123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692 |
- //===- StratifiedSets.h - Abstract stratified sets implementation. --------===//
- //
- // The LLVM Compiler Infrastructure
- //
- // This file is distributed under the University of Illinois Open Source
- // License. See LICENSE.TXT for details.
- //
- //===----------------------------------------------------------------------===//
- #ifndef LLVM_ADT_STRATIFIEDSETS_H
- #define LLVM_ADT_STRATIFIEDSETS_H
- #include "llvm/ADT/DenseMap.h"
- #include "llvm/ADT/Optional.h"
- #include "llvm/ADT/SmallPtrSet.h"
- #include "llvm/ADT/SmallSet.h"
- #include "llvm/ADT/SmallVector.h"
- #include "llvm/Support/Compiler.h"
- #include <bitset>
- #include <cassert>
- #include <cmath>
- #include <limits>
- #include <type_traits>
- #include <utility>
- #include <vector>
- namespace llvm {
- // \brief An index into Stratified Sets.
- typedef unsigned StratifiedIndex;
- // NOTE: ^ This can't be a short -- bootstrapping clang has a case where
- // ~1M sets exist.
- // \brief Container of information related to a value in a StratifiedSet.
- struct StratifiedInfo {
- StratifiedIndex Index;
- // For field sensitivity, etc. we can tack attributes on to this struct.
- };
- // The number of attributes that StratifiedAttrs should contain. Attributes are
- // described below, and 32 was an arbitrary choice because it fits nicely in 32
- // bits (because we use a bitset for StratifiedAttrs).
- static const unsigned NumStratifiedAttrs = 32;
- // These are attributes that the users of StratifiedSets/StratifiedSetBuilders
- // may use for various purposes. These also have the special property of that
- // they are merged down. So, if set A is above set B, and one decides to set an
- // attribute in set A, then the attribute will automatically be set in set B.
- typedef std::bitset<NumStratifiedAttrs> StratifiedAttrs;
- // \brief A "link" between two StratifiedSets.
- struct StratifiedLink {
- // \brief This is a value used to signify "does not exist" where
- // the StratifiedIndex type is used. This is used instead of
- // Optional<StratifiedIndex> because Optional<StratifiedIndex> would
- // eat up a considerable amount of extra memory, after struct
- // padding/alignment is taken into account.
- static const StratifiedIndex SetSentinel;
- // \brief The index for the set "above" current
- StratifiedIndex Above;
- // \brief The link for the set "below" current
- StratifiedIndex Below;
- // \brief Attributes for these StratifiedSets.
- StratifiedAttrs Attrs;
- StratifiedLink() : Above(SetSentinel), Below(SetSentinel) {}
- bool hasBelow() const { return Below != SetSentinel; }
- bool hasAbove() const { return Above != SetSentinel; }
- void clearBelow() { Below = SetSentinel; }
- void clearAbove() { Above = SetSentinel; }
- };
- // \brief These are stratified sets, as described in "Fast algorithms for
- // Dyck-CFL-reachability with applications to Alias Analysis" by Zhang Q, Lyu M
- // R, Yuan H, and Su Z. -- in short, this is meant to represent different sets
- // of Value*s. If two Value*s are in the same set, or if both sets have
- // overlapping attributes, then the Value*s are said to alias.
- //
- // Sets may be related by position, meaning that one set may be considered as
- // above or below another. In CFL Alias Analysis, this gives us an indication
- // of how two variables are related; if the set of variable A is below a set
- // containing variable B, then at some point, a variable that has interacted
- // with B (or B itself) was either used in order to extract the variable A, or
- // was used as storage of variable A.
- //
- // Sets may also have attributes (as noted above). These attributes are
- // generally used for noting whether a variable in the set has interacted with
- // a variable whose origins we don't quite know (i.e. globals/arguments), or if
- // the variable may have had operations performed on it (modified in a function
- // call). All attributes that exist in a set A must exist in all sets marked as
- // below set A.
