1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457 |
- //===- ValueTracking.cpp - Walk computations to compute properties --------===//
- //
- // The LLVM Compiler Infrastructure
- //
- // This file is distributed under the University of Illinois Open Source
- // License. See LICENSE.TXT for details.
- //
- //===----------------------------------------------------------------------===//
- //
- // This file contains routines that help analyze properties that chains of
- // computations have.
- //
- //===----------------------------------------------------------------------===//
- #include "llvm/Analysis/ValueTracking.h"
- #include "llvm/ADT/SmallPtrSet.h"
- #include "llvm/Analysis/AssumptionCache.h"
- #include "llvm/Analysis/InstructionSimplify.h"
- #include "llvm/Analysis/MemoryBuiltins.h"
- #include "llvm/Analysis/LoopInfo.h"
- #include "llvm/IR/CallSite.h"
- #include "llvm/IR/ConstantRange.h"
- #include "llvm/IR/Constants.h"
- #include "llvm/IR/DataLayout.h"
- #include "llvm/IR/Dominators.h"
- #include "llvm/IR/GetElementPtrTypeIterator.h"
- #include "llvm/IR/GlobalAlias.h"
- #include "llvm/IR/GlobalVariable.h"
- #include "llvm/IR/Instructions.h"
- #include "llvm/IR/IntrinsicInst.h"
- #include "llvm/IR/LLVMContext.h"
- #include "llvm/IR/Metadata.h"
- #include "llvm/IR/Operator.h"
- #include "llvm/IR/PatternMatch.h"
- #include "llvm/IR/Statepoint.h"
- #include "llvm/Support/Debug.h"
- #include "llvm/Support/MathExtras.h"
- #include <cstring>
- using namespace llvm;
- using namespace llvm::PatternMatch;
- const unsigned MaxDepth = 6;
- #if 0 // HLSL Change Starts - option pending
- /// Enable an experimental feature to leverage information about dominating
- /// conditions to compute known bits. The individual options below control how
- /// hard we search. The defaults are choosen to be fairly aggressive. If you
- /// run into compile time problems when testing, scale them back and report
- /// your findings.
- static cl::opt<bool> EnableDomConditions("value-tracking-dom-conditions",
- cl::Hidden, cl::init(false));
- // This is expensive, so we only do it for the top level query value.
- // (TODO: evaluate cost vs profit, consider higher thresholds)
- static cl::opt<unsigned> DomConditionsMaxDepth("dom-conditions-max-depth",
- cl::Hidden, cl::init(1));
- /// How many dominating blocks should be scanned looking for dominating
- /// conditions?
- static cl::opt<unsigned> DomConditionsMaxDomBlocks("dom-conditions-dom-blocks",
- cl::Hidden,
- cl::init(20000));
- // Controls the number of uses of the value searched for possible
- // dominating comparisons.
- static cl::opt<unsigned> DomConditionsMaxUses("dom-conditions-max-uses",
- cl::Hidden, cl::init(2000));
- // If true, don't consider only compares whose only use is a branch.
- static cl::opt<bool> DomConditionsSingleCmpUse("dom-conditions-single-cmp-use",
- cl::Hidden, cl::init(false));
- #else
- static const bool EnableDomConditions = false;
- static const unsigned DomConditionsMaxDepth = 1;
- static const unsigned DomConditionsMaxDomBlocks = 2000;
- static const unsigned DomConditionsMaxUses = 2000;
- static const bool DomConditionsSingleCmpUse = false;
- #endif // HLSL Change Ends
- /// Returns the bitwidth of the given scalar or pointer type (if unknown returns
- /// 0). For vector types, returns the element type's bitwidth.
- static unsigned getBitWidth(Type *Ty, const DataLayout &DL) {
- if (unsigned BitWidth = Ty->getScalarSizeInBits())
- return BitWidth;
- return DL.getPointerTypeSizeInBits(Ty);
- }
- // Many of these functions have internal versions that take an assumption
- // exclusion set. This is because of the potential for mutual recursion to
- // cause computeKnownBits to repeatedly visit the same assume intrinsic. The
- // classic case of this is assume(x = y), which will attempt to determine
- // bits in x from bits in y, which will attempt to determine bits in y from
- // bits in x, etc. Regarding the mutual recursion, computeKnownBits can call
- // isKnownNonZero, which calls computeKnownBits and ComputeSignBit and
- // isKnownToBeAPowerOfTwo (all of which can call computeKnownBits), and so on.
- typedef SmallPtrSet<const Value *, 8> ExclInvsSet;
- namespace {
- // Simplifying using an assume can only be done in a particular control-flow
- // context (the context instruction provides that context). If an assume and
- // the context instruction are not in the same block then the DT helps in
- // figuring out if we can use it.
- struct Query {
- ExclInvsSet ExclInvs;
- AssumptionCache *AC;
- const Instruction *CxtI;
- const DominatorTree *DT;
- Query(AssumptionCache *AC = nullptr, const Instruction *CxtI = nullptr,
- const DominatorTree *DT = nullptr)
- : AC(AC), CxtI(CxtI), DT(DT) {}
- Query(const Query &Q, const Value *NewExcl)
- : ExclInvs(Q.ExclInvs), AC(Q.AC), CxtI(Q.CxtI), DT(Q.DT) {
- ExclInvs.insert(NewExcl);
- }
- };
- } // end anonymous namespace
- // Given the provided Value and, potentially, a context instruction, return
- // the preferred context instruction (if any).
- static const Instruction *safeCxtI(const Value *V, const Instruction *CxtI) {
- // If we've been provided with a context instruction, then use that (provided
- // it has been inserted).
- if (CxtI && CxtI->getParent())
- return CxtI;
- // If the value is really an already-inserted instruction, then use that.
