops[j] == S) { // Found a duplicate.
- // Move it to immediately after i'th element.
- std::swap(Ops[i+1], Ops[j]);
- ++i; // no need to rescan it.
- if (i == e-2) return; // Done!
- }
- }
- }
- }
- namespace {
- struct FindSCEVSize {
- int Size;
- FindSCEVSize() : Size(0) {}
- bool follow(const SCEV *S) {
- ++Size;
- // Keep looking at all operands of S.
- return true;
- }
- bool isDone() const {
- return false;
- }
- };
- }
- // Returns the size of the SCEV S.
- static inline int sizeOfSCEV(const SCEV *S) {
- FindSCEVSize F;
- SCEVTraversal<FindSCEVSize> ST(F);
- ST.visitAll(S);
- return F.Size;
- }
- namespace {
- struct SCEVDivision : public SCEVVisitor<SCEVDivision, void> {
- public:
- // Computes the Quotient and Remainder of the division of Numerator by
- // Denominator.
- static void divide(ScalarEvolution &SE, const SCEV *Numerator,
- const SCEV *Denominator, const SCEV **Quotient,
- const SCEV **Remainder) {
- assert(Numerator && Denominator && "Uninitialized SCEV");
- SCEVDivision D(SE, Numerator, Denominator);
- // Check for the trivial case here to avoid having to check for it in the
- // rest of the code.
- if (Numerator == Denominator) {
- *Quotient = D.One;
- *Remainder = D.Zero;
- return;
- }
- if (Numerator->isZero()) {
- *Quotient = D.Zero;
- *Remainder = D.Zero;
- return;
- }
- // A simple case when N/1. The quotient is N.
- if (Denominator->isOne()) {
- *Quotient = Numerator;
- *Remainder = D.Zero;
- return;
- }
- // Split the Denominator when it is a product.
- if (const SCEVMulExpr *T = dyn_cast<const SCEVMulExpr>(Denominator)) {
- const SCEV *Q, *R;
- *Quotient = Numerator;
- for (const SCEV *Op : T->operands()) {
- divide(SE, *Quotient, Op, &Q, &R);
- *Quotient = Q;
- // Bail out when the Numerator is not divisible by one of the terms of
- // the Denominator.
- if (!R->isZero()) {
- *Quotient = D.Zero;
- *Remainder = Numerator;
- return;
- }
- }
- *Remainder = D.Zero;
- return;
- }
- D.visit(Numerator);
- *Quotient = D.Quotient;
- *Remainder = D.Remainder;
- }
- // Except in the trivial case described above, we do not know how to divide
- // Expr by Denominator for the following functions with empty implementation.
- void visitTruncateExpr(const SCEVTruncateExpr *Numerator) {}
- void visitZeroExtendExpr(const SCEVZeroExtendExpr *Numerator) {}
- void visitSignExtendExpr(const SCEVSignExtendExpr *Numerator) {}
- void visitUDivExpr(const SCEVUDivExpr *Numerator) {}
- void visitSMaxExpr(const SCEVSMaxExpr *Numerator) {}
- void visitUMaxExpr(const SCEVUMaxExpr *Numerator) {}
- void visitUnknown(const SCEVUnknown *Numerator) {}
- void visitCouldNotCompute(const SCEVCouldNotCompute *Numerator) {}
- void visitConstant(const SCEVConstant *Numerator) {
- if (const SCEVConstant *D = dyn_cast<SCEVConstant>(Denominator)) {
- APInt NumeratorVal = Numerator->getValue()->getValue();
- APInt DenominatorVal = D->getValue()->getValue();
- uint32_t NumeratorBW = NumeratorVal.getBitWidth();
- uint32_t DenominatorBW = DenominatorVal.getBitWidth();
- if (NumeratorBW > DenominatorBW)
- DenominatorVal = DenominatorVal.sext(NumeratorBW);
- else if (NumeratorBW < DenominatorBW)
- NumeratorVal = NumeratorVal.sext(DenominatorBW);
- APInt QuotientVal(NumeratorVal.getBitWidth(), 0);
- APInt RemainderVal(NumeratorVal.getBitWidth(), 0);
- APInt::sdivrem(NumeratorVal, DenominatorVal, QuotientVal, RemainderVal);
- Quotient = SE.getConstant(QuotientVal);
- Remainder = SE.getConstant(RemainderVal);
- return;
- }
- }
- void visitAddRecExpr(const SCEVAddRecExpr *Numerator) {
- const SCEV *StartQ, *StartR, *StepQ, *StepR;
- assert(Numerator->isAffine() && "Numerator should be affine");
- divide(SE, Numerator->getStart(), Denominator, &StartQ, &StartR);
- divide(SE, Numerator->getStepRecurrence(SE), Denominator, &StepQ, &StepR);
- // Bail out if the types do not match.
- Type *Ty = Denominator->getType();
- if (Ty != StartQ->getType() || Ty != StartR->getType() ||
- Ty != StepQ->getType() || Ty != StepR->getType()) {
- Quotient = Zero;
- Remainder = Numerator;
- return;
- }
- Quotient = SE.getAddRecExpr(StartQ, StepQ, Numerator->getLoop(),
- Numerator->getNoWrapFlags());
- Remainder = SE.getAddRecExpr(StartR, StepR, Numerator->getLoop(),
- Numerator->getNoWrapFlags());
- }
- void visitAddExpr(const SCEVAddExpr *Numerator) {
- SmallVector<const SCEV *, 2> Qs, Rs;
- Type *Ty = Denominator->getType();
- for (const SCEV *Op : Numerator->operands()) {
- const SCEV *Q, *R;
- divide(SE, Op, Denominator, &Q, &R);
- // Bail out if types do not match.
- if (Ty != Q->getType() || Ty != R->getType()) {
- Quotient = Zero;
- Remainder = Numerator;
- return;
- }
- Qs.push_back(Q);
- Rs.push_back(R);
- }
- if (Qs.size() == 1) {
- Quotient = Qs[0];
- Remainder = Rs[0];
- return;
- }
- Quotient = SE.getAddExpr(Qs);
- Remainder = SE.getAddExpr(Rs);
- }
- void visitMulExpr(const SCEVMulExpr *Numerator) {
- SmallVector<const SCEV *, 2> Qs;
- Type *Ty = Denominator->getType();
- bool FoundDenominatorTerm = false;
- for (const SCEV *Op : Numerator->operands()) {
- // Bail out if types do not match.
- if (Ty != Op->getType()) {
- Quotient = Zero;
- Remainder = Numerator;
- return;
- }
- if (FoundDenominatorTerm) {
- Qs.push_back(Op);
- continue;
- }
- // Check whether Denominator divides one of the product operands.
- const SCEV *Q, *R;
- divide(SE, Op, Denominator, &Q, &R);
- if (!R->isZero()) {
- Qs.push_back(Op);
- continue;
- }
- // Bail out if types do not match.
- if (Ty != Q->getType()) {
- Quotient = Zero;
- Remainder = Numerator;
- return;
- }
- FoundDenominatorTerm = true;
- Qs.push_back(Q);
- }
- if (FoundDenominatorTerm) {
- Remainder = Zero;
- if (Qs.size() == 1)
- Quotient = Qs[0];
- else
- Quotient = SE.getMulExpr(Qs);
- return;
- }
- if (!isa<SCEVUnknown>(Denominator)) {
- Quotient = Zero;
- Remainder = Numerator;
- return;
- }
- // The Remainder is obtained by replacing Denominator by 0 in Numerator.
- ValueToValueMap RewriteMap;
- RewriteMap[cast<SCEVUnknown>(Denominator)->getValue()] =
- cast<SCEVConstant>(Zero)->getValue();
- Remainder = SCEVParameterRewriter::rewrite(Numerator, SE, RewriteMap, true);
- if (Remainder->isZero()) {
- // The Quotient is obtained by replacing Denominator by 1 in Numerator.
- RewriteMap[cast<SCEVUnknown>(Denominator)->getValue()] =
- cast<SCEVConstant>(One)->getValue();
- Quotient =
- SCEVParameterRewriter::rewrite(Numerator, SE, RewriteMap, true);
- return;
- }
- // Quotient is (Numerator - Remainder) divided by Denominator.
- const SCEV *Q, *R;
- const SCEV *Diff = SE.getMinusSCEV(Numerator, Remainder);
- if (sizeOfSCEV(Diff) > sizeOfSCEV(Numerator)) {
- // This SCEV does not seem to simplify: fail the division here.
- Quotient = Zero;
- Remainder = Numerator;
- return;
- }
- divide(SE, Diff, Denominator, &Q, &R);
- assert(R == Zero &&
- "(Numerator - Remainder) should evenly divide Denominator");
- Quotient = Q;
- }
- private:
- SCEVDivision(ScalarEvolution &S, const SCEV *Numerator,
- const SCEV *Denominator)
- : SE(S), Denominator(Denominator) {
- Zero = SE.getConstant(Denominator->getType(), 0);
- One = SE.getConstant(Denominator->getType(), 1);
- // By default, we don't know how to divide Expr by Denominator.
- // Providing the default here simplifies the rest of the code.
- Quotient = Zero;
- Remainder = Numerator;
- }
- ScalarEvolution &SE;
- const SCEV *Denominator, *Quotient, *Remainder, *Zero, *One;
- };
- }
- //===----------------------------------------------------------------------===//
- // Simple SCEV method implementations
- //===----------------------------------------------------------------------===//
- /// BinomialCoefficient - Compute BC(It, K). The result has width W.
- /// Assume, K > 0.
- static const SCEV *BinomialCoefficient(const SCEV *It, unsigned K,
- ScalarEvolution &SE,
- Type *ResultTy) {
- // Handle the simplest case efficiently.
- if (K == 1)
- return SE.getTruncateOrZeroExtend(It, ResultTy);
- // We are using the following formula for BC(It, K):
- //
- // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K!
- //
- // Suppose, W is the bitwidth of the return value. We must be prepared for
- // overflow. Hence, we must assure that the result of our computation is
- // equal to the accurate one modulo 2^W. Unfortunately, division isn't
- // safe in modular arithmetic.
- //
- // However, this code doesn't use exactly that formula; the formula it uses
- // is something like the following, where T is the number of factors of 2 in
- // K! (i.e. trailing zeros in the binary representation of K!), and ^ is
- // exponentiation:
- //
- // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T)
- //
- // This formula is trivially equivalent to the previous formula. However,
- // this formula can be implemented much more efficiently. The trick is that
- // K! / 2^T is odd, and exact division by an odd number *is* safe in modular
- // arithmetic. To do exact division in modular arithmetic, all we have
- // to do is multiply by the inverse. Therefore, this step can be done at
- // width W.
- //
- // The next issue is how to safely do the division by 2^T. The way this
- // is done is by doing the multiplication step at a width of at least W + T
- // bits. This way, the bottom W+T bits of the product are accurate. Then,
- // when we perform the division by 2^T (which is equivalent to a right shift
- // by T), the bottom W bits are accurate. Extra bits are okay; they'll get
- // truncated out after the division by 2^T.
- //
- // In comparison to just directly using the first formula, this technique
- // is much more efficient; using the first formula requires W * K bits,
- // but this formula less than W + K bits. Also, the first formula requires
- // a division step, whereas this formula only requires multiplies and shifts.
- //
- // It doesn't matter whether the subtraction step is done in the calculation
- // width or the input iteration count's width; if the subtraction overflows,
- // the result must be zero anyway. We prefer here to do it in the width of
- // the induction variable because it helps a lot for certain cases; CodeGen
- // isn't smart enough to ignore the overflow, which leads to much less
- // efficient code if the width of the subtraction is wider than the native
- // register width.
- //
- // (It's possible to not widen at all by pulling out factors of 2 before
- // the multiplication; for example, K=2 can be calculated as
- // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires
- // extra arithmetic, so it's not an obvious win, and it gets
- // much more complicated for K > 3.)
- // Protection from insane SCEVs; this bound is conservative,
- // but it probably doesn't matter.
- if (K > 1000)
- return SE.getCouldNotCompute();
- unsigned W = SE.getTypeSizeInBits(ResultTy);
- // Calculate K! / 2^T and T; we divide out the factors of two before
- // multiplying for calculating K! / 2^T to avoid overflow.
- // Other overflow doesn't matter because we only care about the bottom
- // W bits of the result.
- APInt OddFactorial(W, 1);
- unsigned T = 1;
- for (unsigned i = 3; i <= K; ++i) {
- APInt Mult(W, i);
- unsigned TwoFactors = Mult.countTrailingZeros();
- T += TwoFactors;
- Mult = Mult.lshr(TwoFactors);
- OddFactorial *= Mult;
- }
- // We need at least W + T bits for the multiplication step
- unsigned CalculationBits = W + T;
- // Calculate 2^T, at width T+W.
- APInt DivFactor = APInt::getOneBitSet(CalculationBits, T);
- // Calculate the multiplicative inverse of K! / 2^T;
- // this multiplication factor will perform the exact division by
- // K! / 2^T.
- APInt Mod = APInt::getSignedMinValue(W+1);
- APInt MultiplyFactor = OddFactorial.zext(W+1);
- MultiplyFactor = MultiplyFactor.multiplicativeInverse(Mod);
- MultiplyFactor = MultiplyFactor.trunc(W);
- // Calculate the product, at width T+W
- IntegerType *CalculationTy = IntegerType::get(SE.getContext(),
- CalculationBits);
- const SCEV *Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy);
- for (unsigned i = 1; i != K; ++i) {
- const SCEV *S = SE.getMinusSCEV(It, SE.getConstant(It->getType(), i));
- Dividend = SE.getMulExpr(Dividend,
- SE.getTruncateOrZeroExtend(S, CalculationTy));
- }
- // Divide by 2^T
- const SCEV *DivResult = SE.getUDivExpr(Dividend, SE.getConstant(DivFactor));
- // Truncate the result, and divide by K! / 2^T.
- return SE.getMulExpr(SE.getConstant(MultiplyFactor),
- SE.getTruncateOrZeroExtend(DivResult, ResultTy));
- }
- /// evaluateAtIteration - Return the value of this chain of recurrences at
- /// the specified iteration number. We can evaluate this recurrence by
- /// multiplying each element in the chain by the binomial coefficient
- /// corresponding to it. In other words, we can evaluate {A,+,B,+,C,+,D} as:
- ///
- /// A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3)
- ///
- /// where BC(It, k) stands for binomial coefficient.
- ///
- const SCEV *SCEVAddRecExpr::evaluateAtIteration(const SCEV *It,
- ScalarEvolution &SE) const {
- const SCEV *Result = getStart();
- for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
- // The computation is correct in the face of overflow provided that the
- // multiplication is performed _after_ the evaluation of the binomial
- // coefficient.
- const SCEV *Coeff = BinomialCoefficient(It, i, SE, getType());
- if (isa<SCEVCouldNotCompute>(Coeff))
- return Coeff;
- Result = SE.getAddExpr(Result, SE.getMulExpr(getOperand(i), Coeff));
- }
- return Result;
- }
- //===----------------------------------------------------------------------===//
- // SCEV Expression folder implementations
- //===----------------------------------------------------------------------===//
- const SCEV *ScalarEvolution::getTruncateExpr(const SCEV *Op,
- Type *Ty) {
- assert(getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(Ty) &&
- "This is not a truncating conversion!");
- assert(isSCEVable(Ty) &&
- "This is not a conversion to a SCEVable type!");
- Ty = getEffectiveSCEVType(Ty);
- FoldingSetNodeID ID;
- ID.AddInteger(scTruncate);
- ID.AddPointer(Op);
- ID.AddPointer(Ty);
- void *IP = nullptr;
- if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
- // Fold if the operand is constant.
- if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
- return getConstant(
- cast<ConstantInt>(ConstantExpr::getTrunc(SC->getValue(), Ty)));
- // trunc(trunc(x)) --> trunc(x)
- if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op))
- return getTruncateExpr(ST->getOperand(), Ty);
- // trunc(sext(x)) --> sext(x) if widening or trunc(x) if narrowing
- if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
- return getTruncateOrSignExtend(SS->getOperand(), Ty);
- // trunc(zext(x)) --> zext(x) if widening or trunc(x) if narrowing
- if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
- return getTruncateOrZeroExtend(SZ->getOperand(), Ty);
- // trunc(x1+x2+...+xN) --> trunc(x1)+trunc(x2)+...+trunc(xN) if we can
- // eliminate all the truncates, or we replace other casts with truncates.
- if (const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Op)) {
- SmallVector<const SCEV *, 4> Operands;
- bool hasTrunc = false;
- for (unsigned i = 0, e = SA->getNumOperands(); i != e && !hasTrunc; ++i) {
- const SCEV *S = getTruncateExpr(SA->getOperand(i), Ty);
- if (!isa<SCEVCastExpr>(SA->getOperand(i)))
- hasTrunc = isa<SCEVTruncateExpr>(S);
- Operands.push_back(S);
- }
- if (!hasTrunc)
- return getAddExpr(Operands);
- UniqueSCEVs.FindNodeOrInsertPos(ID, IP); // Mutates IP, returns NULL.
- }
- // trunc(x1*x2*...*xN) --> trunc(x1)*trunc(x2)*...*trunc(xN) if we can
- // eliminate all the truncates, or we replace other casts with truncates.
- if (const SCEVMulExpr *SM = dyn_cast<SCEVMulExpr>(Op)) {
- SmallVector<const SCEV *, 4> Operands;
- bool hasTrunc = false;
- for (unsigned i = 0, e = SM->getNumOperands(); i != e && !hasTrunc; ++i) {
- const SCEV *S = getTruncateExpr(SM->getOperand(i), Ty);
- if (!isa<SCEVCastExpr>(SM->getOperand(i)))
- hasTrunc = isa<SCEVTruncateExpr>(S);
- Operands.push_back(S);
- }
- if (!hasTrunc)
- return getMulExpr(Operands);
- UniqueSCEVs.FindNodeOrInsertPos(ID, IP); // Mutates IP, returns NULL.
- }
- // If the input value is a chrec scev, truncate the chrec's operands.
- if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) {
- SmallVector<const SCEV *, 4> Operands;
- for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
- Operands.push_back(getTruncateExpr(AddRec->getOperand(i), Ty));
- return getAddRecExpr(Operands, AddRec->getLoop(), SCEV::FlagAnyWrap);
- }
- // The cast wasn't folded; create an explicit cast node. We can reuse
- // the existing insert position since if we get here, we won't have
- // made any changes which would invalidate it.
- SCEV *S = new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator),
- Op, Ty);
- UniqueSCEVs.InsertNode(S, IP);
- return S;
- }
- // Get the limit of a recurrence such that incrementing by Step cannot cause
- // signed overflow as long as the value of the recurrence within the
- // loop does not exceed this limit before incrementing.
- static const SCEV *getSignedOverflowLimitForStep(const SCEV *Step,
- ICmpInst::Predicate *Pred,
- ScalarEvolution *SE) {
- unsigned BitWidth = SE->getTypeSizeInBits(Step->getType());
- if (SE->isKnownPositive(Step)) {
- *Pred = ICmpInst::ICMP_SLT;
- return SE->getConstant(APInt::getSignedMinValue(BitWidth) -
- SE->getSignedRange(Step).getSignedMax());
- }
- if (SE->isKnownNegative(Step)) {
- *Pred = ICmpInst::ICMP_SGT;
- return SE->getConstant(APInt::getSignedMaxValue(BitWidth) -
- SE->getSignedRange(Step).getSignedMin());
- }
- return nullptr;
- }
- // Get the limit of a recurrence such that incrementing by Step cannot cause
- // unsigned overflow as long as the value of the recurrence within the loop does
- // not exceed this limit before incrementing.
- static const SCEV *getUnsignedOverflowLimitForStep(const SCEV *Step,
- ICmpInst::Predicate *Pred,
- ScalarEvolution *SE) {
- unsigned BitWidth = SE->getTypeSizeInBits(Step->getType());
- *Pred = ICmpInst::ICMP_ULT;
- return SE->getConstant(APInt::getMinValue(BitWidth) -
- SE->getUnsignedRange(Step).getUnsignedMax());
- }
- namespace {
- struct ExtendOpTraitsBase {
- typedef const SCEV *(ScalarEvolution::*GetExtendExprTy)(const SCEV *, Type *);
- };
- // Used to make code generic over signed and unsigned overflow.
- template <typename ExtendOp> struct ExtendOpTraits {
- // Members present:
- //
- // static const SCEV::NoWrapFlags WrapType;
- //
- // static const ExtendOpTraitsBase::GetExtendExprTy GetExtendExpr;
- //
- // static const SCEV *getOverflowLimitForStep(const SCEV *Step,
- // ICmpInst::Predicate *Pred,
- // ScalarEvolution *SE);
- };
- template <>
- struct ExtendOpTraits<SCEVSignExtendExpr> : public ExtendOpTraitsBase {
- static const SCEV::NoWrapFlags WrapType = SCEV::FlagNSW;
- static const GetExtendExprTy GetExtendExpr;
- static const SCEV *getOverflowLimitForStep(const SCEV *Step,
- ICmpInst::Predicate *Pred,
- ScalarEvolution *SE) {
- return getSignedOverflowLimitForStep(Step, Pred, SE);
- }
- };
- const ExtendOpTraitsBase::GetExtendExprTy ExtendOpTraits<
- SCEVSignExtendExpr>::GetExtendExpr = &ScalarEvolution::getSignExtendExpr;
- template <>
- struct ExtendOpTraits<SCEVZeroExtendExpr> : public ExtendOpTraitsBase {
- static const SCEV::NoWrapFlags WrapType = SCEV::FlagNUW;
- static const GetExtendExprTy GetExtendExpr;
- static const SCEV *getOverflowLimitForStep(const SCEV *Step,
- ICmpInst::Predicate *Pred,
- ScalarEvolution *SE) {
- return getUnsignedOverflowLimitForStep(Step, Pred, SE);
- }
- };
- const ExtendOpTraitsBase::GetExtendExprTy ExtendOpTraits<
- SCEVZeroExtendExpr>::GetExtendExpr = &ScalarEvolution::getZeroExtendExpr;
- }
- // The recurrence AR has been shown to have no signed/unsigned wrap or something
- // close to it. Typically, if we can prove NSW/NUW for AR, then we can just as
- // easily prove NSW/NUW for its preincrement or postincrement sibling. This
- // allows normalizing a sign/zero extended AddRec as such: {sext/zext(Step +
- // Start),+,Step} => {(Step + sext/zext(Start),+,Step} As a result, the
- // expression "Step + sext/zext(PreIncAR)" is congruent with
- // "sext/zext(PostIncAR)"
- template <typename ExtendOpTy>
- static const SCEV *getPreStartForExtend(const SCEVAddRecExpr *AR, Type *Ty,
- ScalarEvolution *SE) {
- auto WrapType = ExtendOpTraits<ExtendOpTy>::WrapType;
- auto GetExtendExpr = ExtendOpTraits<ExtendOpTy>::GetExtendExpr;
- const Loop *L = AR->getLoop();
- const SCEV *Start = AR->getStart();
- const SCEV *Step = AR->getStepRecurrence(*SE);
- // Check for a simple looking step prior to loop entry.
- const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Start);
- if (!SA)
- return nullptr;
- // Create an AddExpr for "PreStart" after subtracting Step. Full SCEV
- // subtraction is expensive. For this purpose, perform a quick and dirty
- // difference, by checking for Step in the operand list.
- SmallVector<const SCEV *, 4> DiffOps;
- for (const SCEV *Op : SA->operands())
- if (Op != Step)
- DiffOps.push_back(Op);
- if (DiffOps.size() == SA->getNumOperands())
- return nullptr;
- // Try to prove `WrapType` (SCEV::FlagNSW or SCEV::FlagNUW) on `PreStart` +
- // `Step`:
- // 1. NSW/NUW flags on the step increment.
- const SCEV *PreStart = SE->getAddExpr(DiffOps, SA->getNoWrapFlags());
- const SCEVAddRecExpr *PreAR = dyn_cast<SCEVAddRecExpr>(
- SE->getAddRecExpr(PreStart, Step, L, SCEV::FlagAnyWrap));
- // "{S,+,X} is <nsw>/<nuw>" and "the backedge is taken at least once" implies
- // "S+X does not sign/unsign-overflow".
- //
- const SCEV *BECount = SE->getBackedgeTakenCount(L);
- if (PreAR && PreAR->getNoWrapFlags(WrapType) &&
- !isa<SCEVCouldNotCompute>(BECount) && SE->isKnownPositive(BECount))
- return PreStart;
- // 2. Direct overflow check on the step operation's expression.
- unsigned BitWidth = SE->getTypeSizeInBits(AR->getType());
- Type *WideTy = IntegerType::get(SE->getContext(), BitWidth * 2);
- const SCEV *OperandExtendedStart =
- SE->getAddExpr((SE->*GetExtendExpr)(PreStart, WideTy),
- (SE->*GetExtendExpr)(Step, WideTy));
- if ((SE->*GetExtendExpr)(Start, WideTy) == OperandExtendedStart) {
- if (PreAR && AR->getNoWrapFlags(WrapType)) {
- // If we know `AR` == {`PreStart`+`Step`,+,`Step`} is `WrapType` (FlagNSW
- // or FlagNUW) and that `PreStart` + `Step` is `WrapType` too, then
- // `PreAR` == {`PreStart`,+,`Step`} is also `WrapType`. Cache this fact.
- const_cast<SCEVAddRecExpr *>(PreAR)->setNoWrapFlags(WrapType);
- }
- return PreStart;
- }
- // 3. Loop precondition.
- ICmpInst::Predicate Pred;
- const SCEV *OverflowLimit =
- ExtendOpTraits<ExtendOpTy>::getOverflowLimitForStep(Step, &Pred, SE);
- if (OverflowLimit &&
- SE->isLoopEntryGuardedByCond(L, Pred, PreStart, OverflowLimit)) {
- return PreStart;
- }
- return nullptr;
- }
- // Get the normalized zero or sign extended expression for this AddRec's Start.
- template <typename ExtendOpTy>
- static const SCEV *getExtendAddRecStart(const SCEVAddRecExpr *AR, Type *Ty,
- ScalarEvolution *SE) {
- auto GetExtendExpr = ExtendOpTraits<ExtendOpTy>::GetExtendExpr;
- const SCEV *PreStart = getPreStartForExtend<ExtendOpTy>(AR, Ty, SE);
- if (!PreStart)
- return (SE->*GetExtendExpr)(AR->getStart(), Ty);
- return SE->getAddExpr((SE->*GetExtendExpr)(AR->getStepRecurrence(*SE), Ty),
- (SE->*GetExtendExpr)(PreStart, Ty));
- }
- // Try to prove away overflow by looking at "nearby" add recurrences. A
- // motivating example for this rule: if we know `{0,+,4}` is `ult` `-1` and it
- // does not itself wrap then we can conclude that `{1,+,4}` is `nuw`.
- //
- // Formally:
- //
- // {S,+,X} == {S-T,+,X} + T
- // => Ext({S,+,X}) == Ext({S-T,+,X} + T)
- //
- // If ({S-T,+,X} + T) does not overflow ... (1)
- //
- // RHS == Ext({S-T,+,X} + T) == Ext({S-T,+,X}) + Ext(T)
- //
- // If {S-T,+,X} does not overflow ... (2)
- //
- // RHS == Ext({S-T,+,X}) + Ext(T) == {Ext(S-T),+,Ext(X)} + Ext(T)
- // == {Ext(S-T)+Ext(T),+,Ext(X)}
- //
- // If (S-T)+T does not overflow ... (3)
- //
- // RHS == {Ext(S-T)+Ext(T),+,Ext(X)} == {Ext(S-T+T),+,Ext(X)}
- // == {Ext(S),+,Ext(X)} == LHS
- //
- // Thus, if (1), (2) and (3) are true for some T, then
- // Ext({S,+,X}) == {Ext(S),+,Ext(X)}
- //
- // (3) is implied by (1) -- "(S-T)+T does not overflow" is simply "({S-T,+,X}+T)
- // does not overflow" restricted to the 0th iteration. Therefore we only need
- // to check for (1) and (2).
- //
- // In the current context, S is `Start`, X is `Step`, Ext is `ExtendOpTy` and T
- // is `Delta` (defined below).
- //
- template <typename ExtendOpTy>
- bool ScalarEvolution::proveNoWrapByVaryingStart(const SCEV *Start,
- const SCEV *Step,
- const Loop *L) {
- auto WrapType = ExtendOpTraits<ExtendOpTy>::WrapType;
- // We restrict `Start` to a constant to prevent SCEV from spending too much
- // time here. It is correct (but more expensive) to continue with a
- // non-constant `Start` and do a general SCEV subtraction to compute
- // `PreStart` below.
- //
- const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start);
- if (!StartC)
- return false;
- APInt StartAI = StartC->getValue()->getValue();
- for (unsigned Delta : {-2, -1, 1, 2}) {
- const SCEV *PreStart = getConstant(StartAI - Delta);
- // Give up if we don't already have the add recurrence we need because
- // actually constructing an add recurrence is relatively expensive.
- const SCEVAddRecExpr *PreAR = [&]() {
- FoldingSetNodeID ID;
- ID.AddInteger(scAddRecExpr);
- ID.AddPointer(PreStart);
- ID.AddPointer(Step);
- ID.AddPointer(L);
- void *IP = nullptr;
- return static_cast<SCEVAddRecExpr *>(
- this->UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
- }();
- if (PreAR && PreAR->getNoWrapFlags(WrapType)) { // proves (2)
- const SCEV *DeltaS = getConstant(StartC->getType(), Delta);
- ICmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE;
- const SCEV *Limit = ExtendOpTraits<ExtendOpTy>::getOverflowLimitForStep(
- DeltaS, &Pred, this);
- if (Limit && isKnownPredicate(Pred, PreAR, Limit)) // proves (1)
- return true;
- }
- }
- return false;
- }
- const SCEV *ScalarEvolution::getZeroExtendExpr(const SCEV *Op,
- Type *Ty) {
- assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
- "This is not an extending conversion!");
- assert(isSCEVable(Ty) &&
- "This is not a conversion to a SCEVable type!");
- Ty = getEffectiveSCEVType(Ty);
- // Fold if the operand is constant.
- if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
- return getConstant(
- cast<ConstantInt>(ConstantExpr::getZExt(SC->getValue(), Ty)));
- // zext(zext(x)) --> zext(x)
- if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
- return getZeroExtendExpr(SZ->getOperand(), Ty);
- // Before doing any expensive analysis, check to see if we've already
- // computed a SCEV for this Op and Ty.
- FoldingSetNodeID ID;
- ID.AddInteger(scZeroExtend);
- ID.AddPointer(Op);
- ID.AddPointer(Ty);
- void *IP = nullptr;
- if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
- // zext(trunc(x)) --> zext(x) or x or trunc(x)
- if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) {
- // It's possible the bits taken off by the truncate were all zero bits. If
- // so, we should be able to simplify this further.
- const SCEV *X = ST->getOperand();
- ConstantRange CR = getUnsignedRange(X);
- unsigned TruncBits = getTypeSizeInBits(ST->getType());
- unsigned NewBits = getTypeSizeInBits(Ty);
- if (CR.truncate(TruncBits).zeroExtend(NewBits).contains(
- CR.zextOrTrunc(NewBits)))
- return getTruncateOrZeroExtend(X, Ty);
- }
- // If the input value is a chrec scev, and we can prove that the value
- // did not overflow the old, smaller, value, we can zero extend all of the
- // operands (often constants). This allows analysis of something like
- // this: for (unsigned char X = 0; X < 100; ++X) { int Y = X; }
- if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
- if (AR->isAffine()) {
- const SCEV *Start = AR->getStart();
- const SCEV *Step = AR->getStepRecurrence(*this);
- unsigned BitWidth = getTypeSizeInBits(AR->getType());
- const Loop *L = AR->getLoop();
- // If we have special knowledge that this addrec won't overflow,
- // we don't need to do any further analysis.
- if (AR->getNoWrapFlags(SCEV::FlagNUW))
- return getAddRecExpr(
- getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this),
- getZeroExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
- // Check whether the backedge-taken count is SCEVCouldNotCompute.
- // Note that this serves two purposes: It filters out loops that are
- // simply not analyzable, and it covers the case where this code is
- // being called from within backedge-taken count analysis, such that
- // attempting to ask for the backedge-taken count would likely result
- // in infinite recursion. In the later case, the analysis code will
- // cope with a conservative value, and it will take care to purge
- // that value once it has finished.
- const SCEV *MaxBECount = getMaxBackedgeTakenCount(L);
- if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
- // Manually compute the final value for AR, checking for
- // overflow.
- // Check whether the backedge-taken count can be losslessly casted to
- // the addrec's type. The count is always unsigned.
- const SCEV *CastedMaxBECount =
- getTruncateOrZeroExtend(MaxBECount, Start->getType());
- const SCEV *RecastedMaxBECount =
- getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType());
- if (MaxBECount == RecastedMaxBECount) {
- Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
- // Check whether Start+Step*MaxBECount has no unsigned overflow.
- const SCEV *ZMul = getMulExpr(CastedMaxBECount, Step);
- const SCEV *ZAdd = getZeroExtendExpr(getAddExpr(Start, ZMul), WideTy);
- const SCEV *WideStart = getZeroExtendExpr(Start, WideTy);
- const SCEV *WideMaxBECount =
- getZeroExtendExpr(CastedMaxBECount, WideTy);
- const SCEV *OperandExtendedAdd =
- getAddExpr(WideStart,
- getMulExpr(WideMaxBECount,
- getZeroExtendExpr(Step, WideTy)));
- if (ZAdd == OperandExtendedAdd) {
- // Cache knowledge of AR NUW, which is propagated to this AddRec.
- const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW);
- // Return the expression with the addrec on the outside.
- return getAddRecExpr(
- getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this),
- getZeroExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
- }
- // Similar to above, only this time treat the step value as signed.
- // This covers loops that count down.
- OperandExtendedAdd =
- getAddExpr(WideStart,
- getMulExpr(WideMaxBECount,
- getSignExtendExpr(Step, WideTy)));
- if (ZAdd == OperandExtendedAdd) {
- // Cache knowledge of AR NW, which is propagated to this AddRec.
- // Negative step causes unsigned wrap, but it still can't self-wrap.
- const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW);
- // Return the expression with the addrec on the outside.
- return getAddRecExpr(
- getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this),
- getSignExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
- }
- }
- // If the backedge is guarded by a comparison with the pre-inc value
- // the addrec is safe. Also, if the entry is guarded by a comparison
- // with the start value and the backedge is guarded by a comparison
- // with the post-inc value, the addrec is safe.
- if (isKnownPositive(Step)) {
- const SCEV *N = getConstant(APInt::getMinValue(BitWidth) -
- getUnsignedRange(Step).getUnsignedMax());
- if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, AR, N) ||
- (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_ULT, Start, N) &&
- isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT,
- AR->getPostIncExpr(*this), N))) {
- // Cache knowledge of AR NUW, which is propagated to this AddRec.
- const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW);
- // Return the expression with the addrec on the outside.
- return getAddRecExpr(
- getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this),
- getZeroExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
- }
- } else if (isKnownNegative(Step)) {
- const SCEV *N = getConstant(APInt::getMaxValue(BitWidth) -
- getSignedRange(Step).getSignedMin());
- if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, AR, N) ||
- (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_UGT, Start, N) &&
- isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT,
- AR->getPostIncExpr(*this), N))) {
- // Cache knowledge of AR NW, which is propagated to this AddRec.
- // Negative step causes unsigned wrap, but it still can't self-wrap.
- const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW);
- // Return the expression with the addrec on the outside.
- return getAddRecExpr(
- getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this),
- getSignExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
- }
- }
- }
- if (proveNoWrapByVaryingStart<SCEVZeroExtendExpr>(Start, Step, L)) {
- const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW);
- return getAddRecExpr(
- getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this),
- getZeroExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
- }
- }
- // The cast wasn't folded; create an explicit cast node.
- // Recompute the insert position, as it may have been invalidated.
- if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
- SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator),
- Op, Ty);
- UniqueSCEVs.InsertNode(S, IP);
- return S;
- }
- const SCEV *ScalarEvolution::getSignExtendExpr(const SCEV *Op,
- Type *Ty) {
- assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
- "This is not an extending conversion!");
- assert(isSCEVable(Ty) &&
- "This is not a conversion to a SCEVable type!");
- Ty = getEffectiveSCEVType(Ty);
- // Fold if the operand is constant.
- if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
- return getConstant(
- cast<ConstantInt>(ConstantExpr::getSExt(SC->getValue(), Ty)));
- // sext(sext(x)) --> sext(x)
- if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
- return getSignExtendExpr(SS->getOperand(), Ty);
- // sext(zext(x)) --> zext(x)
- if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
- return getZeroExtendExpr(SZ->getOperand(), Ty);
- // Before doing any expensive analysis, check to see if we've already
- // computed a SCEV for this Op and Ty.
- FoldingSetNodeID ID;
- ID.AddInteger(scSignExtend);
- ID.AddPointer(Op);
- ID.AddPointer(Ty);
- void *IP = nullptr;
- if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
- // If the input value is provably positive, build a zext instead.
- if (isKnownNonNegative(Op))
- return getZeroExtendExpr(Op, Ty);
- // sext(trunc(x)) --> sext(x) or x or trunc(x)
- if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) {
- // It's possible the bits taken off by the truncate were all sign bits. If
- // so, we should be able to simplify this further.
- const SCEV *X = ST->getOperand();
- ConstantRange CR = getSignedRange(X);
- unsigned TruncBits = getTypeSizeInBits(ST->getType());
- unsigned NewBits = getTypeSizeInBits(Ty);
- if (CR.truncate(TruncBits).signExtend(NewBits).contains(
- CR.sextOrTrunc(NewBits)))
- return getTruncateOrSignExtend(X, Ty);
- }
- // sext(C1 + (C2 * x)) --> C1 + sext(C2 * x) if C1 < C2
- if (auto SA = dyn_cast<SCEVAddExpr>(Op)) {
- if (SA->getNumOperands() == 2) {
- auto SC1 = dyn_cast<SCEVConstant>(SA->getOperand(0));
- auto SMul = dyn_cast<SCEVMulExpr>(SA->getOperand(1));
- if (SMul && SC1) {
- if (auto SC2 = dyn_cast<SCEVConstant>(SMul->getOperand(0))) {
- const APInt &C1 = SC1->getValue()->getValue();
- const APInt &C2 = SC2->getValue()->getValue();
- if (C1.isStrictlyPositive() && C2.isStrictlyPositive() &&
- C2.ugt(C1) && C2.isPowerOf2())
- return getAddExpr(getSignExtendExpr(SC1, Ty),
- getSignExtendExpr(SMul, Ty));
- }
- }
- }
- }
- // If the input value is a chrec scev, and we can prove that the value
- // did not overflow the old, smaller, value, we can sign extend all of the
- // operands (often constants). This allows analysis of something like
- // this: for (signed char X = 0; X < 100; ++X) { int Y = X; }
- if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
- if (AR->isAffine()) {
- const SCEV *Start = AR->getStart();
- const SCEV *Step = AR->getStepRecurrence(*this);
- unsigned BitWidth = getTypeSizeInBits(AR->getType());
- const Loop *L = AR->getLoop();
- // If we have special knowledge that this addrec won't overflow,
- // we don't need to do any further analysis.