- template <typename T> class StratifiedSets {
- public:
- StratifiedSets() {}
- StratifiedSets(DenseMap<T, StratifiedInfo> Map,
- std::vector<StratifiedLink> Links)
- : Values(std::move(Map)), Links(std::move(Links)) {}
- StratifiedSets(StratifiedSets<T> &&Other) { *this = std::move(Other); }
- StratifiedSets &operator=(StratifiedSets<T> &&Other) {
- Values = std::move(Other.Values);
- Links = std::move(Other.Links);
- return *this;
- }
- Optional<StratifiedInfo> find(const T &Elem) const {
- auto Iter = Values.find(Elem);
- if (Iter == Values.end()) {
- return NoneType();
- }
- return Iter->second;
- }
- const StratifiedLink &getLink(StratifiedIndex Index) const {
- assert(inbounds(Index));
- return Links[Index];
- }
- private:
- DenseMap<T, StratifiedInfo> Values;
- std::vector<StratifiedLink> Links;
- bool inbounds(StratifiedIndex Idx) const { return Idx < Links.size(); }
- };
- // \brief Generic Builder class that produces StratifiedSets instances.
- //
- // The goal of this builder is to efficiently produce correct StratifiedSets
- // instances. To this end, we use a few tricks:
- // > Set chains (A method for linking sets together)
- // > Set remaps (A method for marking a set as an alias [irony?] of another)
- //
- // ==== Set chains ====
- // This builder has a notion of some value A being above, below, or with some
- // other value B:
- // > The `A above B` relationship implies that there is a reference edge going
- // from A to B. Namely, it notes that A can store anything in B's set.
- // > The `A below B` relationship is the opposite of `A above B`. It implies
- // that there's a dereference edge going from A to B.
- // > The `A with B` relationship states that there's an assignment edge going
- // from A to B, and that A and B should be treated as equals.
- //
- // As an example, take the following code snippet:
- //
- // %a = alloca i32, align 4
- // %ap = alloca i32*, align 8
- // %app = alloca i32**, align 8
- // store %a, %ap
- // store %ap, %app
- // %aw = getelementptr %ap, 0
- //
- // Given this, the follow relations exist:
- // - %a below %ap & %ap above %a
- // - %ap below %app & %app above %ap
- // - %aw with %ap & %ap with %aw
- //
- // These relations produce the following sets:
- // [{%a}, {%ap, %aw}, {%app}]
- //
- // ...Which states that the only MayAlias relationship in the above program is
- // between %ap and %aw.
- //
- // Life gets more complicated when we actually have logic in our programs. So,
- // we either must remove this logic from our programs, or make consessions for
- // it in our AA algorithms. In this case, we have decided to select the latter
- // option.
- //
- // First complication: Conditionals
- // Motivation:
- // %ad = alloca int, align 4
- // %a = alloca int*, align 8
- // %b = alloca int*, align 8
- // %bp = alloca int**, align 8
- // %c = call i1 @SomeFunc()
- // %k = select %c, %ad, %bp
- // store %ad, %a
- // store %b, %bp
- //
- // %k has 'with' edges to both %a and %b, which ordinarily would not be linked
- // together. So, we merge the set that contains %a with the set that contains
- // %b. We then recursively merge the set above %a with the set above %b, and
- // the set below %a with the set below %b, etc. Ultimately, the sets for this
- // program would end up like: {%ad}, {%a, %b, %k}, {%bp}, where {%ad} is below
- // {%a, %b, %c} is below {%ad}.
- //
- // Second complication: Arbitrary casts
- // Motivation:
- // %ip = alloca int*, align 8
- // %ipp = alloca int**, align 8
- // %i = bitcast ipp to int
- // store %ip, %ipp
- // store %i, %ip
- //
- // This is impossible to construct with any of the rules above, because a set
- // containing both {%i, %ipp} is supposed to exist, the set with %i is supposed
- // to be below the set with %ip, and the set with %ip is supposed to be below
- // the set with %ipp. Because we don't allow circular relationships like this,
- // we merge all concerned sets into one. So, the above code would generate a
- // single StratifiedSet: {%ip, %ipp, %i}.