- CxtI = dyn_cast<Instruction>(V);
- if (CxtI && CxtI->getParent())
- return CxtI;
- return nullptr;
- }
- static void computeKnownBits(Value *V, APInt &KnownZero, APInt &KnownOne,
- const DataLayout &DL, unsigned Depth,
- const Query &Q);
- void llvm::computeKnownBits(Value *V, APInt &KnownZero, APInt &KnownOne,
- const DataLayout &DL, unsigned Depth,
- AssumptionCache *AC, const Instruction *CxtI,
- const DominatorTree *DT) {
- ::computeKnownBits(V, KnownZero, KnownOne, DL, Depth,
- Query(AC, safeCxtI(V, CxtI), DT));
- }
- bool llvm::haveNoCommonBitsSet(Value *LHS, Value *RHS, const DataLayout &DL,
- AssumptionCache *AC, const Instruction *CxtI,
- const DominatorTree *DT) {
- assert(LHS->getType() == RHS->getType() &&
- "LHS and RHS should have the same type");
- assert(LHS->getType()->isIntOrIntVectorTy() &&
- "LHS and RHS should be integers");
- IntegerType *IT = cast<IntegerType>(LHS->getType()->getScalarType());
- APInt LHSKnownZero(IT->getBitWidth(), 0), LHSKnownOne(IT->getBitWidth(), 0);
- APInt RHSKnownZero(IT->getBitWidth(), 0), RHSKnownOne(IT->getBitWidth(), 0);
- computeKnownBits(LHS, LHSKnownZero, LHSKnownOne, DL, 0, AC, CxtI, DT);
- computeKnownBits(RHS, RHSKnownZero, RHSKnownOne, DL, 0, AC, CxtI, DT);
- return (LHSKnownZero | RHSKnownZero).isAllOnesValue();
- }
- static void ComputeSignBit(Value *V, bool &KnownZero, bool &KnownOne,
- const DataLayout &DL, unsigned Depth,
- const Query &Q);
- void llvm::ComputeSignBit(Value *V, bool &KnownZero, bool &KnownOne,
- const DataLayout &DL, unsigned Depth,
- AssumptionCache *AC, const Instruction *CxtI,
- const DominatorTree *DT) {
- ::ComputeSignBit(V, KnownZero, KnownOne, DL, Depth,
- Query(AC, safeCxtI(V, CxtI), DT));
- }
- static bool isKnownToBeAPowerOfTwo(Value *V, bool OrZero, unsigned Depth,
- const Query &Q, const DataLayout &DL);
- bool llvm::isKnownToBeAPowerOfTwo(Value *V, const DataLayout &DL, bool OrZero,
- unsigned Depth, AssumptionCache *AC,
- const Instruction *CxtI,
- const DominatorTree *DT) {
- return ::isKnownToBeAPowerOfTwo(V, OrZero, Depth,
- Query(AC, safeCxtI(V, CxtI), DT), DL);
- }
- static bool isKnownNonZero(Value *V, const DataLayout &DL, unsigned Depth,
- const Query &Q);
- bool llvm::isKnownNonZero(Value *V, const DataLayout &DL, unsigned Depth,
- AssumptionCache *AC, const Instruction *CxtI,
- const DominatorTree *DT) {
- return ::isKnownNonZero(V, DL, Depth, Query(AC, safeCxtI(V, CxtI), DT));
- }
- static bool MaskedValueIsZero(Value *V, const APInt &Mask, const DataLayout &DL,
- unsigned Depth, const Query &Q);
- bool llvm::MaskedValueIsZero(Value *V, const APInt &Mask, const DataLayout &DL,
- unsigned Depth, AssumptionCache *AC,
- const Instruction *CxtI, const DominatorTree *DT) {
- return ::MaskedValueIsZero(V, Mask, DL, Depth,
- Query(AC, safeCxtI(V, CxtI), DT));
- }
- static unsigned ComputeNumSignBits(Value *V, const DataLayout &DL,
- unsigned Depth, const Query &Q);
- unsigned llvm::ComputeNumSignBits(Value *V, const DataLayout &DL,
- unsigned Depth, AssumptionCache *AC,
- const Instruction *CxtI,
- const DominatorTree *DT) {
- return ::ComputeNumSignBits(V, DL, Depth, Query(AC, safeCxtI(V, CxtI), DT));
- }
- static void computeKnownBitsAddSub(bool Add, Value *Op0, Value *Op1, bool NSW,
- APInt &KnownZero, APInt &KnownOne,
- APInt &KnownZero2, APInt &KnownOne2,
- const DataLayout &DL, unsigned Depth,
- const Query &Q) {
- if (!Add) {
- if (ConstantInt *CLHS = dyn_cast<ConstantInt>(Op0)) {
- // We know that the top bits of C-X are clear if X contains less bits
- // than C (i.e. no wrap-around can happen). For example, 20-X is
- // positive if we can prove that X is >= 0 and < 16.
- if (!CLHS->getValue().isNegative()) {
- unsigned BitWidth = KnownZero.getBitWidth();
- unsigned NLZ = (CLHS->getValue()+1).countLeadingZeros();
- // NLZ can't be BitWidth with no sign bit
- APInt MaskV = APInt::getHighBitsSet(BitWidth, NLZ+1);
- computeKnownBits(Op1, KnownZero2, KnownOne2, DL, Depth + 1, Q);
- // If all of the MaskV bits are known to be zero, then we know the
- // output top bits are zero, because we now know that the output is
- // from [0-C].
- if ((KnownZero2 & MaskV) == MaskV) {
- unsigned NLZ2 = CLHS->getValue().countLeadingZeros();
- // Top bits known zero.
- KnownZero = APInt::getHighBitsSet(BitWidth, NLZ2);
- }
- }
- }
- }
- unsigned BitWidth = KnownZero.getBitWidth();
- // If an initial sequence of bits in the result is not needed, the
- // corresponding bits in the operands are not needed.
- APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0);
- computeKnownBits(Op0, LHSKnownZero, LHSKnownOne, DL, Depth + 1, Q);
- computeKnownBits(Op1, KnownZero2, KnownOne2, DL, Depth + 1, Q);
- // Carry in a 1 for a subtract, rather than a 0.
- APInt CarryIn(BitWidth, 0);
- if (!Add) {
- // Sum = LHS + ~RHS + 1
- std::swap(KnownZero2, KnownOne2);
- CarryIn.setBit(0);
- }
- APInt PossibleSumZero = ~LHSKnownZero + ~KnownZero2 + CarryIn;
- APInt PossibleSumOne = LHSKnownOne + KnownOne2 + CarryIn;
- // Compute known bits of the carry.
- APInt CarryKnownZero = ~(PossibleSumZero ^ LHSKnownZero ^ KnownZero2);
- APInt CarryKnownOne = PossibleSumOne ^ LHSKnownOne ^ KnownOne2;
- // Compute set of known bits (where all three relevant bits are known).