- if (AR->getNoWrapFlags(SCEV::FlagNSW))
- return getAddRecExpr(
- getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this),
- getSignExtendExpr(Step, Ty), L, SCEV::FlagNSW);
- // Check whether the backedge-taken count is SCEVCouldNotCompute.
- // Note that this serves two purposes: It filters out loops that are
- // simply not analyzable, and it covers the case where this code is
- // being called from within backedge-taken count analysis, such that
- // attempting to ask for the backedge-taken count would likely result
- // in infinite recursion. In the later case, the analysis code will
- // cope with a conservative value, and it will take care to purge
- // that value once it has finished.
- const SCEV *MaxBECount = getMaxBackedgeTakenCount(L);
- if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
- // Manually compute the final value for AR, checking for
- // overflow.
- // Check whether the backedge-taken count can be losslessly casted to
- // the addrec's type. The count is always unsigned.
- const SCEV *CastedMaxBECount =
- getTruncateOrZeroExtend(MaxBECount, Start->getType());
- const SCEV *RecastedMaxBECount =
- getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType());
- if (MaxBECount == RecastedMaxBECount) {
- Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
- // Check whether Start+Step*MaxBECount has no signed overflow.
- const SCEV *SMul = getMulExpr(CastedMaxBECount, Step);
- const SCEV *SAdd = getSignExtendExpr(getAddExpr(Start, SMul), WideTy);
- const SCEV *WideStart = getSignExtendExpr(Start, WideTy);
- const SCEV *WideMaxBECount =
- getZeroExtendExpr(CastedMaxBECount, WideTy);
- const SCEV *OperandExtendedAdd =
- getAddExpr(WideStart,
- getMulExpr(WideMaxBECount,
- getSignExtendExpr(Step, WideTy)));
- if (SAdd == OperandExtendedAdd) {
- // Cache knowledge of AR NSW, which is propagated to this AddRec.
- const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW);
- // Return the expression with the addrec on the outside.
- return getAddRecExpr(
- getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this),
- getSignExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
- }
- // Similar to above, only this time treat the step value as unsigned.
- // This covers loops that count up with an unsigned step.
- OperandExtendedAdd =
- getAddExpr(WideStart,
- getMulExpr(WideMaxBECount,
- getZeroExtendExpr(Step, WideTy)));
- if (SAdd == OperandExtendedAdd) {
- // If AR wraps around then
- //
- // abs(Step) * MaxBECount > unsigned-max(AR->getType())
- // => SAdd != OperandExtendedAdd
- //
- // Thus (AR is not NW => SAdd != OperandExtendedAdd) <=>
- // (SAdd == OperandExtendedAdd => AR is NW)
- const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW);
- // Return the expression with the addrec on the outside.
- return getAddRecExpr(
- getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this),
- getZeroExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
- }
- }
- // If the backedge is guarded by a comparison with the pre-inc value
- // the addrec is safe. Also, if the entry is guarded by a comparison
- // with the start value and the backedge is guarded by a comparison
- // with the post-inc value, the addrec is safe.
- ICmpInst::Predicate Pred;
- const SCEV *OverflowLimit =
- getSignedOverflowLimitForStep(Step, &Pred, this);
- if (OverflowLimit &&
- (isLoopBackedgeGuardedByCond(L, Pred, AR, OverflowLimit) ||
- (isLoopEntryGuardedByCond(L, Pred, Start, OverflowLimit) &&
- isLoopBackedgeGuardedByCond(L, Pred, AR->getPostIncExpr(*this),
- OverflowLimit)))) {
- // Cache knowledge of AR NSW, then propagate NSW to the wide AddRec.
- const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW);
- return getAddRecExpr(
- getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this),
- getSignExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
- }
- }
- // If Start and Step are constants, check if we can apply this
- // transformation:
- // sext{C1,+,C2} --> C1 + sext{0,+,C2} if C1 < C2
- auto SC1 = dyn_cast<SCEVConstant>(Start);
- auto SC2 = dyn_cast<SCEVConstant>(Step);
- if (SC1 && SC2) {
- const APInt &C1 = SC1->getValue()->getValue();
- const APInt &C2 = SC2->getValue()->getValue();
- if (C1.isStrictlyPositive() && C2.isStrictlyPositive() && C2.ugt(C1) &&
- C2.isPowerOf2()) {
- Start = getSignExtendExpr(Start, Ty);
- const SCEV *NewAR = getAddRecExpr(getConstant(AR->getType(), 0), Step,
- L, AR->getNoWrapFlags());
- return getAddExpr(Start, getSignExtendExpr(NewAR, Ty));
- }
- }
- if (proveNoWrapByVaryingStart<SCEVSignExtendExpr>(Start, Step, L)) {
- const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW);
- return getAddRecExpr(
- getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this),
- getSignExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
- }
- }
- // The cast wasn't folded; create an explicit cast node.
- // Recompute the insert position, as it may have been invalidated.
- if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
- SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator),
- Op, Ty);
- UniqueSCEVs.InsertNode(S, IP);
- return S;
- }
- /// getAnyExtendExpr - Return a SCEV for the given operand extended with
- /// unspecified bits out to the given type.
- ///
- const SCEV *ScalarEvolution::getAnyExtendExpr(const SCEV *Op,
- Type *Ty) {
- assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
- "This is not an extending conversion!");
- assert(isSCEVable(Ty) &&
- "This is not a conversion to a SCEVable type!");
- Ty = getEffectiveSCEVType(Ty);
- // Sign-extend negative constants.
- if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
- if (SC->getValue()->getValue().isNegative())
- return getSignExtendExpr(Op, Ty);
- // Peel off a truncate cast.
- if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Op)) {
- const SCEV *NewOp = T->getOperand();
- if (getTypeSizeInBits(NewOp->getType()) < getTypeSizeInBits(Ty))
- return getAnyExtendExpr(NewOp, Ty);
- return getTruncateOrNoop(NewOp, Ty);
- }
- // Next try a zext cast. If the cast is folded, use it.
- const SCEV *ZExt = getZeroExtendExpr(Op, Ty);
- if (!isa<SCEVZeroExtendExpr>(ZExt))
- return ZExt;
- // Next try a sext cast. If the cast is folded, use it.
- const SCEV *SExt = getSignExtendExpr(Op, Ty);
- if (!isa<SCEVSignExtendExpr>(SExt))
- return SExt;
- // Force the cast to be folded into the operands of an addrec.
- if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) {
- SmallVector<const SCEV *, 4> Ops;
- for (const SCEV *Op : AR->operands())
- Ops.push_back(getAnyExtendExpr(Op, Ty));
- return getAddRecExpr(Ops, AR->getLoop(), SCEV::FlagNW);
- }
- // If the expression is obviously signed, use the sext cast value.
- if (isa<SCEVSMaxExpr>(Op))
- return SExt;
- // Absent any other information, use the zext cast value.
- return ZExt;
- }
- /// CollectAddOperandsWithScales - Process the given Ops list, which is
- /// a list of operands to be added under the given scale, update the given
- /// map. This is a helper function for getAddRecExpr. As an example of
- /// what it does, given a sequence of operands that would form an add
- /// expression like this:
- ///
- /// m + n + 13 + (A * (o + p + (B * (q + m + 29)))) + r + (-1 * r)
- ///
- /// where A and B are constants, update the map with these values:
- ///
- /// (m, 1+A*B), (n, 1), (o, A), (p, A), (q, A*B), (r, 0)
- ///
- /// and add 13 + A*B*29 to AccumulatedConstant.
- /// This will allow getAddRecExpr to produce this:
- ///
- /// 13+A*B*29 + n + (m * (1+A*B)) + ((o + p) * A) + (q * A*B)
- ///
- /// This form often exposes folding opportunities that are hidden in
- /// the original operand list.
- ///
- /// Return true iff it appears that any interesting folding opportunities
- /// may be exposed. This helps getAddRecExpr short-circuit extra work in
- /// the common case where no interesting opportunities are present, and
- /// is also used as a check to avoid infinite recursion.
- ///
- static bool
- CollectAddOperandsWithScales(DenseMap<const SCEV *, APInt> &M,
- SmallVectorImpl<const SCEV *> &NewOps,
- APInt &AccumulatedConstant,
- const SCEV *const *Ops, size_t NumOperands,
- const APInt &Scale,
- ScalarEvolution &SE) {
- bool Interesting = false;
- // Iterate over the add operands. They are sorted, with constants first.
- unsigned i = 0;
- while (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
- ++i;
- // Pull a buried constant out to the outside.
- if (Scale != 1 || AccumulatedConstant != 0 || C->getValue()->isZero())
- Interesting = true;
- AccumulatedConstant += Scale * C->getValue()->getValue();
- }
- // Next comes everything else. We're especially interested in multiplies
- // here, but they're in the middle, so just visit the rest with one loop.
- for (; i != NumOperands; ++i) {
- const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[i]);
- if (Mul && isa<SCEVConstant>(Mul->getOperand(0))) {
- APInt NewScale =
- Scale * cast<SCEVConstant>(Mul->getOperand(0))->getValue()->getValue();
- if (Mul->getNumOperands() == 2 && isa<SCEVAddExpr>(Mul->getOperand(1))) {
- // A multiplication of a constant with another add; recurse.
- const SCEVAddExpr *Add = cast<SCEVAddExpr>(Mul->getOperand(1));
- Interesting |=
- CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
- Add->op_begin(), Add->getNumOperands(),
- NewScale, SE);
- } else {
- // A multiplication of a constant with some other value. Update
- // the map.
- SmallVector<const SCEV *, 4> MulOps(Mul->op_begin()+1, Mul->op_end());
- const SCEV *Key = SE.getMulExpr(MulOps);
- std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair =
- M.insert(std::make_pair(Key, NewScale));
- if (Pair.second) {
- NewOps.push_back(Pair.first->first);
- } else {
- Pair.first->second += NewScale;
- // The map already had an entry for this value, which may indicate
- // a folding opportunity.
- Interesting = true;
- }
- }
- } else {
- // An ordinary operand. Update the map.
- std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair =
- M.insert(std::make_pair(Ops[i], Scale));
- if (Pair.second) {
- NewOps.push_back(Pair.first->first);
- } else {
- Pair.first->second += Scale;
- // The map already had an entry for this value, which may indicate
- // a folding opportunity.
- Interesting = true;
- }
- }
- }
- return Interesting;
- }
- namespace {
- struct APIntCompare {
- bool operator()(const APInt &LHS, const APInt &RHS) const {
- return LHS.ult(RHS);
- }
- };
- }
- // We're trying to construct a SCEV of type `Type' with `Ops' as operands and
- // `OldFlags' as can't-wrap behavior. Infer a more aggressive set of
- // can't-overflow flags for the operation if possible.
- static SCEV::NoWrapFlags
- StrengthenNoWrapFlags(ScalarEvolution *SE, SCEVTypes Type,
- const SmallVectorImpl<const SCEV *> &Ops,
- SCEV::NoWrapFlags OldFlags) {
- using namespace std::placeholders;
- bool CanAnalyze =
- Type == scAddExpr || Type == scAddRecExpr || Type == scMulExpr;
- (void)CanAnalyze;
- assert(CanAnalyze && "don't call from other places!");
- int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW;
- SCEV::NoWrapFlags SignOrUnsignWrap =
- ScalarEvolution::maskFlags(OldFlags, SignOrUnsignMask);
- // If FlagNSW is true and all the operands are non-negative, infer FlagNUW.
- auto IsKnownNonNegative =
- std::bind(std::mem_fn(&ScalarEvolution::isKnownNonNegative), SE, _1);
- if (SignOrUnsignWrap == SCEV::FlagNSW &&
- std::all_of(Ops.begin(), Ops.end(), IsKnownNonNegative))
- return ScalarEvolution::setFlags(OldFlags,
- (SCEV::NoWrapFlags)SignOrUnsignMask);
- return OldFlags;
- }
- /// getAddExpr - Get a canonical add expression, or something simpler if
- /// possible.
- const SCEV *ScalarEvolution::getAddExpr(SmallVectorImpl<const SCEV *> &Ops,
- SCEV::NoWrapFlags Flags) {
- assert(!(Flags & ~(SCEV::FlagNUW | SCEV::FlagNSW)) &&
- "only nuw or nsw allowed");
- assert(!Ops.empty() && "Cannot get empty add!");
- if (Ops.size() == 1) return Ops[0];
- #ifndef NDEBUG
- Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
- for (unsigned i = 1, e = Ops.size(); i != e; ++i)
- assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
- "SCEVAddExpr operand types don't match!");
- #endif
- Flags = StrengthenNoWrapFlags(this, scAddExpr, Ops, Flags);
- // Sort by complexity, this groups all similar expression types together.
- GroupByComplexity(Ops, LI);
- // If there are any constants, fold them together.
- unsigned Idx = 0;
- if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
- ++Idx;
- assert(Idx < Ops.size());
- while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
- // We found two constants, fold them together!
- Ops[0] = getConstant(LHSC->getValue()->getValue() +
- RHSC->getValue()->getValue());
- if (Ops.size() == 2) return Ops[0];
- Ops.erase(Ops.begin()+1); // Erase the folded element
- LHSC = cast<SCEVConstant>(Ops[0]);
- }
- // If we are left with a constant zero being added, strip it off.
- if (LHSC->getValue()->isZero()) {
- Ops.erase(Ops.begin());
- --Idx;
- }
- if (Ops.size() == 1) return Ops[0];
- }
- // Okay, check to see if the same value occurs in the operand list more than
- // once. If so, merge them together into an multiply expression. Since we
- // sorted the list, these values are required to be adjacent.
- Type *Ty = Ops[0]->getType();
- bool FoundMatch = false;
- for (unsigned i = 0, e = Ops.size(); i != e-1; ++i)
- if (Ops[i] == Ops[i+1]) { // X + Y + Y --> X + Y*2
- // Scan ahead to count how many equal operands there are.
- unsigned Count = 2;
- while (i+Count != e && Ops[i+Count] == Ops[i])
- ++Count;
- // Merge the values into a multiply.
- const SCEV *Scale = getConstant(Ty, Count);
- const SCEV *Mul = getMulExpr(Scale, Ops[i]);
- if (Ops.size() == Count)
- return Mul;
- Ops[i] = Mul;
- Ops.erase(Ops.begin()+i+1, Ops.begin()+i+Count);
- --i; e -= Count - 1;
- FoundMatch = true;
- }
- if (FoundMatch)
- return getAddExpr(Ops, Flags);
- // Check for truncates. If all the operands are truncated from the same
- // type, see if factoring out the truncate would permit the result to be
- // folded. eg., trunc(x) + m*trunc(n) --> trunc(x + trunc(m)*n)
- // if the contents of the resulting outer trunc fold to something simple.
- for (; Idx < Ops.size() && isa<SCEVTruncateExpr>(Ops[Idx]); ++Idx) {
- const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(Ops[Idx]);
- Type *DstType = Trunc->getType();
- Type *SrcType = Trunc->getOperand()->getType();
- SmallVector<const SCEV *, 8> LargeOps;
- bool Ok = true;
- // Check all the operands to see if they can be represented in the
- // source type of the truncate.
- for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
- if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Ops[i])) {
- if (T->getOperand()->getType() != SrcType) {
- Ok = false;
- break;
- }
- LargeOps.push_back(T->getOperand());
- } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
- LargeOps.push_back(getAnyExtendExpr(C, SrcType));
- } else if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Ops[i])) {
- SmallVector<const SCEV *, 8> LargeMulOps;
- for (unsigned j = 0, f = M->getNumOperands(); j != f && Ok; ++j) {
- if (const SCEVTruncateExpr *T =
- dyn_cast<SCEVTruncateExpr>(M->getOperand(j))) {
- if (T->getOperand()->getType() != SrcType) {
- Ok = false;
- break;
- }
- LargeMulOps.push_back(T->getOperand());
- } else if (const SCEVConstant *C =
- dyn_cast<SCEVConstant>(M->getOperand(j))) {
- LargeMulOps.push_back(getAnyExtendExpr(C, SrcType));
- } else {
- Ok = false;
- break;
- }
- }
- if (Ok)
- LargeOps.push_back(getMulExpr(LargeMulOps));
- } else {
- Ok = false;
- break;
- }
- }
- if (Ok) {
- // Evaluate the expression in the larger type.
- const SCEV *Fold = getAddExpr(LargeOps, Flags);
- // If it folds to something simple, use it. Otherwise, don't.
- if (isa<SCEVConstant>(Fold) || isa<SCEVUnknown>(Fold))
- return getTruncateExpr(Fold, DstType);
- }
- }
- // Skip past any other cast SCEVs.
- while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr)
- ++Idx;
- // If there are add operands they would be next.
- if (Idx < Ops.size()) {
- bool DeletedAdd = false;
- while (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) {
- // If we have an add, expand the add operands onto the end of the operands
- // list.
- Ops.erase(Ops.begin()+Idx);
- Ops.append(Add->op_begin(), Add->op_end());
- DeletedAdd = true;
- }
- // If we deleted at least one add, we added operands to the end of the list,
- // and they are not necessarily sorted. Recurse to resort and resimplify
- // any operands we just acquired.
- if (DeletedAdd)
- return getAddExpr(Ops);
- }
- // Skip over the add expression until we get to a multiply.
- while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
- ++Idx;
- // Check to see if there are any folding opportunities present with
- // operands multiplied by constant values.
- if (Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx])) {
- uint64_t BitWidth = getTypeSizeInBits(Ty);
- DenseMap<const SCEV *, APInt> M;
- SmallVector<const SCEV *, 8> NewOps;
- APInt AccumulatedConstant(BitWidth, 0);
- if (CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
- Ops.data(), Ops.size(),
- APInt(BitWidth, 1), *this)) {
- // Some interesting folding opportunity is present, so its worthwhile to
- // re-generate the operands list. Group the operands by constant scale,
- // to avoid multiplying by the same constant scale multiple times.
- std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare> MulOpLists;
- for (SmallVectorImpl<const SCEV *>::const_iterator I = NewOps.begin(),
- E = NewOps.end(); I != E; ++I)
- MulOpLists[M.find(*I)->second].push_back(*I);
- // Re-generate the operands list.
- Ops.clear();
- if (AccumulatedConstant != 0)
- Ops.push_back(getConstant(AccumulatedConstant));
- for (std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare>::iterator
- I = MulOpLists.begin(), E = MulOpLists.end(); I != E; ++I)
- if (I->first != 0)
- Ops.push_back(getMulExpr(getConstant(I->first),
- getAddExpr(I->second)));
- if (Ops.empty())
- return getConstant(Ty, 0);
- if (Ops.size() == 1)
- return Ops[0];
- return getAddExpr(Ops);
- }
- }
- // If we are adding something to a multiply expression, make sure the
- // something is not already an operand of the multiply. If so, merge it into
- // the multiply.
- for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) {
- const SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]);
- for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) {
- const SCEV *MulOpSCEV = Mul->getOperand(MulOp);
- if (isa<SCEVConstant>(MulOpSCEV))
- continue;
- for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp)
- if (MulOpSCEV == Ops[AddOp]) {
- // Fold W + X + (X * Y * Z) --> W + (X * ((Y*Z)+1))
- const SCEV *InnerMul = Mul->getOperand(MulOp == 0);
- if (Mul->getNumOperands() != 2) {
- // If the multiply has more than two operands, we must get the
- // Y*Z term.
- SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(),
- Mul->op_begin()+MulOp);
- MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end());
- InnerMul = getMulExpr(MulOps);
- }
- const SCEV *One = getConstant(Ty, 1);
- const SCEV *AddOne = getAddExpr(One, InnerMul);
- const SCEV *OuterMul = getMulExpr(AddOne, MulOpSCEV);
- if (Ops.size() == 2) return OuterMul;
- if (AddOp < Idx) {
- Ops.erase(Ops.begin()+AddOp);
- Ops.erase(Ops.begin()+Idx-1);
- } else {
- Ops.erase(Ops.begin()+Idx);
- Ops.erase(Ops.begin()+AddOp-1);
- }
- Ops.push_back(OuterMul);
- return getAddExpr(Ops);
- }
- // Check this multiply against other multiplies being added together.
- for (unsigned OtherMulIdx = Idx+1;
- OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]);
- ++OtherMulIdx) {
- const SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]);
- // If MulOp occurs in OtherMul, we can fold the two multiplies
- // together.
- for (unsigned OMulOp = 0, e = OtherMul->getNumOperands();
- OMulOp != e; ++OMulOp)
- if (OtherMul->getOperand(OMulOp) == MulOpSCEV) {
- // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E))
- const SCEV *InnerMul1 = Mul->getOperand(MulOp == 0);
- if (Mul->getNumOperands() != 2) {
- SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(),
- Mul->op_begin()+MulOp);
- MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end());
- InnerMul1 = getMulExpr(MulOps);
- }
- const SCEV *InnerMul2 = OtherMul->getOperand(OMulOp == 0);
- if (OtherMul->getNumOperands() != 2) {
- SmallVector<const SCEV *, 4> MulOps(OtherMul->op_begin(),
- OtherMul->op_begin()+OMulOp);
- MulOps.append(OtherMul->op_begin()+OMulOp+1, OtherMul->op_end());
- InnerMul2 = getMulExpr(MulOps);
- }
- const SCEV *InnerMulSum = getAddExpr(InnerMul1,InnerMul2);
- const SCEV *OuterMul = getMulExpr(MulOpSCEV, InnerMulSum);
- if (Ops.size() == 2) return OuterMul;
- Ops.erase(Ops.begin()+Idx);
- Ops.erase(Ops.begin()+OtherMulIdx-1);
- Ops.push_back(OuterMul);
- return getAddExpr(Ops);
- }
- }
- }
- }
- // If there are any add recurrences in the operands list, see if any other
- // added values are loop invariant. If so, we can fold them into the
- // recurrence.
- while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
- ++Idx;
- // Scan over all recurrences, trying to fold loop invariants into them.
- for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
- // Scan all of the other operands to this add and add them to the vector if
- // they are loop invariant w.r.t. the recurrence.
- SmallVector<const SCEV *, 8> LIOps;
- const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
- const Loop *AddRecLoop = AddRec->getLoop();
- for (unsigned i = 0, e = Ops.size(); i != e; ++i)
- if (isLoopInvariant(Ops[i], AddRecLoop)) {
- LIOps.push_back(Ops[i]);
- Ops.erase(Ops.begin()+i);
- --i; --e;
- }
- // If we found some loop invariants, fold them into the recurrence.
- if (!LIOps.empty()) {
- // NLI + LI + {Start,+,Step} --> NLI + {LI+Start,+,Step}
- LIOps.push_back(AddRec->getStart());
- SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(),
- AddRec->op_end());
- AddRecOps[0] = getAddExpr(LIOps);
- // Build the new addrec. Propagate the NUW and NSW flags if both the
- // outer add and the inner addrec are guaranteed to have no overflow.
- // Always propagate NW.
- Flags = AddRec->getNoWrapFlags(setFlags(Flags, SCEV::FlagNW));
- const SCEV *NewRec = getAddRecExpr(AddRecOps, AddRecLoop, Flags);
- // If all of the other operands were loop invariant, we are done.
- if (Ops.size() == 1) return NewRec;
- // Otherwise, add the folded AddRec by the non-invariant parts.
- for (unsigned i = 0;; ++i)
- if (Ops[i] == AddRec) {
- Ops[i] = NewRec;
- break;
- }
- return getAddExpr(Ops);
- }
- // Okay, if there weren't any loop invariants to be folded, check to see if
- // there are multiple AddRec's with the same loop induction variable being
- // added together. If so, we can fold them.
- for (unsigned OtherIdx = Idx+1;
- OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
- ++OtherIdx)
- if (AddRecLoop == cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()) {
- // Other + {A,+,B}<L> + {C,+,D}<L> --> Other + {A+C,+,B+D}<L>
- SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(),
- AddRec->op_end());
- for (; OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
- ++OtherIdx)
- if (const SCEVAddRecExpr *OtherAddRec =
- dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]))
- if (OtherAddRec->getLoop() == AddRecLoop) {
- for (unsigned i = 0, e = OtherAddRec->getNumOperands();
- i != e; ++i) {
- if (i >= AddRecOps.size()) {
- AddRecOps.append(OtherAddRec->op_begin()+i,
- OtherAddRec->op_end());
- break;
- }
- AddRecOps[i] = getAddExpr(AddRecOps[i],
- OtherAddRec->getOperand(i));
- }
- Ops.erase(Ops.begin() + OtherIdx); --OtherIdx;
- }
- // Step size has changed, so we cannot guarantee no self-wraparound.
- Ops[Idx] = getAddRecExpr(AddRecOps, AddRecLoop, SCEV::FlagAnyWrap);
- return getAddExpr(Ops);
- }
- // Otherwise couldn't fold anything into this recurrence. Move onto the
- // next one.
- }
- // Okay, it looks like we really DO need an add expr. Check to see if we
- // already have one, otherwise create a new one.
- FoldingSetNodeID ID;
- ID.AddInteger(scAddExpr);
- for (unsigned i = 0, e = Ops.size(); i != e; ++i)
- ID.AddPointer(Ops[i]);
- void *IP = nullptr;
- SCEVAddExpr *S =
- static_cast<SCEVAddExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
- if (!S) {
- const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
- std::uninitialized_copy(Ops.begin(), Ops.end(), O);
- S = new (SCEVAllocator) SCEVAddExpr(ID.Intern(SCEVAllocator),
- O, Ops.size());
- UniqueSCEVs.InsertNode(S, IP);
- }
- S->setNoWrapFlags(Flags);
- return S;
- }
- static uint64_t umul_ov(uint64_t i, uint64_t j, bool &Overflow) {
- uint64_t k = i*j;
- if (j > 1 && k / j != i) Overflow = true;
- return k;
- }
- /// Compute the result of "n choose k", the binomial coefficient. If an
- /// intermediate computation overflows, Overflow will be set and the return will
- /// be garbage. Overflow is not cleared on absence of overflow.
- static uint64_t Choose(uint64_t n, uint64_t k, bool &Overflow) {
- // We use the multiplicative formula:
- // n(n-1)(n-2)...(n-(k-1)) / k(k-1)(k-2)...1 .
- // At each iteration, we take the n-th term of the numeral and divide by the
- // (k-n)th term of the denominator. This division will always produce an
- // integral result, and helps reduce the chance of overflow in the
- // intermediate computations. However, we can still overflow even when the
- // final result would fit.
- if (n == 0 || n == k) return 1;
- if (k > n) return 0;
- if (k > n/2)
- k = n-k;
- uint64_t r = 1;
- for (uint64_t i = 1; i <= k; ++i) {
- r = umul_ov(r, n-(i-1), Overflow);
- r /= i;
- }
- return r;
- }
- /// Determine if any of the operands in this SCEV are a constant or if
- /// any of the add or multiply expressions in this SCEV contain a constant.
- static bool containsConstantSomewhere(const SCEV *StartExpr) {
- SmallVector<const SCEV *, 4> Ops;
- Ops.push_back(StartExpr);
- while (!Ops.empty()) {
- const SCEV *CurrentExpr = Ops.pop_back_val();
- if (isa<SCEVConstant>(*CurrentExpr))
- return true;
- if (isa<SCEVAddExpr>(*CurrentExpr) || isa<SCEVMulExpr>(*CurrentExpr)) {
- const auto *CurrentNAry = cast<SCEVNAryExpr>(CurrentExpr);
- Ops.append(CurrentNAry->op_begin(), CurrentNAry->op_end());
- }
- }
- return false;
- }
- /// getMulExpr - Get a canonical multiply expression, or something simpler if
- /// possible.
- const SCEV *ScalarEvolution::getMulExpr(SmallVectorImpl<const SCEV *> &Ops,
- SCEV::NoWrapFlags Flags) {
- assert(Flags == maskFlags(Flags, SCEV::FlagNUW | SCEV::FlagNSW) &&
- "only nuw or nsw allowed");
- assert(!Ops.empty() && "Cannot get empty mul!");
- if (Ops.size() == 1) return Ops[0];
- #ifndef NDEBUG
- Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
- for (unsigned i = 1, e = Ops.size(); i != e; ++i)
- assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
- "SCEVMulExpr operand types don't match!");
- #endif
- Flags = StrengthenNoWrapFlags(this, scMulExpr, Ops, Flags);
- // Sort by complexity, this groups all similar expression types together.
- GroupByComplexity(Ops, LI);
- // If there are any constants, fold them together.
- unsigned Idx = 0;
- if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
- // C1*(C2+V) -> C1*C2 + C1*V
- if (Ops.size() == 2)
- if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1]))
- // If any of Add's ops are Adds or Muls with a constant,
- // apply this transformation as well.
- if (Add->getNumOperands() == 2)
- if (containsConstantSomewhere(Add))
- return getAddExpr(getMulExpr(LHSC, Add->getOperand(0)),
- getMulExpr(LHSC, Add->getOperand(1)));
- ++Idx;
- while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
- // We found two constants, fold them together!
- ConstantInt *Fold = ConstantInt::get(getContext(),
- LHSC->getValue()->getValue() *
- RHSC->getValue()->getValue());
- Ops[0] = getConstant(Fold);
- Ops.erase(Ops.begin()+1); // Erase the folded element
- if (Ops.size() == 1) return Ops[0];
- LHSC = cast<SCEVConstant>(Ops[0]);
- }
- // If we are left with a constant one being multiplied, strip it off.
- if (cast<SCEVConstant>(Ops[0])->getValue()->equalsInt(1)) {
- Ops.erase(Ops.begin());
- --Idx;
- } else if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) {
- // If we have a multiply of zero, it will always be zero.
- return Ops[0];
- } else if (Ops[0]->isAllOnesValue()) {
- // If we have a mul by -1 of an add, try distributing the -1 among the
- // add operands.
- if (Ops.size() == 2) {
- if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) {
- SmallVector<const SCEV *, 4> NewOps;
- bool AnyFolded = false;
- for (SCEVAddRecExpr::op_iterator I = Add->op_begin(),
- E = Add->op_end(); I != E; ++I) {
- const SCEV *Mul = getMulExpr(Ops[0], *I);
- if (!isa<SCEVMulExpr>(Mul)) AnyFolded = true;
- NewOps.push_back(Mul);
- }
- if (AnyFolded)
- return getAddExpr(NewOps);
- }
- else if (const SCEVAddRecExpr *
- AddRec = dyn_cast<SCEVAddRecExpr>(Ops[1])) {
- // Negation preserves a recurrence's no self-wrap property.
- SmallVector<const SCEV *, 4> Operands;
- for (SCEVAddRecExpr::op_iterator I = AddRec->op_begin(),
- E = AddRec->op_end(); I != E; ++I) {
- Operands.push_back(getMulExpr(Ops[0], *I));
- }
- return getAddRecExpr(Operands, AddRec->getLoop(),
- AddRec->getNoWrapFlags(SCEV::FlagNW));
- }
- }
- }
- if (Ops.size() == 1)
- return Ops[0];
- }
- // Skip over the add expression until we get to a multiply.
- while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
- ++Idx;
- // If there are mul operands inline them all into this expression.
- if (Idx < Ops.size()) {
- bool DeletedMul = false;
- while (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) {
- // If we have an mul, expand the mul operands onto the end of the operands
- // list.
- Ops.erase(Ops.begin()+Idx);
- Ops.append(Mul->op_begin(), Mul->op_end());
- DeletedMul = true;
- }
- // If we deleted at least one mul, we added operands to the end of the list,
- // and they are not necessarily sorted. Recurse to resort and resimplify
- // any operands we just acquired.
- if (DeletedMul)
- return getMulExpr(Ops);
- }
- // If there are any add recurrences in the operands list, see if any other
- // added values are loop invariant. If so, we can fold them into the
- // recurrence.
- while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
- ++Idx;
- // Scan over all recurrences, trying to fold loop invariants into them.
- for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
- // Scan all of the other operands to this mul and add them to the vector if
- // they are loop invariant w.r.t. the recurrence.
- SmallVector<const SCEV *, 8> LIOps;
- const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
- const Loop *AddRecLoop = AddRec->getLoop();
- for (unsigned i = 0, e = Ops.size(); i != e; ++i)
- if (isLoopInvariant(Ops[i], AddRecLoop)) {
- LIOps.push_back(Ops[i]);
- Ops.erase(Ops.begin()+i);
- --i; --e;
- }
- // If we found some loop invariants, fold them into the recurrence.
- if (!LIOps.empty()) {
- // NLI * LI * {Start,+,Step} --> NLI * {LI*Start,+,LI*Step}
- SmallVector<const SCEV *, 4> NewOps;
- NewOps.reserve(AddRec->getNumOperands());
- const SCEV *Scale = getMulExpr(LIOps);
- for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
- NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i)));
- // Build the new addrec. Propagate the NUW and NSW flags if both the
- // outer mul and the inner addrec are guaranteed to have no overflow.
- //
- // No self-wrap cannot be guaranteed after changing the step size, but
- // will be inferred if either NUW or NSW is true.
- Flags = AddRec->getNoWrapFlags(clearFlags(Flags, SCEV::FlagNW));
- const SCEV *NewRec = getAddRecExpr(NewOps, AddRecLoop, Flags);
- // If all of the other operands were loop invariant, we are done.
- if (Ops.size() == 1) return NewRec;
- // Otherwise, multiply the folded AddRec by the non-invariant parts.
- for (unsigned i = 0;; ++i)
- if (Ops[i] == AddRec) {
- Ops[i] = NewRec;
- break;
- }
- return getMulExpr(Ops);
- }
- // Okay, if there weren't any loop invariants to be folded, check to see if
- // there are multiple AddRec's with the same loop induction variable being
- // multiplied together. If so, we can fold them.
- // {A1,+,A2,+,...,+,An}<L> * {B1,+,B2,+,...,+,Bn}<L>
- // = {x=1 in [ sum y=x..2x [ sum z=max(y-x, y-n)..min(x,n) [
- // choose(x, 2x)*choose(2x-y, x-z)*A_{y-z}*B_z
- // ]]],+,...up to x=2n}.
- // Note that the arguments to choose() are always integers with values
- // known at compile time, never SCEV objects.
- //
- // The implementation avoids pointless extra computations when the two
- // addrec's are of different length (mathematically, it's equivalent to
- // an infinite stream of zeros on the right).
- bool OpsModified = false;
- for (unsigned OtherIdx = Idx+1;
- OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
- ++OtherIdx) {
- const SCEVAddRecExpr *OtherAddRec =
- dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]);
- if (!OtherAddRec || OtherAddRec->getLoop() != AddRecLoop)
- continue;
- bool Overflow = false;
- Type *Ty = AddRec->getType();
- bool LargerThan64Bits = getTypeSizeInBits(Ty) > 64;
- SmallVector<const SCEV*, 7> AddRecOps;
- for (int x = 0, xe = AddRec->getNumOperands() +
- OtherAddRec->getNumOperands() - 1; x != xe && !Overflow; ++x) {
- const SCEV *Term = getConstant(Ty, 0);
- for (int y = x, ye = 2*x+1; y != ye && !Overflow; ++y) {
- uint64_t Coeff1 = Choose(x, 2*x - y, Overflow);
- for (int z = std::max(y-x, y-(int)AddRec->getNumOperands()+1),
- ze = std::min(x+1, (int)OtherAddRec->getNumOperands());
- z < ze && !Overflow; ++z) {
- uint64_t Coeff2 = Choose(2*x - y, x-z, Overflow);
- uint64_t Coeff;
- if (LargerThan64Bits)
- Coeff = umul_ov(Coeff1, Coeff2, Overflow);
- else
- Coeff = Coeff1*Coeff2;
- const SCEV *CoeffTerm = getConstant(Ty, Coeff);
- const SCEV *Term1 = AddRec->getOperand(y-z);
- const SCEV *Term2 = OtherAddRec->getOperand(z);
- Term = getAddExpr(Term, getMulExpr(CoeffTerm, Term1,Term2));
- }
- }
- AddRecOps.push_back(Term);
- }
- if (!Overflow) {
- const SCEV *NewAddRec = getAddRecExpr(AddRecOps, AddRec->getLoop(),
- SCEV::FlagAnyWrap);
- if (Ops.size() == 2) return NewAddRec;
- Ops[Idx] = NewAddRec;
- Ops.erase(Ops.begin() + OtherIdx); --OtherIdx;
- OpsModified = true;
- AddRec = dyn_cast<SCEVAddRecExpr>(NewAddRec);
- if (!AddRec)
- break;
- }
- }
- if (OpsModified)
- return getMulExpr(Ops);
- // Otherwise couldn't fold anything into this recurrence. Move onto the
- // next one.
- }
- // Okay, it looks like we really DO need an mul expr. Check to see if we
- // already have one, otherwise create a new one.
- FoldingSetNodeID ID;
- ID.AddInteger(scMulExpr);
- for (unsigned i = 0, e = Ops.size(); i != e; ++i)
- ID.AddPointer(Ops[i]);
- void *IP = nullptr;
- SCEVMulExpr *S =
- static_cast<SCEVMulExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
- if (!S) {
- const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
- std::uninitialized_copy(Ops.begin(), Ops.end(), O);
- S = new (SCEVAllocator) SCEVMulExpr(ID.Intern(SCEVAllocator),
- O, Ops.size());
- UniqueSCEVs.InsertNode(S, IP);
- }
- S->setNoWrapFlags(Flags);
- return S;
- }
- /// getUDivExpr - Get a canonical unsigned division expression, or something
- /// simpler if possible.
- const SCEV *ScalarEvolution::getUDivExpr(const SCEV *LHS,
- const SCEV *RHS) {
- assert(getEffectiveSCEVType(LHS->getType()) ==
- getEffectiveSCEVType(RHS->getType()) &&
- "SCEVUDivExpr operand types don't match!");
- if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
- if (RHSC->getValue()->equalsInt(1))
- return LHS; // X udiv 1 --> x
- // If the denominator is zero, the result of the udiv is undefined. Don't
- // try to analyze it, because the resolution chosen here may differ from
- // the resolution chosen in other parts of the compiler.
- if (!RHSC->getValue()->isZero()) {
- // Determine if the division can be folded into the operands of
- // its operands.
- // TODO: Generalize this to non-constants by using known-bits information.
- Type *Ty = LHS->getType();
- unsigned LZ = RHSC->getValue()->getValue().countLeadingZeros();
- unsigned MaxShiftAmt = getTypeSizeInBits(Ty) - LZ - 1;
- // For non-power-of-two values, effectively round the value up to the
- // nearest power of two.