- //
- // ==== Set remaps ====
- // More of an implementation detail than anything -- when merging sets, we need
- // to update the numbers of all of the elements mapped to those sets. Rather
- // than doing this at each merge, we note in the BuilderLink structure that a
- // remap has occurred, and use this information so we can defer renumbering set
- // elements until build time.
- template <typename T> class StratifiedSetsBuilder {
- // \brief Represents a Stratified Set, with information about the Stratified
- // Set above it, the set below it, and whether the current set has been
- // remapped to another.
- struct BuilderLink {
- const StratifiedIndex Number;
- BuilderLink(StratifiedIndex N) : Number(N) {
- Remap = StratifiedLink::SetSentinel;
- }
- bool hasAbove() const {
- assert(!isRemapped());
- return Link.hasAbove();
- }
- bool hasBelow() const {
- assert(!isRemapped());
- return Link.hasBelow();
- }
- void setBelow(StratifiedIndex I) {
- assert(!isRemapped());
- Link.Below = I;
- }
- void setAbove(StratifiedIndex I) {
- assert(!isRemapped());
- Link.Above = I;
- }
- void clearBelow() {
- assert(!isRemapped());
- Link.clearBelow();
- }
- void clearAbove() {
- assert(!isRemapped());
- Link.clearAbove();
- }
- StratifiedIndex getBelow() const {
- assert(!isRemapped());
- assert(hasBelow());
- return Link.Below;
- }
- StratifiedIndex getAbove() const {
- assert(!isRemapped());
- assert(hasAbove());
- return Link.Above;
- }
- StratifiedAttrs &getAttrs() {
- assert(!isRemapped());
- return Link.Attrs;
- }
- void setAttr(unsigned index) {
- assert(!isRemapped());
- assert(index < NumStratifiedAttrs);
- Link.Attrs.set(index);
- }
- void setAttrs(const StratifiedAttrs &other) {
- assert(!isRemapped());
- Link.Attrs |= other;
- }
- bool isRemapped() const { return Remap != StratifiedLink::SetSentinel; }
- // \brief For initial remapping to another set
- void remapTo(StratifiedIndex Other) {
- assert(!isRemapped());
- Remap = Other;
- }
- StratifiedIndex getRemapIndex() const {
- assert(isRemapped());
- return Remap;
- }
- // \brief Should only be called when we're already remapped.
- void updateRemap(StratifiedIndex Other) {
- assert(isRemapped());
- Remap = Other;
- }
- // \brief Prefer the above functions to calling things directly on what's
- // returned from this -- they guard against unexpected calls when the
- // current BuilderLink is remapped.
- const StratifiedLink &getLink() const { return Link; }
- private:
- StratifiedLink Link;
- StratifiedIndex Remap;
- };
- // \brief This function performs all of the set unioning/value renumbering
- // that we've been putting off, and generates a vector<StratifiedLink> that
- // may be placed in a StratifiedSets instance.
- void finalizeSets(std::vector<StratifiedLink> &StratLinks) {
- DenseMap<StratifiedIndex, StratifiedIndex> Remaps;
- for (auto &Link : Links) {
- if (Link.isRemapped()) {
- continue;
- }
- StratifiedIndex Number = StratLinks.size();
- Remaps.insert(std::make_pair(Link.Number, Number));
- StratLinks.push_back(Link.getLink());
- }
- for (auto &Link : StratLinks) {
- if (Link.hasAbove()) {
- auto &Above = linksAt(Link.Above);
- auto Iter = Remaps.find(Above.Number);
- assert(Iter != Remaps.end());
- Link.Above = Iter->second;
- }
- if (Link.hasBelow()) {
- auto &Below = linksAt(Link.Below);
- auto Iter = Remaps.find(Below.Number);
- assert(Iter != Remaps.end());
- Link.Below = Iter->second;
- }
- }
- for (auto &Pair : Values) {
- auto &Info = Pair.second;
- auto &Link = linksAt(Info.Index);
- auto Iter = Remaps.find(Link.Number);
- assert(Iter != Remaps.end());
- Info.Index = Iter->second;
- }
- }
- // \brief There's a guarantee in StratifiedLink where all bits set in a
- // Link.externals will be set in all Link.externals "below" it.
