123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254 |
- //===- ScalarEvolutionNormalization.cpp - See below -------------*- C++ -*-===//
- //
- // The LLVM Compiler Infrastructure
- //
- // This file is distributed under the University of Illinois Open Source
- // License. See LICENSE.TXT for details.
- //
- //===----------------------------------------------------------------------===//
- //
- // This file implements utilities for working with "normalized" expressions.
- // See the comments at the top of ScalarEvolutionNormalization.h for details.
- //
- //===----------------------------------------------------------------------===//
- #include "llvm/IR/Dominators.h"
- #include "llvm/Analysis/LoopInfo.h"
- #include "llvm/Analysis/ScalarEvolutionExpressions.h"
- #include "llvm/Analysis/ScalarEvolutionNormalization.h"
- using namespace llvm;
- /// IVUseShouldUsePostIncValue - We have discovered a "User" of an IV expression
- /// and now we need to decide whether the user should use the preinc or post-inc
- /// value. If this user should use the post-inc version of the IV, return true.
- ///
- /// Choosing wrong here can break dominance properties (if we choose to use the
- /// post-inc value when we cannot) or it can end up adding extra live-ranges to
- /// the loop, resulting in reg-reg copies (if we use the pre-inc value when we
- /// should use the post-inc value).
- static bool IVUseShouldUsePostIncValue(Instruction *User, Value *Operand,
- const Loop *L, DominatorTree *DT) {
- // If the user is in the loop, use the preinc value.
- if (L->contains(User)) return false;
- BasicBlock *LatchBlock = L->getLoopLatch();
- if (!LatchBlock)
- return false;
- // Ok, the user is outside of the loop. If it is dominated by the latch
- // block, use the post-inc value.
- if (DT->dominates(LatchBlock, User->getParent()))
- return true;
- // There is one case we have to be careful of: PHI nodes. These little guys
- // can live in blocks that are not dominated by the latch block, but (since
- // their uses occur in the predecessor block, not the block the PHI lives in)
- // should still use the post-inc value. Check for this case now.
- PHINode *PN = dyn_cast<PHINode>(User);
- if (!PN || !Operand) return false; // not a phi, not dominated by latch block.
- // Look at all of the uses of Operand by the PHI node. If any use corresponds
- // to a block that is not dominated by the latch block, give up and use the
- // preincremented value.
- for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
- if (PN->getIncomingValue(i) == Operand &&
- !DT->dominates(LatchBlock, PN->getIncomingBlock(i)))
- return false;
- // Okay, all uses of Operand by PN are in predecessor blocks that really are
- // dominated by the latch block. Use the post-incremented value.
- return true;
- }
- namespace {
- /// Hold the state used during post-inc expression transformation, including a
- /// map of transformed expressions.
- class PostIncTransform {
- TransformKind Kind;
- PostIncLoopSet &Loops;
- ScalarEvolution &SE;
- DominatorTree &DT;
- DenseMap<const SCEV*, const SCEV*> Transformed;
- public:
- PostIncTransform(TransformKind kind, PostIncLoopSet &loops,
- ScalarEvolution &se, DominatorTree &dt):
- Kind(kind), Loops(loops), SE(se), DT(dt) {}
- const SCEV *TransformSubExpr(const SCEV *S, Instruction *User,
- Value *OperandValToReplace);
- protected:
- const SCEV *TransformImpl(const SCEV *S, Instruction *User,
- Value *OperandValToReplace);
- };
- } // namespace
- /// Implement post-inc transformation for all valid expression types.
- const SCEV *PostIncTransform::
- TransformImpl(const SCEV *S, Instruction *User, Value *OperandValToReplace) {
- if (const SCEVCastExpr *X = dyn_cast<SCEVCastExpr>(S)) {
- const SCEV *O = X->getOperand();
- const SCEV *N = TransformSubExpr(O, User, OperandValToReplace);
- if (O != N)
- switch (S->getSCEVType()) {
- case scZeroExtend: return SE.getZeroExtendExpr(N, S->getType());
- case scSignExtend: return SE.getSignExtendExpr(N, S->getType());
- case scTruncate: return SE.getTruncateExpr(N, S->getType());
- default: llvm_unreachable("Unexpected SCEVCastExpr kind!");
- }
- return S;
- }
- if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
- // An addrec. This is the interesting part.
- SmallVector<const SCEV *, 8> Operands;
- const Loop *L = AR->getLoop();
- // The addrec conceptually uses its operands at loop entry.
- Instruction *LUser = L->getHeader()->begin();
- // Transform each operand.
- for (SCEVNAryExpr::op_iterator I = AR->op_begin(), E = AR->op_end();
- I != E; ++I) {
- Operands.push_back(TransformSubExpr(*I, LUser, nullptr));
- }
- // Conservatively use AnyWrap until/unless we need FlagNW.
- const SCEV *Result = SE.getAddRecExpr(Operands, L, SCEV::FlagAnyWrap);
- switch (Kind) {
- case NormalizeAutodetect:
- // Normalize this SCEV by subtracting the expression for the final step.
- // We only allow affine AddRecs to be normalized, otherwise we would not
- // be able to correctly denormalize.