- APInt LHSKnown = LHSKnownZero | LHSKnownOne;
- APInt RHSKnown = KnownZero2 | KnownOne2;
- APInt CarryKnown = CarryKnownZero | CarryKnownOne;
- APInt Known = LHSKnown & RHSKnown & CarryKnown;
- assert((PossibleSumZero & Known) == (PossibleSumOne & Known) &&
- "known bits of sum differ");
- // Compute known bits of the result.
- KnownZero = ~PossibleSumOne & Known;
- KnownOne = PossibleSumOne & Known;
- // Are we still trying to solve for the sign bit?
- if (!Known.isNegative()) {
- if (NSW) {
- // Adding two non-negative numbers, or subtracting a negative number from
- // a non-negative one, can't wrap into negative.
- if (LHSKnownZero.isNegative() && KnownZero2.isNegative())
- KnownZero |= APInt::getSignBit(BitWidth);
- // Adding two negative numbers, or subtracting a non-negative number from
- // a negative one, can't wrap into non-negative.
- else if (LHSKnownOne.isNegative() && KnownOne2.isNegative())
- KnownOne |= APInt::getSignBit(BitWidth);
- }
- }
- }
- static void computeKnownBitsMul(Value *Op0, Value *Op1, bool NSW,
- APInt &KnownZero, APInt &KnownOne,
- APInt &KnownZero2, APInt &KnownOne2,
- const DataLayout &DL, unsigned Depth,
- const Query &Q) {
- unsigned BitWidth = KnownZero.getBitWidth();
- computeKnownBits(Op1, KnownZero, KnownOne, DL, Depth + 1, Q);
- computeKnownBits(Op0, KnownZero2, KnownOne2, DL, Depth + 1, Q);
- bool isKnownNegative = false;
- bool isKnownNonNegative = false;
- // If the multiplication is known not to overflow, compute the sign bit.
- if (NSW) {
- if (Op0 == Op1) {
- // The product of a number with itself is non-negative.
- isKnownNonNegative = true;
- } else {
- bool isKnownNonNegativeOp1 = KnownZero.isNegative();
- bool isKnownNonNegativeOp0 = KnownZero2.isNegative();
- bool isKnownNegativeOp1 = KnownOne.isNegative();
- bool isKnownNegativeOp0 = KnownOne2.isNegative();
- // The product of two numbers with the same sign is non-negative.
- isKnownNonNegative = (isKnownNegativeOp1 && isKnownNegativeOp0) ||
- (isKnownNonNegativeOp1 && isKnownNonNegativeOp0);
- // The product of a negative number and a non-negative number is either
- // negative or zero.
- if (!isKnownNonNegative)
- isKnownNegative = (isKnownNegativeOp1 && isKnownNonNegativeOp0 &&
- isKnownNonZero(Op0, DL, Depth, Q)) ||
- (isKnownNegativeOp0 && isKnownNonNegativeOp1 &&
- isKnownNonZero(Op1, DL, Depth, Q));
- }
- }
- // If low bits are zero in either operand, output low known-0 bits.
- // Also compute a conserative estimate for high known-0 bits.
- // More trickiness is possible, but this is sufficient for the
- // interesting case of alignment computation.
- KnownOne.clearAllBits();
- unsigned TrailZ = KnownZero.countTrailingOnes() +
- KnownZero2.countTrailingOnes();
- unsigned LeadZ = std::max(KnownZero.countLeadingOnes() +
- KnownZero2.countLeadingOnes(),
- BitWidth) - BitWidth;
- TrailZ = std::min(TrailZ, BitWidth);
- LeadZ = std::min(LeadZ, BitWidth);
- KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ) |
- APInt::getHighBitsSet(BitWidth, LeadZ);
- // Only make use of no-wrap flags if we failed to compute the sign bit
- // directly. This matters if the multiplication always overflows, in
- // which case we prefer to follow the result of the direct computation,
- // though as the program is invoking undefined behaviour we can choose
- // whatever we like here.
- if (isKnownNonNegative && !KnownOne.isNegative())
- KnownZero.setBit(BitWidth - 1);
- else if (isKnownNegative && !KnownZero.isNegative())
- KnownOne.setBit(BitWidth - 1);
- }
- void llvm::computeKnownBitsFromRangeMetadata(const MDNode &Ranges,
- APInt &KnownZero) {
- unsigned BitWidth = KnownZero.getBitWidth();
- unsigned NumRanges = Ranges.getNumOperands() / 2;
- assert(NumRanges >= 1);
- // Use the high end of the ranges to find leading zeros.
- unsigned MinLeadingZeros = BitWidth;
- for (unsigned i = 0; i < NumRanges; ++i) {
- ConstantInt *Lower =
- mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 0));
- ConstantInt *Upper =
- mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 1));
- ConstantRange Range(Lower->getValue(), Upper->getValue());
- if (Range.isWrappedSet())
- MinLeadingZeros = 0; // -1 has no zeros
- unsigned LeadingZeros = (Upper->getValue() - 1).countLeadingZeros();
- MinLeadingZeros = std::min(LeadingZeros, MinLeadingZeros);
- }
- KnownZero = APInt::getHighBitsSet(BitWidth, MinLeadingZeros);
- }
- static bool isEphemeralValueOf(Instruction *I, const Value *E) {
- SmallVector<const Value *, 16> WorkSet(1, I);
- SmallPtrSet<const Value *, 32> Visited;
- SmallPtrSet<const Value *, 16> EphValues;
- while (!WorkSet.empty()) {
- const Value *V = WorkSet.pop_back_val();
- if (!Visited.insert(V).second)
- continue;
- // If all uses of this value are ephemeral, then so is this value.
- bool FoundNEUse = false;
- for (const User *I : V->users())
- if (!EphValues.count(I)) {
- FoundNEUse = true;
- break;
- }
- if (!FoundNEUse) {
- if (V == E)
- return true;
- EphValues.insert(V);
- if (const User *U = dyn_cast<User>(V))
- for (User::const_op_iterator J = U->op_begin(), JE = U->op_end();
- J != JE; ++J) {
- if (isSafeToSpeculativelyExecute(*J))
- WorkSet.push_back(*J);
- }
- }
- }
- return false;
- }
- // Is this an intrinsic that cannot be speculated but also cannot trap?