- static void propagateAttrs(std::vector<StratifiedLink> &Links) {
- const auto getHighestParentAbove = [&Links](StratifiedIndex Idx) {
- const auto *Link = &Links[Idx];
- while (Link->hasAbove()) {
- Idx = Link->Above;
- Link = &Links[Idx];
- }
- return Idx;
- };
- SmallSet<StratifiedIndex, 16> Visited;
- for (unsigned I = 0, E = Links.size(); I < E; ++I) {
- auto CurrentIndex = getHighestParentAbove(I);
- if (!Visited.insert(CurrentIndex).second) {
- continue;
- }
- while (Links[CurrentIndex].hasBelow()) {
- auto &CurrentBits = Links[CurrentIndex].Attrs;
- auto NextIndex = Links[CurrentIndex].Below;
- auto &NextBits = Links[NextIndex].Attrs;
- NextBits |= CurrentBits;
- CurrentIndex = NextIndex;
- }
- }
- }
- public:
- // \brief Builds a StratifiedSet from the information we've been given since
- // either construction or the prior build() call.
- StratifiedSets<T> build() {
- std::vector<StratifiedLink> StratLinks;
- finalizeSets(StratLinks);
- propagateAttrs(StratLinks);
- Links.clear();
- return StratifiedSets<T>(std::move(Values), std::move(StratLinks));
- }
- std::size_t size() const { return Values.size(); }
- std::size_t numSets() const { return Links.size(); }
- bool has(const T &Elem) const { return get(Elem).hasValue(); }
- bool add(const T &Main) {
- if (get(Main).hasValue())
- return false;
- auto NewIndex = getNewUnlinkedIndex();
- return addAtMerging(Main, NewIndex);
- }
- // \brief Restructures the stratified sets as necessary to make "ToAdd" in a
- // set above "Main". There are some cases where this is not possible (see
- // above), so we merge them such that ToAdd and Main are in the same set.
- bool addAbove(const T &Main, const T &ToAdd) {
- assert(has(Main));
- auto Index = *indexOf(Main);
- if (!linksAt(Index).hasAbove())
- addLinkAbove(Index);
- auto Above = linksAt(Index).getAbove();
- return addAtMerging(ToAdd, Above);
- }
- // \brief Restructures the stratified sets as necessary to make "ToAdd" in a
- // set below "Main". There are some cases where this is not possible (see
- // above), so we merge them such that ToAdd and Main are in the same set.
- bool addBelow(const T &Main, const T &ToAdd) {
- assert(has(Main));
- auto Index = *indexOf(Main);
- if (!linksAt(Index).hasBelow())
- addLinkBelow(Index);
- auto Below = linksAt(Index).getBelow();
- return addAtMerging(ToAdd, Below);
- }
- bool addWith(const T &Main, const T &ToAdd) {
- assert(has(Main));
- auto MainIndex = *indexOf(Main);
- return addAtMerging(ToAdd, MainIndex);
- }
- void noteAttribute(const T &Main, unsigned AttrNum) {
- assert(has(Main));
- assert(AttrNum < StratifiedLink::SetSentinel);
- auto *Info = *get(Main);
- auto &Link = linksAt(Info->Index);
- Link.setAttr(AttrNum);
- }
- void noteAttributes(const T &Main, const StratifiedAttrs &NewAttrs) {
- assert(has(Main));
- auto *Info = *get(Main);
- auto &Link = linksAt(Info->Index);
- Link.setAttrs(NewAttrs);
- }
- StratifiedAttrs getAttributes(const T &Main) {
- assert(has(Main));
- auto *Info = *get(Main);
- auto *Link = &linksAt(Info->Index);
- auto Attrs = Link->getAttrs();
- while (Link->hasAbove()) {
- Link = &linksAt(Link->getAbove());
- Attrs |= Link->getAttrs();
- }
- return Attrs;
- }
- bool getAttribute(const T &Main, unsigned AttrNum) {
- assert(AttrNum < StratifiedLink::SetSentinel);
- auto Attrs = getAttributes(Main);
- return Attrs[AttrNum];
- }
- // \brief Gets the attributes that have been applied to the set that Main
- // belongs to. It ignores attributes in any sets above the one that Main
- // resides in.