- if (!RHSC->getValue()->getValue().isPowerOf2())
- ++MaxShiftAmt;
- IntegerType *ExtTy =
- IntegerType::get(getContext(), getTypeSizeInBits(Ty) + MaxShiftAmt);
- if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS))
- if (const SCEVConstant *Step =
- dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this))) {
- // {X,+,N}/C --> {X/C,+,N/C} if safe and N/C can be folded.
- const APInt &StepInt = Step->getValue()->getValue();
- const APInt &DivInt = RHSC->getValue()->getValue();
- if (!StepInt.urem(DivInt) &&
- getZeroExtendExpr(AR, ExtTy) ==
- getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy),
- getZeroExtendExpr(Step, ExtTy),
- AR->getLoop(), SCEV::FlagAnyWrap)) {
- SmallVector<const SCEV *, 4> Operands;
- for (unsigned i = 0, e = AR->getNumOperands(); i != e; ++i)
- Operands.push_back(getUDivExpr(AR->getOperand(i), RHS));
- return getAddRecExpr(Operands, AR->getLoop(),
- SCEV::FlagNW);
- }
- /// Get a canonical UDivExpr for a recurrence.
- /// {X,+,N}/C => {Y,+,N}/C where Y=X-(X%N). Safe when C%N=0.
- // We can currently only fold X%N if X is constant.
- const SCEVConstant *StartC = dyn_cast<SCEVConstant>(AR->getStart());
- if (StartC && !DivInt.urem(StepInt) &&
- getZeroExtendExpr(AR, ExtTy) ==
- getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy),
- getZeroExtendExpr(Step, ExtTy),
- AR->getLoop(), SCEV::FlagAnyWrap)) {
- const APInt &StartInt = StartC->getValue()->getValue();
- const APInt &StartRem = StartInt.urem(StepInt);
- if (StartRem != 0)
- LHS = getAddRecExpr(getConstant(StartInt - StartRem), Step,
- AR->getLoop(), SCEV::FlagNW);
- }
- }
- // (A*B)/C --> A*(B/C) if safe and B/C can be folded.
- if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(LHS)) {
- SmallVector<const SCEV *, 4> Operands;
- for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i)
- Operands.push_back(getZeroExtendExpr(M->getOperand(i), ExtTy));
- if (getZeroExtendExpr(M, ExtTy) == getMulExpr(Operands))
- // Find an operand that's safely divisible.
- for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) {
- const SCEV *Op = M->getOperand(i);
- const SCEV *Div = getUDivExpr(Op, RHSC);
- if (!isa<SCEVUDivExpr>(Div) && getMulExpr(Div, RHSC) == Op) {
- Operands = SmallVector<const SCEV *, 4>(M->op_begin(),
- M->op_end());
- Operands[i] = Div;
- return getMulExpr(Operands);
- }
- }
- }
- // (A+B)/C --> (A/C + B/C) if safe and A/C and B/C can be folded.
- if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(LHS)) {
- SmallVector<const SCEV *, 4> Operands;
- for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i)
- Operands.push_back(getZeroExtendExpr(A->getOperand(i), ExtTy));
- if (getZeroExtendExpr(A, ExtTy) == getAddExpr(Operands)) {
- Operands.clear();
- for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) {
- const SCEV *Op = getUDivExpr(A->getOperand(i), RHS);
- if (isa<SCEVUDivExpr>(Op) ||
- getMulExpr(Op, RHS) != A->getOperand(i))
- break;
- Operands.push_back(Op);
- }
- if (Operands.size() == A->getNumOperands())
- return getAddExpr(Operands);
- }
- }
- // Fold if both operands are constant.
- if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
- Constant *LHSCV = LHSC->getValue();
- Constant *RHSCV = RHSC->getValue();
- return getConstant(cast<ConstantInt>(ConstantExpr::getUDiv(LHSCV,
- RHSCV)));
- }
- }
- }
- FoldingSetNodeID ID;
- ID.AddInteger(scUDivExpr);
- ID.AddPointer(LHS);
- ID.AddPointer(RHS);
- void *IP = nullptr;
- if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
- SCEV *S = new (SCEVAllocator) SCEVUDivExpr(ID.Intern(SCEVAllocator),
- LHS, RHS);
- UniqueSCEVs.InsertNode(S, IP);
- return S;
- }
- static const APInt gcd(const SCEVConstant *C1, const SCEVConstant *C2) {
- APInt A = C1->getValue()->getValue().abs();
- APInt B = C2->getValue()->getValue().abs();
- uint32_t ABW = A.getBitWidth();
- uint32_t BBW = B.getBitWidth();
- if (ABW > BBW)
- B = B.zext(ABW);
- else if (ABW < BBW)
- A = A.zext(BBW);
- return APIntOps::GreatestCommonDivisor(A, B);
- }
- /// getUDivExactExpr - Get a canonical unsigned division expression, or
- /// something simpler if possible. There is no representation for an exact udiv
- /// in SCEV IR, but we can attempt to remove factors from the LHS and RHS.
- /// We can't do this when it's not exact because the udiv may be clearing bits.
- const SCEV *ScalarEvolution::getUDivExactExpr(const SCEV *LHS,
- const SCEV *RHS) {
- // TODO: we could try to find factors in all sorts of things, but for now we
- // just deal with u/exact (multiply, constant). See SCEVDivision towards the
- // end of this file for inspiration.
- const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(LHS);
- if (!Mul)
- return getUDivExpr(LHS, RHS);
- if (const SCEVConstant *RHSCst = dyn_cast<SCEVConstant>(RHS)) {
- // If the mulexpr multiplies by a constant, then that constant must be the
- // first element of the mulexpr.
- if (const SCEVConstant *LHSCst =
- dyn_cast<SCEVConstant>(Mul->getOperand(0))) {
- if (LHSCst == RHSCst) {
- SmallVector<const SCEV *, 2> Operands;
- Operands.append(Mul->op_begin() + 1, Mul->op_end());
- return getMulExpr(Operands);
- }
- // We can't just assume that LHSCst divides RHSCst cleanly, it could be
- // that there's a factor provided by one of the other terms. We need to
- // check.
- APInt Factor = gcd(LHSCst, RHSCst);
- if (!Factor.isIntN(1)) {
- LHSCst = cast<SCEVConstant>(
- getConstant(LHSCst->getValue()->getValue().udiv(Factor)));
- RHSCst = cast<SCEVConstant>(
- getConstant(RHSCst->getValue()->getValue().udiv(Factor)));
- SmallVector<const SCEV *, 2> Operands;
- Operands.push_back(LHSCst);
- Operands.append(Mul->op_begin() + 1, Mul->op_end());
- LHS = getMulExpr(Operands);
- RHS = RHSCst;
- Mul = dyn_cast<SCEVMulExpr>(LHS);
- if (!Mul)
- return getUDivExactExpr(LHS, RHS);
- }
- }
- }
- for (int i = 0, e = Mul->getNumOperands(); i != e; ++i) {
- if (Mul->getOperand(i) == RHS) {
- SmallVector<const SCEV *, 2> Operands;
- Operands.append(Mul->op_begin(), Mul->op_begin() + i);
- Operands.append(Mul->op_begin() + i + 1, Mul->op_end());
- return getMulExpr(Operands);
- }
- }
- return getUDivExpr(LHS, RHS);
- }
- /// getAddRecExpr - Get an add recurrence expression for the specified loop.
- /// Simplify the expression as much as possible.
- const SCEV *ScalarEvolution::getAddRecExpr(const SCEV *Start, const SCEV *Step,
- const Loop *L,
- SCEV::NoWrapFlags Flags) {
- SmallVector<const SCEV *, 4> Operands;
- Operands.push_back(Start);
- if (const SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step))
- if (StepChrec->getLoop() == L) {
- Operands.append(StepChrec->op_begin(), StepChrec->op_end());
- return getAddRecExpr(Operands, L, maskFlags(Flags, SCEV::FlagNW));
- }
- Operands.push_back(Step);
- return getAddRecExpr(Operands, L, Flags);
- }
- /// getAddRecExpr - Get an add recurrence expression for the specified loop.
- /// Simplify the expression as much as possible.
- const SCEV *
- ScalarEvolution::getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands,
- const Loop *L, SCEV::NoWrapFlags Flags) {
- if (Operands.size() == 1) return Operands[0];
- #ifndef NDEBUG
- Type *ETy = getEffectiveSCEVType(Operands[0]->getType());
- for (unsigned i = 1, e = Operands.size(); i != e; ++i)
- assert(getEffectiveSCEVType(Operands[i]->getType()) == ETy &&
- "SCEVAddRecExpr operand types don't match!");
- for (unsigned i = 0, e = Operands.size(); i != e; ++i)
- assert(isLoopInvariant(Operands[i], L) &&
- "SCEVAddRecExpr operand is not loop-invariant!");
- #endif
- if (Operands.back()->isZero()) {
- Operands.pop_back();
- return getAddRecExpr(Operands, L, SCEV::FlagAnyWrap); // {X,+,0} --> X
- }
- // It's tempting to want to call getMaxBackedgeTakenCount count here and
- // use that information to infer NUW and NSW flags. However, computing a
- // BE count requires calling getAddRecExpr, so we may not yet have a
- // meaningful BE count at this point (and if we don't, we'd be stuck
- // with a SCEVCouldNotCompute as the cached BE count).
- Flags = StrengthenNoWrapFlags(this, scAddRecExpr, Operands, Flags);
- // Canonicalize nested AddRecs in by nesting them in order of loop depth.
- if (const SCEVAddRecExpr *NestedAR = dyn_cast<SCEVAddRecExpr>(Operands[0])) {
- const Loop *NestedLoop = NestedAR->getLoop();
- if (L->contains(NestedLoop) ?
- (L->getLoopDepth() < NestedLoop->getLoopDepth()) :
- (!NestedLoop->contains(L) &&
- DT->dominates(L->getHeader(), NestedLoop->getHeader()))) {
- SmallVector<const SCEV *, 4> NestedOperands(NestedAR->op_begin(),
- NestedAR->op_end());
- Operands[0] = NestedAR->getStart();
- // AddRecs require their operands be loop-invariant with respect to their
- // loops. Don't perform this transformation if it would break this
- // requirement.
- bool AllInvariant = true;
- for (unsigned i = 0, e = Operands.size(); i != e; ++i)
- if (!isLoopInvariant(Operands[i], L)) {
- AllInvariant = false;
- break;
- }
- if (AllInvariant) {
- // Create a recurrence for the outer loop with the same step size.
- //
- // The outer recurrence keeps its NW flag but only keeps NUW/NSW if the
- // inner recurrence has the same property.
- SCEV::NoWrapFlags OuterFlags =
- maskFlags(Flags, SCEV::FlagNW | NestedAR->getNoWrapFlags());
- NestedOperands[0] = getAddRecExpr(Operands, L, OuterFlags);
- AllInvariant = true;
- for (unsigned i = 0, e = NestedOperands.size(); i != e; ++i)
- if (!isLoopInvariant(NestedOperands[i], NestedLoop)) {
- AllInvariant = false;
- break;
- }
- if (AllInvariant) {
- // Ok, both add recurrences are valid after the transformation.
- //
- // The inner recurrence keeps its NW flag but only keeps NUW/NSW if
- // the outer recurrence has the same property.
- SCEV::NoWrapFlags InnerFlags =
- maskFlags(NestedAR->getNoWrapFlags(), SCEV::FlagNW | Flags);
- return getAddRecExpr(NestedOperands, NestedLoop, InnerFlags);
- }
- }
- // Reset Operands to its original state.
- Operands[0] = NestedAR;
- }
- }
- // Okay, it looks like we really DO need an addrec expr. Check to see if we
- // already have one, otherwise create a new one.
- FoldingSetNodeID ID;
- ID.AddInteger(scAddRecExpr);
- for (unsigned i = 0, e = Operands.size(); i != e; ++i)
- ID.AddPointer(Operands[i]);
- ID.AddPointer(L);
- void *IP = nullptr;
- SCEVAddRecExpr *S =
- static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
- if (!S) {
- const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Operands.size());
- std::uninitialized_copy(Operands.begin(), Operands.end(), O);
- S = new (SCEVAllocator) SCEVAddRecExpr(ID.Intern(SCEVAllocator),
- O, Operands.size(), L);
- UniqueSCEVs.InsertNode(S, IP);
- }
- S->setNoWrapFlags(Flags);
- return S;
- }
- const SCEV *
- ScalarEvolution::getGEPExpr(Type *PointeeType, const SCEV *BaseExpr,
- const SmallVectorImpl<const SCEV *> &IndexExprs,
- bool InBounds) {
- // getSCEV(Base)->getType() has the same address space as Base->getType()
- // because SCEV::getType() preserves the address space.
- Type *IntPtrTy = getEffectiveSCEVType(BaseExpr->getType());
- // FIXME(PR23527): Don't blindly transfer the inbounds flag from the GEP
- // instruction to its SCEV, because the Instruction may be guarded by control
- // flow and the no-overflow bits may not be valid for the expression in any
- // context.
- SCEV::NoWrapFlags Wrap = InBounds ? SCEV::FlagNSW : SCEV::FlagAnyWrap;
- const SCEV *TotalOffset = getConstant(IntPtrTy, 0);
- // The address space is unimportant. The first thing we do on CurTy is getting
- // its element type.
- Type *CurTy = PointerType::getUnqual(PointeeType);
- for (const SCEV *IndexExpr : IndexExprs) {
- // Compute the (potentially symbolic) offset in bytes for this index.
- if (StructType *STy = dyn_cast<StructType>(CurTy)) {
- // For a struct, add the member offset.
- ConstantInt *Index = cast<SCEVConstant>(IndexExpr)->getValue();
- unsigned FieldNo = Index->getZExtValue();
- const SCEV *FieldOffset = getOffsetOfExpr(IntPtrTy, STy, FieldNo);
- // Add the field offset to the running total offset.
- TotalOffset = getAddExpr(TotalOffset, FieldOffset);
- // Update CurTy to the type of the field at Index.
- CurTy = STy->getTypeAtIndex(Index);
- } else {
- // Update CurTy to its element type.
- CurTy = cast<SequentialType>(CurTy)->getElementType();
- // For an array, add the element offset, explicitly scaled.
- const SCEV *ElementSize = getSizeOfExpr(IntPtrTy, CurTy);
- // Getelementptr indices are signed.
- IndexExpr = getTruncateOrSignExtend(IndexExpr, IntPtrTy);
- // Multiply the index by the element size to compute the element offset.
- const SCEV *LocalOffset = getMulExpr(IndexExpr, ElementSize, Wrap);
- // Add the element offset to the running total offset.
- TotalOffset = getAddExpr(TotalOffset, LocalOffset);
- }
- }
- // Add the total offset from all the GEP indices to the base.
- return getAddExpr(BaseExpr, TotalOffset, Wrap);
- }
- const SCEV *ScalarEvolution::getSMaxExpr(const SCEV *LHS,
- const SCEV *RHS) {
- SmallVector<const SCEV *, 2> Ops;
- Ops.push_back(LHS);
- Ops.push_back(RHS);
- return getSMaxExpr(Ops);
- }
- const SCEV *
- ScalarEvolution::getSMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
- assert(!Ops.empty() && "Cannot get empty smax!");
- if (Ops.size() == 1) return Ops[0];
- #ifndef NDEBUG
- Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
- for (unsigned i = 1, e = Ops.size(); i != e; ++i)
- assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
- "SCEVSMaxExpr operand types don't match!");
- #endif
- // Sort by complexity, this groups all similar expression types together.
- GroupByComplexity(Ops, LI);
- // If there are any constants, fold them together.
- unsigned Idx = 0;
- if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
- ++Idx;
- assert(Idx < Ops.size());
- while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
- // We found two constants, fold them together!
- ConstantInt *Fold = ConstantInt::get(getContext(),
- APIntOps::smax(LHSC->getValue()->getValue(),
- RHSC->getValue()->getValue()));
- Ops[0] = getConstant(Fold);
- Ops.erase(Ops.begin()+1); // Erase the folded element
- if (Ops.size() == 1) return Ops[0];
- LHSC = cast<SCEVConstant>(Ops[0]);
- }
- // If we are left with a constant minimum-int, strip it off.
- if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(true)) {
- Ops.erase(Ops.begin());
- --Idx;
- } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(true)) {
- // If we have an smax with a constant maximum-int, it will always be
- // maximum-int.
- return Ops[0];
- }
- if (Ops.size() == 1) return Ops[0];
- }
- // Find the first SMax
- while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scSMaxExpr)
- ++Idx;
- // Check to see if one of the operands is an SMax. If so, expand its operands
- // onto our operand list, and recurse to simplify.
- if (Idx < Ops.size()) {
- bool DeletedSMax = false;
- while (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(Ops[Idx])) {
- Ops.erase(Ops.begin()+Idx);
- Ops.append(SMax->op_begin(), SMax->op_end());
- DeletedSMax = true;
- }
- if (DeletedSMax)
- return getSMaxExpr(Ops);
- }
- // Okay, check to see if the same value occurs in the operand list twice. If
- // so, delete one. Since we sorted the list, these values are required to
- // be adjacent.
- for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
- // X smax Y smax Y --> X smax Y
- // X smax Y --> X, if X is always greater than Y
- if (Ops[i] == Ops[i+1] ||
- isKnownPredicate(ICmpInst::ICMP_SGE, Ops[i], Ops[i+1])) {
- Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2);
- --i; --e;
- } else if (isKnownPredicate(ICmpInst::ICMP_SLE, Ops[i], Ops[i+1])) {
- Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
- --i; --e;
- }
- if (Ops.size() == 1) return Ops[0];
- assert(!Ops.empty() && "Reduced smax down to nothing!");
- // Okay, it looks like we really DO need an smax expr. Check to see if we
- // already have one, otherwise create a new one.
- FoldingSetNodeID ID;
- ID.AddInteger(scSMaxExpr);
- for (unsigned i = 0, e = Ops.size(); i != e; ++i)
- ID.AddPointer(Ops[i]);
- void *IP = nullptr;
- if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
- const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
- std::uninitialized_copy(Ops.begin(), Ops.end(), O);
- SCEV *S = new (SCEVAllocator) SCEVSMaxExpr(ID.Intern(SCEVAllocator),
- O, Ops.size());
- UniqueSCEVs.InsertNode(S, IP);
- return S;
- }
- const SCEV *ScalarEvolution::getUMaxExpr(const SCEV *LHS,
- const SCEV *RHS) {
- SmallVector<const SCEV *, 2> Ops;
- Ops.push_back(LHS);
- Ops.push_back(RHS);
- return getUMaxExpr(Ops);
- }
- const SCEV *
- ScalarEvolution::getUMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
- assert(!Ops.empty() && "Cannot get empty umax!");
- if (Ops.size() == 1) return Ops[0];
- #ifndef NDEBUG
- Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
- for (unsigned i = 1, e = Ops.size(); i != e; ++i)
- assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
- "SCEVUMaxExpr operand types don't match!");
- #endif
- // Sort by complexity, this groups all similar expression types together.
- GroupByComplexity(Ops, LI);
- // If there are any constants, fold them together.
- unsigned Idx = 0;
- if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
- ++Idx;
- assert(Idx < Ops.size());
- while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
- // We found two constants, fold them together!
- ConstantInt *Fold = ConstantInt::get(getContext(),
- APIntOps::umax(LHSC->getValue()->getValue(),
- RHSC->getValue()->getValue()));
- Ops[0] = getConstant(Fold);
- Ops.erase(Ops.begin()+1); // Erase the folded element
- if (Ops.size() == 1) return Ops[0];
- LHSC = cast<SCEVConstant>(Ops[0]);
- }
- // If we are left with a constant minimum-int, strip it off.
- if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(false)) {
- Ops.erase(Ops.begin());
- --Idx;
- } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(false)) {
- // If we have an umax with a constant maximum-int, it will always be
- // maximum-int.
- return Ops[0];
- }
- if (Ops.size() == 1) return Ops[0];
- }
- // Find the first UMax
- while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scUMaxExpr)
- ++Idx;
- // Check to see if one of the operands is a UMax. If so, expand its operands
- // onto our operand list, and recurse to simplify.
- if (Idx < Ops.size()) {
- bool DeletedUMax = false;
- while (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(Ops[Idx])) {
- Ops.erase(Ops.begin()+Idx);
- Ops.append(UMax->op_begin(), UMax->op_end());
- DeletedUMax = true;
- }
- if (DeletedUMax)
- return getUMaxExpr(Ops);
- }
- // Okay, check to see if the same value occurs in the operand list twice. If
- // so, delete one. Since we sorted the list, these values are required to
- // be adjacent.
- for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
- // X umax Y umax Y --> X umax Y
- // X umax Y --> X, if X is always greater than Y
- if (Ops[i] == Ops[i+1] ||
- isKnownPredicate(ICmpInst::ICMP_UGE, Ops[i], Ops[i+1])) {
- Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2);
- --i; --e;
- } else if (isKnownPredicate(ICmpInst::ICMP_ULE, Ops[i], Ops[i+1])) {
- Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
- --i; --e;
- }
- if (Ops.size() == 1) return Ops[0];
- assert(!Ops.empty() && "Reduced umax down to nothing!");
- // Okay, it looks like we really DO need a umax expr. Check to see if we
- // already have one, otherwise create a new one.
- FoldingSetNodeID ID;
- ID.AddInteger(scUMaxExpr);
- for (unsigned i = 0, e = Ops.size(); i != e; ++i)
- ID.AddPointer(Ops[i]);
- void *IP = nullptr;
- if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
- const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
- std::uninitialized_copy(Ops.begin(), Ops.end(), O);
- SCEV *S = new (SCEVAllocator) SCEVUMaxExpr(ID.Intern(SCEVAllocator),
- O, Ops.size());
- UniqueSCEVs.InsertNode(S, IP);
- return S;
- }
- const SCEV *ScalarEvolution::getSMinExpr(const SCEV *LHS,
- const SCEV *RHS) {
- // ~smax(~x, ~y) == smin(x, y).
- return getNotSCEV(getSMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS)));
- }
- const SCEV *ScalarEvolution::getUMinExpr(const SCEV *LHS,
- const SCEV *RHS) {
- // ~umax(~x, ~y) == umin(x, y)
- return getNotSCEV(getUMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS)));
- }
- const SCEV *ScalarEvolution::getSizeOfExpr(Type *IntTy, Type *AllocTy) {
- // We can bypass creating a target-independent
- // constant expression and then folding it back into a ConstantInt.
- // This is just a compile-time optimization.
- return getConstant(IntTy,
- F->getParent()->getDataLayout().getTypeAllocSize(AllocTy));
- }
- const SCEV *ScalarEvolution::getOffsetOfExpr(Type *IntTy,
- StructType *STy,
- unsigned FieldNo) {
- // We can bypass creating a target-independent
- // constant expression and then folding it back into a ConstantInt.
- // This is just a compile-time optimization.
- return getConstant(
- IntTy,
- F->getParent()->getDataLayout().getStructLayout(STy)->getElementOffset(
- FieldNo));
- }
- const SCEV *ScalarEvolution::getUnknown(Value *V) {
- // Don't attempt to do anything other than create a SCEVUnknown object
- // here. createSCEV only calls getUnknown after checking for all other
- // interesting possibilities, and any other code that calls getUnknown
- // is doing so in order to hide a value from SCEV canonicalization.
- FoldingSetNodeID ID;
- ID.AddInteger(scUnknown);
- ID.AddPointer(V);
- void *IP = nullptr;
- if (SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) {
- assert(cast<SCEVUnknown>(S)->getValue() == V &&
- "Stale SCEVUnknown in uniquing map!");
- return S;
- }
- SCEV *S = new (SCEVAllocator) SCEVUnknown(ID.Intern(SCEVAllocator), V, this,
- FirstUnknown);
- FirstUnknown = cast<SCEVUnknown>(S);
- UniqueSCEVs.InsertNode(S, IP);
- return S;
- }
- //===----------------------------------------------------------------------===//
- // Basic SCEV Analysis and PHI Idiom Recognition Code
- //
- /// isSCEVable - Test if values of the given type are analyzable within
- /// the SCEV framework. This primarily includes integer types, and it
- /// can optionally include pointer types if the ScalarEvolution class
- /// has access to target-specific information.
- bool ScalarEvolution::isSCEVable(Type *Ty) const {
- // Integers and pointers are always SCEVable.
- return Ty->isIntegerTy() || Ty->isPointerTy();
- }
- /// getTypeSizeInBits - Return the size in bits of the specified type,
- /// for which isSCEVable must return true.
- uint64_t ScalarEvolution::getTypeSizeInBits(Type *Ty) const {
- assert(isSCEVable(Ty) && "Type is not SCEVable!");
- return F->getParent()->getDataLayout().getTypeSizeInBits(Ty);
- }
- /// getEffectiveSCEVType - Return a type with the same bitwidth as
- /// the given type and which represents how SCEV will treat the given
- /// type, for which isSCEVable must return true. For pointer types,
- /// this is the pointer-sized integer type.
- Type *ScalarEvolution::getEffectiveSCEVType(Type *Ty) const {
- assert(isSCEVable(Ty) && "Type is not SCEVable!");
- if (Ty->isIntegerTy()) {
- return Ty;
- }
- // The only other support type is pointer.
- assert(Ty->isPointerTy() && "Unexpected non-pointer non-integer type!");
- return F->getParent()->getDataLayout().getIntPtrType(Ty);
- }
- const SCEV *ScalarEvolution::getCouldNotCompute() {
- return &CouldNotCompute;
- }
- namespace {
- // Helper class working with SCEVTraversal to figure out if a SCEV contains
- // a SCEVUnknown with null value-pointer. FindInvalidSCEVUnknown::FindOne
- // is set iff if find such SCEVUnknown.
- //
- struct FindInvalidSCEVUnknown {
- bool FindOne;
- FindInvalidSCEVUnknown() { FindOne = false; }
- bool follow(const SCEV *S) {
- switch (static_cast<SCEVTypes>(S->getSCEVType())) {
- case scConstant:
- return false;
- case scUnknown:
- if (!cast<SCEVUnknown>(S)->getValue())
- FindOne = true;
- return false;
- default:
- return true;
- }
- }
- bool isDone() const { return FindOne; }
- };
- }
- bool ScalarEvolution::checkValidity(const SCEV *S) const {
- FindInvalidSCEVUnknown F;
- SCEVTraversal<FindInvalidSCEVUnknown> ST(F);
- ST.visitAll(S);
- return !F.FindOne;
- }
- /// getSCEV - Return an existing SCEV if it exists, otherwise analyze the
- /// expression and create a new one.
- const SCEV *ScalarEvolution::getSCEV(Value *V) {
- assert(isSCEVable(V->getType()) && "Value is not SCEVable!");
- ValueExprMapType::iterator I = ValueExprMap.find_as(V);
- if (I != ValueExprMap.end()) {
- const SCEV *S = I->second;
- if (checkValidity(S))
- return S;
- else
- ValueExprMap.erase(I);
- }
- const SCEV *S = createSCEV(V);
- // The process of creating a SCEV for V may have caused other SCEVs
- // to have been created, so it's necessary to insert the new entry
- // from scratch, rather than trying to remember the insert position
- // above.
- ValueExprMap.insert(std::make_pair(SCEVCallbackVH(V, this), S));
- return S;
- }
- /// getNegativeSCEV - Return a SCEV corresponding to -V = -1*V
- ///
- const SCEV *ScalarEvolution::getNegativeSCEV(const SCEV *V) {
- if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
- return getConstant(
- cast<ConstantInt>(ConstantExpr::getNeg(VC->getValue())));
- Type *Ty = V->getType();
- Ty = getEffectiveSCEVType(Ty);
- return getMulExpr(V,
- getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty))));
- }
- /// getNotSCEV - Return a SCEV corresponding to ~V = -1-V
- const SCEV *ScalarEvolution::getNotSCEV(const SCEV *V) {
- if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
- return getConstant(
- cast<ConstantInt>(ConstantExpr::getNot(VC->getValue())));
- Type *Ty = V->getType();
- Ty = getEffectiveSCEVType(Ty);
- const SCEV *AllOnes =
- getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty)));
- return getMinusSCEV(AllOnes, V);
- }
- /// getMinusSCEV - Return LHS-RHS. Minus is represented in SCEV as A+B*-1.
- const SCEV *ScalarEvolution::getMinusSCEV(const SCEV *LHS, const SCEV *RHS,
- SCEV::NoWrapFlags Flags) {
- assert(!maskFlags(Flags, SCEV::FlagNUW) && "subtraction does not have NUW");
- // Fast path: X - X --> 0.
- if (LHS == RHS)
- return getConstant(LHS->getType(), 0);
- // X - Y --> X + -Y.
- // X -(nsw || nuw) Y --> X + -Y.
- return getAddExpr(LHS, getNegativeSCEV(RHS));
- }
- /// getTruncateOrZeroExtend - Return a SCEV corresponding to a conversion of the
- /// input value to the specified type. If the type must be extended, it is zero
- /// extended.
- const SCEV *
- ScalarEvolution::getTruncateOrZeroExtend(const SCEV *V, Type *Ty) {
- Type *SrcTy = V->getType();
- assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
- (Ty->isIntegerTy() || Ty->isPointerTy()) &&
- "Cannot truncate or zero extend with non-integer arguments!");
- if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
- return V; // No conversion
- if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
- return getTruncateExpr(V, Ty);
- return getZeroExtendExpr(V, Ty);
- }
- /// getTruncateOrSignExtend - Return a SCEV corresponding to a conversion of the
- /// input value to the specified type. If the type must be extended, it is sign
- /// extended.
- const SCEV *
- ScalarEvolution::getTruncateOrSignExtend(const SCEV *V,
- Type *Ty) {
- Type *SrcTy = V->getType();
- assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
- (Ty->isIntegerTy() || Ty->isPointerTy()) &&
- "Cannot truncate or zero extend with non-integer arguments!");
- if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
- return V; // No conversion
- if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
- return getTruncateExpr(V, Ty);
- return getSignExtendExpr(V, Ty);
- }
- /// getNoopOrZeroExtend - Return a SCEV corresponding to a conversion of the
- /// input value to the specified type. If the type must be extended, it is zero
- /// extended. The conversion must not be narrowing.
- const SCEV *
- ScalarEvolution::getNoopOrZeroExtend(const SCEV *V, Type *Ty) {
- Type *SrcTy = V->getType();
- assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
- (Ty->isIntegerTy() || Ty->isPointerTy()) &&
- "Cannot noop or zero extend with non-integer arguments!");
- assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
- "getNoopOrZeroExtend cannot truncate!");
- if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
- return V; // No conversion
- return getZeroExtendExpr(V, Ty);
- }
- /// getNoopOrSignExtend - Return a SCEV corresponding to a conversion of the
- /// input value to the specified type. If the type must be extended, it is sign
- /// extended. The conversion must not be narrowing.
- const SCEV *
- ScalarEvolution::getNoopOrSignExtend(const SCEV *V, Type *Ty) {
- Type *SrcTy = V->getType();
- assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
- (Ty->isIntegerTy() || Ty->isPointerTy()) &&
- "Cannot noop or sign extend with non-integer arguments!");
- assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
- "getNoopOrSignExtend cannot truncate!");
- if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
- return V; // No conversion
- return getSignExtendExpr(V, Ty);
- }
- /// getNoopOrAnyExtend - Return a SCEV corresponding to a conversion of
- /// the input value to the specified type. If the type must be extended,
- /// it is extended with unspecified bits. The conversion must not be
- /// narrowing.
- const SCEV *
- ScalarEvolution::getNoopOrAnyExtend(const SCEV *V, Type *Ty) {
- Type *SrcTy = V->getType();
- assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
- (Ty->isIntegerTy() || Ty->isPointerTy()) &&
- "Cannot noop or any extend with non-integer arguments!");
- assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
- "getNoopOrAnyExtend cannot truncate!");
- if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
- return V; // No conversion
- return getAnyExtendExpr(V, Ty);
- }
- /// getTruncateOrNoop - Return a SCEV corresponding to a conversion of the
- /// input value to the specified type. The conversion must not be widening.
- const SCEV *
- ScalarEvolution::getTruncateOrNoop(const SCEV *V, Type *Ty) {
- Type *SrcTy = V->getType();
- assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
- (Ty->isIntegerTy() || Ty->isPointerTy()) &&
- "Cannot truncate or noop with non-integer arguments!");
- assert(getTypeSizeInBits(SrcTy) >= getTypeSizeInBits(Ty) &&
- "getTruncateOrNoop cannot extend!");
- if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
- return V; // No conversion
- return getTruncateExpr(V, Ty);
- }
- /// getUMaxFromMismatchedTypes - Promote the operands to the wider of
- /// the types using zero-extension, and then perform a umax operation
- /// with them.
- const SCEV *ScalarEvolution::getUMaxFromMismatchedTypes(const SCEV *LHS,
- const SCEV *RHS) {
- const SCEV *PromotedLHS = LHS;
- const SCEV *PromotedRHS = RHS;
- if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
- PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
- else
- PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
- return getUMaxExpr(PromotedLHS, PromotedRHS);
- }
- /// getUMinFromMismatchedTypes - Promote the operands to the wider of
- /// the types using zero-extension, and then perform a umin operation
- /// with them.
- const SCEV *ScalarEvolution::getUMinFromMismatchedTypes(const SCEV *LHS,
- const SCEV *RHS) {
- const SCEV *PromotedLHS = LHS;
- const SCEV *PromotedRHS = RHS;
- if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
- PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
- else
- PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
- return getUMinExpr(PromotedLHS, PromotedRHS);
- }
- /// getPointerBase - Transitively follow the chain of pointer-type operands
- /// until reaching a SCEV that does not have a single pointer operand. This
- /// returns a SCEVUnknown pointer for well-formed pointer-type expressions,
- /// but corner cases do exist.
- const SCEV *ScalarEvolution::getPointerBase(const SCEV *V) {
- // A pointer operand may evaluate to a nonpointer expression, such as null.
- if (!V->getType()->isPointerTy())
- return V;
- if (const SCEVCastExpr *Cast = dyn_cast<SCEVCastExpr>(V)) {
- return getPointerBase(Cast->getOperand());
- }
- else if (const SCEVNAryExpr *NAry = dyn_cast<SCEVNAryExpr>(V)) {
- const SCEV *PtrOp = nullptr;
- for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
- I != E; ++I) {
- if ((*I)->getType()->isPointerTy()) {
- // Cannot find the base of an expression with multiple pointer operands.
- if (PtrOp)
- return V;
- PtrOp = *I;
- }
- }
- if (!PtrOp)
- return V;
- return getPointerBase(PtrOp);
- }
- return V;
- }
- /// PushDefUseChildren - Push users of the given Instruction
- /// onto the given Worklist.
- static void
- PushDefUseChildren(Instruction *I,
- SmallVectorImpl<Instruction *> &Worklist) {
- // Push the def-use children onto the Worklist stack.
- for (User *U : I->users())
- Worklist.push_back(cast<Instruction>(U));
- }
- /// ForgetSymbolicValue - This looks up computed SCEV values for all
- /// instructions that depend on the given instruction and removes them from
- /// the ValueExprMapType map if they reference SymName. This is used during PHI
- /// resolution.
- void
- ScalarEvolution::ForgetSymbolicName(Instruction *PN, const SCEV *SymName) {
- SmallVector<Instruction *, 16> Worklist;
- PushDefUseChildren(PN, Worklist);
- SmallPtrSet<Instruction *, 8> Visited;
- Visited.insert(PN);
- while (!Worklist.empty()) {
- Instruction *I = Worklist.pop_back_val();
- if (!Visited.insert(I).second)
- continue;
- ValueExprMapType::iterator It =
- ValueExprMap.find_as(static_cast<Value *>(I));
- if (It != ValueExprMap.end()) {
- const SCEV *Old = It->second;
- // Short-circuit the def-use traversal if the symbolic name
- // ceases to appear in expressions.
- if (Old != SymName && !hasOperand(Old, SymName))
- continue;
- // SCEVUnknown for a PHI either means that it has an unrecognized
- // structure, it's a PHI that's in the progress of being computed
- // by createNodeForPHI, or it's a single-value PHI. In the first case,
- // additional loop trip count information isn't going to change anything.
- // In the second case, createNodeForPHI will perform the necessary
- // updates on its own when it gets to that point. In the third, we do
- // want to forget the SCEVUnknown.
- if (!isa<PHINode>(I) ||
- !isa<SCEVUnknown>(Old) ||
- (I != PN && Old == SymName)) {
- forgetMemoizedResults(Old);
- ValueExprMap.erase(It);
- }
- }
- PushDefUseChildren(I, Worklist);
- }
- }
- /// createNodeForPHI - PHI nodes have two cases. Either the PHI node exists in
- /// a loop header, making it a potential recurrence, or it doesn't.
- ///
- const SCEV *ScalarEvolution::createNodeForPHI(PHINode *PN) {
- if (const Loop *L = LI->getLoopFor(PN->getParent()))
- if (L->getHeader() == PN->getParent()) {
- // The loop may have multiple entrances or multiple exits; we can analyze
- // this phi as an addrec if it has a unique entry value and a unique
- // backedge value.
- Value *BEValueV = nullptr, *StartValueV = nullptr;
- for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
- Value *V = PN->getIncomingValue(i);
- if (L->contains(PN->getIncomingBlock(i))) {
- if (!BEValueV) {
- BEValueV = V;
- } else if (BEValueV != V) {
- BEValueV = nullptr;
- break;
- }
- } else if (!StartValueV) {
- StartValueV = V;
- } else if (StartValueV != V) {
- StartValueV = nullptr;
- break;
- }
- }
- if (BEValueV && StartValueV) {
- // While we are analyzing this PHI node, handle its value symbolically.
- const SCEV *SymbolicName = getUnknown(PN);
- assert(ValueExprMap.find_as(PN) == ValueExprMap.end() &&
- "PHI node already processed?");
- ValueExprMap.insert(std::make_pair(SCEVCallbackVH(PN, this), SymbolicName));
- // Using this symbolic name for the PHI, analyze the value coming around
- // the back-edge.
- const SCEV *BEValue = getSCEV(BEValueV);
- // NOTE: If BEValue is loop invariant, we know that the PHI node just
- // has a special value for the first iteration of the loop.
- // If the value coming around the backedge is an add with the symbolic
- // value we just inserted, then we found a simple induction variable!
- if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) {
- // If there is a single occurrence of the symbolic value, replace it
- // with a recurrence.
- unsigned FoundIndex = Add->getNumOperands();
- for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
- if (Add->getOperand(i) == SymbolicName)
- if (FoundIndex == e) {
- FoundIndex = i;
- break;
- }
- if (FoundIndex != Add->getNumOperands()) {
- // Create an add with everything but the specified operand.
- SmallVector<const SCEV *, 8> Ops;
- for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
- if (i != FoundIndex)
- Ops.push_back(Add->getOperand(i));
- const SCEV *Accum = getAddExpr(Ops);
- // This is not a valid addrec if the step amount is varying each
- // loop iteration, but is not itself an addrec in this loop.