- static bool isAssumeLikeIntrinsic(const Instruction *I) {
- if (const CallInst *CI = dyn_cast<CallInst>(I))
- if (Function *F = CI->getCalledFunction())
- switch (F->getIntrinsicID()) {
- default: break;
- // FIXME: This list is repeated from NoTTI::getIntrinsicCost.
- case Intrinsic::assume:
- case Intrinsic::dbg_declare:
- case Intrinsic::dbg_value:
- case Intrinsic::invariant_start:
- case Intrinsic::invariant_end:
- case Intrinsic::lifetime_start:
- case Intrinsic::lifetime_end:
- case Intrinsic::objectsize:
- case Intrinsic::ptr_annotation:
- case Intrinsic::var_annotation:
- return true;
- }
- return false;
- }
- static bool isValidAssumeForContext(Value *V, const Query &Q) {
- Instruction *Inv = cast<Instruction>(V);
- // There are two restrictions on the use of an assume:
- // 1. The assume must dominate the context (or the control flow must
- // reach the assume whenever it reaches the context).
- // 2. The context must not be in the assume's set of ephemeral values
- // (otherwise we will use the assume to prove that the condition
- // feeding the assume is trivially true, thus causing the removal of
- // the assume).
- if (Q.DT) {
- if (Q.DT->dominates(Inv, Q.CxtI)) {
- return true;
- } else if (Inv->getParent() == Q.CxtI->getParent()) {
- // The context comes first, but they're both in the same block. Make sure
- // there is nothing in between that might interrupt the control flow.
- for (BasicBlock::const_iterator I =
- std::next(BasicBlock::const_iterator(Q.CxtI)),
- IE(Inv); I != IE; ++I)
- if (!isSafeToSpeculativelyExecute(I) && !isAssumeLikeIntrinsic(I))
- return false;
- return !isEphemeralValueOf(Inv, Q.CxtI);
- }
- return false;
- }
- // When we don't have a DT, we do a limited search...
- if (Inv->getParent() == Q.CxtI->getParent()->getSinglePredecessor()) {
- return true;
- } else if (Inv->getParent() == Q.CxtI->getParent()) {
- // Search forward from the assume until we reach the context (or the end
- // of the block); the common case is that the assume will come first.
- for (BasicBlock::iterator I = std::next(BasicBlock::iterator(Inv)),
- IE = Inv->getParent()->end(); I != IE; ++I)
- if (I == Q.CxtI)
- return true;
- // The context must come first...
- for (BasicBlock::const_iterator I =
- std::next(BasicBlock::const_iterator(Q.CxtI)),
- IE(Inv); I != IE; ++I)
- if (!isSafeToSpeculativelyExecute(I) && !isAssumeLikeIntrinsic(I))
- return false;
- return !isEphemeralValueOf(Inv, Q.CxtI);
- }
- return false;
- }
- bool llvm::isValidAssumeForContext(const Instruction *I,
- const Instruction *CxtI,
- const DominatorTree *DT) {
- return ::isValidAssumeForContext(const_cast<Instruction *>(I),
- Query(nullptr, CxtI, DT));
- }
- template<typename LHS, typename RHS>
- inline match_combine_or<CmpClass_match<LHS, RHS, ICmpInst, ICmpInst::Predicate>,
- CmpClass_match<RHS, LHS, ICmpInst, ICmpInst::Predicate>>
- m_c_ICmp(ICmpInst::Predicate &Pred, const LHS &L, const RHS &R) {
- return m_CombineOr(m_ICmp(Pred, L, R), m_ICmp(Pred, R, L));
- }
- template<typename LHS, typename RHS>
- inline match_combine_or<BinaryOp_match<LHS, RHS, Instruction::And>,
- BinaryOp_match<RHS, LHS, Instruction::And>>
- m_c_And(const LHS &L, const RHS &R) {
- return m_CombineOr(m_And(L, R), m_And(R, L));
- }
- template<typename LHS, typename RHS>
- inline match_combine_or<BinaryOp_match<LHS, RHS, Instruction::Or>,
- BinaryOp_match<RHS, LHS, Instruction::Or>>
- m_c_Or(const LHS &L, const RHS &R) {
- return m_CombineOr(m_Or(L, R), m_Or(R, L));
- }
- template<typename LHS, typename RHS>
- inline match_combine_or<BinaryOp_match<LHS, RHS, Instruction::Xor>,
- BinaryOp_match<RHS, LHS, Instruction::Xor>>
- m_c_Xor(const LHS &L, const RHS &R) {
- return m_CombineOr(m_Xor(L, R), m_Xor(R, L));
- }
- /// Compute known bits in 'V' under the assumption that the condition 'Cmp' is
- /// true (at the context instruction.) This is mostly a utility function for
- /// the prototype dominating conditions reasoning below.
- static void computeKnownBitsFromTrueCondition(Value *V, ICmpInst *Cmp,
- APInt &KnownZero,
- APInt &KnownOne,
- const DataLayout &DL,
- unsigned Depth, const Query &Q) {
- Value *LHS = Cmp->getOperand(0);
- Value *RHS = Cmp->getOperand(1);
- // TODO: We could potentially be more aggressive here. This would be worth
- // evaluating. If we can, explore commoning this code with the assume
- // handling logic.
- if (LHS != V && RHS != V)
- return;
- const unsigned BitWidth = KnownZero.getBitWidth();
- switch (Cmp->getPredicate()) {
- default:
- // We know nothing from this condition
- break;
- // TODO: implement unsigned bound from below (known one bits)
- // TODO: common condition check implementations with assumes
- // TODO: implement other patterns from assume (e.g. V & B == A)
- case ICmpInst::ICMP_SGT:
- if (LHS == V) {
- APInt KnownZeroTemp(BitWidth, 0), KnownOneTemp(BitWidth, 0);
- computeKnownBits(RHS, KnownZeroTemp, KnownOneTemp, DL, Depth + 1, Q);
- if (KnownOneTemp.isAllOnesValue() || KnownZeroTemp.isNegative()) {
- // We know that the sign bit is zero.