- StratifiedAttrs getRawAttributes(const T &Main) {
- assert(has(Main));
- auto *Info = *get(Main);
- auto &Link = linksAt(Info->Index);
- return Link.getAttrs();
- }
- // \brief Gets an attribute from the attributes that have been applied to the
- // set that Main belongs to. It ignores attributes in any sets above the one
- // that Main resides in.
- bool getRawAttribute(const T &Main, unsigned AttrNum) {
- assert(AttrNum < StratifiedLink::SetSentinel);
- auto Attrs = getRawAttributes(Main);
- return Attrs[AttrNum];
- }
- private:
- DenseMap<T, StratifiedInfo> Values;
- std::vector<BuilderLink> Links;
- // \brief Adds the given element at the given index, merging sets if
- // necessary.
- bool addAtMerging(const T &ToAdd, StratifiedIndex Index) {
- StratifiedInfo Info = {Index};
- auto Pair = Values.insert(std::make_pair(ToAdd, Info));
- if (Pair.second)
- return true;
- auto &Iter = Pair.first;
- auto &IterSet = linksAt(Iter->second.Index);
- auto &ReqSet = linksAt(Index);
- // Failed to add where we wanted to. Merge the sets.
- if (&IterSet != &ReqSet)
- merge(IterSet.Number, ReqSet.Number);
- return false;
- }
- // \brief Gets the BuilderLink at the given index, taking set remapping into
- // account.
- BuilderLink &linksAt(StratifiedIndex Index) {
- auto *Start = &Links[Index];
- if (!Start->isRemapped())
- return *Start;
- auto *Current = Start;
- while (Current->isRemapped())
- Current = &Links[Current->getRemapIndex()];
- auto NewRemap = Current->Number;
- // Run through everything that has yet to be updated, and update them to
- // remap to NewRemap
- Current = Start;
- while (Current->isRemapped()) {
- auto *Next = &Links[Current->getRemapIndex()];
- Current->updateRemap(NewRemap);
- Current = Next;
- }
- return *Current;
- }
- // \brief Merges two sets into one another. Assumes that these sets are not
- // already one in the same
- void merge(StratifiedIndex Idx1, StratifiedIndex Idx2) {
- assert(inbounds(Idx1) && inbounds(Idx2));
- assert(&linksAt(Idx1) != &linksAt(Idx2) &&
- "Merging a set into itself is not allowed");
- // CASE 1: If the set at `Idx1` is above or below `Idx2`, we need to merge
- // both the
- // given sets, and all sets between them, into one.
- if (tryMergeUpwards(Idx1, Idx2))
- return;
- if (tryMergeUpwards(Idx2, Idx1))
- return;
- // CASE 2: The set at `Idx1` is not in the same chain as the set at `Idx2`.
- // We therefore need to merge the two chains together.
- mergeDirect(Idx1, Idx2);
- }
- // \brief Merges two sets assuming that the set at `Idx1` is unreachable from
- // traversing above or below the set at `Idx2`.
- void mergeDirect(StratifiedIndex Idx1, StratifiedIndex Idx2) {
- assert(inbounds(Idx1) && inbounds(Idx2));
- auto *LinksInto = &linksAt(Idx1);
- auto *LinksFrom = &linksAt(Idx2);
- // Merging everything above LinksInto then proceeding to merge everything
- // below LinksInto becomes problematic, so we go as far "up" as possible!
- while (LinksInto->hasAbove() && LinksFrom->hasAbove()) {
- LinksInto = &linksAt(LinksInto->getAbove());
- LinksFrom = &linksAt(LinksFrom->getAbove());
- }
- if (LinksFrom->hasAbove()) {
- LinksInto->setAbove(LinksFrom->getAbove());
- auto &NewAbove = linksAt(LinksInto->getAbove());
- NewAbove.setBelow(LinksInto->Number);
- }
- // Merging strategy:
- // > If neither has links below, stop.