- if (isLoopInvariant(Accum, L) ||
- (isa<SCEVAddRecExpr>(Accum) &&
- cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) {
- SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap;
- // If the increment doesn't overflow, then neither the addrec nor
- // the post-increment will overflow.
- if (const AddOperator *OBO = dyn_cast<AddOperator>(BEValueV)) {
- if (OBO->getOperand(0) == PN) {
- if (OBO->hasNoUnsignedWrap())
- Flags = setFlags(Flags, SCEV::FlagNUW);
- if (OBO->hasNoSignedWrap())
- Flags = setFlags(Flags, SCEV::FlagNSW);
- }
- } else if (GEPOperator *GEP = dyn_cast<GEPOperator>(BEValueV)) {
- // If the increment is an inbounds GEP, then we know the address
- // space cannot be wrapped around. We cannot make any guarantee
- // about signed or unsigned overflow because pointers are
- // unsigned but we may have a negative index from the base
- // pointer. We can guarantee that no unsigned wrap occurs if the
- // indices form a positive value.
- if (GEP->isInBounds() && GEP->getOperand(0) == PN) {
- Flags = setFlags(Flags, SCEV::FlagNW);
- const SCEV *Ptr = getSCEV(GEP->getPointerOperand());
- if (isKnownPositive(getMinusSCEV(getSCEV(GEP), Ptr)))
- Flags = setFlags(Flags, SCEV::FlagNUW);
- }
- // We cannot transfer nuw and nsw flags from subtraction
- // operations -- sub nuw X, Y is not the same as add nuw X, -Y
- // for instance.
- }
- const SCEV *StartVal = getSCEV(StartValueV);
- const SCEV *PHISCEV = getAddRecExpr(StartVal, Accum, L, Flags);
- // Since the no-wrap flags are on the increment, they apply to the
- // post-incremented value as well.
- if (isLoopInvariant(Accum, L))
- (void)getAddRecExpr(getAddExpr(StartVal, Accum),
- Accum, L, Flags);
- // Okay, for the entire analysis of this edge we assumed the PHI
- // to be symbolic. We now need to go back and purge all of the
- // entries for the scalars that use the symbolic expression.
- ForgetSymbolicName(PN, SymbolicName);
- ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV;
- return PHISCEV;
- }
- }
- } else if (const SCEVAddRecExpr *AddRec =
- dyn_cast<SCEVAddRecExpr>(BEValue)) {
- // Otherwise, this could be a loop like this:
- // i = 0; for (j = 1; ..; ++j) { .... i = j; }
- // In this case, j = {1,+,1} and BEValue is j.
- // Because the other in-value of i (0) fits the evolution of BEValue
- // i really is an addrec evolution.
- if (AddRec->getLoop() == L && AddRec->isAffine()) {
- const SCEV *StartVal = getSCEV(StartValueV);
- // If StartVal = j.start - j.stride, we can use StartVal as the
- // initial step of the addrec evolution.
- if (StartVal == getMinusSCEV(AddRec->getOperand(0),
- AddRec->getOperand(1))) {
- // FIXME: For constant StartVal, we should be able to infer
- // no-wrap flags.
- const SCEV *PHISCEV =
- getAddRecExpr(StartVal, AddRec->getOperand(1), L,
- SCEV::FlagAnyWrap);
- // Okay, for the entire analysis of this edge we assumed the PHI
- // to be symbolic. We now need to go back and purge all of the
- // entries for the scalars that use the symbolic expression.
- ForgetSymbolicName(PN, SymbolicName);
- ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV;
- return PHISCEV;
- }
- }
- }
- }
- }
- // If the PHI has a single incoming value, follow that value, unless the
- // PHI's incoming blocks are in a different loop, in which case doing so
- // risks breaking LCSSA form. Instcombine would normally zap these, but
- // it doesn't have DominatorTree information, so it may miss cases.
- if (Value *V =
- SimplifyInstruction(PN, F->getParent()->getDataLayout(), TLI, DT, AC))
- if (LI->replacementPreservesLCSSAForm(PN, V))
- return getSCEV(V);
- // If it's not a loop phi, we can't handle it yet.
- return getUnknown(PN);
- }
- /// createNodeForGEP - Expand GEP instructions into add and multiply
- /// operations. This allows them to be analyzed by regular SCEV code.
- ///
- const SCEV *ScalarEvolution::createNodeForGEP(GEPOperator *GEP) {
- Value *Base = GEP->getOperand(0);
- // Don't attempt to analyze GEPs over unsized objects.
- if (!Base->getType()->getPointerElementType()->isSized())
- return getUnknown(GEP);
- SmallVector<const SCEV *, 4> IndexExprs;
- for (auto Index = GEP->idx_begin(); Index != GEP->idx_end(); ++Index)
- IndexExprs.push_back(getSCEV(*Index));
- return getGEPExpr(GEP->getSourceElementType(), getSCEV(Base), IndexExprs,
- GEP->isInBounds());
- }
- /// GetMinTrailingZeros - Determine the minimum number of zero bits that S is
- /// guaranteed to end in (at every loop iteration). It is, at the same time,
- /// the minimum number of times S is divisible by 2. For example, given {4,+,8}
- /// it returns 2. If S is guaranteed to be 0, it returns the bitwidth of S.
- uint32_t
- ScalarEvolution::GetMinTrailingZeros(const SCEV *S) {
- if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
- return C->getValue()->getValue().countTrailingZeros();
- if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(S))
- return std::min(GetMinTrailingZeros(T->getOperand()),
- (uint32_t)getTypeSizeInBits(T->getType()));
- if (const SCEVZeroExtendExpr *E = dyn_cast<SCEVZeroExtendExpr>(S)) {
- uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
- return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ?
- getTypeSizeInBits(E->getType()) : OpRes;
- }
- if (const SCEVSignExtendExpr *E = dyn_cast<SCEVSignExtendExpr>(S)) {
- uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
- return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ?
- getTypeSizeInBits(E->getType()) : OpRes;
- }
- if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) {
- // The result is the min of all operands results.
- uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
- for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
- MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
- return MinOpRes;
- }
- if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) {
- // The result is the sum of all operands results.
- uint32_t SumOpRes = GetMinTrailingZeros(M->getOperand(0));
- uint32_t BitWidth = getTypeSizeInBits(M->getType());
- for (unsigned i = 1, e = M->getNumOperands();
- SumOpRes != BitWidth && i != e; ++i)
- SumOpRes = std::min(SumOpRes + GetMinTrailingZeros(M->getOperand(i)),
- BitWidth);
- return SumOpRes;
- }
- if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) {
- // The result is the min of all operands results.
- uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
- for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
- MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
- return MinOpRes;
- }
- if (const SCEVSMaxExpr *M = dyn_cast<SCEVSMaxExpr>(S)) {
- // The result is the min of all operands results.
- uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
- for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
- MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
- return MinOpRes;
- }
- if (const SCEVUMaxExpr *M = dyn_cast<SCEVUMaxExpr>(S)) {
- // The result is the min of all operands results.
- uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
- for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
- MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
- return MinOpRes;
- }
- if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
- // For a SCEVUnknown, ask ValueTracking.
- unsigned BitWidth = getTypeSizeInBits(U->getType());
- APInt Zeros(BitWidth, 0), Ones(BitWidth, 0);
- computeKnownBits(U->getValue(), Zeros, Ones,
- F->getParent()->getDataLayout(), 0, AC, nullptr, DT);
- return Zeros.countTrailingOnes();
- }
- // SCEVUDivExpr
- return 0;
- }
- /// GetRangeFromMetadata - Helper method to assign a range to V from
- /// metadata present in the IR.
- static Optional<ConstantRange> GetRangeFromMetadata(Value *V) {
- if (Instruction *I = dyn_cast<Instruction>(V)) {
- if (MDNode *MD = I->getMetadata(LLVMContext::MD_range)) {
- ConstantRange TotalRange(
- cast<IntegerType>(I->getType())->getBitWidth(), false);
- unsigned NumRanges = MD->getNumOperands() / 2;
- assert(NumRanges >= 1);
- for (unsigned i = 0; i < NumRanges; ++i) {
- ConstantInt *Lower =
- mdconst::extract<ConstantInt>(MD->getOperand(2 * i + 0));
- ConstantInt *Upper =
- mdconst::extract<ConstantInt>(MD->getOperand(2 * i + 1));
- ConstantRange Range(Lower->getValue(), Upper->getValue());
- TotalRange = TotalRange.unionWith(Range);
- }
- return TotalRange;
- }
- }
- return None;
- }
- /// getRange - Determine the range for a particular SCEV. If SignHint is
- /// HINT_RANGE_UNSIGNED (resp. HINT_RANGE_SIGNED) then getRange prefers ranges
- /// with a "cleaner" unsigned (resp. signed) representation.
- ///
- ConstantRange
- ScalarEvolution::getRange(const SCEV *S,
- ScalarEvolution::RangeSignHint SignHint) {
- DenseMap<const SCEV *, ConstantRange> &Cache =
- SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED ? UnsignedRanges
- : SignedRanges;
- // See if we've computed this range already.
- DenseMap<const SCEV *, ConstantRange>::iterator I = Cache.find(S);
- if (I != Cache.end())
- return I->second;
- if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
- return setRange(C, SignHint, ConstantRange(C->getValue()->getValue()));
- unsigned BitWidth = getTypeSizeInBits(S->getType());
- ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true);
- // If the value has known zeros, the maximum value will have those known zeros
- // as well.
- uint32_t TZ = GetMinTrailingZeros(S);
- if (TZ != 0) {
- if (SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED)
- ConservativeResult =
- ConstantRange(APInt::getMinValue(BitWidth),
- APInt::getMaxValue(BitWidth).lshr(TZ).shl(TZ) + 1);
- else
- ConservativeResult = ConstantRange(
- APInt::getSignedMinValue(BitWidth),
- APInt::getSignedMaxValue(BitWidth).ashr(TZ).shl(TZ) + 1);
- }
- if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
- ConstantRange X = getRange(Add->getOperand(0), SignHint);
- for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i)
- X = X.add(getRange(Add->getOperand(i), SignHint));
- return setRange(Add, SignHint, ConservativeResult.intersectWith(X));
- }
- if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
- ConstantRange X = getRange(Mul->getOperand(0), SignHint);
- for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i)
- X = X.multiply(getRange(Mul->getOperand(i), SignHint));
- return setRange(Mul, SignHint, ConservativeResult.intersectWith(X));
- }
- if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) {
- ConstantRange X = getRange(SMax->getOperand(0), SignHint);
- for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i)
- X = X.smax(getRange(SMax->getOperand(i), SignHint));
- return setRange(SMax, SignHint, ConservativeResult.intersectWith(X));
- }
- if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) {
- ConstantRange X = getRange(UMax->getOperand(0), SignHint);
- for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i)
- X = X.umax(getRange(UMax->getOperand(i), SignHint));
- return setRange(UMax, SignHint, ConservativeResult.intersectWith(X));
- }
- if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) {
- ConstantRange X = getRange(UDiv->getLHS(), SignHint);
- ConstantRange Y = getRange(UDiv->getRHS(), SignHint);
- return setRange(UDiv, SignHint,
- ConservativeResult.intersectWith(X.udiv(Y)));
- }
- if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) {
- ConstantRange X = getRange(ZExt->getOperand(), SignHint);
- return setRange(ZExt, SignHint,
- ConservativeResult.intersectWith(X.zeroExtend(BitWidth)));
- }
- if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) {
- ConstantRange X = getRange(SExt->getOperand(), SignHint);
- return setRange(SExt, SignHint,
- ConservativeResult.intersectWith(X.signExtend(BitWidth)));
- }
- if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) {
- ConstantRange X = getRange(Trunc->getOperand(), SignHint);
- return setRange(Trunc, SignHint,
- ConservativeResult.intersectWith(X.truncate(BitWidth)));
- }
- if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) {
- // If there's no unsigned wrap, the value will never be less than its
- // initial value.
- if (AddRec->getNoWrapFlags(SCEV::FlagNUW))
- if (const SCEVConstant *C = dyn_cast<SCEVConstant>(AddRec->getStart()))
- if (!C->getValue()->isZero())
- ConservativeResult =
- ConservativeResult.intersectWith(
- ConstantRange(C->getValue()->getValue(), APInt(BitWidth, 0)));
- // If there's no signed wrap, and all the operands have the same sign or
- // zero, the value won't ever change sign.
- if (AddRec->getNoWrapFlags(SCEV::FlagNSW)) {
- bool AllNonNeg = true;
- bool AllNonPos = true;
- for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
- if (!isKnownNonNegative(AddRec->getOperand(i))) AllNonNeg = false;
- if (!isKnownNonPositive(AddRec->getOperand(i))) AllNonPos = false;
- }
- if (AllNonNeg)
- ConservativeResult = ConservativeResult.intersectWith(
- ConstantRange(APInt(BitWidth, 0),
- APInt::getSignedMinValue(BitWidth)));
- else if (AllNonPos)
- ConservativeResult = ConservativeResult.intersectWith(
- ConstantRange(APInt::getSignedMinValue(BitWidth),
- APInt(BitWidth, 1)));
- }
- // TODO: non-affine addrec
- if (AddRec->isAffine()) {
- Type *Ty = AddRec->getType();
- const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop());
- if (!isa<SCEVCouldNotCompute>(MaxBECount) &&
- getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) {
- // Check for overflow. This must be done with ConstantRange arithmetic
- // because we could be called from within the ScalarEvolution overflow
- // checking code.
- MaxBECount = getNoopOrZeroExtend(MaxBECount, Ty);
- ConstantRange MaxBECountRange = getUnsignedRange(MaxBECount);
- ConstantRange ZExtMaxBECountRange =
- MaxBECountRange.zextOrTrunc(BitWidth * 2 + 1);
- const SCEV *Start = AddRec->getStart();
- const SCEV *Step = AddRec->getStepRecurrence(*this);
- ConstantRange StepSRange = getSignedRange(Step);
- ConstantRange SExtStepSRange = StepSRange.sextOrTrunc(BitWidth * 2 + 1);
- ConstantRange StartURange = getUnsignedRange(Start);
- ConstantRange EndURange =
- StartURange.add(MaxBECountRange.multiply(StepSRange));
- // Check for unsigned overflow.
- ConstantRange ZExtStartURange =
- StartURange.zextOrTrunc(BitWidth * 2 + 1);
- ConstantRange ZExtEndURange = EndURange.zextOrTrunc(BitWidth * 2 + 1);
- if (ZExtStartURange.add(ZExtMaxBECountRange.multiply(SExtStepSRange)) ==
- ZExtEndURange) {
- APInt Min = APIntOps::umin(StartURange.getUnsignedMin(),
- EndURange.getUnsignedMin());
- APInt Max = APIntOps::umax(StartURange.getUnsignedMax(),
- EndURange.getUnsignedMax());
- bool IsFullRange = Min.isMinValue() && Max.isMaxValue();
- if (!IsFullRange)
- ConservativeResult =
- ConservativeResult.intersectWith(ConstantRange(Min, Max + 1));
- }
- ConstantRange StartSRange = getSignedRange(Start);
- ConstantRange EndSRange =
- StartSRange.add(MaxBECountRange.multiply(StepSRange));
- // Check for signed overflow. This must be done with ConstantRange
- // arithmetic because we could be called from within the ScalarEvolution
- // overflow checking code.
- ConstantRange SExtStartSRange =
- StartSRange.sextOrTrunc(BitWidth * 2 + 1);
- ConstantRange SExtEndSRange = EndSRange.sextOrTrunc(BitWidth * 2 + 1);
- if (SExtStartSRange.add(ZExtMaxBECountRange.multiply(SExtStepSRange)) ==
- SExtEndSRange) {
- APInt Min = APIntOps::smin(StartSRange.getSignedMin(),
- EndSRange.getSignedMin());
- APInt Max = APIntOps::smax(StartSRange.getSignedMax(),
- EndSRange.getSignedMax());
- bool IsFullRange = Min.isMinSignedValue() && Max.isMaxSignedValue();
- if (!IsFullRange)
- ConservativeResult =
- ConservativeResult.intersectWith(ConstantRange(Min, Max + 1));
- }
- }
- }
- return setRange(AddRec, SignHint, ConservativeResult);
- }
- if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
- // Check if the IR explicitly contains !range metadata.
- Optional<ConstantRange> MDRange = GetRangeFromMetadata(U->getValue());
- if (MDRange.hasValue())
- ConservativeResult = ConservativeResult.intersectWith(MDRange.getValue());
- // Split here to avoid paying the compile-time cost of calling both
- // computeKnownBits and ComputeNumSignBits. This restriction can be lifted
- // if needed.
- const DataLayout &DL = F->getParent()->getDataLayout();
- if (SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED) {
- // For a SCEVUnknown, ask ValueTracking.
- APInt Zeros(BitWidth, 0), Ones(BitWidth, 0);
- computeKnownBits(U->getValue(), Zeros, Ones, DL, 0, AC, nullptr, DT);
- if (Ones != ~Zeros + 1)
- ConservativeResult =
- ConservativeResult.intersectWith(ConstantRange(Ones, ~Zeros + 1));
- } else {
- assert(SignHint == ScalarEvolution::HINT_RANGE_SIGNED &&
- "generalize as needed!");
- unsigned NS = ComputeNumSignBits(U->getValue(), DL, 0, AC, nullptr, DT);
- if (NS > 1)
- ConservativeResult = ConservativeResult.intersectWith(
- ConstantRange(APInt::getSignedMinValue(BitWidth).ashr(NS - 1),
- APInt::getSignedMaxValue(BitWidth).ashr(NS - 1) + 1));
- }
- return setRange(U, SignHint, ConservativeResult);
- }
- return setRange(S, SignHint, ConservativeResult);
- }
- /// createSCEV - We know that there is no SCEV for the specified value.
- /// Analyze the expression.
- ///
- const SCEV *ScalarEvolution::createSCEV(Value *V) {
- if (!isSCEVable(V->getType()))
- return getUnknown(V);
- unsigned Opcode = Instruction::UserOp1;
- if (Instruction *I = dyn_cast<Instruction>(V)) {
- Opcode = I->getOpcode();
- // Don't attempt to analyze instructions in blocks that aren't
- // reachable. Such instructions don't matter, and they aren't required
- // to obey basic rules for definitions dominating uses which this
- // analysis depends on.
- if (!DT->isReachableFromEntry(I->getParent()))
- return getUnknown(V);
- } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
- Opcode = CE->getOpcode();
- else if (ConstantInt *CI = dyn_cast<ConstantInt>(V))
- return getConstant(CI);
- else if (isa<ConstantPointerNull>(V))
- return getConstant(V->getType(), 0);
- else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V))
- return GA->mayBeOverridden() ? getUnknown(V) : getSCEV(GA->getAliasee());
- else
- return getUnknown(V);
- Operator *U = cast<Operator>(V);
- switch (Opcode) {
- case Instruction::Add: {
- // The simple thing to do would be to just call getSCEV on both operands
- // and call getAddExpr with the result. However if we're looking at a
- // bunch of things all added together, this can be quite inefficient,
- // because it leads to N-1 getAddExpr calls for N ultimate operands.
- // Instead, gather up all the operands and make a single getAddExpr call.
- // LLVM IR canonical form means we need only traverse the left operands.
- //
- // Don't apply this instruction's NSW or NUW flags to the new
- // expression. The instruction may be guarded by control flow that the
- // no-wrap behavior depends on. Non-control-equivalent instructions can be
- // mapped to the same SCEV expression, and it would be incorrect to transfer
- // NSW/NUW semantics to those operations.
- SmallVector<const SCEV *, 4> AddOps;
- AddOps.push_back(getSCEV(U->getOperand(1)));
- for (Value *Op = U->getOperand(0); ; Op = U->getOperand(0)) {
- unsigned Opcode = Op->getValueID() - Value::InstructionVal;
- if (Opcode != Instruction::Add && Opcode != Instruction::Sub)
- break;
- U = cast<Operator>(Op);
- const SCEV *Op1 = getSCEV(U->getOperand(1));
- if (Opcode == Instruction::Sub)
- AddOps.push_back(getNegativeSCEV(Op1));
- else
- AddOps.push_back(Op1);
- }
- AddOps.push_back(getSCEV(U->getOperand(0)));
- return getAddExpr(AddOps);
- }
- case Instruction::Mul: {
- // Don't transfer NSW/NUW for the same reason as AddExpr.
- SmallVector<const SCEV *, 4> MulOps;
- MulOps.push_back(getSCEV(U->getOperand(1)));
- for (Value *Op = U->getOperand(0);
- Op->getValueID() == Instruction::Mul + Value::InstructionVal;
- Op = U->getOperand(0)) {
- U = cast<Operator>(Op);
- MulOps.push_back(getSCEV(U->getOperand(1)));
- }
- MulOps.push_back(getSCEV(U->getOperand(0)));
- return getMulExpr(MulOps);
- }
- case Instruction::UDiv:
- return getUDivExpr(getSCEV(U->getOperand(0)),
- getSCEV(U->getOperand(1)));
- case Instruction::Sub:
- return getMinusSCEV(getSCEV(U->getOperand(0)),
- getSCEV(U->getOperand(1)));
- case Instruction::And:
- // For an expression like x&255 that merely masks off the high bits,
- // use zext(trunc(x)) as the SCEV expression.
- if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
- if (CI->isNullValue())
- return getSCEV(U->getOperand(1));
- if (CI->isAllOnesValue())
- return getSCEV(U->getOperand(0));
- const APInt &A = CI->getValue();
- // Instcombine's ShrinkDemandedConstant may strip bits out of
- // constants, obscuring what would otherwise be a low-bits mask.
- // Use computeKnownBits to compute what ShrinkDemandedConstant
- // knew about to reconstruct a low-bits mask value.
- unsigned LZ = A.countLeadingZeros();
- unsigned TZ = A.countTrailingZeros();
- unsigned BitWidth = A.getBitWidth();
- APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
- computeKnownBits(U->getOperand(0), KnownZero, KnownOne,
- F->getParent()->getDataLayout(), 0, AC, nullptr, DT);
- APInt EffectiveMask =
- APInt::getLowBitsSet(BitWidth, BitWidth - LZ - TZ).shl(TZ);
- if ((LZ != 0 || TZ != 0) && !((~A & ~KnownZero) & EffectiveMask)) {
- const SCEV *MulCount = getConstant(
- ConstantInt::get(getContext(), APInt::getOneBitSet(BitWidth, TZ)));
- return getMulExpr(
- getZeroExtendExpr(
- getTruncateExpr(
- getUDivExactExpr(getSCEV(U->getOperand(0)), MulCount),
- IntegerType::get(getContext(), BitWidth - LZ - TZ)),
- U->getType()),
- MulCount);
- }
- }
- break;
- case Instruction::Or:
- // If the RHS of the Or is a constant, we may have something like:
- // X*4+1 which got turned into X*4|1. Handle this as an Add so loop
- // optimizations will transparently handle this case.
- //
- // In order for this transformation to be safe, the LHS must be of the
- // form X*(2^n) and the Or constant must be less than 2^n.
- if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
- const SCEV *LHS = getSCEV(U->getOperand(0));
- const APInt &CIVal = CI->getValue();
- if (GetMinTrailingZeros(LHS) >=
- (CIVal.getBitWidth() - CIVal.countLeadingZeros())) {
- // Build a plain add SCEV.
- const SCEV *S = getAddExpr(LHS, getSCEV(CI));
- // If the LHS of the add was an addrec and it has no-wrap flags,
- // transfer the no-wrap flags, since an or won't introduce a wrap.
- if (const SCEVAddRecExpr *NewAR = dyn_cast<SCEVAddRecExpr>(S)) {
- const SCEVAddRecExpr *OldAR = cast<SCEVAddRecExpr>(LHS);
- const_cast<SCEVAddRecExpr *>(NewAR)->setNoWrapFlags(
- OldAR->getNoWrapFlags());
- }
- return S;
- }
- }
- break;
- case Instruction::Xor:
- if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
- // If the RHS of the xor is a signbit, then this is just an add.
- // Instcombine turns add of signbit into xor as a strength reduction step.
- if (CI->getValue().isSignBit())
- return getAddExpr(getSCEV(U->getOperand(0)),
- getSCEV(U->getOperand(1)));
- // If the RHS of xor is -1, then this is a not operation.
- if (CI->isAllOnesValue())
- return getNotSCEV(getSCEV(U->getOperand(0)));
- // Model xor(and(x, C), C) as and(~x, C), if C is a low-bits mask.
- // This is a variant of the check for xor with -1, and it handles
- // the case where instcombine has trimmed non-demanded bits out
- // of an xor with -1.
- if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U->getOperand(0)))
- if (ConstantInt *LCI = dyn_cast<ConstantInt>(BO->getOperand(1)))
- if (BO->getOpcode() == Instruction::And &&
- LCI->getValue() == CI->getValue())
- if (const SCEVZeroExtendExpr *Z =
- dyn_cast<SCEVZeroExtendExpr>(getSCEV(U->getOperand(0)))) {
- Type *UTy = U->getType();
- const SCEV *Z0 = Z->getOperand();
- Type *Z0Ty = Z0->getType();
- unsigned Z0TySize = getTypeSizeInBits(Z0Ty);
- // If C is a low-bits mask, the zero extend is serving to
- // mask off the high bits. Complement the operand and
- // re-apply the zext.
- if (APIntOps::isMask(Z0TySize, CI->getValue()))
- return getZeroExtendExpr(getNotSCEV(Z0), UTy);
- // If C is a single bit, it may be in the sign-bit position
- // before the zero-extend. In this case, represent the xor
- // using an add, which is equivalent, and re-apply the zext.
- APInt Trunc = CI->getValue().trunc(Z0TySize);
- if (Trunc.zext(getTypeSizeInBits(UTy)) == CI->getValue() &&
- Trunc.isSignBit())
- return getZeroExtendExpr(getAddExpr(Z0, getConstant(Trunc)),
- UTy);
- }
- }
- break;
- case Instruction::Shl:
- // Turn shift left of a constant amount into a multiply.
- if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) {
- uint32_t BitWidth = cast<IntegerType>(U->getType())->getBitWidth();
- // If the shift count is not less than the bitwidth, the result of
- // the shift is undefined. Don't try to analyze it, because the
- // resolution chosen here may differ from the resolution chosen in
- // other parts of the compiler.
- if (SA->getValue().uge(BitWidth))
- break;
- Constant *X = ConstantInt::get(getContext(),
- APInt::getOneBitSet(BitWidth, SA->getZExtValue()));
- return getMulExpr(getSCEV(U->getOperand(0)), getSCEV(X));
- }
- break;
- case Instruction::LShr:
- // Turn logical shift right of a constant into a unsigned divide.
- if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) {
- uint32_t BitWidth = cast<IntegerType>(U->getType())->getBitWidth();
- // If the shift count is not less than the bitwidth, the result of
- // the shift is undefined. Don't try to analyze it, because the
- // resolution chosen here may differ from the resolution chosen in
- // other parts of the compiler.
- if (SA->getValue().uge(BitWidth))
- break;
- Constant *X = ConstantInt::get(getContext(),
- APInt::getOneBitSet(BitWidth, SA->getZExtValue()));
- return getUDivExpr(getSCEV(U->getOperand(0)), getSCEV(X));
- }
- break;
- case Instruction::AShr:
- // For a two-shift sext-inreg, use sext(trunc(x)) as the SCEV expression.
- if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1)))
- if (Operator *L = dyn_cast<Operator>(U->getOperand(0)))
- if (L->getOpcode() == Instruction::Shl &&
- L->getOperand(1) == U->getOperand(1)) {
- uint64_t BitWidth = getTypeSizeInBits(U->getType());
- // If the shift count is not less than the bitwidth, the result of
- // the shift is undefined. Don't try to analyze it, because the
- // resolution chosen here may differ from the resolution chosen in
- // other parts of the compiler.
- if (CI->getValue().uge(BitWidth))
- break;
- uint64_t Amt = BitWidth - CI->getZExtValue();
- if (Amt == BitWidth)
- return getSCEV(L->getOperand(0)); // shift by zero --> noop
- return
- getSignExtendExpr(getTruncateExpr(getSCEV(L->getOperand(0)),
- IntegerType::get(getContext(),
- Amt)),
- U->getType());
- }
- break;
- case Instruction::Trunc:
- return getTruncateExpr(getSCEV(U->getOperand(0)), U->getType());
- case Instruction::ZExt:
- return getZeroExtendExpr(getSCEV(U->getOperand(0)), U->getType());
- case Instruction::SExt:
- return getSignExtendExpr(getSCEV(U->getOperand(0)), U->getType());
- case Instruction::BitCast:
- // BitCasts are no-op casts so we just eliminate the cast.
- if (isSCEVable(U->getType()) && isSCEVable(U->getOperand(0)->getType()))
- return getSCEV(U->getOperand(0));
- break;
- // It's tempting to handle inttoptr and ptrtoint as no-ops, however this can
- // lead to pointer expressions which cannot safely be expanded to GEPs,
- // because ScalarEvolution doesn't respect the GEP aliasing rules when
- // simplifying integer expressions.
- case Instruction::GetElementPtr:
- return createNodeForGEP(cast<GEPOperator>(U));
- case Instruction::PHI:
- return createNodeForPHI(cast<PHINode>(U));
- case Instruction::Select:
- // This could be a smax or umax that was lowered earlier.
- // Try to recover it.
- if (ICmpInst *ICI = dyn_cast<ICmpInst>(U->getOperand(0))) {
- Value *LHS = ICI->getOperand(0);
- Value *RHS = ICI->getOperand(1);
- switch (ICI->getPredicate()) {
- case ICmpInst::ICMP_SLT:
- case ICmpInst::ICMP_SLE:
- std::swap(LHS, RHS);
- // fall through
- case ICmpInst::ICMP_SGT:
- case ICmpInst::ICMP_SGE:
- // a >s b ? a+x : b+x -> smax(a, b)+x
- // a >s b ? b+x : a+x -> smin(a, b)+x
- if (getTypeSizeInBits(LHS->getType()) <=
- getTypeSizeInBits(U->getType())) {
- const SCEV *LS = getNoopOrSignExtend(getSCEV(LHS), U->getType());
- const SCEV *RS = getNoopOrSignExtend(getSCEV(RHS), U->getType());
- const SCEV *LA = getSCEV(U->getOperand(1));
- const SCEV *RA = getSCEV(U->getOperand(2));
- const SCEV *LDiff = getMinusSCEV(LA, LS);
- const SCEV *RDiff = getMinusSCEV(RA, RS);
- if (LDiff == RDiff)
- return getAddExpr(getSMaxExpr(LS, RS), LDiff);
- LDiff = getMinusSCEV(LA, RS);
- RDiff = getMinusSCEV(RA, LS);
- if (LDiff == RDiff)
- return getAddExpr(getSMinExpr(LS, RS), LDiff);
- }
- break;
- case ICmpInst::ICMP_ULT:
- case ICmpInst::ICMP_ULE:
- std::swap(LHS, RHS);
- // fall through
- case ICmpInst::ICMP_UGT:
- case ICmpInst::ICMP_UGE:
- // a >u b ? a+x : b+x -> umax(a, b)+x
- // a >u b ? b+x : a+x -> umin(a, b)+x
- if (getTypeSizeInBits(LHS->getType()) <=
- getTypeSizeInBits(U->getType())) {
- const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), U->getType());
- const SCEV *RS = getNoopOrZeroExtend(getSCEV(RHS), U->getType());
- const SCEV *LA = getSCEV(U->getOperand(1));
- const SCEV *RA = getSCEV(U->getOperand(2));
- const SCEV *LDiff = getMinusSCEV(LA, LS);
- const SCEV *RDiff = getMinusSCEV(RA, RS);
- if (LDiff == RDiff)
- return getAddExpr(getUMaxExpr(LS, RS), LDiff);
- LDiff = getMinusSCEV(LA, RS);
- RDiff = getMinusSCEV(RA, LS);
- if (LDiff == RDiff)
- return getAddExpr(getUMinExpr(LS, RS), LDiff);
- }
- break;
- case ICmpInst::ICMP_NE:
- // n != 0 ? n+x : 1+x -> umax(n, 1)+x
- if (getTypeSizeInBits(LHS->getType()) <=
- getTypeSizeInBits(U->getType()) &&
- isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isZero()) {
- const SCEV *One = getConstant(U->getType(), 1);
- const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), U->getType());
- const SCEV *LA = getSCEV(U->getOperand(1));
- const SCEV *RA = getSCEV(U->getOperand(2));
- const SCEV *LDiff = getMinusSCEV(LA, LS);
- const SCEV *RDiff = getMinusSCEV(RA, One);
- if (LDiff == RDiff)
- return getAddExpr(getUMaxExpr(One, LS), LDiff);
- }
- break;
- case ICmpInst::ICMP_EQ:
- // n == 0 ? 1+x : n+x -> umax(n, 1)+x
- if (getTypeSizeInBits(LHS->getType()) <=
- getTypeSizeInBits(U->getType()) &&
- isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isZero()) {
- const SCEV *One = getConstant(U->getType(), 1);
- const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), U->getType());
- const SCEV *LA = getSCEV(U->getOperand(1));
- const SCEV *RA = getSCEV(U->getOperand(2));
- const SCEV *LDiff = getMinusSCEV(LA, One);
- const SCEV *RDiff = getMinusSCEV(RA, LS);
- if (LDiff == RDiff)
- return getAddExpr(getUMaxExpr(One, LS), LDiff);
- }
- break;
- default:
- break;
- }
- }
- default: // We cannot analyze this expression.
- break;
- }
- return getUnknown(V);
- }
- //===----------------------------------------------------------------------===//
- // Iteration Count Computation Code
- //
- unsigned ScalarEvolution::getSmallConstantTripCount(Loop *L) {
- if (BasicBlock *ExitingBB = L->getExitingBlock())
- return getSmallConstantTripCount(L, ExitingBB);
- // No trip count information for multiple exits.
- return 0;
- }
- /// getSmallConstantTripCount - Returns the maximum trip count of this loop as a
- /// normal unsigned value. Returns 0 if the trip count is unknown or not
- /// constant. Will also return 0 if the maximum trip count is very large (>=
- /// 2^32).
- ///
- /// This "trip count" assumes that control exits via ExitingBlock. More
- /// precisely, it is the number of times that control may reach ExitingBlock
- /// before taking the branch. For loops with multiple exits, it may not be the
- /// number times that the loop header executes because the loop may exit
- /// prematurely via another branch.
- unsigned ScalarEvolution::getSmallConstantTripCount(Loop *L,
- BasicBlock *ExitingBlock) {
- assert(ExitingBlock && "Must pass a non-null exiting block!");
- assert(L->isLoopExiting(ExitingBlock) &&
- "Exiting block must actually branch out of the loop!");
- const SCEVConstant *ExitCount =
- dyn_cast<SCEVConstant>(getExitCount(L, ExitingBlock));
- if (!ExitCount)
- return 0;
- ConstantInt *ExitConst = ExitCount->getValue();
- // Guard against huge trip counts.
- if (ExitConst->getValue().getActiveBits() > 32)
- return 0;
- // In case of integer overflow, this returns 0, which is correct.
- return ((unsigned)ExitConst->getZExtValue()) + 1;
- }
- unsigned ScalarEvolution::getSmallConstantTripMultiple(Loop *L) {
- if (BasicBlock *ExitingBB = L->getExitingBlock())
- return getSmallConstantTripMultiple(L, ExitingBB);
- // No trip multiple information for multiple exits.
- return 0;
- }
- /// getSmallConstantTripMultiple - Returns the largest constant divisor of the
- /// trip count of this loop as a normal unsigned value, if possible. This
- /// means that the actual trip count is always a multiple of the returned
- /// value (don't forget the trip count could very well be zero as well!).
- ///
- /// Returns 1 if the trip count is unknown or not guaranteed to be the
- /// multiple of a constant (which is also the case if the trip count is simply
- /// constant, use getSmallConstantTripCount for that case), Will also return 1
- /// if the trip count is very large (>= 2^32).
- ///
- /// As explained in the comments for getSmallConstantTripCount, this assumes
- /// that control exits the loop via ExitingBlock.
- unsigned
- ScalarEvolution::getSmallConstantTripMultiple(Loop *L,
- BasicBlock *ExitingBlock) {
- assert(ExitingBlock && "Must pass a non-null exiting block!");
- assert(L->isLoopExiting(ExitingBlock) &&
- "Exiting block must actually branch out of the loop!");
- const SCEV *ExitCount = getExitCount(L, ExitingBlock);
- if (ExitCount == getCouldNotCompute())
- return 1;
- // Get the trip count from the BE count by adding 1.
- const SCEV *TCMul = getAddExpr(ExitCount,
- getConstant(ExitCount->getType(), 1));
- // FIXME: SCEV distributes multiplication as V1*C1 + V2*C1. We could attempt
- // to factor simple cases.
- if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(TCMul))
- TCMul = Mul->getOperand(0);
- const SCEVConstant *MulC = dyn_cast<SCEVConstant>(TCMul);
- if (!MulC)
- return 1;
- ConstantInt *Result = MulC->getValue();
- // Guard against huge trip counts (this requires checking
- // for zero to handle the case where the trip count == -1 and the
- // addition wraps).
- if (!Result || Result->getValue().getActiveBits() > 32 ||
- Result->getValue().getActiveBits() == 0)
- return 1;
- return (unsigned)Result->getZExtValue();
- }
- // getExitCount - Get the expression for the number of loop iterations for which
- // this loop is guaranteed not to exit via ExitingBlock. Otherwise return
- // SCEVCouldNotCompute.
- const SCEV *ScalarEvolution::getExitCount(Loop *L, BasicBlock *ExitingBlock) {
- return getBackedgeTakenInfo(L).getExact(ExitingBlock, this);
- }
- /// getBackedgeTakenCount - If the specified loop has a predictable
- /// backedge-taken count, return it, otherwise return a SCEVCouldNotCompute
- /// object. The backedge-taken count is the number of times the loop header
- /// will be branched to from within the loop. This is one less than the
- /// trip count of the loop, since it doesn't count the first iteration,
- /// when the header is branched to from outside the loop.
- ///
- /// Note that it is not valid to call this method on a loop without a
- /// loop-invariant backedge-taken count (see
- /// hasLoopInvariantBackedgeTakenCount).
- ///
- const SCEV *ScalarEvolution::getBackedgeTakenCount(const Loop *L) {
- return getBackedgeTakenInfo(L).getExact(this);
- }
- /// getMaxBackedgeTakenCount - Similar to getBackedgeTakenCount, except
- /// return the least SCEV value that is known never to be less than the
- /// actual backedge taken count.
- const SCEV *ScalarEvolution::getMaxBackedgeTakenCount(const Loop *L) {
- return getBackedgeTakenInfo(L).getMax(this);
- }
- /// PushLoopPHIs - Push PHI nodes in the header of the given loop
- /// onto the given Worklist.
- static void
- PushLoopPHIs(const Loop *L, SmallVectorImpl<Instruction *> &Worklist) {
- BasicBlock *Header = L->getHeader();
- // Push all Loop-header PHIs onto the Worklist stack.