- // e.g. {1,+,3,+,2} == {-2,+,1,+,2} + {3,+,2}
- // Normalized form: {-2,+,1,+,2}
- // Denormalized form: {1,+,3,+,2}
- //
- // However, denormalization would use a different step expression than
- // normalization (see getPostIncExpr), generating the wrong final
- // expression: {-2,+,1,+,2} + {1,+,2} => {-1,+,3,+,2}
- if (AR->isAffine() &&
- IVUseShouldUsePostIncValue(User, OperandValToReplace, L, &DT)) {
- const SCEV *TransformedStep =
- TransformSubExpr(AR->getStepRecurrence(SE),
- User, OperandValToReplace);
- Result = SE.getMinusSCEV(Result, TransformedStep);
- Loops.insert(L);
- }
- #if 0
- // This assert is conceptually correct, but ScalarEvolution currently
- // sometimes fails to canonicalize two equal SCEVs to exactly the same
- // form. It's possibly a pessimization when this happens, but it isn't a
- // correctness problem, so disable this assert for now.
- assert(S == TransformSubExpr(Result, User, OperandValToReplace) &&
- "SCEV normalization is not invertible!");
- #endif
- break;
- case Normalize:
- // We want to normalize step expression, because otherwise we might not be
- // able to denormalize to the original expression.
- //
- // Here is an example what will happen if we don't normalize step:
- // ORIGINAL ISE:
- // {(100 /u {1,+,1}<%bb16>),+,(100 /u {1,+,1}<%bb16>)}<%bb25>
- // NORMALIZED ISE:
- // {((-1 * (100 /u {1,+,1}<%bb16>)) + (100 /u {0,+,1}<%bb16>)),+,
- // (100 /u {0,+,1}<%bb16>)}<%bb25>
- // DENORMALIZED BACK ISE:
- // {((2 * (100 /u {1,+,1}<%bb16>)) + (-1 * (100 /u {2,+,1}<%bb16>))),+,
- // (100 /u {1,+,1}<%bb16>)}<%bb25>
- // Note that the initial value changes after normalization +
- // denormalization, which isn't correct.
- if (Loops.count(L)) {
- const SCEV *TransformedStep =
- TransformSubExpr(AR->getStepRecurrence(SE),
- User, OperandValToReplace);
- Result = SE.getMinusSCEV(Result, TransformedStep);
- }
- #if 0
- // See the comment on the assert above.
- assert(S == TransformSubExpr(Result, User, OperandValToReplace) &&
- "SCEV normalization is not invertible!");
- #endif
- break;
- case Denormalize:
- // Here we want to normalize step expressions for the same reasons, as
- // stated above.
- if (Loops.count(L)) {
- const SCEV *TransformedStep =
- TransformSubExpr(AR->getStepRecurrence(SE),
- User, OperandValToReplace);
- Result = SE.getAddExpr(Result, TransformedStep);
- }
- break;
- }
- return Result;
- }
- if (const SCEVNAryExpr *X = dyn_cast<SCEVNAryExpr>(S)) {
- SmallVector<const SCEV *, 8> Operands;
- bool Changed = false;
- // Transform each operand.
- for (SCEVNAryExpr::op_iterator I = X->op_begin(), E = X->op_end();
- I != E; ++I) {
- const SCEV *O = *I;
- const SCEV *N = TransformSubExpr(O, User, OperandValToReplace);
- Changed |= N != O;
- Operands.push_back(N);
- }
- // If any operand actually changed, return a transformed result.
- if (Changed)
- switch (S->getSCEVType()) {
- case scAddExpr: return SE.getAddExpr(Operands);
- case scMulExpr: return SE.getMulExpr(Operands);
- case scSMaxExpr: return SE.getSMaxExpr(Operands);
- case scUMaxExpr: return SE.getUMaxExpr(Operands);
- default: llvm_unreachable("Unexpected SCEVNAryExpr kind!");
- }
- return S;
- }
- if (const SCEVUDivExpr *X = dyn_cast<SCEVUDivExpr>(S)) {
- const SCEV *LO = X->getLHS();
- const SCEV *RO = X->getRHS();
- const SCEV *LN = TransformSubExpr(LO, User, OperandValToReplace);
- const SCEV *RN = TransformSubExpr(RO, User, OperandValToReplace);
- if (LO != LN || RO != RN)
- return SE.getUDivExpr(LN, RN);
- return S;
- }
- llvm_unreachable("Unexpected SCEV kind!");
- }
- /// Manage recursive transformation across an expression DAG. Revisiting
- /// expressions would lead to exponential recursion.
- const SCEV *PostIncTransform::
- TransformSubExpr(const SCEV *S, Instruction *User, Value *OperandValToReplace) {
- if (isa<SCEVConstant>(S) || isa<SCEVUnknown>(S))
- return S;
- const SCEV *Result = Transformed.lookup(S);
- if (Result)
- return Result;
- Result = TransformImpl(S, User, OperandValToReplace);
- Transformed[S] = Result;
- return Result;
- }
- /// Top level driver for transforming an expression DAG into its requested
- /// post-inc form (either "Normalized" or "Denormalized").
- const SCEV *llvm::TransformForPostIncUse(TransformKind Kind,
- const SCEV *S,
- Instruction *User,
- Value *OperandValToReplace,
- PostIncLoopSet &Loops,
- ScalarEvolution &SE,
- DominatorTree &DT) {
- PostIncTransform Transform(Kind, Loops, SE, DT);
- return Transform.TransformSubExpr(S, User, OperandValToReplace);
- }
|