- // > If only `LinksInto` has links below, stop.
- // > If only `LinksFrom` has links below, reset `LinksInto.Below` to
- // match `LinksFrom.Below`
- // > If both have links above, deal with those next.
- while (LinksInto->hasBelow() && LinksFrom->hasBelow()) {
- auto &FromAttrs = LinksFrom->getAttrs();
- LinksInto->setAttrs(FromAttrs);
- // Remap needs to happen after getBelow(), but before
- // assignment of LinksFrom
- auto *NewLinksFrom = &linksAt(LinksFrom->getBelow());
- LinksFrom->remapTo(LinksInto->Number);
- LinksFrom = NewLinksFrom;
- LinksInto = &linksAt(LinksInto->getBelow());
- }
- if (LinksFrom->hasBelow()) {
- LinksInto->setBelow(LinksFrom->getBelow());
- auto &NewBelow = linksAt(LinksInto->getBelow());
- NewBelow.setAbove(LinksInto->Number);
- }
- LinksFrom->remapTo(LinksInto->Number);
- }
- // \brief Checks to see if lowerIndex is at a level lower than upperIndex.
- // If so, it will merge lowerIndex with upperIndex (and all of the sets
- // between) and return true. Otherwise, it will return false.
- bool tryMergeUpwards(StratifiedIndex LowerIndex, StratifiedIndex UpperIndex) {
- assert(inbounds(LowerIndex) && inbounds(UpperIndex));
- auto *Lower = &linksAt(LowerIndex);
- auto *Upper = &linksAt(UpperIndex);
- if (Lower == Upper)
- return true;
- SmallVector<BuilderLink *, 8> Found;
- auto *Current = Lower;
- auto Attrs = Current->getAttrs();
- while (Current->hasAbove() && Current != Upper) {
- Found.push_back(Current);
- Attrs |= Current->getAttrs();
- Current = &linksAt(Current->getAbove());
- }
- if (Current != Upper)
- return false;
- Upper->setAttrs(Attrs);
- if (Lower->hasBelow()) {
- auto NewBelowIndex = Lower->getBelow();
- Upper->setBelow(NewBelowIndex);
- auto &NewBelow = linksAt(NewBelowIndex);
- NewBelow.setAbove(UpperIndex);
- } else {
- Upper->clearBelow();
- }
- for (const auto &Ptr : Found)
- Ptr->remapTo(Upper->Number);
- return true;
- }
- Optional<const StratifiedInfo *> get(const T &Val) const {
- auto Result = Values.find(Val);
- if (Result == Values.end())
- return NoneType();
- return &Result->second;
- }
- Optional<StratifiedInfo *> get(const T &Val) {
- auto Result = Values.find(Val);
- if (Result == Values.end())
- return NoneType();
- return &Result->second;
- }
- Optional<StratifiedIndex> indexOf(const T &Val) {
- auto MaybeVal = get(Val);
- if (!MaybeVal.hasValue())
- return NoneType();
- auto *Info = *MaybeVal;
- auto &Link = linksAt(Info->Index);
- return Link.Number;
- }
- StratifiedIndex addLinkBelow(StratifiedIndex Set) {
- auto At = addLinks();
- Links[Set].setBelow(At);
- Links[At].setAbove(Set);
- return At;
- }
- StratifiedIndex addLinkAbove(StratifiedIndex Set) {
- auto At = addLinks();
- Links[At].setBelow(Set);
- Links[Set].setAbove(At);
- return At;
- }
- StratifiedIndex getNewUnlinkedIndex() { return addLinks(); }
- StratifiedIndex addLinks() {
- auto Link = Links.size();
- Links.push_back(BuilderLink(Link));
- return Link;
- }
- bool inbounds(StratifiedIndex N) const { return N < Links.size(); }
- };
- }
- #endif // LLVM_ADT_STRATIFIEDSETS_H
|