- for (BasicBlock::iterator I = Header->begin();
- PHINode *PN = dyn_cast<PHINode>(I); ++I)
- Worklist.push_back(PN);
- }
- const ScalarEvolution::BackedgeTakenInfo &
- ScalarEvolution::getBackedgeTakenInfo(const Loop *L) {
- // Initially insert an invalid entry for this loop. If the insertion
- // succeeds, proceed to actually compute a backedge-taken count and
- // update the value. The temporary CouldNotCompute value tells SCEV
- // code elsewhere that it shouldn't attempt to request a new
- // backedge-taken count, which could result in infinite recursion.
- std::pair<DenseMap<const Loop *, BackedgeTakenInfo>::iterator, bool> Pair =
- BackedgeTakenCounts.insert(std::make_pair(L, BackedgeTakenInfo()));
- if (!Pair.second)
- return Pair.first->second;
- // ComputeBackedgeTakenCount may allocate memory for its result. Inserting it
- // into the BackedgeTakenCounts map transfers ownership. Otherwise, the result
- // must be cleared in this scope.
- BackedgeTakenInfo Result = ComputeBackedgeTakenCount(L);
- if (Result.getExact(this) != getCouldNotCompute()) {
- assert(isLoopInvariant(Result.getExact(this), L) &&
- isLoopInvariant(Result.getMax(this), L) &&
- "Computed backedge-taken count isn't loop invariant for loop!");
- ++NumTripCountsComputed;
- }
- else if (Result.getMax(this) == getCouldNotCompute() &&
- isa<PHINode>(L->getHeader()->begin())) {
- // Only count loops that have phi nodes as not being computable.
- ++NumTripCountsNotComputed;
- }
- // Now that we know more about the trip count for this loop, forget any
- // existing SCEV values for PHI nodes in this loop since they are only
- // conservative estimates made without the benefit of trip count
- // information. This is similar to the code in forgetLoop, except that
- // it handles SCEVUnknown PHI nodes specially.
- if (Result.hasAnyInfo()) {
- SmallVector<Instruction *, 16> Worklist;
- PushLoopPHIs(L, Worklist);
- SmallPtrSet<Instruction *, 8> Visited;
- while (!Worklist.empty()) {
- Instruction *I = Worklist.pop_back_val();
- if (!Visited.insert(I).second)
- continue;
- ValueExprMapType::iterator It =
- ValueExprMap.find_as(static_cast<Value *>(I));
- if (It != ValueExprMap.end()) {
- const SCEV *Old = It->second;
- // SCEVUnknown for a PHI either means that it has an unrecognized
- // structure, or it's a PHI that's in the progress of being computed
- // by createNodeForPHI. In the former case, additional loop trip
- // count information isn't going to change anything. In the later
- // case, createNodeForPHI will perform the necessary updates on its
- // own when it gets to that point.
- if (!isa<PHINode>(I) || !isa<SCEVUnknown>(Old)) {
- forgetMemoizedResults(Old);
- ValueExprMap.erase(It);
- }
- if (PHINode *PN = dyn_cast<PHINode>(I))
- ConstantEvolutionLoopExitValue.erase(PN);
- }
- PushDefUseChildren(I, Worklist);
- }
- }
- // Re-lookup the insert position, since the call to
- // ComputeBackedgeTakenCount above could result in a
- // recusive call to getBackedgeTakenInfo (on a different
- // loop), which would invalidate the iterator computed
- // earlier.
- return BackedgeTakenCounts.find(L)->second = Result;
- }
- /// forgetLoop - This method should be called by the client when it has
- /// changed a loop in a way that may effect ScalarEvolution's ability to
- /// compute a trip count, or if the loop is deleted.
- void ScalarEvolution::forgetLoop(const Loop *L) {
- // Drop any stored trip count value.
- DenseMap<const Loop*, BackedgeTakenInfo>::iterator BTCPos =
- BackedgeTakenCounts.find(L);
- if (BTCPos != BackedgeTakenCounts.end()) {
- BTCPos->second.clear();
- BackedgeTakenCounts.erase(BTCPos);
- }
- // Drop information about expressions based on loop-header PHIs.
- SmallVector<Instruction *, 16> Worklist;
- PushLoopPHIs(L, Worklist);
- SmallPtrSet<Instruction *, 8> Visited;
- while (!Worklist.empty()) {
- Instruction *I = Worklist.pop_back_val();
- if (!Visited.insert(I).second)
- continue;
- ValueExprMapType::iterator It =
- ValueExprMap.find_as(static_cast<Value *>(I));
- if (It != ValueExprMap.end()) {
- forgetMemoizedResults(It->second);
- ValueExprMap.erase(It);
- if (PHINode *PN = dyn_cast<PHINode>(I))
- ConstantEvolutionLoopExitValue.erase(PN);
- }
- PushDefUseChildren(I, Worklist);
- }
- // Forget all contained loops too, to avoid dangling entries in the
- // ValuesAtScopes map.
- for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
- forgetLoop(*I);
- }
- /// forgetValue - This method should be called by the client when it has
- /// changed a value in a way that may effect its value, or which may
- /// disconnect it from a def-use chain linking it to a loop.
- void ScalarEvolution::forgetValue(Value *V) {
- Instruction *I = dyn_cast<Instruction>(V);
- if (!I) return;
- // Drop information about expressions based on loop-header PHIs.
- SmallVector<Instruction *, 16> Worklist;
- Worklist.push_back(I);
- SmallPtrSet<Instruction *, 8> Visited;
- while (!Worklist.empty()) {
- I = Worklist.pop_back_val();
- if (!Visited.insert(I).second)
- continue;
- ValueExprMapType::iterator It =
- ValueExprMap.find_as(static_cast<Value *>(I));
- if (It != ValueExprMap.end()) {
- forgetMemoizedResults(It->second);
- ValueExprMap.erase(It);
- if (PHINode *PN = dyn_cast<PHINode>(I))
- ConstantEvolutionLoopExitValue.erase(PN);
- }
- PushDefUseChildren(I, Worklist);
- }
- }
- /// getExact - Get the exact loop backedge taken count considering all loop
- /// exits. A computable result can only be return for loops with a single exit.
- /// Returning the minimum taken count among all exits is incorrect because one
- /// of the loop's exit limit's may have been skipped. HowFarToZero assumes that
- /// the limit of each loop test is never skipped. This is a valid assumption as
- /// long as the loop exits via that test. For precise results, it is the
- /// caller's responsibility to specify the relevant loop exit using
- /// getExact(ExitingBlock, SE).
- const SCEV *
- ScalarEvolution::BackedgeTakenInfo::getExact(ScalarEvolution *SE) const {
- // If any exits were not computable, the loop is not computable.
- if (!ExitNotTaken.isCompleteList()) return SE->getCouldNotCompute();
- // We need exactly one computable exit.
- if (!ExitNotTaken.ExitingBlock) return SE->getCouldNotCompute();
- assert(ExitNotTaken.ExactNotTaken && "uninitialized not-taken info");
- const SCEV *BECount = nullptr;
- for (const ExitNotTakenInfo *ENT = &ExitNotTaken;
- ENT != nullptr; ENT = ENT->getNextExit()) {
- assert(ENT->ExactNotTaken != SE->getCouldNotCompute() && "bad exit SCEV");
- if (!BECount)
- BECount = ENT->ExactNotTaken;
- else if (BECount != ENT->ExactNotTaken)
- return SE->getCouldNotCompute();
- }
- assert(BECount && "Invalid not taken count for loop exit");
- return BECount;
- }
- /// getExact - Get the exact not taken count for this loop exit.
- const SCEV *
- ScalarEvolution::BackedgeTakenInfo::getExact(BasicBlock *ExitingBlock,
- ScalarEvolution *SE) const {
- for (const ExitNotTakenInfo *ENT = &ExitNotTaken;
- ENT != nullptr; ENT = ENT->getNextExit()) {
- if (ENT->ExitingBlock == ExitingBlock)
- return ENT->ExactNotTaken;
- }
- return SE->getCouldNotCompute();
- }
- /// getMax - Get the max backedge taken count for the loop.
- const SCEV *
- ScalarEvolution::BackedgeTakenInfo::getMax(ScalarEvolution *SE) const {
- return Max ? Max : SE->getCouldNotCompute();
- }
- bool ScalarEvolution::BackedgeTakenInfo::hasOperand(const SCEV *S,
- ScalarEvolution *SE) const {
- if (Max && Max != SE->getCouldNotCompute() && SE->hasOperand(Max, S))
- return true;
- if (!ExitNotTaken.ExitingBlock)
- return false;
- for (const ExitNotTakenInfo *ENT = &ExitNotTaken;
- ENT != nullptr; ENT = ENT->getNextExit()) {
- if (ENT->ExactNotTaken != SE->getCouldNotCompute()
- && SE->hasOperand(ENT->ExactNotTaken, S)) {
- return true;
- }
- }
- return false;
- }
- /// Allocate memory for BackedgeTakenInfo and copy the not-taken count of each
- /// computable exit into a persistent ExitNotTakenInfo array.
- ScalarEvolution::BackedgeTakenInfo::BackedgeTakenInfo(
- SmallVectorImpl< std::pair<BasicBlock *, const SCEV *> > &ExitCounts,
- bool Complete, const SCEV *MaxCount) : Max(MaxCount) {
- if (!Complete)
- ExitNotTaken.setIncomplete();
- unsigned NumExits = ExitCounts.size();
- if (NumExits == 0) return;
- ExitNotTaken.ExitingBlock = ExitCounts[0].first;
- ExitNotTaken.ExactNotTaken = ExitCounts[0].second;
- if (NumExits == 1) return;
- // Handle the rare case of multiple computable exits.
- ExitNotTakenInfo *ENT = new ExitNotTakenInfo[NumExits-1];
- ExitNotTakenInfo *PrevENT = &ExitNotTaken;
- for (unsigned i = 1; i < NumExits; ++i, PrevENT = ENT, ++ENT) {
- PrevENT->setNextExit(ENT);
- ENT->ExitingBlock = ExitCounts[i].first;
- ENT->ExactNotTaken = ExitCounts[i].second;
- }
- }
- /// clear - Invalidate this result and free the ExitNotTakenInfo array.
- void ScalarEvolution::BackedgeTakenInfo::clear() {
- ExitNotTaken.ExitingBlock = nullptr;
- ExitNotTaken.ExactNotTaken = nullptr;
- delete[] ExitNotTaken.getNextExit();
- }
- /// ComputeBackedgeTakenCount - Compute the number of times the backedge
- /// of the specified loop will execute.
- ScalarEvolution::BackedgeTakenInfo
- ScalarEvolution::ComputeBackedgeTakenCount(const Loop *L) {
- SmallVector<BasicBlock *, 8> ExitingBlocks;
- L->getExitingBlocks(ExitingBlocks);
- SmallVector<std::pair<BasicBlock *, const SCEV *>, 4> ExitCounts;
- bool CouldComputeBECount = true;
- BasicBlock *Latch = L->getLoopLatch(); // may be NULL.
- const SCEV *MustExitMaxBECount = nullptr;
- const SCEV *MayExitMaxBECount = nullptr;
- // Compute the ExitLimit for each loop exit. Use this to populate ExitCounts
- // and compute maxBECount.
- for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
- BasicBlock *ExitBB = ExitingBlocks[i];
- ExitLimit EL = ComputeExitLimit(L, ExitBB);
- // 1. For each exit that can be computed, add an entry to ExitCounts.
- // CouldComputeBECount is true only if all exits can be computed.
- if (EL.Exact == getCouldNotCompute())
- // We couldn't compute an exact value for this exit, so
- // we won't be able to compute an exact value for the loop.
- CouldComputeBECount = false;
- else
- ExitCounts.push_back(std::make_pair(ExitBB, EL.Exact));
- // 2. Derive the loop's MaxBECount from each exit's max number of
- // non-exiting iterations. Partition the loop exits into two kinds:
- // LoopMustExits and LoopMayExits.
- //
- // If the exit dominates the loop latch, it is a LoopMustExit otherwise it
- // is a LoopMayExit. If any computable LoopMustExit is found, then
- // MaxBECount is the minimum EL.Max of computable LoopMustExits. Otherwise,
- // MaxBECount is conservatively the maximum EL.Max, where CouldNotCompute is
- // considered greater than any computable EL.Max.
- if (EL.Max != getCouldNotCompute() && Latch &&
- DT->dominates(ExitBB, Latch)) {
- if (!MustExitMaxBECount)
- MustExitMaxBECount = EL.Max;
- else {
- MustExitMaxBECount =
- getUMinFromMismatchedTypes(MustExitMaxBECount, EL.Max);
- }
- } else if (MayExitMaxBECount != getCouldNotCompute()) {
- if (!MayExitMaxBECount || EL.Max == getCouldNotCompute())
- MayExitMaxBECount = EL.Max;
- else {
- MayExitMaxBECount =
- getUMaxFromMismatchedTypes(MayExitMaxBECount, EL.Max);
- }
- }
- }
- const SCEV *MaxBECount = MustExitMaxBECount ? MustExitMaxBECount :
- (MayExitMaxBECount ? MayExitMaxBECount : getCouldNotCompute());
- return BackedgeTakenInfo(ExitCounts, CouldComputeBECount, MaxBECount);
- }
- /// ComputeExitLimit - Compute the number of times the backedge of the specified
- /// loop will execute if it exits via the specified block.
- ScalarEvolution::ExitLimit
- ScalarEvolution::ComputeExitLimit(const Loop *L, BasicBlock *ExitingBlock) {
- // Okay, we've chosen an exiting block. See what condition causes us to
- // exit at this block and remember the exit block and whether all other targets
- // lead to the loop header.
- bool MustExecuteLoopHeader = true;
- BasicBlock *Exit = nullptr;
- for (succ_iterator SI = succ_begin(ExitingBlock), SE = succ_end(ExitingBlock);
- SI != SE; ++SI)
- if (!L->contains(*SI)) {
- if (Exit) // Multiple exit successors.
- return getCouldNotCompute();
- Exit = *SI;
- } else if (*SI != L->getHeader()) {
- MustExecuteLoopHeader = false;
- }
- // At this point, we know we have a conditional branch that determines whether
- // the loop is exited. However, we don't know if the branch is executed each
- // time through the loop. If not, then the execution count of the branch will
- // not be equal to the trip count of the loop.
- //
- // Currently we check for this by checking to see if the Exit branch goes to
- // the loop header. If so, we know it will always execute the same number of
- // times as the loop. We also handle the case where the exit block *is* the
- // loop header. This is common for un-rotated loops.
- //
- // If both of those tests fail, walk up the unique predecessor chain to the
- // header, stopping if there is an edge that doesn't exit the loop. If the
- // header is reached, the execution count of the branch will be equal to the
- // trip count of the loop.
- //
- // More extensive analysis could be done to handle more cases here.
- //
- if (!MustExecuteLoopHeader && ExitingBlock != L->getHeader()) {
- // The simple checks failed, try climbing the unique predecessor chain
- // up to the header.
- bool Ok = false;
- for (BasicBlock *BB = ExitingBlock; BB; ) {
- BasicBlock *Pred = BB->getUniquePredecessor();
- if (!Pred)
- return getCouldNotCompute();
- TerminatorInst *PredTerm = Pred->getTerminator();
- for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i) {
- BasicBlock *PredSucc = PredTerm->getSuccessor(i);
- if (PredSucc == BB)
- continue;
- // If the predecessor has a successor that isn't BB and isn't
- // outside the loop, assume the worst.
- if (L->contains(PredSucc))
- return getCouldNotCompute();
- }
- if (Pred == L->getHeader()) {
- Ok = true;
- break;
- }
- BB = Pred;
- }
- if (!Ok)
- return getCouldNotCompute();
- }
- bool IsOnlyExit = (L->getExitingBlock() != nullptr);
- TerminatorInst *Term = ExitingBlock->getTerminator();
- if (BranchInst *BI = dyn_cast<BranchInst>(Term)) {
- assert(BI->isConditional() && "If unconditional, it can't be in loop!");
- // Proceed to the next level to examine the exit condition expression.
- return ComputeExitLimitFromCond(L, BI->getCondition(), BI->getSuccessor(0),
- BI->getSuccessor(1),
- /*ControlsExit=*/IsOnlyExit);
- }
- if (SwitchInst *SI = dyn_cast<SwitchInst>(Term))
- return ComputeExitLimitFromSingleExitSwitch(L, SI, Exit,
- /*ControlsExit=*/IsOnlyExit);
- return getCouldNotCompute();
- }
- /// ComputeExitLimitFromCond - Compute the number of times the
- /// backedge of the specified loop will execute if its exit condition
- /// were a conditional branch of ExitCond, TBB, and FBB.
- ///
- /// @param ControlsExit is true if ExitCond directly controls the exit
- /// branch. In this case, we can assume that the loop exits only if the
- /// condition is true and can infer that failing to meet the condition prior to
- /// integer wraparound results in undefined behavior.
- ScalarEvolution::ExitLimit
- ScalarEvolution::ComputeExitLimitFromCond(const Loop *L,
- Value *ExitCond,
- BasicBlock *TBB,
- BasicBlock *FBB,
- bool ControlsExit) {
- // Check if the controlling expression for this loop is an And or Or.
- if (BinaryOperator *BO = dyn_cast<BinaryOperator>(ExitCond)) {
- if (BO->getOpcode() == Instruction::And) {
- // Recurse on the operands of the and.
- bool EitherMayExit = L->contains(TBB);
- ExitLimit EL0 = ComputeExitLimitFromCond(L, BO->getOperand(0), TBB, FBB,
- ControlsExit && !EitherMayExit);
- ExitLimit EL1 = ComputeExitLimitFromCond(L, BO->getOperand(1), TBB, FBB,
- ControlsExit && !EitherMayExit);
- const SCEV *BECount = getCouldNotCompute();
- const SCEV *MaxBECount = getCouldNotCompute();
- if (EitherMayExit) {
- // Both conditions must be true for the loop to continue executing.
- // Choose the less conservative count.
- if (EL0.Exact == getCouldNotCompute() ||
- EL1.Exact == getCouldNotCompute())
- BECount = getCouldNotCompute();
- else
- BECount = getUMinFromMismatchedTypes(EL0.Exact, EL1.Exact);
- if (EL0.Max == getCouldNotCompute())
- MaxBECount = EL1.Max;
- else if (EL1.Max == getCouldNotCompute())
- MaxBECount = EL0.Max;
- else
- MaxBECount = getUMinFromMismatchedTypes(EL0.Max, EL1.Max);
- } else {
- // Both conditions must be true at the same time for the loop to exit.
- // For now, be conservative.
- assert(L->contains(FBB) && "Loop block has no successor in loop!");
- if (EL0.Max == EL1.Max)
- MaxBECount = EL0.Max;
- if (EL0.Exact == EL1.Exact)
- BECount = EL0.Exact;
- }
- return ExitLimit(BECount, MaxBECount);
- }
- if (BO->getOpcode() == Instruction::Or) {
- // Recurse on the operands of the or.
- bool EitherMayExit = L->contains(FBB);
- ExitLimit EL0 = ComputeExitLimitFromCond(L, BO->getOperand(0), TBB, FBB,
- ControlsExit && !EitherMayExit);
- ExitLimit EL1 = ComputeExitLimitFromCond(L, BO->getOperand(1), TBB, FBB,
- ControlsExit && !EitherMayExit);
- const SCEV *BECount = getCouldNotCompute();
- const SCEV *MaxBECount = getCouldNotCompute();
- if (EitherMayExit) {
- // Both conditions must be false for the loop to continue executing.
- // Choose the less conservative count.
- if (EL0.Exact == getCouldNotCompute() ||
- EL1.Exact == getCouldNotCompute())
- BECount = getCouldNotCompute();
- else
- BECount = getUMinFromMismatchedTypes(EL0.Exact, EL1.Exact);
- if (EL0.Max == getCouldNotCompute())
- MaxBECount = EL1.Max;
- else if (EL1.Max == getCouldNotCompute())
- MaxBECount = EL0.Max;
- else
- MaxBECount = getUMinFromMismatchedTypes(EL0.Max, EL1.Max);
- } else {
- // Both conditions must be false at the same time for the loop to exit.
- // For now, be conservative.
- assert(L->contains(TBB) && "Loop block has no successor in loop!");
- if (EL0.Max == EL1.Max)
- MaxBECount = EL0.Max;
- if (EL0.Exact == EL1.Exact)
- BECount = EL0.Exact;
- }
- return ExitLimit(BECount, MaxBECount);
- }
- }
- // With an icmp, it may be feasible to compute an exact backedge-taken count.
- // Proceed to the next level to examine the icmp.
- if (ICmpInst *ExitCondICmp = dyn_cast<ICmpInst>(ExitCond))
- return ComputeExitLimitFromICmp(L, ExitCondICmp, TBB, FBB, ControlsExit);
- // Check for a constant condition. These are normally stripped out by
- // SimplifyCFG, but ScalarEvolution may be used by a pass which wishes to
- // preserve the CFG and is temporarily leaving constant conditions
- // in place.
- if (ConstantInt *CI = dyn_cast<ConstantInt>(ExitCond)) {
- if (L->contains(FBB) == !CI->getZExtValue())
- // The backedge is always taken.
- return getCouldNotCompute();
- else
- // The backedge is never taken.
- return getConstant(CI->getType(), 0);
- }
- // If it's not an integer or pointer comparison then compute it the hard way.
- return ComputeExitCountExhaustively(L, ExitCond, !L->contains(TBB));
- }
- /// ComputeExitLimitFromICmp - Compute the number of times the
- /// backedge of the specified loop will execute if its exit condition
- /// were a conditional branch of the ICmpInst ExitCond, TBB, and FBB.
- ScalarEvolution::ExitLimit
- ScalarEvolution::ComputeExitLimitFromICmp(const Loop *L,
- ICmpInst *ExitCond,
- BasicBlock *TBB,
- BasicBlock *FBB,
- bool ControlsExit) {
- // If the condition was exit on true, convert the condition to exit on false
- ICmpInst::Predicate Cond;
- if (!L->contains(FBB))
- Cond = ExitCond->getPredicate();
- else
- Cond = ExitCond->getInversePredicate();
- // Handle common loops like: for (X = "string"; *X; ++X)
- if (LoadInst *LI = dyn_cast<LoadInst>(ExitCond->getOperand(0)))
- if (Constant *RHS = dyn_cast<Constant>(ExitCond->getOperand(1))) {
- ExitLimit ItCnt =
- ComputeLoadConstantCompareExitLimit(LI, RHS, L, Cond);
- if (ItCnt.hasAnyInfo())
- return ItCnt;
- }
- const SCEV *LHS = getSCEV(ExitCond->getOperand(0));
- const SCEV *RHS = getSCEV(ExitCond->getOperand(1));
- // Try to evaluate any dependencies out of the loop.
- LHS = getSCEVAtScope(LHS, L);
- RHS = getSCEVAtScope(RHS, L);
- // At this point, we would like to compute how many iterations of the
- // loop the predicate will return true for these inputs.
- if (isLoopInvariant(LHS, L) && !isLoopInvariant(RHS, L)) {
- // If there is a loop-invariant, force it into the RHS.
- std::swap(LHS, RHS);
- Cond = ICmpInst::getSwappedPredicate(Cond);
- }
- // Simplify the operands before analyzing them.
- (void)SimplifyICmpOperands(Cond, LHS, RHS);
- // If we have a comparison of a chrec against a constant, try to use value
- // ranges to answer this query.
- if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS))
- if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS))
- if (AddRec->getLoop() == L) {
- // Form the constant range.
- ConstantRange CompRange(
- ICmpInst::makeConstantRange(Cond, RHSC->getValue()->getValue()));
- const SCEV *Ret = AddRec->getNumIterationsInRange(CompRange, *this);
- if (!isa<SCEVCouldNotCompute>(Ret)) return Ret;
- }
- // HLSL Change - begin
- // Try to compute the value exhaustively *right now*. Before trying the more pessimistic
- // partial evaluation.
- const SCEV *AggresiveResult = ComputeExitCountExhaustively(L, ExitCond, !L->contains(TBB));
- if (AggresiveResult != getCouldNotCompute())
- return AggresiveResult;
- // HLSL Change - end
- switch (Cond) {
- case ICmpInst::ICMP_NE: { // while (X != Y)
- // Convert to: while (X-Y != 0)
- ExitLimit EL = HowFarToZero(getMinusSCEV(LHS, RHS), L, ControlsExit);
- if (EL.hasAnyInfo()) return EL;
- break;
- }
- case ICmpInst::ICMP_EQ: { // while (X == Y)
- // Convert to: while (X-Y == 0)
- ExitLimit EL = HowFarToNonZero(getMinusSCEV(LHS, RHS), L);
- if (EL.hasAnyInfo()) return EL;
- break;
- }
- case ICmpInst::ICMP_SLT:
- case ICmpInst::ICMP_ULT: { // while (X < Y)
- bool IsSigned = Cond == ICmpInst::ICMP_SLT;
- ExitLimit EL = HowManyLessThans(LHS, RHS, L, IsSigned, ControlsExit);
- if (EL.hasAnyInfo()) return EL;
- break;
- }
- case ICmpInst::ICMP_SGT:
- case ICmpInst::ICMP_UGT: { // while (X > Y)
- bool IsSigned = Cond == ICmpInst::ICMP_SGT;
- ExitLimit EL = HowManyGreaterThans(LHS, RHS, L, IsSigned, ControlsExit);
- if (EL.hasAnyInfo()) return EL;
- break;
- }
- default:
- #if 0
- dbgs() << "ComputeBackedgeTakenCount ";
- if (ExitCond->getOperand(0)->getType()->isUnsigned())
- dbgs() << "[unsigned] ";
- dbgs() << *LHS << " "
- << Instruction::getOpcodeName(Instruction::ICmp)
- << " " << *RHS << "\n";
- #endif
- break;
- }
- // return ComputeExitCountExhaustively(L, ExitCond, !L->contains(TBB)); // HLSL Change
- return getCouldNotCompute(); // HLSL Change - We already tried the exhaustive approach earlier, so don't try again and just give up.
- }
- ScalarEvolution::ExitLimit
- ScalarEvolution::ComputeExitLimitFromSingleExitSwitch(const Loop *L,
- SwitchInst *Switch,
- BasicBlock *ExitingBlock,
- bool ControlsExit) {
- assert(!L->contains(ExitingBlock) && "Not an exiting block!");
- // Give up if the exit is the default dest of a switch.
- if (Switch->getDefaultDest() == ExitingBlock)
- return getCouldNotCompute();
- assert(L->contains(Switch->getDefaultDest()) &&
- "Default case must not exit the loop!");
- const SCEV *LHS = getSCEVAtScope(Switch->getCondition(), L);
- const SCEV *RHS = getConstant(Switch->findCaseDest(ExitingBlock));
- // while (X != Y) --> while (X-Y != 0)
- ExitLimit EL = HowFarToZero(getMinusSCEV(LHS, RHS), L, ControlsExit);
- if (EL.hasAnyInfo())
- return EL;
- return getCouldNotCompute();
- }
- static ConstantInt *
- EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C,
- ScalarEvolution &SE) {
- const SCEV *InVal = SE.getConstant(C);
- const SCEV *Val = AddRec->evaluateAtIteration(InVal, SE);
- assert(isa<SCEVConstant>(Val) &&
- "Evaluation of SCEV at constant didn't fold correctly?");
- return cast<SCEVConstant>(Val)->getValue();
- }
- /// ComputeLoadConstantCompareExitLimit - Given an exit condition of
- /// 'icmp op load X, cst', try to see if we can compute the backedge
- /// execution count.
- ScalarEvolution::ExitLimit
- ScalarEvolution::ComputeLoadConstantCompareExitLimit(
- LoadInst *LI,
- Constant *RHS,
- const Loop *L,
- ICmpInst::Predicate predicate) {
- if (LI->isVolatile()) return getCouldNotCompute();
- // Check to see if the loaded pointer is a getelementptr of a global.
- // TODO: Use SCEV instead of manually grubbing with GEPs.
- GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0));
- if (!GEP) return getCouldNotCompute();
- // Make sure that it is really a constant global we are gepping, with an
- // initializer, and make sure the first IDX is really 0.
- GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0));
- if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer() ||
- GEP->getNumOperands() < 3 || !isa<Constant>(GEP->getOperand(1)) ||
- !cast<Constant>(GEP->getOperand(1))->isNullValue())
- return getCouldNotCompute();
- // Okay, we allow one non-constant index into the GEP instruction.
- Value *VarIdx = nullptr;
- std::vector<Constant*> Indexes;
- unsigned VarIdxNum = 0;
- for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i)
- if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) {
- Indexes.push_back(CI);
- } else if (!isa<ConstantInt>(GEP->getOperand(i))) {
- if (VarIdx) return getCouldNotCompute(); // Multiple non-constant idx's.
- VarIdx = GEP->getOperand(i);
- VarIdxNum = i-2;
- Indexes.push_back(nullptr);
- }
- // Loop-invariant loads may be a byproduct of loop optimization. Skip them.
- if (!VarIdx)
- return getCouldNotCompute();
- // Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant.
- // Check to see if X is a loop variant variable value now.
- const SCEV *Idx = getSCEV(VarIdx);
- Idx = getSCEVAtScope(Idx, L);
- // We can only recognize very limited forms of loop index expressions, in
- // particular, only affine AddRec's like {C1,+,C2}.
- const SCEVAddRecExpr *IdxExpr = dyn_cast<SCEVAddRecExpr>(Idx);
- if (!IdxExpr || !IdxExpr->isAffine() || isLoopInvariant(IdxExpr, L) ||
- !isa<SCEVConstant>(IdxExpr->getOperand(0)) ||
- !isa<SCEVConstant>(IdxExpr->getOperand(1)))
- return getCouldNotCompute();
- unsigned MaxSteps = MaxBruteForceIterations;
- for (unsigned IterationNum = 0; IterationNum != MaxSteps; ++IterationNum) {
- ConstantInt *ItCst = ConstantInt::get(
- cast<IntegerType>(IdxExpr->getType()), IterationNum);
- ConstantInt *Val = EvaluateConstantChrecAtConstant(IdxExpr, ItCst, *this);
- // Form the GEP offset.
- Indexes[VarIdxNum] = Val;
- Constant *Result = ConstantFoldLoadThroughGEPIndices(GV->getInitializer(),
- Indexes);
- if (!Result) break; // Cannot compute!
- // Evaluate the condition for this iteration.
- Result = ConstantExpr::getICmp(predicate, Result, RHS);
- if (!isa<ConstantInt>(Result)) break; // Couldn't decide for sure
- if (cast<ConstantInt>(Result)->getValue().isMinValue()) {
- #if 0
- dbgs() << "\n***\n*** Computed loop count " << *ItCst
- << "\n*** From global " << *GV << "*** BB: " << *L->getHeader()
- << "***\n";
- #endif
- ++NumArrayLenItCounts;
- return getConstant(ItCst); // Found terminating iteration!
- }
- }
- return getCouldNotCompute();
- }
- /// CanConstantFold - Return true if we can constant fold an instruction of the
- /// specified type, assuming that all operands were constants.
- static bool CanConstantFold(const Instruction *I) {
- if (isa<BinaryOperator>(I) || isa<CmpInst>(I) ||
- isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) ||
- isa<LoadInst>(I))
- return true;
- if (const CallInst *CI = dyn_cast<CallInst>(I))
- if (const Function *F = CI->getCalledFunction())
- return canConstantFoldCallTo(F);
- return false;
- }
- /// Determine whether this instruction can constant evolve within this loop
- /// assuming its operands can all constant evolve.
- static bool canConstantEvolve(Instruction *I, const Loop *L) {
- // An instruction outside of the loop can't be derived from a loop PHI.
- if (!L->contains(I)) return false;
- if (isa<PHINode>(I)) {
- // We don't currently keep track of the control flow needed to evaluate
- // PHIs, so we cannot handle PHIs inside of loops.
- return L->getHeader() == I->getParent();
- }
- // If we won't be able to constant fold this expression even if the operands
- // are constants, bail early.
- return CanConstantFold(I);
- }
- /// getConstantEvolvingPHIOperands - Implement getConstantEvolvingPHI by
- /// recursing through each instruction operand until reaching a loop header phi.
- static PHINode *
- getConstantEvolvingPHIOperands(Instruction *UseInst, const Loop *L,
- DxilValueCache *DVC, // HLSL Change
- DenseMap<Instruction *, PHINode *> &PHIMap) {
- // Otherwise, we can evaluate this instruction if all of its operands are
- // constant or derived from a PHI node themselves.
- PHINode *PHI = nullptr;
- for (Instruction::op_iterator OpI = UseInst->op_begin(),
- OpE = UseInst->op_end(); OpI != OpE; ++OpI) {
- if (isa<Constant>(*OpI)) continue;
- // HLSL Change begin
- if (DVC->GetConstValue(*OpI)) continue;
- // HLSL Change end
- Instruction *OpInst = dyn_cast<Instruction>(*OpI);
- if (!OpInst || !canConstantEvolve(OpInst, L)) return nullptr;
- PHINode *P = dyn_cast<PHINode>(OpInst);
- if (!P)
- // If this operand is already visited, reuse the prior result.
- // We may have P != PHI if this is the deepest point at which the
- // inconsistent paths meet.
- P = PHIMap.lookup(OpInst);
- if (!P) {
- // Recurse and memoize the results, whether a phi is found or not.
- // This recursive call invalidates pointers into PHIMap.
- //P = getConstantEvolvingPHIOperands(OpInst, L, PHIMap); // HLSL Change
- P = getConstantEvolvingPHIOperands(OpInst, L, DVC, PHIMap); // HLSL Change - Pass DVC
- PHIMap[OpInst] = P;
- }
- if (!P)
- return nullptr; // Not evolving from PHI
- if (PHI && PHI != P)
- return nullptr; // Evolving from multiple different PHIs.
- PHI = P;
- }
- // This is a expression evolving from a constant PHI!
- return PHI;
- }
- /// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node
- /// in the loop that V is derived from. We allow arbitrary operations along the
- /// way, but the operands of an operation must either be constants or a value
- /// derived from a constant PHI. If this expression does not fit with these
- /// constraints, return null.
- // static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) { // HLSL Change
- static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L, DxilValueCache *DVC) { // HLSL Change
- Instruction *I = dyn_cast<Instruction>(V);
- if (!I || !canConstantEvolve(I, L)) return nullptr;
- if (PHINode *PN = dyn_cast<PHINode>(I)) {
- return PN;
- }
- // Record non-constant instructions contained by the loop.
- DenseMap<Instruction *, PHINode *> PHIMap;
- // return getConstantEvolvingPHIOperands(I, L, PHIMap); // HLSL Change
- return getConstantEvolvingPHIOperands(I, L, DVC, PHIMap); // HLSL Change
- }
- /// EvaluateExpression - Given an expression that passes the
- /// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node
- /// in the loop has the value PHIVal. If we can't fold this expression for some
- /// reason, return null.
- static Constant *EvaluateExpression(Value *V, const Loop *L,
- DenseMap<Instruction *, Constant *> &Vals,
- const DataLayout &DL,
- const TargetLibraryInfo *TLI) {
- // Convenient constant check, but redundant for recursive calls.
- if (Constant *C = dyn_cast<Constant>(V)) return C;
- Instruction *I = dyn_cast<Instruction>(V);
- if (!I) return nullptr;
- if (Constant *C = Vals.lookup(I)) return C;
- // An instruction inside the loop depends on a value outside the loop that we
- // weren't given a mapping for, or a value such as a call inside the loop.
- if (!canConstantEvolve(I, L)) return nullptr;
- // An unmapped PHI can be due to a branch or another loop inside this loop,
- // or due to this not being the initial iteration through a loop where we
- // couldn't compute the evolution of this particular PHI last time.
- if (isa<PHINode>(I)) return nullptr;
- std::vector<Constant*> Operands(I->getNumOperands());
- for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
- Instruction *Operand = dyn_cast<Instruction>(I->getOperand(i));
- if (!Operand) {
- Operands[i] = dyn_cast<Constant>(I->getOperand(i));
- if (!Operands[i]) return nullptr;
- continue;
- }
- Constant *C = EvaluateExpression(Operand, L, Vals, DL, TLI);
- Vals[Operand] = C;
- if (!C) return nullptr;
- Operands[i] = C;
- }
- if (CmpInst *CI = dyn_cast<CmpInst>(I))
- return ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0],
- Operands[1], DL, TLI);
- if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
- if (!LI->isVolatile())
- return ConstantFoldLoadFromConstPtr(Operands[0], DL);
- }
- return ConstantFoldInstOperands(I->getOpcode(), I->getType(), Operands, DL,
- TLI);
- }
- /// getConstantEvolutionLoopExitValue - If we know that the specified Phi is
- /// in the header of its containing loop, we know the loop executes a
- /// constant number of times, and the PHI node is just a recurrence
- /// involving constants, fold it.
- Constant *
- ScalarEvolution::getConstantEvolutionLoopExitValue(PHINode *PN,
- const APInt &BEs,
- const Loop *L) {
- DenseMap<PHINode*, Constant*>::const_iterator I =
- ConstantEvolutionLoopExitValue.find(PN);
- if (I != ConstantEvolutionLoopExitValue.end())
- return I->second;
- if (BEs.ugt(MaxBruteForceIterations))
- return ConstantEvolutionLoopExitValue[PN] = nullptr; // Not going to evaluate it.
- Constant *&RetVal = ConstantEvolutionLoopExitValue[PN];
- DenseMap<Instruction *, Constant *> CurrentIterVals;
- BasicBlock *Header = L->getHeader();
- assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!");
- // Since the loop is canonicalized, the PHI node must have two entries. One
- // entry must be a constant (coming in from outside of the loop), and the
- // second must be derived from the same PHI.
- bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1));
- PHINode *PHI = nullptr;
- for (BasicBlock::iterator I = Header->begin();
- (PHI = dyn_cast<PHINode>(I)); ++I) {
- Constant *StartCST =
- dyn_cast<Constant>(PHI->getIncomingValue(!SecondIsBackedge));
- if (!StartCST) continue;
- CurrentIterVals[PHI] = StartCST;
- }
- if (!CurrentIterVals.count(PN))
- return RetVal = nullptr;
- Value *BEValue = PN->getIncomingValue(SecondIsBackedge);
- // Execute the loop symbolically to determine the exit value.
- if (BEs.getActiveBits() >= 32)
- return RetVal = nullptr; // More than 2^32-1 iterations?? Not doing it!
- unsigned NumIterations = BEs.getZExtValue(); // must be in range
- unsigned IterationNum = 0;
- const DataLayout &DL = F->getParent()->getDataLayout();
- for (; ; ++IterationNum) {
- if (IterationNum == NumIterations)
- return RetVal = CurrentIterVals[PN]; // Got exit value!
- // Compute the value of the PHIs for the next iteration.
- // EvaluateExpression adds non-phi values to the CurrentIterVals map.