- KnownZero |= APInt::getSignBit(BitWidth);
- }
- }
- break;
- case ICmpInst::ICMP_EQ:
- {
- APInt KnownZeroTemp(BitWidth, 0), KnownOneTemp(BitWidth, 0);
- if (LHS == V)
- computeKnownBits(RHS, KnownZeroTemp, KnownOneTemp, DL, Depth + 1, Q);
- else if (RHS == V)
- computeKnownBits(LHS, KnownZeroTemp, KnownOneTemp, DL, Depth + 1, Q);
- else
- llvm_unreachable("missing use?");
- KnownZero |= KnownZeroTemp;
- KnownOne |= KnownOneTemp;
- }
- break;
- case ICmpInst::ICMP_ULE:
- if (LHS == V) {
- APInt KnownZeroTemp(BitWidth, 0), KnownOneTemp(BitWidth, 0);
- computeKnownBits(RHS, KnownZeroTemp, KnownOneTemp, DL, Depth + 1, Q);
- // The known zero bits carry over
- unsigned SignBits = KnownZeroTemp.countLeadingOnes();
- KnownZero |= APInt::getHighBitsSet(BitWidth, SignBits);
- }
- break;
- case ICmpInst::ICMP_ULT:
- if (LHS == V) {
- APInt KnownZeroTemp(BitWidth, 0), KnownOneTemp(BitWidth, 0);
- computeKnownBits(RHS, KnownZeroTemp, KnownOneTemp, DL, Depth + 1, Q);
- // Whatever high bits in rhs are zero are known to be zero (if rhs is a
- // power of 2, then one more).
- unsigned SignBits = KnownZeroTemp.countLeadingOnes();
- if (isKnownToBeAPowerOfTwo(RHS, false, Depth + 1, Query(Q, Cmp), DL))
- SignBits++;
- KnownZero |= APInt::getHighBitsSet(BitWidth, SignBits);
- }
- break;
- };
- }
- /// Compute known bits in 'V' from conditions which are known to be true along
- /// all paths leading to the context instruction. In particular, look for
- /// cases where one branch of an interesting condition dominates the context
- /// instruction. This does not do general dataflow.
- /// NOTE: This code is EXPERIMENTAL and currently off by default.
- static void computeKnownBitsFromDominatingCondition(Value *V, APInt &KnownZero,
- APInt &KnownOne,
- const DataLayout &DL,
- unsigned Depth,
- const Query &Q) {
- // Need both the dominator tree and the query location to do anything useful
- if (!Q.DT || !Q.CxtI)
- return;
- Instruction *Cxt = const_cast<Instruction *>(Q.CxtI);
- // Avoid useless work
- if (auto VI = dyn_cast<Instruction>(V))
- if (VI->getParent() == Cxt->getParent())
- return;
- // Note: We currently implement two options. It's not clear which of these
- // will survive long term, we need data for that.
- // Option 1 - Try walking the dominator tree looking for conditions which
- // might apply. This works well for local conditions (loop guards, etc..),
- // but not as well for things far from the context instruction (presuming a
- // low max blocks explored). If we can set an high enough limit, this would
- // be all we need.
- // Option 2 - We restrict out search to those conditions which are uses of
- // the value we're interested in. This is independent of dom structure,
- // but is slightly less powerful without looking through lots of use chains.
- // It does handle conditions far from the context instruction (e.g. early
- // function exits on entry) really well though.
- // Option 1 - Search the dom tree
- unsigned NumBlocksExplored = 0;
- BasicBlock *Current = Cxt->getParent();
- while (true) {
- // Stop searching if we've gone too far up the chain
- if (NumBlocksExplored >= DomConditionsMaxDomBlocks)
- break;
- NumBlocksExplored++;
- if (!Q.DT->getNode(Current)->getIDom())
- break;
- Current = Q.DT->getNode(Current)->getIDom()->getBlock();
- if (!Current)
- // found function entry
- break;
- BranchInst *BI = dyn_cast<BranchInst>(Current->getTerminator());
- if (!BI || BI->isUnconditional())
- continue;
- ICmpInst *Cmp = dyn_cast<ICmpInst>(BI->getCondition());
- if (!Cmp)
- continue;
- // We're looking for conditions that are guaranteed to hold at the context
- // instruction. Finding a condition where one path dominates the context
- // isn't enough because both the true and false cases could merge before
- // the context instruction we're actually interested in. Instead, we need
- // to ensure that the taken *edge* dominates the context instruction.
- BasicBlock *BB0 = BI->getSuccessor(0);
- BasicBlockEdge Edge(BI->getParent(), BB0);
- if (!Edge.isSingleEdge() || !Q.DT->dominates(Edge, Q.CxtI->getParent()))
- continue;
- computeKnownBitsFromTrueCondition(V, Cmp, KnownZero, KnownOne, DL, Depth,
- Q);
- }
- // Option 2 - Search the other uses of V
- unsigned NumUsesExplored = 0;
- for (auto U : V->users()) {
- // Avoid massive lists
- if (NumUsesExplored >= DomConditionsMaxUses)
- break;
- NumUsesExplored++;
- // Consider only compare instructions uniquely controlling a branch
- ICmpInst *Cmp = dyn_cast<ICmpInst>(U);
- if (!Cmp)
- continue;
- if (DomConditionsSingleCmpUse && !Cmp->hasOneUse())
- continue;
- for (auto *CmpU : Cmp->users()) {
- BranchInst *BI = dyn_cast<BranchInst>(CmpU);
- if (!BI || BI->isUnconditional())
- continue;
- // We're looking for conditions that are guaranteed to hold at the
- // context instruction. Finding a condition where one path dominates
- // the context isn't enough because both the true and false cases could
- // merge before the context instruction we're actually interested in.
- // Instead, we need to ensure that the taken *edge* dominates the context
- // instruction.
- BasicBlock *BB0 = BI->getSuccessor(0);
- BasicBlockEdge Edge(BI->getParent(), BB0);
- if (!Edge.isSingleEdge() || !Q.DT->dominates(Edge, Q.CxtI->getParent()))
- continue;
- computeKnownBitsFromTrueCondition(V, Cmp, KnownZero, KnownOne, DL, Depth,
- Q);
- }
- }
- }
- static void computeKnownBitsFromAssume(Value *V, APInt &KnownZero,
- APInt &KnownOne, const DataLayout &DL,
- unsigned Depth, const Query &Q) {
- // Use of assumptions is context-sensitive. If we don't have a context, we
- // cannot use them!