- DenseMap<Instruction *, Constant *> NextIterVals;
- Constant *NextPHI =
- EvaluateExpression(BEValue, L, CurrentIterVals, DL, TLI);
- if (!NextPHI)
- return nullptr; // Couldn't evaluate!
- NextIterVals[PN] = NextPHI;
- bool StoppedEvolving = NextPHI == CurrentIterVals[PN];
- // Also evaluate the other PHI nodes. However, we don't get to stop if we
- // cease to be able to evaluate one of them or if they stop evolving,
- // because that doesn't necessarily prevent us from computing PN.
- SmallVector<std::pair<PHINode *, Constant *>, 8> PHIsToCompute;
- for (DenseMap<Instruction *, Constant *>::const_iterator
- I = CurrentIterVals.begin(), E = CurrentIterVals.end(); I != E; ++I){
- PHINode *PHI = dyn_cast<PHINode>(I->first);
- if (!PHI || PHI == PN || PHI->getParent() != Header) continue;
- PHIsToCompute.push_back(std::make_pair(PHI, I->second));
- }
- // We use two distinct loops because EvaluateExpression may invalidate any
- // iterators into CurrentIterVals.
- for (SmallVectorImpl<std::pair<PHINode *, Constant*> >::const_iterator
- I = PHIsToCompute.begin(), E = PHIsToCompute.end(); I != E; ++I) {
- PHINode *PHI = I->first;
- Constant *&NextPHI = NextIterVals[PHI];
- if (!NextPHI) { // Not already computed.
- Value *BEValue = PHI->getIncomingValue(SecondIsBackedge);
- NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, TLI);
- }
- if (NextPHI != I->second)
- StoppedEvolving = false;
- }
- // If all entries in CurrentIterVals == NextIterVals then we can stop
- // iterating, the loop can't continue to change.
- if (StoppedEvolving)
- return RetVal = CurrentIterVals[PN];
- CurrentIterVals.swap(NextIterVals);
- }
- }
- /// ComputeExitCountExhaustively - If the loop is known to execute a
- /// constant number of times (the condition evolves only from constants),
- /// try to evaluate a few iterations of the loop until we get the exit
- /// condition gets a value of ExitWhen (true or false). If we cannot
- /// evaluate the trip count of the loop, return getCouldNotCompute().
- const SCEV *ScalarEvolution::ComputeExitCountExhaustively(const Loop *L,
- Value *Cond,
- bool ExitWhen) {
- // PHINode *PN = getConstantEvolvingPHI(Cond, L); // HLSL Change
- PHINode *PN = getConstantEvolvingPHI(Cond, L, &getAnalysis<DxilValueCache>()); // HLSL Change
- if (!PN) return getCouldNotCompute();
- // If the loop is canonicalized, the PHI will have exactly two entries.
- // That's the only form we support here.
- if (PN->getNumIncomingValues() != 2) return getCouldNotCompute();
- DenseMap<Instruction *, Constant *> CurrentIterVals;
- BasicBlock *Header = L->getHeader();
- assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!");
- // One entry must be a constant (coming in from outside of the loop), and the
- // second must be derived from the same PHI.
- bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1));
- PHINode *PHI = nullptr;
- for (BasicBlock::iterator I = Header->begin();
- (PHI = dyn_cast<PHINode>(I)); ++I) {
- Constant *StartCST =
- dyn_cast<Constant>(PHI->getIncomingValue(!SecondIsBackedge));
- // HLSL Change begin
- // If we don't have a constant, try getting a constant from the value cache.
- if (!StartCST)
- if (Constant *C = getAnalysis<DxilValueCache>().GetConstValue(PHI->getIncomingValue(!SecondIsBackedge)))
- StartCST = C;
- // HLSL Change end
- if (!StartCST) continue;
- CurrentIterVals[PHI] = StartCST;
- }
- if (!CurrentIterVals.count(PN))
- return getCouldNotCompute();
- // HLSL Change begin
- SmallVector<std::pair<Instruction *, Constant *>, 4> KnownInvariantOps;
- if (Instruction *CondI = dyn_cast<Instruction>(Cond)) {
- SmallVector<Instruction *, 4> Worklist;
- DxilValueCache *DVC = &getAnalysis<DxilValueCache>();
- Worklist.push_back(CondI);
- while (Worklist.size()) {
- Instruction *I = Worklist.pop_back_val();
- if (Constant *C = DVC->GetConstValue(I)) {
- KnownInvariantOps.push_back({ I, C });
- }
- else if (CurrentIterVals.count(I)) {
- continue;
- }
- else if (L->contains(I)) {
- for (Use &U : I->operands()) {
- if (Instruction *OpI = dyn_cast<Instruction>(U.get())) {
- Worklist.push_back(OpI);
- }
- }
- }
- }
- }
- // HLSL Change end
- // Okay, we find a PHI node that defines the trip count of this loop. Execute
- // the loop symbolically to determine when the condition gets a value of
- // "ExitWhen".
- unsigned MaxIterations = MaxBruteForceIterations; // Limit analysis.
- const DataLayout &DL = F->getParent()->getDataLayout();
- for (unsigned IterationNum = 0; IterationNum != MaxIterations;++IterationNum){
- // HLSL Change begin
- for (std::pair<Instruction *, Constant *> &Pair : KnownInvariantOps)
- CurrentIterVals[Pair.first] = Pair.second;
- // HLSL Change end
- ConstantInt *CondVal = dyn_cast_or_null<ConstantInt>(
- EvaluateExpression(Cond, L, CurrentIterVals, DL, TLI));
- // Couldn't symbolically evaluate.
- if (!CondVal) return getCouldNotCompute();
- if (CondVal->getValue() == uint64_t(ExitWhen)) {
- ++NumBruteForceTripCountsComputed;
- return getConstant(Type::getInt32Ty(getContext()), IterationNum);
- }
- // Update all the PHI nodes for the next iteration.
- DenseMap<Instruction *, Constant *> NextIterVals;
- // Create a list of which PHIs we need to compute. We want to do this before
- // calling EvaluateExpression on them because that may invalidate iterators
- // into CurrentIterVals.
- SmallVector<PHINode *, 8> PHIsToCompute;
- for (DenseMap<Instruction *, Constant *>::const_iterator
- I = CurrentIterVals.begin(), E = CurrentIterVals.end(); I != E; ++I){
- PHINode *PHI = dyn_cast<PHINode>(I->first);
- if (!PHI || PHI->getParent() != Header) continue;
- PHIsToCompute.push_back(PHI);
- }
- for (SmallVectorImpl<PHINode *>::const_iterator I = PHIsToCompute.begin(),
- E = PHIsToCompute.end(); I != E; ++I) {
- PHINode *PHI = *I;
- Constant *&NextPHI = NextIterVals[PHI];
- if (NextPHI) continue; // Already computed!
- Value *BEValue = PHI->getIncomingValue(SecondIsBackedge);
- NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, TLI);
- }
- CurrentIterVals.swap(NextIterVals);
- }
- // Too many iterations were needed to evaluate.
- return getCouldNotCompute();
- }
- /// getSCEVAtScope - Return a SCEV expression for the specified value
- /// at the specified scope in the program. The L value specifies a loop
- /// nest to evaluate the expression at, where null is the top-level or a
- /// specified loop is immediately inside of the loop.
- ///
- /// This method can be used to compute the exit value for a variable defined
- /// in a loop by querying what the value will hold in the parent loop.
- ///
- /// In the case that a relevant loop exit value cannot be computed, the
- /// original value V is returned.
- const SCEV *ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) {
- // Check to see if we've folded this expression at this loop before.
- SmallVector<std::pair<const Loop *, const SCEV *>, 2> &Values = ValuesAtScopes[V];
- for (unsigned u = 0; u < Values.size(); u++) {
- if (Values[u].first == L)
- return Values[u].second ? Values[u].second : V;
- }
- Values.push_back(std::make_pair(L, static_cast<const SCEV *>(nullptr)));
- // Otherwise compute it.
- const SCEV *C = computeSCEVAtScope(V, L);
- SmallVector<std::pair<const Loop *, const SCEV *>, 2> &Values2 = ValuesAtScopes[V];
- for (unsigned u = Values2.size(); u > 0; u--) {
- if (Values2[u - 1].first == L) {
- Values2[u - 1].second = C;
- break;
- }
- }
- return C;
- }
- /// This builds up a Constant using the ConstantExpr interface. That way, we
- /// will return Constants for objects which aren't represented by a
- /// SCEVConstant, because SCEVConstant is restricted to ConstantInt.
- /// Returns NULL if the SCEV isn't representable as a Constant.
- static Constant *BuildConstantFromSCEV(const SCEV *V) {
- switch (static_cast<SCEVTypes>(V->getSCEVType())) {
- case scCouldNotCompute:
- case scAddRecExpr:
- break;
- case scConstant:
- return cast<SCEVConstant>(V)->getValue();
- case scUnknown:
- return dyn_cast<Constant>(cast<SCEVUnknown>(V)->getValue());
- case scSignExtend: {
- const SCEVSignExtendExpr *SS = cast<SCEVSignExtendExpr>(V);
- if (Constant *CastOp = BuildConstantFromSCEV(SS->getOperand()))
- return ConstantExpr::getSExt(CastOp, SS->getType());
- break;
- }
- case scZeroExtend: {
- const SCEVZeroExtendExpr *SZ = cast<SCEVZeroExtendExpr>(V);
- if (Constant *CastOp = BuildConstantFromSCEV(SZ->getOperand()))
- return ConstantExpr::getZExt(CastOp, SZ->getType());
- break;
- }
- case scTruncate: {
- const SCEVTruncateExpr *ST = cast<SCEVTruncateExpr>(V);
- if (Constant *CastOp = BuildConstantFromSCEV(ST->getOperand()))
- return ConstantExpr::getTrunc(CastOp, ST->getType());
- break;
- }
- case scAddExpr: {
- const SCEVAddExpr *SA = cast<SCEVAddExpr>(V);
- if (Constant *C = BuildConstantFromSCEV(SA->getOperand(0))) {
- if (PointerType *PTy = dyn_cast<PointerType>(C->getType())) {
- unsigned AS = PTy->getAddressSpace();
- Type *DestPtrTy = Type::getInt8PtrTy(C->getContext(), AS);
- C = ConstantExpr::getBitCast(C, DestPtrTy);
- }
- for (unsigned i = 1, e = SA->getNumOperands(); i != e; ++i) {
- Constant *C2 = BuildConstantFromSCEV(SA->getOperand(i));
- if (!C2) return nullptr;
- // First pointer!
- if (!C->getType()->isPointerTy() && C2->getType()->isPointerTy()) {
- unsigned AS = C2->getType()->getPointerAddressSpace();
- std::swap(C, C2);
- Type *DestPtrTy = Type::getInt8PtrTy(C->getContext(), AS);
- // The offsets have been converted to bytes. We can add bytes to an
- // i8* by GEP with the byte count in the first index.
- C = ConstantExpr::getBitCast(C, DestPtrTy);
- }
- // Don't bother trying to sum two pointers. We probably can't
- // statically compute a load that results from it anyway.
- if (C2->getType()->isPointerTy())
- return nullptr;
- if (PointerType *PTy = dyn_cast<PointerType>(C->getType())) {
- if (PTy->getElementType()->isStructTy())
- C2 = ConstantExpr::getIntegerCast(
- C2, Type::getInt32Ty(C->getContext()), true);
- C = ConstantExpr::getGetElementPtr(PTy->getElementType(), C, C2);
- } else
- C = ConstantExpr::getAdd(C, C2);
- }
- return C;
- }
- break;
- }
- case scMulExpr: {
- const SCEVMulExpr *SM = cast<SCEVMulExpr>(V);
- if (Constant *C = BuildConstantFromSCEV(SM->getOperand(0))) {
- // Don't bother with pointers at all.
- if (C->getType()->isPointerTy()) return nullptr;
- for (unsigned i = 1, e = SM->getNumOperands(); i != e; ++i) {
- Constant *C2 = BuildConstantFromSCEV(SM->getOperand(i));
- if (!C2 || C2->getType()->isPointerTy()) return nullptr;
- C = ConstantExpr::getMul(C, C2);
- }
- return C;
- }
- break;
- }
- case scUDivExpr: {
- const SCEVUDivExpr *SU = cast<SCEVUDivExpr>(V);
- if (Constant *LHS = BuildConstantFromSCEV(SU->getLHS()))
- if (Constant *RHS = BuildConstantFromSCEV(SU->getRHS()))
- if (LHS->getType() == RHS->getType())
- return ConstantExpr::getUDiv(LHS, RHS);
- break;
- }
- case scSMaxExpr:
- case scUMaxExpr:
- break; // TODO: smax, umax.
- }
- return nullptr;
- }
- const SCEV *ScalarEvolution::computeSCEVAtScope(const SCEV *V, const Loop *L) {
- if (isa<SCEVConstant>(V)) return V;
- // If this instruction is evolved from a constant-evolving PHI, compute the
- // exit value from the loop without using SCEVs.
- if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) {
- if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) {
- const Loop *LI = (*this->LI)[I->getParent()];
- if (LI && LI->getParentLoop() == L) // Looking for loop exit value.
- if (PHINode *PN = dyn_cast<PHINode>(I))
- if (PN->getParent() == LI->getHeader()) {
- // Okay, there is no closed form solution for the PHI node. Check
- // to see if the loop that contains it has a known backedge-taken
- // count. If so, we may be able to force computation of the exit
- // value.
- const SCEV *BackedgeTakenCount = getBackedgeTakenCount(LI);
- if (const SCEVConstant *BTCC =
- dyn_cast<SCEVConstant>(BackedgeTakenCount)) {
- // Okay, we know how many times the containing loop executes. If
- // this is a constant evolving PHI node, get the final value at
- // the specified iteration number.
- Constant *RV = getConstantEvolutionLoopExitValue(PN,
- BTCC->getValue()->getValue(),
- LI);
- if (RV) return getSCEV(RV);
- }
- }
- // Okay, this is an expression that we cannot symbolically evaluate
- // into a SCEV. Check to see if it's possible to symbolically evaluate
- // the arguments into constants, and if so, try to constant propagate the
- // result. This is particularly useful for computing loop exit values.
- if (CanConstantFold(I)) {
- SmallVector<Constant *, 4> Operands;
- bool MadeImprovement = false;
- for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
- Value *Op = I->getOperand(i);
- if (Constant *C = dyn_cast<Constant>(Op)) {
- Operands.push_back(C);
- continue;
- }
- // If any of the operands is non-constant and if they are
- // non-integer and non-pointer, don't even try to analyze them
- // with scev techniques.
- if (!isSCEVable(Op->getType()))
- return V;
- const SCEV *OrigV = getSCEV(Op);
- const SCEV *OpV = getSCEVAtScope(OrigV, L);
- MadeImprovement |= OrigV != OpV;
- Constant *C = BuildConstantFromSCEV(OpV);
- if (!C) return V;
- if (C->getType() != Op->getType())
- C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
- Op->getType(),
- false),
- C, Op->getType());
- Operands.push_back(C);
- }
- // Check to see if getSCEVAtScope actually made an improvement.
- if (MadeImprovement) {
- Constant *C = nullptr;
- const DataLayout &DL = F->getParent()->getDataLayout();
- if (const CmpInst *CI = dyn_cast<CmpInst>(I))
- C = ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0],
- Operands[1], DL, TLI);
- else if (const LoadInst *LI = dyn_cast<LoadInst>(I)) {
- if (!LI->isVolatile())
- C = ConstantFoldLoadFromConstPtr(Operands[0], DL);
- } else
- C = ConstantFoldInstOperands(I->getOpcode(), I->getType(), Operands,
- DL, TLI);
- if (!C) return V;
- return getSCEV(C);
- }
- }
- }
- // This is some other type of SCEVUnknown, just return it.
- return V;
- }
- if (const SCEVCommutativeExpr *Comm = dyn_cast<SCEVCommutativeExpr>(V)) {
- // Avoid performing the look-up in the common case where the specified
- // expression has no loop-variant portions.
- for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) {
- const SCEV *OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
- if (OpAtScope != Comm->getOperand(i)) {
- // Okay, at least one of these operands is loop variant but might be
- // foldable. Build a new instance of the folded commutative expression.
- SmallVector<const SCEV *, 8> NewOps(Comm->op_begin(),
- Comm->op_begin()+i);
- NewOps.push_back(OpAtScope);
- for (++i; i != e; ++i) {
- OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
- NewOps.push_back(OpAtScope);
- }
- if (isa<SCEVAddExpr>(Comm))
- return getAddExpr(NewOps);
- if (isa<SCEVMulExpr>(Comm))
- return getMulExpr(NewOps);
- if (isa<SCEVSMaxExpr>(Comm))
- return getSMaxExpr(NewOps);
- if (isa<SCEVUMaxExpr>(Comm))
- return getUMaxExpr(NewOps);
- llvm_unreachable("Unknown commutative SCEV type!");
- }
- }
- // If we got here, all operands are loop invariant.
- return Comm;
- }
- if (const SCEVUDivExpr *Div = dyn_cast<SCEVUDivExpr>(V)) {
- const SCEV *LHS = getSCEVAtScope(Div->getLHS(), L);
- const SCEV *RHS = getSCEVAtScope(Div->getRHS(), L);
- if (LHS == Div->getLHS() && RHS == Div->getRHS())
- return Div; // must be loop invariant
- return getUDivExpr(LHS, RHS);
- }
- // If this is a loop recurrence for a loop that does not contain L, then we
- // are dealing with the final value computed by the loop.
- if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) {
- // First, attempt to evaluate each operand.
- // Avoid performing the look-up in the common case where the specified
- // expression has no loop-variant portions.
- for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
- const SCEV *OpAtScope = getSCEVAtScope(AddRec->getOperand(i), L);
- if (OpAtScope == AddRec->getOperand(i))
- continue;
- // Okay, at least one of these operands is loop variant but might be
- // foldable. Build a new instance of the folded commutative expression.
- SmallVector<const SCEV *, 8> NewOps(AddRec->op_begin(),
- AddRec->op_begin()+i);
- NewOps.push_back(OpAtScope);
- for (++i; i != e; ++i)
- NewOps.push_back(getSCEVAtScope(AddRec->getOperand(i), L));
- const SCEV *FoldedRec =
- getAddRecExpr(NewOps, AddRec->getLoop(),
- AddRec->getNoWrapFlags(SCEV::FlagNW));
- AddRec = dyn_cast<SCEVAddRecExpr>(FoldedRec);
- // The addrec may be folded to a nonrecurrence, for example, if the
- // induction variable is multiplied by zero after constant folding. Go
- // ahead and return the folded value.
- if (!AddRec)
- return FoldedRec;
- break;
- }
- // If the scope is outside the addrec's loop, evaluate it by using the
- // loop exit value of the addrec.
- if (!AddRec->getLoop()->contains(L)) {
- // To evaluate this recurrence, we need to know how many times the AddRec
- // loop iterates. Compute this now.
- const SCEV *BackedgeTakenCount = getBackedgeTakenCount(AddRec->getLoop());
- if (BackedgeTakenCount == getCouldNotCompute()) return AddRec;
- // Then, evaluate the AddRec.
- return AddRec->evaluateAtIteration(BackedgeTakenCount, *this);
- }
- return AddRec;
- }
- if (const SCEVZeroExtendExpr *Cast = dyn_cast<SCEVZeroExtendExpr>(V)) {
- const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
- if (Op == Cast->getOperand())
- return Cast; // must be loop invariant
- return getZeroExtendExpr(Op, Cast->getType());
- }
- if (const SCEVSignExtendExpr *Cast = dyn_cast<SCEVSignExtendExpr>(V)) {
- const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
- if (Op == Cast->getOperand())
- return Cast; // must be loop invariant
- return getSignExtendExpr(Op, Cast->getType());
- }
- if (const SCEVTruncateExpr *Cast = dyn_cast<SCEVTruncateExpr>(V)) {
- const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
- if (Op == Cast->getOperand())
- return Cast; // must be loop invariant
- return getTruncateExpr(Op, Cast->getType());
- }
- llvm_unreachable("Unknown SCEV type!");
- }
- /// getSCEVAtScope - This is a convenience function which does
- /// getSCEVAtScope(getSCEV(V), L).
- const SCEV *ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) {
- return getSCEVAtScope(getSCEV(V), L);
- }
- /// SolveLinEquationWithOverflow - Finds the minimum unsigned root of the
- /// following equation:
- ///
- /// A * X = B (mod N)
- ///
- /// where N = 2^BW and BW is the common bit width of A and B. The signedness of
- /// A and B isn't important.
- ///
- /// If the equation does not have a solution, SCEVCouldNotCompute is returned.
- static const SCEV *SolveLinEquationWithOverflow(const APInt &A, const APInt &B,
- ScalarEvolution &SE) {
- uint32_t BW = A.getBitWidth();
- assert(BW == B.getBitWidth() && "Bit widths must be the same.");
- assert(A != 0 && "A must be non-zero.");
- // 1. D = gcd(A, N)
- //
- // The gcd of A and N may have only one prime factor: 2. The number of
- // trailing zeros in A is its multiplicity
- uint32_t Mult2 = A.countTrailingZeros();
- // D = 2^Mult2
- // 2. Check if B is divisible by D.
- //
- // B is divisible by D if and only if the multiplicity of prime factor 2 for B
- // is not less than multiplicity of this prime factor for D.
- if (B.countTrailingZeros() < Mult2)
- return SE.getCouldNotCompute();
- // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic
- // modulo (N / D).
- //
- // (N / D) may need BW+1 bits in its representation. Hence, we'll use this
- // bit width during computations.
- APInt AD = A.lshr(Mult2).zext(BW + 1); // AD = A / D
- APInt Mod(BW + 1, 0);
- Mod.setBit(BW - Mult2); // Mod = N / D
- APInt I = AD.multiplicativeInverse(Mod);
- // 4. Compute the minimum unsigned root of the equation:
- // I * (B / D) mod (N / D)
- APInt Result = (I * B.lshr(Mult2).zext(BW + 1)).urem(Mod);
- // The result is guaranteed to be less than 2^BW so we may truncate it to BW
- // bits.
- return SE.getConstant(Result.trunc(BW));
- }
- /// SolveQuadraticEquation - Find the roots of the quadratic equation for the
- /// given quadratic chrec {L,+,M,+,N}. This returns either the two roots (which
- /// might be the same) or two SCEVCouldNotCompute objects.
- ///
- static std::pair<const SCEV *,const SCEV *>
- SolveQuadraticEquation(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) {
- assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!");
- const SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0));
- const SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1));
- const SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2));
- // We currently can only solve this if the coefficients are constants.
- if (!LC || !MC || !NC) {
- const SCEV *CNC = SE.getCouldNotCompute();
- return std::make_pair(CNC, CNC);
- }
- uint32_t BitWidth = LC->getValue()->getValue().getBitWidth();
- const APInt &L = LC->getValue()->getValue();
- const APInt &M = MC->getValue()->getValue();
- const APInt &N = NC->getValue()->getValue();
- APInt Two(BitWidth, 2);
- APInt Four(BitWidth, 4);
- {
- using namespace APIntOps;
- const APInt& C = L;
- // Convert from chrec coefficients to polynomial coefficients AX^2+BX+C
- // The B coefficient is M-N/2
- APInt B(M);
- B -= sdiv(N,Two);
- // The A coefficient is N/2
- APInt A(N.sdiv(Two));
- // Compute the B^2-4ac term.
- APInt SqrtTerm(B);
- SqrtTerm *= B;
- SqrtTerm -= Four * (A * C);
- if (SqrtTerm.isNegative()) {
- // The loop is provably infinite.
- const SCEV *CNC = SE.getCouldNotCompute();
- return std::make_pair(CNC, CNC);
- }
- // Compute sqrt(B^2-4ac). This is guaranteed to be the nearest
- // integer value or else APInt::sqrt() will assert.
- APInt SqrtVal(SqrtTerm.sqrt());
- // Compute the two solutions for the quadratic formula.
- // The divisions must be performed as signed divisions.
- APInt NegB(-B);
- APInt TwoA(A << 1);
- if (TwoA.isMinValue()) {
- const SCEV *CNC = SE.getCouldNotCompute();
- return std::make_pair(CNC, CNC);
- }
- LLVMContext &Context = SE.getContext();
- ConstantInt *Solution1 =
- ConstantInt::get(Context, (NegB + SqrtVal).sdiv(TwoA));
- ConstantInt *Solution2 =
- ConstantInt::get(Context, (NegB - SqrtVal).sdiv(TwoA));
- return std::make_pair(SE.getConstant(Solution1),
- SE.getConstant(Solution2));
- } // end APIntOps namespace
- }
- /// HowFarToZero - Return the number of times a backedge comparing the specified
- /// value to zero will execute. If not computable, return CouldNotCompute.
- ///
- /// This is only used for loops with a "x != y" exit test. The exit condition is
- /// now expressed as a single expression, V = x-y. So the exit test is
- /// effectively V != 0. We know and take advantage of the fact that this
- /// expression only being used in a comparison by zero context.
- ScalarEvolution::ExitLimit
- ScalarEvolution::HowFarToZero(const SCEV *V, const Loop *L, bool ControlsExit) {
- // If the value is a constant
- if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
- // If the value is already zero, the branch will execute zero times.
- if (C->getValue()->isZero()) return C;
- return getCouldNotCompute(); // Otherwise it will loop infinitely.
- }
- const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V);
- if (!AddRec || AddRec->getLoop() != L)
- return getCouldNotCompute();
- // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of
- // the quadratic equation to solve it.
- if (AddRec->isQuadratic() && AddRec->getType()->isIntegerTy()) {
- std::pair<const SCEV *,const SCEV *> Roots =
- SolveQuadraticEquation(AddRec, *this);
- const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
- const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
- if (R1 && R2) {
- #if 0
- dbgs() << "HFTZ: " << *V << " - sol#1: " << *R1
- << " sol#2: " << *R2 << "\n";
- #endif
- // Pick the smallest positive root value.
- if (ConstantInt *CB =
- dyn_cast<ConstantInt>(ConstantExpr::getICmp(CmpInst::ICMP_ULT,
- R1->getValue(),
- R2->getValue()))) {
- if (!CB->getZExtValue())
- std::swap(R1, R2); // R1 is the minimum root now.
- // We can only use this value if the chrec ends up with an exact zero
- // value at this index. When solving for "X*X != 5", for example, we
- // should not accept a root of 2.
- const SCEV *Val = AddRec->evaluateAtIteration(R1, *this);
- if (Val->isZero())
- return R1; // We found a quadratic root!
- }
- }
- return getCouldNotCompute();
- }
- // Otherwise we can only handle this if it is affine.
- if (!AddRec->isAffine())
- return getCouldNotCompute();
- // If this is an affine expression, the execution count of this branch is
- // the minimum unsigned root of the following equation:
- //
- // Start + Step*N = 0 (mod 2^BW)
- //
- // equivalent to:
- //
- // Step*N = -Start (mod 2^BW)
- //
- // where BW is the common bit width of Start and Step.
- // Get the initial value for the loop.
- const SCEV *Start = getSCEVAtScope(AddRec->getStart(), L->getParentLoop());
- const SCEV *Step = getSCEVAtScope(AddRec->getOperand(1), L->getParentLoop());
- // For now we handle only constant steps.
- //
- // TODO: Handle a nonconstant Step given AddRec<NUW>. If the
- // AddRec is NUW, then (in an unsigned sense) it cannot be counting up to wrap
- // to 0, it must be counting down to equal 0. Consequently, N = Start / -Step.
- // We have not yet seen any such cases.
- const SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step);
- if (!StepC || StepC->getValue()->equalsInt(0))
- return getCouldNotCompute();
- // For positive steps (counting up until unsigned overflow):
- // N = -Start/Step (as unsigned)
- // For negative steps (counting down to zero):
- // N = Start/-Step
- // First compute the unsigned distance from zero in the direction of Step.
- bool CountDown = StepC->getValue()->getValue().isNegative();
- const SCEV *Distance = CountDown ? Start : getNegativeSCEV(Start);
- // Handle unitary steps, which cannot wraparound.
- // 1*N = -Start; -1*N = Start (mod 2^BW), so:
- // N = Distance (as unsigned)
- if (StepC->getValue()->equalsInt(1) || StepC->getValue()->isAllOnesValue()) {
- ConstantRange CR = getUnsignedRange(Start);
- const SCEV *MaxBECount;
- if (!CountDown && CR.getUnsignedMin().isMinValue())
- // When counting up, the worst starting value is 1, not 0.
- MaxBECount = CR.getUnsignedMax().isMinValue()
- ? getConstant(APInt::getMinValue(CR.getBitWidth()))
- : getConstant(APInt::getMaxValue(CR.getBitWidth()));
- else
- MaxBECount = getConstant(CountDown ? CR.getUnsignedMax()
- : -CR.getUnsignedMin());
- return ExitLimit(Distance, MaxBECount);
- }
- // As a special case, handle the instance where Step is a positive power of
- // two. In this case, determining whether Step divides Distance evenly can be
- // done by counting and comparing the number of trailing zeros of Step and
- // Distance.
- if (!CountDown) {
- const APInt &StepV = StepC->getValue()->getValue();
- // StepV.isPowerOf2() returns true if StepV is an positive power of two. It
- // also returns true if StepV is maximally negative (eg, INT_MIN), but that
- // case is not handled as this code is guarded by !CountDown.
- if (StepV.isPowerOf2() &&
- GetMinTrailingZeros(Distance) >= StepV.countTrailingZeros())
- return getUDivExactExpr(Distance, Step);
- }
- // If the condition controls loop exit (the loop exits only if the expression
- // is true) and the addition is no-wrap we can use unsigned divide to
- // compute the backedge count. In this case, the step may not divide the
- // distance, but we don't care because if the condition is "missed" the loop
- // will have undefined behavior due to wrapping.
- if (ControlsExit && AddRec->getNoWrapFlags(SCEV::FlagNW)) {
- const SCEV *Exact =
- getUDivExpr(Distance, CountDown ? getNegativeSCEV(Step) : Step);
- return ExitLimit(Exact, Exact);
- }
- // Then, try to solve the above equation provided that Start is constant.
- if (const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start))
- return SolveLinEquationWithOverflow(StepC->getValue()->getValue(),
- -StartC->getValue()->getValue(),
- *this);
- return getCouldNotCompute();
- }
- /// HowFarToNonZero - Return the number of times a backedge checking the
- /// specified value for nonzero will execute. If not computable, return
- /// CouldNotCompute
- ScalarEvolution::ExitLimit
- ScalarEvolution::HowFarToNonZero(const SCEV *V, const Loop *L) {
- // Loops that look like: while (X == 0) are very strange indeed. We don't
- // handle them yet except for the trivial case. This could be expanded in the
- // future as needed.
- // If the value is a constant, check to see if it is known to be non-zero
- // already. If so, the backedge will execute zero times.
- if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
- if (!C->getValue()->isNullValue())
- return getConstant(C->getType(), 0);
- return getCouldNotCompute(); // Otherwise it will loop infinitely.
- }
- // We could implement others, but I really doubt anyone writes loops like
- // this, and if they did, they would already be constant folded.
- return getCouldNotCompute();
- }
- /// getPredecessorWithUniqueSuccessorForBB - Return a predecessor of BB
- /// (which may not be an immediate predecessor) which has exactly one
- /// successor from which BB is reachable, or null if no such block is
- /// found.
- ///
- std::pair<BasicBlock *, BasicBlock *>
- ScalarEvolution::getPredecessorWithUniqueSuccessorForBB(BasicBlock *BB) {
- // If the block has a unique predecessor, then there is no path from the
- // predecessor to the block that does not go through the direct edge
- // from the predecessor to the block.
- if (BasicBlock *Pred = BB->getSinglePredecessor())
- return std::make_pair(Pred, BB);
- // A loop's header is defined to be a block that dominates the loop.
- // If the header has a unique predecessor outside the loop, it must be
- // a block that has exactly one successor that can reach the loop.
- if (Loop *L = LI->getLoopFor(BB))
- return std::make_pair(L->getLoopPredecessor(), L->getHeader());
- return std::pair<BasicBlock *, BasicBlock *>();
- }
- /// HasSameValue - SCEV structural equivalence is usually sufficient for
- /// testing whether two expressions are equal, however for the purposes of
- /// looking for a condition guarding a loop, it can be useful to be a little
- /// more general, since a front-end may have replicated the controlling
- /// expression.
- ///
- static bool HasSameValue(const SCEV *A, const SCEV *B) {
- // Quick check to see if they are the same SCEV.
- if (A == B) return true;
- // Otherwise, if they're both SCEVUnknown, it's possible that they hold
- // two different instructions with the same value. Check for this case.
- if (const SCEVUnknown *AU = dyn_cast<SCEVUnknown>(A))
- if (const SCEVUnknown *BU = dyn_cast<SCEVUnknown>(B))
- if (const Instruction *AI = dyn_cast<Instruction>(AU->getValue()))
- if (const Instruction *BI = dyn_cast<Instruction>(BU->getValue()))
- if (AI->isIdenticalTo(BI) && !AI->mayReadFromMemory())
- return true;
- // Otherwise assume they may have a different value.
- return false;
- }
- /// SimplifyICmpOperands - Simplify LHS and RHS in a comparison with
- /// predicate Pred. Return true iff any changes were made.
- ///
- bool ScalarEvolution::SimplifyICmpOperands(ICmpInst::Predicate &Pred,
- const SCEV *&LHS, const SCEV *&RHS,
- unsigned Depth) {
- bool Changed = false;
- // If we hit the max recursion limit bail out.
- if (Depth >= 3)
- return false;
- // Canonicalize a constant to the right side.
- if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
- // Check for both operands constant.
- if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
- if (ConstantExpr::getICmp(Pred,
- LHSC->getValue(),
- RHSC->getValue())->isNullValue())
- goto trivially_false;
- else
- goto trivially_true;
- }
- // Otherwise swap the operands to put the constant on the right.
- std::swap(LHS, RHS);
- Pred = ICmpInst::getSwappedPredicate(Pred);
- Changed = true;
- }
- // If we're comparing an addrec with a value which is loop-invariant in the
- // addrec's loop, put the addrec on the left. Also make a dominance check,
- // as both operands could be addrecs loop-invariant in each other's loop.
- if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS)) {
- const Loop *L = AR->getLoop();
- if (isLoopInvariant(LHS, L) && properlyDominates(LHS, L->getHeader())) {
- std::swap(LHS, RHS);
- Pred = ICmpInst::getSwappedPredicate(Pred);
- Changed = true;
- }
- }
- // If there's a constant operand, canonicalize comparisons with boundary
- // cases, and canonicalize *-or-equal comparisons to regular comparisons.
- if (const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS)) {
- const APInt &RA = RC->getValue()->getValue();
- switch (Pred) {
- default: llvm_unreachable("Unexpected ICmpInst::Predicate value!");
- case ICmpInst::ICMP_EQ:
- case ICmpInst::ICMP_NE:
- // Fold ((-1) * %a) + %b == 0 (equivalent to %b-%a == 0) into %a == %b.
- if (!RA)
- if (const SCEVAddExpr *AE = dyn_cast<SCEVAddExpr>(LHS))
- if (const SCEVMulExpr *ME = dyn_cast<SCEVMulExpr>(AE->getOperand(0)))
- if (AE->getNumOperands() == 2 && ME->getNumOperands() == 2 &&
- ME->getOperand(0)->isAllOnesValue()) {
- RHS = AE->getOperand(1);
- LHS = ME->getOperand(1);
- Changed = true;
- }
- break;
- case ICmpInst::ICMP_UGE:
- if ((RA - 1).isMinValue()) {
- Pred = ICmpInst::ICMP_NE;
- RHS = getConstant(RA - 1);
- Changed = true;
- break;
- }
- if (RA.isMaxValue()) {
- Pred = ICmpInst::ICMP_EQ;
- Changed = true;
- break;
- }
- if (RA.isMinValue()) goto trivially_true;
- Pred = ICmpInst::ICMP_UGT;
- RHS = getConstant(RA - 1);
- Changed = true;
- break;
- case ICmpInst::ICMP_ULE:
- if ((RA + 1).isMaxValue()) {
- Pred = ICmpInst::ICMP_NE;
- RHS = getConstant(RA + 1);
- Changed = true;
- break;
- }
- if (RA.isMinValue()) {
- Pred = ICmpInst::ICMP_EQ;
- Changed = true;
- break;
- }
- if (RA.isMaxValue()) goto trivially_true;
- Pred = ICmpInst::ICMP_ULT;
- RHS = getConstant(RA + 1);
- Changed = true;
- break;
- case ICmpInst::ICMP_SGE:
- if ((RA - 1).isMinSignedValue()) {
- Pred = ICmpInst::ICMP_NE;
- RHS = getConstant(RA - 1);
- Changed = true;
- break;
- }
- if (RA.isMaxSignedValue()) {
- Pred = ICmpInst::ICMP_EQ;
- Changed = true;
- break;
- }
- if (RA.isMinSignedValue()) goto trivially_true;
- Pred = ICmpInst::ICMP_SGT;
- RHS = getConstant(RA - 1);
- Changed = true;
- break;
- case ICmpInst::ICMP_SLE:
- if ((RA + 1).isMaxSignedValue()) {
- Pred = ICmpInst::ICMP_NE;
- RHS = getConstant(RA + 1);
- Changed = true;
- break;
- }
- if (RA.isMinSignedValue()) {
- Pred = ICmpInst::ICMP_EQ;
- Changed = true;
- break;
- }
- if (RA.isMaxSignedValue()) goto trivially_true;
- Pred = ICmpInst::ICMP_SLT;
- RHS = getConstant(RA + 1);
- Changed = true;
- break;
- case ICmpInst::ICMP_UGT:
- if (RA.isMinValue()) {
- Pred = ICmpInst::ICMP_NE;
- Changed = true;
- break;
- }
- if ((RA + 1).isMaxValue()) {
- Pred = ICmpInst::ICMP_EQ;
- RHS = getConstant(RA + 1);
- Changed = true;
- break;
- }
- if (RA.isMaxValue()) goto trivially_false;
- break;
- case ICmpInst::ICMP_ULT:
- if (RA.isMaxValue()) {
- Pred = ICmpInst::ICMP_NE;
- Changed = true;
- break;
- }
- if ((RA - 1).isMinValue()) {
- Pred = ICmpInst::ICMP_EQ;
- RHS = getConstant(RA - 1);
- Changed = true;
- break;
- }
- if (RA.isMinValue()) goto trivially_false;
- break;
- case ICmpInst::ICMP_SGT:
- if (RA.isMinSignedValue()) {
- Pred = ICmpInst::ICMP_NE;
- Changed = true;
- break;
- }
- if ((RA + 1).isMaxSignedValue()) {
- Pred = ICmpInst::ICMP_EQ;
- RHS = getConstant(RA + 1);
- Changed = true;
- break;
- }
- if (RA.isMaxSignedValue()) goto trivially_false;
- break;
- case ICmpInst::ICMP_SLT:
- if (RA.isMaxSignedValue()) {
- Pred = ICmpInst::ICMP_NE;
- Changed = true;
- break;
- }
- if ((RA - 1).isMinSignedValue()) {
- Pred = ICmpInst::ICMP_EQ;
- RHS = getConstant(RA - 1);
- Changed = true;
- break;
- }
- if (RA.isMinSignedValue()) goto trivially_false;
- break;
- }
- }
- // Check for obvious equality.