- if (!Q.AC || !Q.CxtI)
- return;
- unsigned BitWidth = KnownZero.getBitWidth();
- for (auto &AssumeVH : Q.AC->assumptions()) {
- if (!AssumeVH)
- continue;
- CallInst *I = cast<CallInst>(AssumeVH);
- assert(I->getParent()->getParent() == Q.CxtI->getParent()->getParent() &&
- "Got assumption for the wrong function!");
- if (Q.ExclInvs.count(I))
- continue;
- // Warning: This loop can end up being somewhat performance sensetive.
- // We're running this loop for once for each value queried resulting in a
- // runtime of ~O(#assumes * #values).
- assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume &&
- "must be an assume intrinsic");
- Value *Arg = I->getArgOperand(0);
- if (Arg == V && isValidAssumeForContext(I, Q)) {
- assert(BitWidth == 1 && "assume operand is not i1?");
- KnownZero.clearAllBits();
- KnownOne.setAllBits();
- return;
- }
- // The remaining tests are all recursive, so bail out if we hit the limit.
- if (Depth == MaxDepth)
- continue;
- Value *A, *B;
- auto m_V = m_CombineOr(m_Specific(V),
- m_CombineOr(m_PtrToInt(m_Specific(V)),
- m_BitCast(m_Specific(V))));
- CmpInst::Predicate Pred;
- ConstantInt *C;
- // assume(v = a)
- if (match(Arg, m_c_ICmp(Pred, m_V, m_Value(A))) &&
- Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q)) {
- APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
- computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I));
- KnownZero |= RHSKnownZero;
- KnownOne |= RHSKnownOne;
- // assume(v & b = a)
- } else if (match(Arg,
- m_c_ICmp(Pred, m_c_And(m_V, m_Value(B)), m_Value(A))) &&
- Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q)) {
- APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
- computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I));
- APInt MaskKnownZero(BitWidth, 0), MaskKnownOne(BitWidth, 0);
- computeKnownBits(B, MaskKnownZero, MaskKnownOne, DL, Depth+1, Query(Q, I));
- // For those bits in the mask that are known to be one, we can propagate
- // known bits from the RHS to V.
- KnownZero |= RHSKnownZero & MaskKnownOne;
- KnownOne |= RHSKnownOne & MaskKnownOne;
- // assume(~(v & b) = a)
- } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_And(m_V, m_Value(B))),
- m_Value(A))) &&
- Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q)) {
- APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
- computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I));
- APInt MaskKnownZero(BitWidth, 0), MaskKnownOne(BitWidth, 0);
- computeKnownBits(B, MaskKnownZero, MaskKnownOne, DL, Depth+1, Query(Q, I));
- // For those bits in the mask that are known to be one, we can propagate
- // inverted known bits from the RHS to V.
- KnownZero |= RHSKnownOne & MaskKnownOne;
- KnownOne |= RHSKnownZero & MaskKnownOne;
- // assume(v | b = a)
- } else if (match(Arg,
- m_c_ICmp(Pred, m_c_Or(m_V, m_Value(B)), m_Value(A))) &&
- Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q)) {
- APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
- computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I));
- APInt BKnownZero(BitWidth, 0), BKnownOne(BitWidth, 0);
- computeKnownBits(B, BKnownZero, BKnownOne, DL, Depth+1, Query(Q, I));
- // For those bits in B that are known to be zero, we can propagate known
- // bits from the RHS to V.
- KnownZero |= RHSKnownZero & BKnownZero;
- KnownOne |= RHSKnownOne & BKnownZero;
- // assume(~(v | b) = a)
- } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_Or(m_V, m_Value(B))),
- m_Value(A))) &&
- Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q)) {
- APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
- computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I));
- APInt BKnownZero(BitWidth, 0), BKnownOne(BitWidth, 0);
- computeKnownBits(B, BKnownZero, BKnownOne, DL, Depth+1, Query(Q, I));
- // For those bits in B that are known to be zero, we can propagate
- // inverted known bits from the RHS to V.
- KnownZero |= RHSKnownOne & BKnownZero;
- KnownOne |= RHSKnownZero & BKnownZero;
- // assume(v ^ b = a)
- } else if (match(Arg,
- m_c_ICmp(Pred, m_c_Xor(m_V, m_Value(B)), m_Value(A))) &&
- Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q)) {
- APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
- computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I));
- APInt BKnownZero(BitWidth, 0), BKnownOne(BitWidth, 0);
- computeKnownBits(B, BKnownZero, BKnownOne, DL, Depth+1, Query(Q, I));
- // For those bits in B that are known to be zero, we can propagate known
- // bits from the RHS to V. For those bits in B that are known to be one,
- // we can propagate inverted known bits from the RHS to V.
- KnownZero |= RHSKnownZero & BKnownZero;
- KnownOne |= RHSKnownOne & BKnownZero;
- KnownZero |= RHSKnownOne & BKnownOne;
- KnownOne |= RHSKnownZero & BKnownOne;
- // assume(~(v ^ b) = a)
- } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_Xor(m_V, m_Value(B))),
- m_Value(A))) &&
- Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q)) {
- APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
- computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I));
- APInt BKnownZero(BitWidth, 0), BKnownOne(BitWidth, 0);
- computeKnownBits(B, BKnownZero, BKnownOne, DL, Depth+1, Query(Q, I));
- // For those bits in B that are known to be zero, we can propagate
- // inverted known bits from the RHS to V. For those bits in B that are
- // known to be one, we can propagate known bits from the RHS to V.
- KnownZero |= RHSKnownOne & BKnownZero;
- KnownOne |= RHSKnownZero & BKnownZero;
- KnownZero |= RHSKnownZero & BKnownOne;
- KnownOne |= RHSKnownOne & BKnownOne;
- // assume(v << c = a)
- } else if (match(Arg, m_c_ICmp(Pred, m_Shl(m_V, m_ConstantInt(C)),
- m_Value(A))) &&
- Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q)) {
- APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
- computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I));
- // For those bits in RHS that are known, we can propagate them to known
- // bits in V shifted to the right by C.
- KnownZero |= RHSKnownZero.lshr(C->getZExtValue());
- KnownOne |= RHSKnownOne.lshr(C->getZExtValue());
- // assume(~(v << c) = a)
- } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_Shl(m_V, m_ConstantInt(C))),
- m_Value(A))) &&
- Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q)) {
- APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
- computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I));
- // For those bits in RHS that are known, we can propagate them inverted
- // to known bits in V shifted to the right by C.