- if (HasSameValue(LHS, RHS)) {
- if (ICmpInst::isTrueWhenEqual(Pred))
- goto trivially_true;
- if (ICmpInst::isFalseWhenEqual(Pred))
- goto trivially_false;
- }
- // If possible, canonicalize GE/LE comparisons to GT/LT comparisons, by
- // adding or subtracting 1 from one of the operands.
- switch (Pred) {
- case ICmpInst::ICMP_SLE:
- if (!getSignedRange(RHS).getSignedMax().isMaxSignedValue()) {
- RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
- SCEV::FlagNSW);
- Pred = ICmpInst::ICMP_SLT;
- Changed = true;
- } else if (!getSignedRange(LHS).getSignedMin().isMinSignedValue()) {
- LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS,
- SCEV::FlagNSW);
- Pred = ICmpInst::ICMP_SLT;
- Changed = true;
- }
- break;
- case ICmpInst::ICMP_SGE:
- if (!getSignedRange(RHS).getSignedMin().isMinSignedValue()) {
- RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS,
- SCEV::FlagNSW);
- Pred = ICmpInst::ICMP_SGT;
- Changed = true;
- } else if (!getSignedRange(LHS).getSignedMax().isMaxSignedValue()) {
- LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
- SCEV::FlagNSW);
- Pred = ICmpInst::ICMP_SGT;
- Changed = true;
- }
- break;
- case ICmpInst::ICMP_ULE:
- if (!getUnsignedRange(RHS).getUnsignedMax().isMaxValue()) {
- RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
- SCEV::FlagNUW);
- Pred = ICmpInst::ICMP_ULT;
- Changed = true;
- } else if (!getUnsignedRange(LHS).getUnsignedMin().isMinValue()) {
- LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS,
- SCEV::FlagNUW);
- Pred = ICmpInst::ICMP_ULT;
- Changed = true;
- }
- break;
- case ICmpInst::ICMP_UGE:
- if (!getUnsignedRange(RHS).getUnsignedMin().isMinValue()) {
- RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS,
- SCEV::FlagNUW);
- Pred = ICmpInst::ICMP_UGT;
- Changed = true;
- } else if (!getUnsignedRange(LHS).getUnsignedMax().isMaxValue()) {
- LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
- SCEV::FlagNUW);
- Pred = ICmpInst::ICMP_UGT;
- Changed = true;
- }
- break;
- default:
- break;
- }
- // TODO: More simplifications are possible here.
- // Recursively simplify until we either hit a recursion limit or nothing
- // changes.
- if (Changed)
- return SimplifyICmpOperands(Pred, LHS, RHS, Depth+1);
- return Changed;
- trivially_true:
- // Return 0 == 0.
- LHS = RHS = getConstant(ConstantInt::getFalse(getContext()));
- Pred = ICmpInst::ICMP_EQ;
- return true;
- trivially_false:
- // Return 0 != 0.
- LHS = RHS = getConstant(ConstantInt::getFalse(getContext()));
- Pred = ICmpInst::ICMP_NE;
- return true;
- }
- bool ScalarEvolution::isKnownNegative(const SCEV *S) {
- return getSignedRange(S).getSignedMax().isNegative();
- }
- bool ScalarEvolution::isKnownPositive(const SCEV *S) {
- return getSignedRange(S).getSignedMin().isStrictlyPositive();
- }
- bool ScalarEvolution::isKnownNonNegative(const SCEV *S) {
- return !getSignedRange(S).getSignedMin().isNegative();
- }
- bool ScalarEvolution::isKnownNonPositive(const SCEV *S) {
- return !getSignedRange(S).getSignedMax().isStrictlyPositive();
- }
- bool ScalarEvolution::isKnownNonZero(const SCEV *S) {
- return isKnownNegative(S) || isKnownPositive(S);
- }
- bool ScalarEvolution::isKnownPredicate(ICmpInst::Predicate Pred,
- const SCEV *LHS, const SCEV *RHS) {
- // Canonicalize the inputs first.
- (void)SimplifyICmpOperands(Pred, LHS, RHS);
- // If LHS or RHS is an addrec, check to see if the condition is true in
- // every iteration of the loop.
- // If LHS and RHS are both addrec, both conditions must be true in
- // every iteration of the loop.
- const SCEVAddRecExpr *LAR = dyn_cast<SCEVAddRecExpr>(LHS);
- const SCEVAddRecExpr *RAR = dyn_cast<SCEVAddRecExpr>(RHS);
- bool LeftGuarded = false;
- bool RightGuarded = false;
- if (LAR) {
- const Loop *L = LAR->getLoop();
- if (isLoopEntryGuardedByCond(L, Pred, LAR->getStart(), RHS) &&
- isLoopBackedgeGuardedByCond(L, Pred, LAR->getPostIncExpr(*this), RHS)) {
- if (!RAR) return true;
- LeftGuarded = true;
- }
- }
- if (RAR) {
- const Loop *L = RAR->getLoop();
- if (isLoopEntryGuardedByCond(L, Pred, LHS, RAR->getStart()) &&
- isLoopBackedgeGuardedByCond(L, Pred, LHS, RAR->getPostIncExpr(*this))) {
- if (!LAR) return true;
- RightGuarded = true;
- }
- }
- if (LeftGuarded && RightGuarded)
- return true;
- // Otherwise see what can be done with known constant ranges.
- return isKnownPredicateWithRanges(Pred, LHS, RHS);
- }
- bool
- ScalarEvolution::isKnownPredicateWithRanges(ICmpInst::Predicate Pred,
- const SCEV *LHS, const SCEV *RHS) {
- if (HasSameValue(LHS, RHS))
- return ICmpInst::isTrueWhenEqual(Pred);
- // This code is split out from isKnownPredicate because it is called from
- // within isLoopEntryGuardedByCond.
- switch (Pred) {
- default:
- llvm_unreachable("Unexpected ICmpInst::Predicate value!");
- case ICmpInst::ICMP_SGT:
- std::swap(LHS, RHS);
- case ICmpInst::ICMP_SLT: {
- ConstantRange LHSRange = getSignedRange(LHS);
- ConstantRange RHSRange = getSignedRange(RHS);
- if (LHSRange.getSignedMax().slt(RHSRange.getSignedMin()))
- return true;
- if (LHSRange.getSignedMin().sge(RHSRange.getSignedMax()))
- return false;
- break;
- }
- case ICmpInst::ICMP_SGE:
- std::swap(LHS, RHS);
- case ICmpInst::ICMP_SLE: {
- ConstantRange LHSRange = getSignedRange(LHS);
- ConstantRange RHSRange = getSignedRange(RHS);
- if (LHSRange.getSignedMax().sle(RHSRange.getSignedMin()))
- return true;
- if (LHSRange.getSignedMin().sgt(RHSRange.getSignedMax()))
- return false;
- break;
- }
- case ICmpInst::ICMP_UGT:
- std::swap(LHS, RHS);
- case ICmpInst::ICMP_ULT: {
- ConstantRange LHSRange = getUnsignedRange(LHS);
- ConstantRange RHSRange = getUnsignedRange(RHS);
- if (LHSRange.getUnsignedMax().ult(RHSRange.getUnsignedMin()))
- return true;
- if (LHSRange.getUnsignedMin().uge(RHSRange.getUnsignedMax()))
- return false;
- break;
- }
- case ICmpInst::ICMP_UGE:
- std::swap(LHS, RHS);
- case ICmpInst::ICMP_ULE: {
- ConstantRange LHSRange = getUnsignedRange(LHS);
- ConstantRange RHSRange = getUnsignedRange(RHS);
- if (LHSRange.getUnsignedMax().ule(RHSRange.getUnsignedMin()))
- return true;
- if (LHSRange.getUnsignedMin().ugt(RHSRange.getUnsignedMax()))
- return false;
- break;
- }
- case ICmpInst::ICMP_NE: {
- if (getUnsignedRange(LHS).intersectWith(getUnsignedRange(RHS)).isEmptySet())
- return true;
- if (getSignedRange(LHS).intersectWith(getSignedRange(RHS)).isEmptySet())
- return true;
- const SCEV *Diff = getMinusSCEV(LHS, RHS);
- if (isKnownNonZero(Diff))
- return true;
- break;
- }
- case ICmpInst::ICMP_EQ:
- // The check at the top of the function catches the case where
- // the values are known to be equal.
- break;
- }
- return false;
- }
- /// isLoopBackedgeGuardedByCond - Test whether the backedge of the loop is
- /// protected by a conditional between LHS and RHS. This is used to
- /// to eliminate casts.
- bool
- ScalarEvolution::isLoopBackedgeGuardedByCond(const Loop *L,
- ICmpInst::Predicate Pred,
- const SCEV *LHS, const SCEV *RHS) {
- // Interpret a null as meaning no loop, where there is obviously no guard
- // (interprocedural conditions notwithstanding).
- if (!L) return true;
- if (isKnownPredicateWithRanges(Pred, LHS, RHS)) return true;
- BasicBlock *Latch = L->getLoopLatch();
- if (!Latch)
- return false;
- BranchInst *LoopContinuePredicate =
- dyn_cast<BranchInst>(Latch->getTerminator());
- if (LoopContinuePredicate && LoopContinuePredicate->isConditional() &&
- isImpliedCond(Pred, LHS, RHS,
- LoopContinuePredicate->getCondition(),
- LoopContinuePredicate->getSuccessor(0) != L->getHeader()))
- return true;
- // Check conditions due to any @llvm.assume intrinsics.
- for (auto &AssumeVH : AC->assumptions()) {
- if (!AssumeVH)
- continue;
- auto *CI = cast<CallInst>(AssumeVH);
- if (!DT->dominates(CI, Latch->getTerminator()))
- continue;
- if (isImpliedCond(Pred, LHS, RHS, CI->getArgOperand(0), false))
- return true;
- }
- struct ClearWalkingBEDominatingCondsOnExit {
- ScalarEvolution &SE;
- explicit ClearWalkingBEDominatingCondsOnExit(ScalarEvolution &SE)
- : SE(SE){};
- ~ClearWalkingBEDominatingCondsOnExit() {
- SE.WalkingBEDominatingConds = false;
- }
- };
- // We don't want more than one activation of the following loop on the stack
- // -- that can lead to O(n!) time complexity.
- if (WalkingBEDominatingConds)
- return false;
- WalkingBEDominatingConds = true;
- ClearWalkingBEDominatingCondsOnExit ClearOnExit(*this);
- // If the loop is not reachable from the entry block, we risk running into an
- // infinite loop as we walk up into the dom tree. These loops do not matter
- // anyway, so we just return a conservative answer when we see them.
- if (!DT->isReachableFromEntry(L->getHeader()))
- return false;
- for (DomTreeNode *DTN = (*DT)[Latch], *HeaderDTN = (*DT)[L->getHeader()];
- DTN != HeaderDTN;
- DTN = DTN->getIDom()) {
- assert(DTN && "should reach the loop header before reaching the root!");
- BasicBlock *BB = DTN->getBlock();
- BasicBlock *PBB = BB->getSinglePredecessor();
- if (!PBB)
- continue;
- BranchInst *ContinuePredicate = dyn_cast<BranchInst>(PBB->getTerminator());
- if (!ContinuePredicate || !ContinuePredicate->isConditional())
- continue;
- Value *Condition = ContinuePredicate->getCondition();
- // If we have an edge `E` within the loop body that dominates the only
- // latch, the condition guarding `E` also guards the backedge. This
- // reasoning works only for loops with a single latch.
- BasicBlockEdge DominatingEdge(PBB, BB);
- if (DominatingEdge.isSingleEdge()) {
- // We're constructively (and conservatively) enumerating edges within the
- // loop body that dominate the latch. The dominator tree better agree
- // with us on this:
- assert(DT->dominates(DominatingEdge, Latch) && "should be!");
- if (isImpliedCond(Pred, LHS, RHS, Condition,
- BB != ContinuePredicate->getSuccessor(0)))
- return true;
- }
- }
- return false;
- }
- /// isLoopEntryGuardedByCond - Test whether entry to the loop is protected
- /// by a conditional between LHS and RHS. This is used to help avoid max
- /// expressions in loop trip counts, and to eliminate casts.
- bool
- ScalarEvolution::isLoopEntryGuardedByCond(const Loop *L,
- ICmpInst::Predicate Pred,
- const SCEV *LHS, const SCEV *RHS) {
- // Interpret a null as meaning no loop, where there is obviously no guard
- // (interprocedural conditions notwithstanding).
- if (!L) return false;
- if (isKnownPredicateWithRanges(Pred, LHS, RHS)) return true;
- // Starting at the loop predecessor, climb up the predecessor chain, as long
- // as there are predecessors that can be found that have unique successors
- // leading to the original header.
- for (std::pair<BasicBlock *, BasicBlock *>
- Pair(L->getLoopPredecessor(), L->getHeader());
- Pair.first;
- Pair = getPredecessorWithUniqueSuccessorForBB(Pair.first)) {
- BranchInst *LoopEntryPredicate =
- dyn_cast<BranchInst>(Pair.first->getTerminator());
- if (!LoopEntryPredicate ||
- LoopEntryPredicate->isUnconditional())
- continue;
- if (isImpliedCond(Pred, LHS, RHS,
- LoopEntryPredicate->getCondition(),
- LoopEntryPredicate->getSuccessor(0) != Pair.second))
- return true;
- }
- // Check conditions due to any @llvm.assume intrinsics.
- for (auto &AssumeVH : AC->assumptions()) {
- if (!AssumeVH)
- continue;
- auto *CI = cast<CallInst>(AssumeVH);
- if (!DT->dominates(CI, L->getHeader()))
- continue;
- if (isImpliedCond(Pred, LHS, RHS, CI->getArgOperand(0), false))
- return true;
- }
- return false;
- }
- /// RAII wrapper to prevent recursive application of isImpliedCond.
- /// ScalarEvolution's PendingLoopPredicates set must be empty unless we are
- /// currently evaluating isImpliedCond.
- struct MarkPendingLoopPredicate {
- Value *Cond;
- DenseSet<Value*> &LoopPreds;
- bool Pending;
- MarkPendingLoopPredicate(Value *C, DenseSet<Value*> &LP)
- : Cond(C), LoopPreds(LP) {
- Pending = !LoopPreds.insert(Cond).second;
- }
- ~MarkPendingLoopPredicate() {
- if (!Pending)
- LoopPreds.erase(Cond);
- }
- };
- /// isImpliedCond - Test whether the condition described by Pred, LHS,
- /// and RHS is true whenever the given Cond value evaluates to true.
- bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred,
- const SCEV *LHS, const SCEV *RHS,
- Value *FoundCondValue,
- bool Inverse) {
- MarkPendingLoopPredicate Mark(FoundCondValue, PendingLoopPredicates);
- if (Mark.Pending)
- return false;
- // Recursively handle And and Or conditions.
- if (BinaryOperator *BO = dyn_cast<BinaryOperator>(FoundCondValue)) {
- if (BO->getOpcode() == Instruction::And) {
- if (!Inverse)
- return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) ||
- isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse);
- } else if (BO->getOpcode() == Instruction::Or) {
- if (Inverse)
- return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) ||
- isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse);
- }
- }
- ICmpInst *ICI = dyn_cast<ICmpInst>(FoundCondValue);
- if (!ICI) return false;
- // Now that we found a conditional branch that dominates the loop or controls
- // the loop latch. Check to see if it is the comparison we are looking for.
- ICmpInst::Predicate FoundPred;
- if (Inverse)
- FoundPred = ICI->getInversePredicate();
- else
- FoundPred = ICI->getPredicate();
- const SCEV *FoundLHS = getSCEV(ICI->getOperand(0));
- const SCEV *FoundRHS = getSCEV(ICI->getOperand(1));
- // Balance the types.
- if (getTypeSizeInBits(LHS->getType()) <
- getTypeSizeInBits(FoundLHS->getType())) {
- if (CmpInst::isSigned(Pred)) {
- LHS = getSignExtendExpr(LHS, FoundLHS->getType());
- RHS = getSignExtendExpr(RHS, FoundLHS->getType());
- } else {
- LHS = getZeroExtendExpr(LHS, FoundLHS->getType());
- RHS = getZeroExtendExpr(RHS, FoundLHS->getType());
- }
- } else if (getTypeSizeInBits(LHS->getType()) >
- getTypeSizeInBits(FoundLHS->getType())) {
- if (CmpInst::isSigned(FoundPred)) {
- FoundLHS = getSignExtendExpr(FoundLHS, LHS->getType());
- FoundRHS = getSignExtendExpr(FoundRHS, LHS->getType());
- } else {
- FoundLHS = getZeroExtendExpr(FoundLHS, LHS->getType());
- FoundRHS = getZeroExtendExpr(FoundRHS, LHS->getType());
- }
- }
- // Canonicalize the query to match the way instcombine will have
- // canonicalized the comparison.
- if (SimplifyICmpOperands(Pred, LHS, RHS))
- if (LHS == RHS)
- return CmpInst::isTrueWhenEqual(Pred);
- if (SimplifyICmpOperands(FoundPred, FoundLHS, FoundRHS))
- if (FoundLHS == FoundRHS)
- return CmpInst::isFalseWhenEqual(FoundPred);
- // Check to see if we can make the LHS or RHS match.
- if (LHS == FoundRHS || RHS == FoundLHS) {
- if (isa<SCEVConstant>(RHS)) {
- std::swap(FoundLHS, FoundRHS);
- FoundPred = ICmpInst::getSwappedPredicate(FoundPred);
- } else {
- std::swap(LHS, RHS);
- Pred = ICmpInst::getSwappedPredicate(Pred);
- }
- }
- // Check whether the found predicate is the same as the desired predicate.
- if (FoundPred == Pred)
- return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS);
- // Check whether swapping the found predicate makes it the same as the
- // desired predicate.
- if (ICmpInst::getSwappedPredicate(FoundPred) == Pred) {
- if (isa<SCEVConstant>(RHS))
- return isImpliedCondOperands(Pred, LHS, RHS, FoundRHS, FoundLHS);
- else
- return isImpliedCondOperands(ICmpInst::getSwappedPredicate(Pred),
- RHS, LHS, FoundLHS, FoundRHS);
- }
- // Check if we can make progress by sharpening ranges.
- if (FoundPred == ICmpInst::ICMP_NE &&
- (isa<SCEVConstant>(FoundLHS) || isa<SCEVConstant>(FoundRHS))) {
- const SCEVConstant *C = nullptr;
- const SCEV *V = nullptr;
- if (isa<SCEVConstant>(FoundLHS)) {
- C = cast<SCEVConstant>(FoundLHS);
- V = FoundRHS;
- } else {
- C = cast<SCEVConstant>(FoundRHS);
- V = FoundLHS;
- }
- // The guarding predicate tells us that C != V. If the known range
- // of V is [C, t), we can sharpen the range to [C + 1, t). The
- // range we consider has to correspond to same signedness as the
- // predicate we're interested in folding.
- APInt Min = ICmpInst::isSigned(Pred) ?
- getSignedRange(V).getSignedMin() : getUnsignedRange(V).getUnsignedMin();
- if (Min == C->getValue()->getValue()) {
- // Given (V >= Min && V != Min) we conclude V >= (Min + 1).
- // This is true even if (Min + 1) wraps around -- in case of
- // wraparound, (Min + 1) < Min, so (V >= Min => V >= (Min + 1)).
- APInt SharperMin = Min + 1;
- switch (Pred) {
- case ICmpInst::ICMP_SGE:
- case ICmpInst::ICMP_UGE:
- // We know V `Pred` SharperMin. If this implies LHS `Pred`
- // RHS, we're done.
- if (isImpliedCondOperands(Pred, LHS, RHS, V,
- getConstant(SharperMin)))
- return true;
- case ICmpInst::ICMP_SGT:
- case ICmpInst::ICMP_UGT:
- // We know from the range information that (V `Pred` Min ||
- // V == Min). We know from the guarding condition that !(V
- // == Min). This gives us
- //
- // V `Pred` Min || V == Min && !(V == Min)
- // => V `Pred` Min
- //
- // If V `Pred` Min implies LHS `Pred` RHS, we're done.
- if (isImpliedCondOperands(Pred, LHS, RHS, V, getConstant(Min)))
- return true;
- default:
- // No change
- break;
- }
- }
- }
- // Check whether the actual condition is beyond sufficient.
- if (FoundPred == ICmpInst::ICMP_EQ)
- if (ICmpInst::isTrueWhenEqual(Pred))
- if (isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS))
- return true;
- if (Pred == ICmpInst::ICMP_NE)
- if (!ICmpInst::isTrueWhenEqual(FoundPred))
- if (isImpliedCondOperands(FoundPred, LHS, RHS, FoundLHS, FoundRHS))
- return true;
- // Otherwise assume the worst.
- return false;
- }
- /// isImpliedCondOperands - Test whether the condition described by Pred,
- /// LHS, and RHS is true whenever the condition described by Pred, FoundLHS,
- /// and FoundRHS is true.
- bool ScalarEvolution::isImpliedCondOperands(ICmpInst::Predicate Pred,
- const SCEV *LHS, const SCEV *RHS,
- const SCEV *FoundLHS,
- const SCEV *FoundRHS) {
- if (isImpliedCondOperandsViaRanges(Pred, LHS, RHS, FoundLHS, FoundRHS))
- return true;
- return isImpliedCondOperandsHelper(Pred, LHS, RHS,
- FoundLHS, FoundRHS) ||
- // ~x < ~y --> x > y
- isImpliedCondOperandsHelper(Pred, LHS, RHS,
- getNotSCEV(FoundRHS),
- getNotSCEV(FoundLHS));
- }
- /// If Expr computes ~A, return A else return nullptr
- static const SCEV *MatchNotExpr(const SCEV *Expr) {
- const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Expr);
- if (!Add || Add->getNumOperands() != 2) return nullptr;
- const SCEVConstant *AddLHS = dyn_cast<SCEVConstant>(Add->getOperand(0));
- if (!(AddLHS && AddLHS->getValue()->getValue().isAllOnesValue()))
- return nullptr;
- const SCEVMulExpr *AddRHS = dyn_cast<SCEVMulExpr>(Add->getOperand(1));
- if (!AddRHS || AddRHS->getNumOperands() != 2) return nullptr;
- const SCEVConstant *MulLHS = dyn_cast<SCEVConstant>(AddRHS->getOperand(0));
- if (!(MulLHS && MulLHS->getValue()->getValue().isAllOnesValue()))
- return nullptr;
- return AddRHS->getOperand(1);
- }
- /// Is MaybeMaxExpr an SMax or UMax of Candidate and some other values?
- template<typename MaxExprType>
- static bool IsMaxConsistingOf(const SCEV *MaybeMaxExpr,
- const SCEV *Candidate) {
- const MaxExprType *MaxExpr = dyn_cast<MaxExprType>(MaybeMaxExpr);
- if (!MaxExpr) return false;
- auto It = std::find(MaxExpr->op_begin(), MaxExpr->op_end(), Candidate);
- return It != MaxExpr->op_end();
- }
- /// Is MaybeMinExpr an SMin or UMin of Candidate and some other values?
- template<typename MaxExprType>
- static bool IsMinConsistingOf(ScalarEvolution &SE,
- const SCEV *MaybeMinExpr,
- const SCEV *Candidate) {
- const SCEV *MaybeMaxExpr = MatchNotExpr(MaybeMinExpr);
- if (!MaybeMaxExpr)
- return false;
- return IsMaxConsistingOf<MaxExprType>(MaybeMaxExpr, SE.getNotSCEV(Candidate));
- }
- /// Is LHS `Pred` RHS true on the virtue of LHS or RHS being a Min or Max
- /// expression?
- static bool IsKnownPredicateViaMinOrMax(ScalarEvolution &SE,
- ICmpInst::Predicate Pred,
- const SCEV *LHS, const SCEV *RHS) {
- switch (Pred) {
- default:
- return false;
- case ICmpInst::ICMP_SGE:
- std::swap(LHS, RHS);
- // fall through
- case ICmpInst::ICMP_SLE:
- return
- // min(A, ...) <= A
- IsMinConsistingOf<SCEVSMaxExpr>(SE, LHS, RHS) ||
- // A <= max(A, ...)
- IsMaxConsistingOf<SCEVSMaxExpr>(RHS, LHS);
- case ICmpInst::ICMP_UGE:
- std::swap(LHS, RHS);
- // fall through
- case ICmpInst::ICMP_ULE:
- return
- // min(A, ...) <= A
- IsMinConsistingOf<SCEVUMaxExpr>(SE, LHS, RHS) ||
- // A <= max(A, ...)
- IsMaxConsistingOf<SCEVUMaxExpr>(RHS, LHS);
- }
- llvm_unreachable("covered switch fell through?!");
- }
- /// isImpliedCondOperandsHelper - Test whether the condition described by
- /// Pred, LHS, and RHS is true whenever the condition described by Pred,
- /// FoundLHS, and FoundRHS is true.
- bool
- ScalarEvolution::isImpliedCondOperandsHelper(ICmpInst::Predicate Pred,
- const SCEV *LHS, const SCEV *RHS,
- const SCEV *FoundLHS,
- const SCEV *FoundRHS) {
- auto IsKnownPredicateFull =
- [this](ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS) {
- return isKnownPredicateWithRanges(Pred, LHS, RHS) ||
- IsKnownPredicateViaMinOrMax(*this, Pred, LHS, RHS);
- };
- switch (Pred) {
- default: llvm_unreachable("Unexpected ICmpInst::Predicate value!");
- case ICmpInst::ICMP_EQ:
- case ICmpInst::ICMP_NE:
- if (HasSameValue(LHS, FoundLHS) && HasSameValue(RHS, FoundRHS))
- return true;
- break;
- case ICmpInst::ICMP_SLT:
- case ICmpInst::ICMP_SLE:
- if (IsKnownPredicateFull(ICmpInst::ICMP_SLE, LHS, FoundLHS) &&
- IsKnownPredicateFull(ICmpInst::ICMP_SGE, RHS, FoundRHS))
- return true;
- break;
- case ICmpInst::ICMP_SGT:
- case ICmpInst::ICMP_SGE:
- if (IsKnownPredicateFull(ICmpInst::ICMP_SGE, LHS, FoundLHS) &&
- IsKnownPredicateFull(ICmpInst::ICMP_SLE, RHS, FoundRHS))
- return true;
- break;
- case ICmpInst::ICMP_ULT:
- case ICmpInst::ICMP_ULE:
- if (IsKnownPredicateFull(ICmpInst::ICMP_ULE, LHS, FoundLHS) &&
- IsKnownPredicateFull(ICmpInst::ICMP_UGE, RHS, FoundRHS))
- return true;
- break;
- case ICmpInst::ICMP_UGT:
- case ICmpInst::ICMP_UGE:
- if (IsKnownPredicateFull(ICmpInst::ICMP_UGE, LHS, FoundLHS) &&
- IsKnownPredicateFull(ICmpInst::ICMP_ULE, RHS, FoundRHS))
- return true;
- break;
- }
- return false;
- }
- /// isImpliedCondOperandsViaRanges - helper function for isImpliedCondOperands.
- /// Tries to get cases like "X `sgt` 0 => X - 1 `sgt` -1".
- bool ScalarEvolution::isImpliedCondOperandsViaRanges(ICmpInst::Predicate Pred,
- const SCEV *LHS,
- const SCEV *RHS,
- const SCEV *FoundLHS,
- const SCEV *FoundRHS) {
- if (!isa<SCEVConstant>(RHS) || !isa<SCEVConstant>(FoundRHS))
- // The restriction on `FoundRHS` be lifted easily -- it exists only to
- // reduce the compile time impact of this optimization.
- return false;
- const SCEVAddExpr *AddLHS = dyn_cast<SCEVAddExpr>(LHS);
- if (!AddLHS || AddLHS->getOperand(1) != FoundLHS ||
- !isa<SCEVConstant>(AddLHS->getOperand(0)))
- return false;
- APInt ConstFoundRHS = cast<SCEVConstant>(FoundRHS)->getValue()->getValue();
- // `FoundLHSRange` is the range we know `FoundLHS` to be in by virtue of the
- // antecedent "`FoundLHS` `Pred` `FoundRHS`".
- ConstantRange FoundLHSRange =
- ConstantRange::makeAllowedICmpRegion(Pred, ConstFoundRHS);
- // Since `LHS` is `FoundLHS` + `AddLHS->getOperand(0)`, we can compute a range
- // for `LHS`:
- APInt Addend =
- cast<SCEVConstant>(AddLHS->getOperand(0))->getValue()->getValue();
- ConstantRange LHSRange = FoundLHSRange.add(ConstantRange(Addend));
- // We can also compute the range of values for `LHS` that satisfy the
- // consequent, "`LHS` `Pred` `RHS`":
- APInt ConstRHS = cast<SCEVConstant>(RHS)->getValue()->getValue();
- ConstantRange SatisfyingLHSRange =
- ConstantRange::makeSatisfyingICmpRegion(Pred, ConstRHS);
- // The antecedent implies the consequent if every value of `LHS` that
- // satisfies the antecedent also satisfies the consequent.
- return SatisfyingLHSRange.contains(LHSRange);
- }
- // Verify if an linear IV with positive stride can overflow when in a
- // less-than comparison, knowing the invariant term of the comparison, the
- // stride and the knowledge of NSW/NUW flags on the recurrence.
- bool ScalarEvolution::doesIVOverflowOnLT(const SCEV *RHS, const SCEV *Stride,
- bool IsSigned, bool NoWrap) {
- if (NoWrap) return false;
- unsigned BitWidth = getTypeSizeInBits(RHS->getType());
- const SCEV *One = getConstant(Stride->getType(), 1);
- if (IsSigned) {
- APInt MaxRHS = getSignedRange(RHS).getSignedMax();
- APInt MaxValue = APInt::getSignedMaxValue(BitWidth);
- APInt MaxStrideMinusOne = getSignedRange(getMinusSCEV(Stride, One))
- .getSignedMax();
- // SMaxRHS + SMaxStrideMinusOne > SMaxValue => overflow!
- return (MaxValue - MaxStrideMinusOne).slt(MaxRHS);
- }
- APInt MaxRHS = getUnsignedRange(RHS).getUnsignedMax();
- APInt MaxValue = APInt::getMaxValue(BitWidth);
- APInt MaxStrideMinusOne = getUnsignedRange(getMinusSCEV(Stride, One))
- .getUnsignedMax();
- // UMaxRHS + UMaxStrideMinusOne > UMaxValue => overflow!
- return (MaxValue - MaxStrideMinusOne).ult(MaxRHS);
- }
- // Verify if an linear IV with negative stride can overflow when in a
- // greater-than comparison, knowing the invariant term of the comparison,
- // the stride and the knowledge of NSW/NUW flags on the recurrence.
- bool ScalarEvolution::doesIVOverflowOnGT(const SCEV *RHS, const SCEV *Stride,
- bool IsSigned, bool NoWrap) {
- if (NoWrap) return false;
- unsigned BitWidth = getTypeSizeInBits(RHS->getType());
- const SCEV *One = getConstant(Stride->getType(), 1);
- if (IsSigned) {
- APInt MinRHS = getSignedRange(RHS).getSignedMin();
- APInt MinValue = APInt::getSignedMinValue(BitWidth);
- APInt MaxStrideMinusOne = getSignedRange(getMinusSCEV(Stride, One))
- .getSignedMax();
- // SMinRHS - SMaxStrideMinusOne < SMinValue => overflow!
- return (MinValue + MaxStrideMinusOne).sgt(MinRHS);
- }
- APInt MinRHS = getUnsignedRange(RHS).getUnsignedMin();
- APInt MinValue = APInt::getMinValue(BitWidth);
- APInt MaxStrideMinusOne = getUnsignedRange(getMinusSCEV(Stride, One))
- .getUnsignedMax();
- // UMinRHS - UMaxStrideMinusOne < UMinValue => overflow!
- return (MinValue + MaxStrideMinusOne).ugt(MinRHS);
- }
- // Compute the backedge taken count knowing the interval difference, the
- // stride and presence of the equality in the comparison.
- const SCEV *ScalarEvolution::computeBECount(const SCEV *Delta, const SCEV *Step,
- bool Equality) {
- const SCEV *One = getConstant(Step->getType(), 1);
- Delta = Equality ? getAddExpr(Delta, Step)
- : getAddExpr(Delta, getMinusSCEV(Step, One));
- return getUDivExpr(Delta, Step);
- }
- /// HowManyLessThans - Return the number of times a backedge containing the
- /// specified less-than comparison will execute. If not computable, return
- /// CouldNotCompute.
- ///
- /// @param ControlsExit is true when the LHS < RHS condition directly controls
- /// the branch (loops exits only if condition is true). In this case, we can use
- /// NoWrapFlags to skip overflow checks.
- ScalarEvolution::ExitLimit
- ScalarEvolution::HowManyLessThans(const SCEV *LHS, const SCEV *RHS,
- const Loop *L, bool IsSigned,
- bool ControlsExit) {
- // We handle only IV < Invariant
- if (!isLoopInvariant(RHS, L))
- return getCouldNotCompute();
- const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS);
- // Avoid weird loops
- if (!IV || IV->getLoop() != L || !IV->isAffine())
- return getCouldNotCompute();
- bool NoWrap = ControlsExit &&
- IV->getNoWrapFlags(IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW);
- const SCEV *Stride = IV->getStepRecurrence(*this);
- // Avoid negative or zero stride values
- if (!isKnownPositive(Stride))
- return getCouldNotCompute();
- // Avoid proven overflow cases: this will ensure that the backedge taken count
- // will not generate any unsigned overflow. Relaxed no-overflow conditions
- // exploit NoWrapFlags, allowing to optimize in presence of undefined
- // behaviors like the case of C language.
- if (!Stride->isOne() && doesIVOverflowOnLT(RHS, Stride, IsSigned, NoWrap))
- return getCouldNotCompute();
- ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SLT
- : ICmpInst::ICMP_ULT;
- const SCEV *Start = IV->getStart();
- const SCEV *End = RHS;
- if (!isLoopEntryGuardedByCond(L, Cond, getMinusSCEV(Start, Stride), RHS)) {
- const SCEV *Diff = getMinusSCEV(RHS, Start);
- // If we have NoWrap set, then we can assume that the increment won't
- // overflow, in which case if RHS - Start is a constant, we don't need to
- // do a max operation since we can just figure it out statically
- if (NoWrap && isa<SCEVConstant>(Diff)) {
- APInt D = dyn_cast<const SCEVConstant>(Diff)->getValue()->getValue();
- if (D.isNegative())
- End = Start;
- } else
- End = IsSigned ? getSMaxExpr(RHS, Start)
- : getUMaxExpr(RHS, Start);
- }
- const SCEV *BECount = computeBECount(getMinusSCEV(End, Start), Stride, false);
- APInt MinStart = IsSigned ? getSignedRange(Start).getSignedMin()
- : getUnsignedRange(Start).getUnsignedMin();
- APInt MinStride = IsSigned ? getSignedRange(Stride).getSignedMin()
- : getUnsignedRange(Stride).getUnsignedMin();
- unsigned BitWidth = getTypeSizeInBits(LHS->getType());
- APInt Limit = IsSigned ? APInt::getSignedMaxValue(BitWidth) - (MinStride - 1)
- : APInt::getMaxValue(BitWidth) - (MinStride - 1);
- // Although End can be a MAX expression we estimate MaxEnd considering only
- // the case End = RHS. This is safe because in the other case (End - Start)
- // is zero, leading to a zero maximum backedge taken count.
- APInt MaxEnd =
- IsSigned ? APIntOps::smin(getSignedRange(RHS).getSignedMax(), Limit)
- : APIntOps::umin(getUnsignedRange(RHS).getUnsignedMax(), Limit);
- const SCEV *MaxBECount;
- if (isa<SCEVConstant>(BECount))
- MaxBECount = BECount;
- else
- MaxBECount = computeBECount(getConstant(MaxEnd - MinStart),
- getConstant(MinStride), false);
- if (isa<SCEVCouldNotCompute>(MaxBECount))
- MaxBECount = BECount;
- return ExitLimit(BECount, MaxBECount);
- }
- ScalarEvolution::ExitLimit
- ScalarEvolution::HowManyGreaterThans(const SCEV *LHS, const SCEV *RHS,
- const Loop *L, bool IsSigned,
- bool ControlsExit) {
- // We handle only IV > Invariant
- if (!isLoopInvariant(RHS, L))
- return getCouldNotCompute();
- const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS);
- // Avoid weird loops
- if (!IV || IV->getLoop() != L || !IV->isAffine())
- return getCouldNotCompute();
- bool NoWrap = ControlsExit &&
- IV->getNoWrapFlags(IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW);
- const SCEV *Stride = getNegativeSCEV(IV->getStepRecurrence(*this));
- // Avoid negative or zero stride values
- if (!isKnownPositive(Stride))
- return getCouldNotCompute();
- // Avoid proven overflow cases: this will ensure that the backedge taken count
- // will not generate any unsigned overflow. Relaxed no-overflow conditions
- // exploit NoWrapFlags, allowing to optimize in presence of undefined
- // behaviors like the case of C language.
- if (!Stride->isOne() && doesIVOverflowOnGT(RHS, Stride, IsSigned, NoWrap))
- return getCouldNotCompute();
- ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SGT
- : ICmpInst::ICMP_UGT;
- const SCEV *Start = IV->getStart();
- const SCEV *End = RHS;
- if (!isLoopEntryGuardedByCond(L, Cond, getAddExpr(Start, Stride), RHS)) {
- const SCEV *Diff = getMinusSCEV(RHS, Start);
- // If we have NoWrap set, then we can assume that the increment won't
- // overflow, in which case if RHS - Start is a constant, we don't need to
- // do a max operation since we can just figure it out statically
- if (NoWrap && isa<SCEVConstant>(Diff)) {
- APInt D = dyn_cast<const SCEVConstant>(Diff)->getValue()->getValue();
- if (!D.isNegative())
- End = Start;
- } else
- End = IsSigned ? getSMinExpr(RHS, Start)
- : getUMinExpr(RHS, Start);
- }
- const SCEV *BECount = computeBECount(getMinusSCEV(Start, End), Stride, false);
- APInt MaxStart = IsSigned ? getSignedRange(Start).getSignedMax()
- : getUnsignedRange(Start).getUnsignedMax();
- APInt MinStride = IsSigned ? getSignedRange(Stride).getSignedMin()
- : getUnsignedRange(Stride).getUnsignedMin();
- unsigned BitWidth = getTypeSizeInBits(LHS->getType());
- APInt Limit = IsSigned ? APInt::getSignedMinValue(BitWidth) + (MinStride - 1)
- : APInt::getMinValue(BitWidth) + (MinStride - 1);
- // Although End can be a MIN expression we estimate MinEnd considering only
- // the case End = RHS. This is safe because in the other case (Start - End)
- // is zero, leading to a zero maximum backedge taken count.
- APInt MinEnd =
- IsSigned ? APIntOps::smax(getSignedRange(RHS).getSignedMin(), Limit)
- : APIntOps::umax(getUnsignedRange(RHS).getUnsignedMin(), Limit);
- const SCEV *MaxBECount = getCouldNotCompute();
- if (isa<SCEVConstant>(BECount))
- MaxBECount = BECount;
- else
- MaxBECount = computeBECount(getConstant(MaxStart - MinEnd),
- getConstant(MinStride), false);
- if (isa<SCEVCouldNotCompute>(MaxBECount))
- MaxBECount = BECount;
- return ExitLimit(BECount, MaxBECount);
- }
- /// getNumIterationsInRange - Return the number of iterations of this loop that
- /// produce values in the specified constant range. Another way of looking at
- /// this is that it returns the first iteration number where the value is not in
- /// the condition, thus computing the exit count. If the iteration count can't
- /// be computed, an instance of SCEVCouldNotCompute is returned.
- const SCEV *SCEVAddRecExpr::getNumIterationsInRange(ConstantRange Range,
- ScalarEvolution &SE) const {
- if (Range.isFullSet()) // Infinite loop.
- return SE.getCouldNotCompute();
- // If the start is a non-zero constant, shift the range to simplify things.
- if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart()))
- if (!SC->getValue()->isZero()) {
- SmallVector<const SCEV *, 4> Operands(op_begin(), op_end());
- Operands[0] = SE.getConstant(SC->getType(), 0);
- const SCEV *Shifted = SE.getAddRecExpr(Operands, getLoop(),
- getNoWrapFlags(FlagNW));
- if (const SCEVAddRecExpr *ShiftedAddRec =
- dyn_cast<SCEVAddRecExpr>(Shifted))
- return ShiftedAddRec->getNumIterationsInRange(
- Range.subtract(SC->getValue()->getValue()), SE);
- // This is strange and shouldn't happen.
- return SE.getCouldNotCompute();
- }
- // The only time we can solve this is when we have all constant indices.
- // Otherwise, we cannot determine the overflow conditions.
- for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
- if (!isa<SCEVConstant>(getOperand(i)))
- return SE.getCouldNotCompute();
- // Okay at this point we know that all elements of the chrec are constants and
- // that the start element is zero.
- // First check to see if the range contains zero. If not, the first
- // iteration exits.
- unsigned BitWidth = SE.getTypeSizeInBits(getType());
- if (!Range.contains(APInt(BitWidth, 0)))
- return SE.getConstant(getType(), 0);
- if (isAffine()) {
- // If this is an affine expression then we have this situation:
- // Solve {0,+,A} in Range === Ax in Range
- // We know that zero is in the range. If A is positive then we know that
- // the upper value of the range must be the first possible exit value.
- // If A is negative then the lower of the range is the last possible loop
- // value. Also note that we already checked for a full range.
- APInt One(BitWidth,1);
- APInt A = cast<SCEVConstant>(getOperand(1))->getValue()->getValue();
- APInt End = A.sge(One) ? (Range.getUpper() - One) : Range.getLower();
- // The exit value should be (End+A)/A.
- APInt ExitVal = (End + A).udiv(A);
- ConstantInt *ExitValue = ConstantInt::get(SE.getContext(), ExitVal);
- // Evaluate at the exit value. If we really did fall out of the valid
- // range, then we computed our trip count, otherwise wrap around or other
- // things must have happened.
- ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue, SE);
- if (Range.contains(Val->getValue()))
- return SE.getCouldNotCompute(); // Something strange happened
- // Ensure that the previous value is in the range. This is a sanity check.
- assert(Range.contains(
- EvaluateConstantChrecAtConstant(this,
- ConstantInt::get(SE.getContext(), ExitVal - One), SE)->getValue()) &&
- "Linear scev computation is off in a bad way!");
- return SE.getConstant(ExitValue);
- } else if (isQuadratic()) {
- // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of the
- // quadratic equation to solve it. To do this, we must frame our problem in
- // terms of figuring out when zero is crossed, instead of when
- // Range.getUpper() is crossed.
- SmallVector<const SCEV *, 4> NewOps(op_begin(), op_end());
- NewOps[0] = SE.getNegativeSCEV(SE.getConstant(Range.getUpper()));
- const SCEV *NewAddRec = SE.getAddRecExpr(NewOps, getLoop(),
- // getNoWrapFlags(FlagNW)
- FlagAnyWrap);
- // Next, solve the constructed addrec
- std::pair<const SCEV *,const SCEV *> Roots =
- SolveQuadraticEquation(cast<SCEVAddRecExpr>(NewAddRec), SE);
- const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
- const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
- if (R1) {
- // Pick the smallest positive root value.
- if (ConstantInt *CB =
- dyn_cast<ConstantInt>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT,
- R1->getValue(), R2->getValue()))) {
- if (!CB->getZExtValue())
- std::swap(R1, R2); // R1 is the minimum root now.
- // Make sure the root is not off by one. The returned iteration should
- // not be in the range, but the previous one should be. When solving
- // for "X*X < 5", for example, we should not return a root of 2.
- ConstantInt *R1Val = EvaluateConstantChrecAtConstant(this,
- R1->getValue(),
- SE);
- if (Range.contains(R1Val->getValue())) {
- // The next iteration must be out of the range...
- ConstantInt *NextVal =
- ConstantInt::get(SE.getContext(), R1->getValue()->getValue()+1);
- R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
- if (!Range.contains(R1Val->getValue()))
- return SE.getConstant(NextVal);
- return SE.getCouldNotCompute(); // Something strange happened
- }
- // If R1 was not in the range, then it is a good return value. Make
- // sure that R1-1 WAS in the range though, just in case.
- ConstantInt *NextVal =
- ConstantInt::get(SE.getContext(), R1->getValue()->getValue()-1);
- R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
- if (Range.contains(R1Val->getValue()))
- return R1;
- return SE.getCouldNotCompute(); // Something strange happened
- }
- }
- }
- return SE.getCouldNotCompute();
- }
- namespace {
- struct FindUndefs {
- bool Found;
- FindUndefs() : Found(false) {}
- bool follow(const SCEV *S) {
- if (const SCEVUnknown *C = dyn_cast<SCEVUnknown>(S)) {
- if (isa<UndefValue>(C->getValue()))
- Found = true;
- } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) {
- if (isa<UndefValue>(C->getValue()))
- Found = true;
- }
- // Keep looking if we haven't found it yet.
- return !Found;
- }
- bool isDone() const {
- // Stop recursion if we have found an undef.
- return Found;
- }
- };
- }
- // Return true when S contains at least an undef value.
- static inline bool
- containsUndefs(const SCEV *S) {
- FindUndefs F;
- SCEVTraversal<FindUndefs> ST(F);
- ST.visitAll(S);
- return F.Found;
- }
- namespace {
- // Collect all steps of SCEV expressions.
- struct SCEVCollectStrides {
- ScalarEvolution &SE;
- SmallVectorImpl<const SCEV *> &Strides;
- SCEVCollectStrides(ScalarEvolution &SE, SmallVectorImpl<const SCEV *> &S)
- : SE(SE), Strides(S) {}
- bool follow(const SCEV *S) {
- if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S))
- Strides.push_back(AR->getStepRecurrence(SE));
- return true;
- }
- bool isDone() const { return false; }
- };
- // Collect all SCEVUnknown and SCEVMulExpr expressions.
- struct SCEVCollectTerms {
- SmallVectorImpl<const SCEV *> &Terms;
- SCEVCollectTerms(SmallVectorImpl<const SCEV *> &T)
- : Terms(T) {}
- bool follow(const SCEV *S) {
- if (isa<SCEVUnknown>(S) || isa<SCEVMulExpr>(S)) {
- if (!containsUndefs(S))
- Terms.push_back(S);
- // Stop recursion: once we collected a term, do not walk its operands.
- return false;
- }
- // Keep looking.
- return true;
- }
- bool isDone() const { return false; }
- };
- }
- /// Find parametric terms in this SCEVAddRecExpr.
- void ScalarEvolution::collectParametricTerms(const SCEV *Expr,
- SmallVectorImpl<const SCEV *> &Terms) {
- SmallVector<const SCEV *, 4> Strides;
- SCEVCollectStrides StrideCollector(*this, Strides);
- visitAll(Expr, StrideCollector);
- DEBUG({
- dbgs() << "Strides:\n";
- for (const SCEV *S : Strides)
- dbgs() << *S << "\n";
- });
- for (const SCEV *S : Strides) {
- SCEVCollectTerms TermCollector(Terms);
- visitAll(S, TermCollector);
- }
- DEBUG({
- dbgs() << "Terms:\n";
- for (const SCEV *T : Terms)
- dbgs() << *T << "\n";
- });
- }
- static bool findArrayDimensionsRec(ScalarEvolution &SE,
- SmallVectorImpl<const SCEV *> &Terms,
- SmallVectorImpl<const SCEV *> &Sizes) {
- int Last = Terms.size() - 1;
- const SCEV *Step = Terms[Last];
- // End of recursion.
- if (Last == 0) {
- if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Step)) {
- SmallVector<const SCEV *, 2> Qs;
- for (const SCEV *Op : M->operands())
- if (!isa<SCEVConstant>(Op))
- Qs.push_back(Op);
- Step = SE.getMulExpr(Qs);
- }
- Sizes.push_back(Step);
- return true;
- }
- for (const SCEV *&Term : Terms) {
- // Normalize the terms before the next call to findArrayDimensionsRec.
- const SCEV *Q, *R;
- SCEVDivision::divide(SE, Term, Step, &Q, &R);
- // Bail out when GCD does not evenly divide one of the terms.
- if (!R->isZero())
- return false;
- Term = Q;
- }
- // Remove all SCEVConstants.
- Terms.erase(std::remove_if(Terms.begin(), Terms.end(), [](const SCEV *E) {
- return isa<SCEVConstant>(E);
- }),
- Terms.end());
- if (Terms.size() > 0)
- if (!findArrayDimensionsRec(SE, Terms, Sizes))
- return false;
- Sizes.push_back(Step);
- return true;
- }
- namespace {
- struct FindParameter {
- bool FoundParameter;
- FindParameter() : FoundParameter(false) {}
- bool follow(const SCEV *S) {
- if (isa<SCEVUnknown>(S)) {
- FoundParameter = true;
- // Stop recursion: we found a parameter.
- return false;
- }
- // Keep looking.
- return true;
- }
- bool isDone() const {
- // Stop recursion if we have found a parameter.
- return FoundParameter;
- }
- };
- }
- // Returns true when S contains at least a SCEVUnknown parameter.
- static inline bool
- containsParameters(const SCEV *S) {
- FindParameter F;
- SCEVTraversal<FindParameter> ST(F);
- ST.visitAll(S);
- return F.FoundParameter;
- }
- // Returns true when one of the SCEVs of Terms contains a SCEVUnknown parameter.
- static inline bool
- containsParameters(SmallVectorImpl<const SCEV *> &Terms) {
- for (const SCEV *T : Terms)
- if (containsParameters(T))
- return true;
- return false;
- }
- // Return the number of product terms in S.
- static inline int numberOfTerms(const SCEV *S) {
- if (const SCEVMulExpr *Expr = dyn_cast<SCEVMulExpr>(S))
- return Expr->getNumOperands();
- return 1;
- }
- static const SCEV *removeConstantFactors(ScalarEvolution &SE, const SCEV *T) {
- if (isa<SCEVConstant>(T))
- return nullptr;
- if (isa<SCEVUnknown>(T))
- return T;
- if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(T)) {
- SmallVector<const SCEV *, 2> Factors;
- for (const SCEV *Op : M->operands())
- if (!isa<SCEVConstant>(Op))
- Factors.push_back(Op);
- return SE.getMulExpr(Factors);
- }
- return T;
- }
- /// Return the size of an element read or written by Inst.
- const SCEV *ScalarEvolution::getElementSize(Instruction *Inst) {
- Type *Ty;
- if (StoreInst *Store = dyn_cast<StoreInst>(Inst))
- Ty = Store->getValueOperand()->getType();
- else if (LoadInst *Load = dyn_cast<LoadInst>(Inst))
- Ty = Load->getType();
- else
- return nullptr;
- Type *ETy = getEffectiveSCEVType(PointerType::getUnqual(Ty));
- return getSizeOfExpr(ETy, Ty);
- }
- /// Second step of delinearization: compute the array dimensions Sizes from the
- /// set of Terms extracted from the memory access function of this SCEVAddRec.
- void ScalarEvolution::findArrayDimensions(SmallVectorImpl<const SCEV *> &Terms,
- SmallVectorImpl<const SCEV *> &Sizes,
- const SCEV *ElementSize) const {
- if (Terms.size() < 1 || !ElementSize)
- return;
- // Early return when Terms do not contain parameters: we do not delinearize
- // non parametric SCEVs.
- if (!containsParameters(Terms))
- return;
- DEBUG({
- dbgs() << "Terms:\n";
- for (const SCEV *T : Terms)
- dbgs() << *T << "\n";
- });
- // Remove duplicates.
- std::sort(Terms.begin(), Terms.end());
- Terms.erase(std::unique(Terms.begin(), Terms.end()), Terms.end());
- // Put larger terms first.
- std::sort(Terms.begin(), Terms.end(), [](const SCEV *LHS, const SCEV *RHS) {
- return numberOfTerms(LHS) > numberOfTerms(RHS);
- });
- ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
- // Divide all terms by the element size.
- for (const SCEV *&Term : Terms) {
- const SCEV *Q, *R;
- SCEVDivision::divide(SE, Term, ElementSize, &Q, &R);
- Term = Q;
- }
- SmallVector<const SCEV *, 4> NewTerms;
- // Remove constant factors.
- for (const SCEV *T : Terms)
- if (const SCEV *NewT = removeConstantFactors(SE, T))
- NewTerms.push_back(NewT);
- DEBUG({
- dbgs() << "Terms after sorting:\n";
- for (const SCEV *T : NewTerms)
- dbgs() << *T << "\n";
- });
- if (NewTerms.empty() ||
- !findArrayDimensionsRec(SE, NewTerms, Sizes)) {
- Sizes.clear();
- return;
- }
- // The last element to be pushed into Sizes is the size of an element.
- Sizes.push_back(ElementSize);
- DEBUG({
- dbgs() << "Sizes:\n";
- for (const SCEV *S : Sizes)
- dbgs() << *S << "\n";
- });
- }
- /// Third step of delinearization: compute the access functions for the
- /// Subscripts based on the dimensions in Sizes.
- void ScalarEvolution::computeAccessFunctions(
- const SCEV *Expr, SmallVectorImpl<const SCEV *> &Subscripts,
- SmallVectorImpl<const SCEV *> &Sizes) {
- // Early exit in case this SCEV is not an affine multivariate function.
- if (Sizes.empty())
- return;
- if (auto AR = dyn_cast<SCEVAddRecExpr>(Expr))
- if (!AR->isAffine())
- return;
- const SCEV *Res = Expr;
- int Last = Sizes.size() - 1;
- for (int i = Last; i >= 0; i--) {
- const SCEV *Q, *R;
- SCEVDivision::divide(*this, Res, Sizes[i], &Q, &R);
- DEBUG({
- dbgs() << "Res: " << *Res << "\n";
- dbgs() << "Sizes[i]: " << *Sizes[i] << "\n";
- dbgs() << "Res divided by Sizes[i]:\n";
- dbgs() << "Quotient: " << *Q << "\n";
- dbgs() << "Remainder: " << *R << "\n";
- });
- Res = Q;
- // Do not record the last subscript corresponding to the size of elements in
- // the array.
- if (i == Last) {
- // Bail out if the remainder is too complex.
- if (isa<SCEVAddRecExpr>(R)) {
- Subscripts.clear();
- Sizes.clear();
- return;
- }
- continue;
- }
- // Record the access function for the current subscript.
- Subscripts.push_back(R);
- }
- // Also push in last position the remainder of the last division: it will be
- // the access function of the innermost dimension.
- Subscripts.push_back(Res);
- std::reverse(Subscripts.begin(), Subscripts.end());
- DEBUG({
- dbgs() << "Subscripts:\n";
- for (const SCEV *S : Subscripts)
- dbgs() << *S << "\n";
- });
- }
- /// Splits the SCEV into two vectors of SCEVs representing the subscripts and
- /// sizes of an array access. Returns the remainder of the delinearization that
- /// is the offset start of the array. The SCEV->delinearize algorithm computes
- /// the multiples of SCEV coefficients: that is a pattern matching of sub
- /// expressions in the stride and base of a SCEV corresponding to the
- /// computation of a GCD (greatest common divisor) of base and stride. When
- /// SCEV->delinearize fails, it returns the SCEV unchanged.
- ///
- /// For example: when analyzing the memory access A[i][j][k] in this loop nest
- ///
- /// void foo(long n, long m, long o, double A[n][m][o]) {
- ///
- /// for (long i = 0; i < n; i++)
- /// for (long j = 0; j < m; j++)
- /// for (long k = 0; k < o; k++)
- /// A[i][j][k] = 1.0;
- /// }
- ///
- /// the delinearization input is the following AddRec SCEV:
- ///
- /// AddRec: {{{%A,+,(8 * %m * %o)}<%for.i>,+,(8 * %o)}<%for.j>,+,8}<%for.k>
- ///
- /// From this SCEV, we are able to say that the base offset of the access is %A
- /// because it appears as an offset that does not divide any of the strides in
- /// the loops:
- ///
- /// CHECK: Base offset: %A
- ///
- /// and then SCEV->delinearize determines the size of some of the dimensions of
- /// the array as these are the multiples by which the strides are happening:
- ///
- /// CHECK: ArrayDecl[UnknownSize][%m][%o] with elements of sizeof(double) bytes.
- ///
- /// Note that the outermost dimension remains of UnknownSize because there are
- /// no strides that would help identifying the size of the last dimension: when
- /// the array has been statically allocated, one could compute the size of that
- /// dimension by dividing the overall size of the array by the size of the known
- /// dimensions: %m * %o * 8.
- ///
- /// Finally delinearize provides the access functions for the array reference
- /// that does correspond to A[i][j][k] of the above C testcase:
- ///
- /// CHECK: ArrayRef[{0,+,1}<%for.i>][{0,+,1}<%for.j>][{0,+,1}<%for.k>]
- ///
- /// The testcases are checking the output of a function pass:
- /// DelinearizationPass that walks through all loads and stores of a function
- /// asking for the SCEV of the memory access with respect to all enclosing
- /// loops, calling SCEV->delinearize on that and printing the results.
- void ScalarEvolution::delinearize(const SCEV *Expr,
- SmallVectorImpl<const SCEV *> &Subscripts,
- SmallVectorImpl<const SCEV *> &Sizes,
- const SCEV *ElementSize) {
- // First step: collect parametric terms.
- SmallVector<const SCEV *, 4> Terms;
- collectParametricTerms(Expr, Terms);
- if (Terms.empty())
- return;
- // Second step: find subscript sizes.
- findArrayDimensions(Terms, Sizes, ElementSize);
- if (Sizes.empty())
- return;
- // Third step: compute the access functions for each subscript.
- computeAccessFunctions(Expr, Subscripts, Sizes);
- if (Subscripts.empty())
- return;
- DEBUG({
- dbgs() << "succeeded to delinearize " << *Expr << "\n";
- dbgs() << "ArrayDecl[UnknownSize]";
- for (const SCEV *S : Sizes)
- dbgs() << "[" << *S << "]";
- dbgs() << "\nArrayRef";
- for (const SCEV *S : Subscripts)
- dbgs() << "[" << *S << "]";
- dbgs() << "\n";
- });
- }
- //===----------------------------------------------------------------------===//
- // SCEVCallbackVH Class Implementation
- //===----------------------------------------------------------------------===//
- void ScalarEvolution::SCEVCallbackVH::deleted() {
- assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
- if (PHINode *PN = dyn_cast<PHINode>(getValPtr()))
- SE->ConstantEvolutionLoopExitValue.erase(PN);
- SE->ValueExprMap.erase(getValPtr());
- // this now dangles!
- }
- void ScalarEvolution::SCEVCallbackVH::allUsesReplacedWith(Value *V) {
- assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
- // Forget all the expressions associated with users of the old value,
- // so that future queries will recompute the expressions using the new
- // value.
- Value *Old = getValPtr();
- SmallVector<User *, 16> Worklist(Old->user_begin(), Old->user_end());
- SmallPtrSet<User *, 8> Visited;
- while (!Worklist.empty()) {
- User *U = Worklist.pop_back_val();
- // Deleting the Old value will cause this to dangle. Postpone
- // that until everything else is done.
- if (U == Old)
- continue;
- if (!Visited.insert(U).second)
- continue;
- if (PHINode *PN = dyn_cast<PHINode>(U))
- SE->ConstantEvolutionLoopExitValue.erase(PN);
- SE->ValueExprMap.erase(U);
- Worklist.insert(Worklist.end(), U->user_begin(), U->user_end());
- }
- // Delete the Old value.
- if (PHINode *PN = dyn_cast<PHINode>(Old))
- SE->ConstantEvolutionLoopExitValue.erase(PN);
- SE->ValueExprMap.erase(Old);
- // this now dangles!
- }
- ScalarEvolution::SCEVCallbackVH::SCEVCallbackVH(Value *V, ScalarEvolution *se)
- : CallbackVH(V), SE(se) {}
- //===----------------------------------------------------------------------===//
- // ScalarEvolution Class Implementation
- //===----------------------------------------------------------------------===//
- ScalarEvolution::ScalarEvolution()
- : FunctionPass(ID), WalkingBEDominatingConds(false), ValuesAtScopes(64),
- LoopDispositions(64), BlockDispositions(64), FirstUnknown(nullptr) {
- initializeScalarEvolutionPass(*PassRegistry::getPassRegistry());
- }
- bool ScalarEvolution::runOnFunction(Function &F) {
- this->F = &F;
- AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
- LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
- TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
- DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
- return false;
- }
- void ScalarEvolution::releaseMemory() {
- // Iterate through all the SCEVUnknown instances and call their
- // destructors, so that they release their references to their values.
- for (SCEVUnknown *U = FirstUnknown; U; U = U->Next)
- U->~SCEVUnknown();
- FirstUnknown = nullptr;
- ValueExprMap.clear();
- // Free any extra memory created for ExitNotTakenInfo in the unlikely event
- // that a loop had multiple computable exits.
- for (DenseMap<const Loop*, BackedgeTakenInfo>::iterator I =
- BackedgeTakenCounts.begin(), E = BackedgeTakenCounts.end();
- I != E; ++I) {
- I->second.clear();
- }
- assert(PendingLoopPredicates.empty() && "isImpliedCond garbage");
- assert(!WalkingBEDominatingConds && "isLoopBackedgeGuardedByCond garbage!");
- BackedgeTakenCounts.clear();
- ConstantEvolutionLoopExitValue.clear();
- ValuesAtScopes.clear();
- LoopDispositions.clear();
- BlockDispositions.clear();
- UnsignedRanges.clear();
- SignedRanges.clear();
- UniqueSCEVs.clear();
- SCEVAllocator.Reset();
- }
- void ScalarEvolution::getAnalysisUsage(AnalysisUsage &AU) const {
- AU.setPreservesAll();
- AU.addRequired<AssumptionCacheTracker>();
- AU.addRequiredTransitive<LoopInfoWrapperPass>();
- AU.addRequiredTransitive<DominatorTreeWrapperPass>();
- AU.addRequired<TargetLibraryInfoWrapperPass>();
- AU.addRequired<DxilValueCache>(); // HLSL Change
- }
- bool ScalarEvolution::hasLoopInvariantBackedgeTakenCount(const Loop *L) {
- return !isa<SCEVCouldNotCompute>(getBackedgeTakenCount(L));
- }
- static void PrintLoopInfo(raw_ostream &OS, ScalarEvolution *SE,
- const Loop *L) {
- // Print all inner loops first
- for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
- PrintLoopInfo(OS, SE, *I);
- OS << "Loop ";
- L->getHeader()->printAsOperand(OS, /*PrintType=*/false);
- OS << ": ";
- SmallVector<BasicBlock *, 8> ExitBlocks;
- L->getExitBlocks(ExitBlocks);
- if (ExitBlocks.size() != 1)
- OS << "<multiple exits> ";
- if (SE->hasLoopInvariantBackedgeTakenCount(L)) {
- OS << "backedge-taken count is " << *SE->getBackedgeTakenCount(L);
- } else {
- OS << "Unpredictable backedge-taken count. ";
- }
- OS << "\n"
- "Loop ";
- L->getHeader()->printAsOperand(OS, /*PrintType=*/false);
- OS << ": ";
- if (!isa<SCEVCouldNotCompute>(SE->getMaxBackedgeTakenCount(L))) {
- OS << "max backedge-taken count is " << *SE->getMaxBackedgeTakenCount(L);
- } else {
- OS << "Unpredictable max backedge-taken count. ";
- }
- OS << "\n";
- }
- void ScalarEvolution::print(raw_ostream &OS, const Module *) const {
- // ScalarEvolution's implementation of the print method is to print
- // out SCEV values of all instructions that are interesting. Doing
- // this potentially causes it to create new SCEV objects though,
- // which technically conflicts with the const qualifier. This isn't
- // observable from outside the class though, so casting away the
- // const isn't dangerous.
- ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
- OS << "Classifying expressions for: ";
- F->printAsOperand(OS, /*PrintType=*/false);
- OS << "\n";
- for (inst_iterator I = inst_begin(F), E = inst_end(F); I != E; ++I)
- if (isSCEVable(I->getType()) && !isa<CmpInst>(*I)) {
- OS << *I << '\n';
- OS << " --> ";
- const SCEV *SV = SE.getSCEV(&*I);
- SV->print(OS);
- if (!isa<SCEVCouldNotCompute>(SV)) {
- OS << " U: ";
- SE.getUnsignedRange(SV).print(OS);
- OS << " S: ";
- SE.getSignedRange(SV).print(OS);
- }
- const Loop *L = LI->getLoopFor((*I).getParent());
- const SCEV *AtUse = SE.getSCEVAtScope(SV, L);
- if (AtUse != SV) {
- OS << " --> ";
- AtUse->print(OS);
- if (!isa<SCEVCouldNotCompute>(AtUse)) {
- OS << " U: ";
- SE.getUnsignedRange(AtUse).print(OS);
- OS << " S: ";
- SE.getSignedRange(AtUse).print(OS);
- }
- }
- if (L) {
- OS << "\t\t" "Exits: ";
- const SCEV *ExitValue = SE.getSCEVAtScope(SV, L->getParentLoop());
- if (!SE.isLoopInvariant(ExitValue, L)) {
- OS << "<<Unknown>>";
- } else {
- OS << *ExitValue;
- }
- }
- OS << "\n";
- }
- OS << "Determining loop execution counts for: ";
- F->printAsOperand(OS, /*PrintType=*/false);
- OS << "\n";
- for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I)
- PrintLoopInfo(OS, &SE, *I);
- }
- ScalarEvolution::LoopDisposition
- ScalarEvolution::getLoopDisposition(const SCEV *S, const Loop *L) {
- auto &Values = LoopDispositions[S];
- for (auto &V : Values) {
- if (V.getPointer() == L)
- return V.getInt();
- }
- Values.emplace_back(L, LoopVariant);
- LoopDisposition D = computeLoopDisposition(S, L);
- auto &Values2 = LoopDispositions[S];
- for (auto &V : make_range(Values2.rbegin(), Values2.rend())) {
- if (V.getPointer() == L) {
- V.setInt(D);
- break;
- }
- }
- return D;
- }
- ScalarEvolution::LoopDisposition
- ScalarEvolution::computeLoopDisposition(const SCEV *S, const Loop *L) {
- switch (static_cast<SCEVTypes>(S->getSCEVType())) {
- case scConstant:
- return LoopInvariant;
- case scTruncate:
- case scZeroExtend:
- case scSignExtend:
- return getLoopDisposition(cast<SCEVCastExpr>(S)->getOperand(), L);
- case scAddRecExpr: {
- const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S);
- // If L is the addrec's loop, it's computable.
- if (AR->getLoop() == L)
- return LoopComputable;
- // Add recurrences are never invariant in the function-body (null loop).
- if (!L)
- return LoopVariant;
- // This recurrence is variant w.r.t. L if L contains AR's loop.
- if (L->contains(AR->getLoop()))
- return LoopVariant;
- // This recurrence is invariant w.r.t. L if AR's loop contains L.
- if (AR->getLoop()->contains(L))
- return LoopInvariant;
- // This recurrence is variant w.r.t. L if any of its operands
- // are variant.
- for (SCEVAddRecExpr::op_iterator I = AR->op_begin(), E = AR->op_end();
- I != E; ++I)
- if (!isLoopInvariant(*I, L))
- return LoopVariant;
- // Otherwise it's loop-invariant.
- return LoopInvariant;
- }
- case scAddExpr:
- case scMulExpr:
- case scUMaxExpr:
- case scSMaxExpr: {
- const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S);
- bool HasVarying = false;
- for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
- I != E; ++I) {
- LoopDisposition D = getLoopDisposition(*I, L);
- if (D == LoopVariant)
- return LoopVariant;
- if (D == LoopComputable)
- HasVarying = true;
- }
- return HasVarying ? LoopComputable : LoopInvariant;
- }
- case scUDivExpr: {
- const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S);
- LoopDisposition LD = getLoopDisposition(UDiv->getLHS(), L);
- if (LD == LoopVariant)
- return LoopVariant;
- LoopDisposition RD = getLoopDisposition(UDiv->getRHS(), L);
- if (RD == LoopVariant)
- return LoopVariant;
- return (LD == LoopInvariant && RD == LoopInvariant) ?
- LoopInvariant : LoopComputable;
- }
- case scUnknown:
- // All non-instruction values are loop invariant. All instructions are loop
- // invariant if they are not contained in the specified loop.
- // Instructions are never considered invariant in the function body
- // (null loop) because they are defined within the "loop".
- if (Instruction *I = dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue()))
- return (L && !L->contains(I)) ? LoopInvariant : LoopVariant;
- return LoopInvariant;
- case scCouldNotCompute:
- llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
- }
- llvm_unreachable("Unknown SCEV kind!");
- }
- bool ScalarEvolution::isLoopInvariant(const SCEV *S, const Loop *L) {
- return getLoopDisposition(S, L) == LoopInvariant;
- }
- bool ScalarEvolution::hasComputableLoopEvolution(const SCEV *S, const Loop *L) {
- return getLoopDisposition(S, L) == LoopComputable;
- }
- ScalarEvolution::BlockDisposition
- ScalarEvolution::getBlockDisposition(const SCEV *S, const BasicBlock *BB) {
- auto &Values = BlockDispositions[S];
- for (auto &V : Values) {
- if (V.getPointer() == BB)
- return V.getInt();
- }
- Values.emplace_back(BB, DoesNotDominateBlock);
- BlockDisposition D = computeBlockDisposition(S, BB);
- auto &Values2 = BlockDispositions[S];
- for (auto &V : make_range(Values2.rbegin(), Values2.rend())) {
- if (V.getPointer() == BB) {
- V.setInt(D);
- break;
- }
- }
- return D;
- }
- ScalarEvolution::BlockDisposition
- ScalarEvolution::computeBlockDisposition(const SCEV *S, const BasicBlock *BB) {
- switch (static_cast<SCEVTypes>(S->getSCEVType())) {
- case scConstant:
- return ProperlyDominatesBlock;
- case scTruncate:
- case scZeroExtend:
- case scSignExtend:
- return getBlockDisposition(cast<SCEVCastExpr>(S)->getOperand(), BB);
- case scAddRecExpr: {
- // This uses a "dominates" query instead of "properly dominates" query
- // to test for proper dominance too, because the instruction which
- // produces the addrec's value is a PHI, and a PHI effectively properly
- // dominates its entire containing block.
- const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S);
- if (!DT->dominates(AR->getLoop()->getHeader(), BB))
- return DoesNotDominateBlock;
- }
- // FALL THROUGH into SCEVNAryExpr handling.
- case scAddExpr:
- case scMulExpr:
- case scUMaxExpr:
- case scSMaxExpr: {
- const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S);
- bool Proper = true;
- for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
- I != E; ++I) {
- BlockDisposition D = getBlockDisposition(*I, BB);
- if (D == DoesNotDominateBlock)
- return DoesNotDominateBlock;
- if (D == DominatesBlock)
- Proper = false;
- }
- return Proper ? ProperlyDominatesBlock : DominatesBlock;
- }
- case scUDivExpr: {
- const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S);
- const SCEV *LHS = UDiv->getLHS(), *RHS = UDiv->getRHS();
- BlockDisposition LD = getBlockDisposition(LHS, BB);
- if (LD == DoesNotDominateBlock)
- return DoesNotDominateBlock;
- BlockDisposition RD = getBlockDisposition(RHS, BB);
- if (RD == DoesNotDominateBlock)
- return DoesNotDominateBlock;
- return (LD == ProperlyDominatesBlock && RD == ProperlyDominatesBlock) ?
- ProperlyDominatesBlock : DominatesBlock;
- }
- case scUnknown:
- if (Instruction *I =
- dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue())) {
- if (I->getParent() == BB)
- return DominatesBlock;
- if (DT->properlyDominates(I->getParent(), BB))
- return ProperlyDominatesBlock;
- return DoesNotDominateBlock;
- }
- return ProperlyDominatesBlock;
- case scCouldNotCompute:
- llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
- }
- llvm_unreachable("Unknown SCEV kind!");
- }
- bool ScalarEvolution::dominates(const SCEV *S, const BasicBlock *BB) {
- return getBlockDisposition(S, BB) >= DominatesBlock;
- }
- bool ScalarEvolution::properlyDominates(const SCEV *S, const BasicBlock *BB) {
- return getBlockDisposition(S, BB) == ProperlyDominatesBlock;
- }
- namespace {
- // Search for a SCEV expression node within an expression tree.
- // Implements SCEVTraversal::Visitor.
- struct SCEVSearch {
- const SCEV *Node;
- bool IsFound;
- SCEVSearch(const SCEV *N): Node(N), IsFound(false) {}
- bool follow(const SCEV *S) {
- IsFound |= (S == Node);
- return !IsFound;
- }
- bool isDone() const { return IsFound; }
- };
- }
- bool ScalarEvolution::hasOperand(const SCEV *S, const SCEV *Op) const {
- SCEVSearch Search(Op);
- visitAll(S, Search);
- return Search.IsFound;
- }
- void ScalarEvolution::forgetMemoizedResults(const SCEV *S) {
- ValuesAtScopes.erase(S);
- LoopDispositions.erase(S);
- BlockDispositions.erase(S);
- UnsignedRanges.erase(S);
- SignedRanges.erase(S);
- for (DenseMap<const Loop*, BackedgeTakenInfo>::iterator I =
- BackedgeTakenCounts.begin(), E = BackedgeTakenCounts.end(); I != E; ) {
- BackedgeTakenInfo &BEInfo = I->second;
- if (BEInfo.hasOperand(S, this)) {
- BEInfo.clear();
- BackedgeTakenCounts.erase(I++);
- }
- else
- ++I;
- }
- }
- typedef DenseMap<const Loop *, std::string> VerifyMap;
- /// replaceSubString - Replaces all occurrences of From in Str with To.
- static void replaceSubString(std::string &Str, StringRef From, StringRef To) {
- size_t Pos = 0;
- while ((Pos = Str.find(From, Pos)) != std::string::npos) {
- Str.replace(Pos, From.size(), To.data(), To.size());
- Pos += To.size();
- }
- }
- /// getLoopBackedgeTakenCounts - Helper method for verifyAnalysis.
- static void
- getLoopBackedgeTakenCounts(Loop *L, VerifyMap &Map, ScalarEvolution &SE) {
- for (Loop::reverse_iterator I = L->rbegin(), E = L->rend(); I != E; ++I) {
- getLoopBackedgeTakenCounts(*I, Map, SE); // recurse.
- std::string &S = Map[L];
- if (S.empty()) {
- raw_string_ostream OS(S);
- SE.getBackedgeTakenCount(L)->print(OS);
- // false and 0 are semantically equivalent. This can happen in dead loops.
- replaceSubString(OS.str(), "false", "0");
- // Remove wrap flags, their use in SCEV is highly fragile.
- // FIXME: Remove this when SCEV gets smarter about them.
- replaceSubString(OS.str(), "<nw>", "");
- replaceSubString(OS.str(), "<nsw>", "");
- replaceSubString(OS.str(), "<nuw>", "");
- }
- }
- }
- void ScalarEvolution::verifyAnalysis() const {
- if (!VerifySCEV)
- return;
- ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
- // Gather stringified backedge taken counts for all loops using SCEV's caches.
- // FIXME: It would be much better to store actual values instead of strings,
- // but SCEV pointers will change if we drop the caches.
- VerifyMap BackedgeDumpsOld, BackedgeDumpsNew;
- for (LoopInfo::reverse_iterator I = LI->rbegin(), E = LI->rend(); I != E; ++I)
- getLoopBackedgeTakenCounts(*I, BackedgeDumpsOld, SE);
- // Gather stringified backedge taken counts for all loops without using
- // SCEV's caches.
- SE.releaseMemory();
- for (LoopInfo::reverse_iterator I = LI->rbegin(), E = LI->rend(); I != E; ++I)
- getLoopBackedgeTakenCounts(*I, BackedgeDumpsNew, SE);
- // Now compare whether they're the same with and without caches. This allows
- // verifying that no pass changed the cache.
- assert(BackedgeDumpsOld.size() == BackedgeDumpsNew.size() &&
- "New loops suddenly appeared!");
- for (VerifyMap::iterator OldI = BackedgeDumpsOld.begin(),
- OldE = BackedgeDumpsOld.end(),
- NewI = BackedgeDumpsNew.begin();
- OldI != OldE; ++OldI, ++NewI) {
- assert(OldI->first == NewI->first && "Loop order changed!");
- // Compare the stringified SCEVs. We don't care if undef backedgetaken count
- // changes.
- // FIXME: We currently ignore SCEV changes from/to CouldNotCompute. This
- // means that a pass is buggy or SCEV has to learn a new pattern but is
- // usually not harmful.
- if (OldI->second != NewI->second &&
- OldI->second.find("undef") == std::string::npos &&
- NewI->second.find("undef") == std::string::npos &&
- OldI->second != "***COULDNOTCOMPUTE***" &&
- NewI->second != "***COULDNOTCOMPUTE***") {
- dbgs() << "SCEVValidator: SCEV for loop '"
- << OldI->first->getHeader()->getName()
- << "' changed from '" << OldI->second
- << "' to '" << NewI->second << "'!\n";
- std::abort();
- }
- }
- // TODO: Verify more things.
- }
|