- KnownZero |= RHSKnownOne.lshr(C->getZExtValue());
- KnownOne |= RHSKnownZero.lshr(C->getZExtValue());
- // assume(v >> c = a)
- } else if (match(Arg,
- m_c_ICmp(Pred, m_CombineOr(m_LShr(m_V, m_ConstantInt(C)),
- m_AShr(m_V, m_ConstantInt(C))),
- m_Value(A))) &&
- Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q)) {
- APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
- computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I));
- // For those bits in RHS that are known, we can propagate them to known
- // bits in V shifted to the right by C.
- KnownZero |= RHSKnownZero << C->getZExtValue();
- KnownOne |= RHSKnownOne << C->getZExtValue();
- // assume(~(v >> c) = a)
- } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_CombineOr(
- m_LShr(m_V, m_ConstantInt(C)),
- m_AShr(m_V, m_ConstantInt(C)))),
- m_Value(A))) &&
- Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q)) {
- APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
- computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I));
- // For those bits in RHS that are known, we can propagate them inverted
- // to known bits in V shifted to the right by C.
- KnownZero |= RHSKnownOne << C->getZExtValue();
- KnownOne |= RHSKnownZero << C->getZExtValue();
- // assume(v >=_s c) where c is non-negative
- } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
- Pred == ICmpInst::ICMP_SGE && isValidAssumeForContext(I, Q)) {
- APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
- computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I));
- if (RHSKnownZero.isNegative()) {
- // We know that the sign bit is zero.
- KnownZero |= APInt::getSignBit(BitWidth);
- }
- // assume(v >_s c) where c is at least -1.
- } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
- Pred == ICmpInst::ICMP_SGT && isValidAssumeForContext(I, Q)) {
- APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
- computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I));
- if (RHSKnownOne.isAllOnesValue() || RHSKnownZero.isNegative()) {
- // We know that the sign bit is zero.
- KnownZero |= APInt::getSignBit(BitWidth);
- }
- // assume(v <=_s c) where c is negative
- } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
- Pred == ICmpInst::ICMP_SLE && isValidAssumeForContext(I, Q)) {
- APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
- computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I));
- if (RHSKnownOne.isNegative()) {
- // We know that the sign bit is one.
- KnownOne |= APInt::getSignBit(BitWidth);
- }
- // assume(v <_s c) where c is non-positive
- } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
- Pred == ICmpInst::ICMP_SLT && isValidAssumeForContext(I, Q)) {
- APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
- computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I));
- if (RHSKnownZero.isAllOnesValue() || RHSKnownOne.isNegative()) {
- // We know that the sign bit is one.
- KnownOne |= APInt::getSignBit(BitWidth);
- }
- // assume(v <=_u c)
- } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
- Pred == ICmpInst::ICMP_ULE && isValidAssumeForContext(I, Q)) {
- APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
- computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I));
- // Whatever high bits in c are zero are known to be zero.
- KnownZero |=
- APInt::getHighBitsSet(BitWidth, RHSKnownZero.countLeadingOnes());
- // assume(v <_u c)
- } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
- Pred == ICmpInst::ICMP_ULT && isValidAssumeForContext(I, Q)) {
- APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
- computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I));
- // Whatever high bits in c are zero are known to be zero (if c is a power
- // of 2, then one more).
- if (isKnownToBeAPowerOfTwo(A, false, Depth + 1, Query(Q, I), DL))
- KnownZero |=
- APInt::getHighBitsSet(BitWidth, RHSKnownZero.countLeadingOnes()+1);
- else
- KnownZero |=
- APInt::getHighBitsSet(BitWidth, RHSKnownZero.countLeadingOnes());
- }
- }
- }
- static void computeKnownBitsFromOperator(Operator *I, APInt &KnownZero,
- APInt &KnownOne, const DataLayout &DL,
- unsigned Depth, const Query &Q) {
- unsigned BitWidth = KnownZero.getBitWidth();
- APInt KnownZero2(KnownZero), KnownOne2(KnownOne);
- switch (I->getOpcode()) {
- default: break;
- case Instruction::Load:
- if (MDNode *MD = cast<LoadInst>(I)->getMetadata(LLVMContext::MD_range))
- computeKnownBitsFromRangeMetadata(*MD, KnownZero);
- break;
- case Instruction::And: {
- // If either the LHS or the RHS are Zero, the result is zero.
- computeKnownBits(I->getOperand(1), KnownZero, KnownOne, DL, Depth + 1, Q);
- computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, DL, Depth + 1, Q);
- // Output known-1 bits are only known if set in both the LHS & RHS.
- KnownOne &= KnownOne2;
- // Output known-0 are known to be clear if zero in either the LHS | RHS.
- KnownZero |= KnownZero2;
- break;
- }
- case Instruction::Or: {
- computeKnownBits(I->getOperand(1), KnownZero, KnownOne, DL, Depth + 1, Q);
- computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, DL, Depth + 1, Q);
- // Output known-0 bits are only known if clear in both the LHS & RHS.
- KnownZero &= KnownZero2;
- // Output known-1 are known to be set if set in either the LHS | RHS.
- KnownOne |= KnownOne2;
- break;
- }
- case Instruction::Xor: {
- computeKnownBits(I->getOperand(1), KnownZero, KnownOne, DL, Depth + 1, Q);
- computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, DL, Depth + 1, Q);
- // Output known-0 bits are known if clear or set in both the LHS & RHS.
- APInt KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
- // Output known-1 are known to be set if set in only one of the LHS, RHS.
- KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
- KnownZero = KnownZeroOut;
- break;
- }
- case Instruction::Mul: {
- bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
- computeKnownBitsMul(I->getOperand(0), I->getOperand(1), NSW, KnownZero,
- KnownOne, KnownZero2, KnownOne2, DL, Depth, Q);
- break;
- }
- case Instruction::UDiv: {
- // For the purposes of computing leading zeros we can conservatively
- // treat a udiv as a logical right shift by the power of 2 known to
- // be less than the denominator.
- computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, DL, Depth + 1, Q);
- unsigned LeadZ = KnownZero2.countLeadingOnes();
- KnownOne2.clearAllBits();
- KnownZero2.clearAllBits();
- computeKnownBits(I->getOperand(1), KnownZero2, KnownOne2, DL, Depth + 1, Q);
- unsigned RHSUnknownLeadingOnes = KnownOne2.countLeadingZeros();
- if (RHSUnknownLeadingOnes != BitWidth)
- LeadZ = std::min(BitWidth,
- LeadZ + BitWidth - RHSUnknownLeadingOnes - 1);
- KnownZero = APInt::getHighBitsSet(BitWidth, LeadZ);
- break;
- }
- case Instruction::Select:
- computeKnownBits(I->getOperand(2), KnownZero, KnownOne, DL, Depth + 1, Q);
- computeKnownBits(I->getOperand(1), KnownZero2, KnownOne2, DL, Depth + 1, Q);
- // Only known if known in both the LHS and RHS.
- KnownOne &= KnownOne2;
- KnownZero &= KnownZero2;
- break;
- case Instruction::FPTrunc:
- case Instruction::FPExt:
- case Instruction::FPToUI:
- case Instruction::FPToSI:
- case Instruction::SIToFP:
- case Instruction::UIToFP:
- break; // Can't work with floating point.
- case Instruction::PtrToInt:
- case Instruction::IntToPtr:
- case Instruction::AddrSpaceCast: // Pointers could be different sizes.
- // FALL THROUGH and handle them the same as zext/trunc.
- case Instruction::ZExt:
- case Instruction::Trunc: {
- Type *SrcTy = I->getOperand(0)->getType();
- unsigned SrcBitWidth;
- // Note that we handle pointer operands here because of inttoptr/ptrtoint
- // which fall through here.
- SrcBitWidth = DL.getTypeSizeInBits(SrcTy->getScalarType());
- assert(SrcBitWidth && "SrcBitWidth can't be zero");
- KnownZero = KnownZero.zextOrTrunc(SrcBitWidth);
- KnownOne = KnownOne.zextOrTrunc(SrcBitWidth);
- computeKnownBits(I->getOperand(0), KnownZero, KnownOne, DL, Depth + 1, Q);
- KnownZero = KnownZero.zextOrTrunc(BitWidth);
- KnownOne = KnownOne.zextOrTrunc(BitWidth);
- // Any top bits are known to be zero.
- if (BitWidth > SrcBitWidth)
- KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth);
- break;
- }
- case Instruction::BitCast: {
- Type *SrcTy = I->getOperand(0)->getType();
- if ((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
- // TODO: For now, not handling conversions like:
- // (bitcast i64 %x to <2 x i32>)
- !I->getType()->isVectorTy()) {
- computeKnownBits(I->getOperand(0), KnownZero, KnownOne, DL, Depth + 1, Q);
- break;
- }
- break;
- }
- case Instruction::SExt: {
- // Compute the bits in the result that are not present in the input.
- unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits();
- KnownZero = KnownZero.trunc(SrcBitWidth);
- KnownOne = KnownOne.trunc(SrcBitWidth);
- computeKnownBits(I->getOperand(0), KnownZero, KnownOne, DL, Depth + 1, Q);
- KnownZero = KnownZero.zext(BitWidth);
- KnownOne = KnownOne.zext(BitWidth);
- // If the sign bit of the input is known set or clear, then we know the
- // top bits of the result.
- if (KnownZero[SrcBitWidth-1]) // Input sign bit known zero
- KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth);
- else if (KnownOne[SrcBitWidth-1]) // Input sign bit known set
- KnownOne |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth);
- break;
- }
- case Instruction::Shl:
- // (shl X, C1) & C2 == 0 iff (X & C2 >>u C1) == 0
- if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
- uint64_t ShiftAmt = SA->getLimitedValue(BitWidth);
- computeKnownBits(I->getOperand(0), KnownZero, KnownOne, DL, Depth + 1, Q);
- KnownZero <<= ShiftAmt;
- KnownOne <<= ShiftAmt;
- KnownZero |= APInt::getLowBitsSet(BitWidth, ShiftAmt); // low bits known 0
- }
- break;
- case Instruction::LShr:
- // (ushr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0
- if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
- // Compute the new bits that are at the top now.
- uint64_t ShiftAmt = SA->getLimitedValue(BitWidth);
- // Unsigned shift right.
- computeKnownBits(I->getOperand(0), KnownZero, KnownOne, DL, Depth + 1, Q);
- KnownZero = APIntOps::lshr(KnownZero, ShiftAmt);
- KnownOne = APIntOps::lshr(KnownOne, ShiftAmt);
- // high bits known zero.
- KnownZero |= APInt::getHighBitsSet(BitWidth, ShiftAmt);
- }
- break;
- case Instruction::AShr:
- // (ashr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0
- if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
- // Compute the new bits that are at the top now.
- uint64_t ShiftAmt = SA->getLimitedValue(BitWidth-1);
- // Signed shift right.
- computeKnownBits(I->getOperand(0), KnownZero, KnownOne, DL, Depth + 1, Q);
- KnownZero = APIntOps::lshr(KnownZero, ShiftAmt);
- KnownOne = APIntOps::lshr(KnownOne, ShiftAmt);
- APInt HighBits(APInt::getHighBitsSet(BitWidth, ShiftAmt));
- if (KnownZero[BitWidth-ShiftAmt-1]) // New bits are known zero.
- KnownZero |= HighBits;
- else if (KnownOne[BitWidth-ShiftAmt-1]) // New bits are known one.
- KnownOne |= HighBits;
- }
- break;
- case Instruction::Sub: {
- bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
- computeKnownBitsAddSub(false, I->getOperand(0), I->getOperand(1), NSW,
- KnownZero, KnownOne, KnownZero2, KnownOne2, DL,
- Depth, Q);
- break;
- }
- case Instruction::Add: {
- bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
- computeKnownBitsAddSub(true, I->getOperand(0), I->getOperand(1), NSW,
- KnownZero, KnownOne, KnownZero2, KnownOne2, DL,
- Depth, Q);
- break;
- }
- case Instruction::SRem:
- if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) {
- APInt RA = Rem->getValue().abs();
- if (RA.isPowerOf2()) {
- APInt LowBits = RA - 1;
- computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, DL, Depth + 1,
- Q);
- // The low bits of the first operand are unchanged by the srem.
- KnownZero = KnownZero2 & LowBits;
- KnownOne = KnownOne2 & LowBits;
- // If the first operand is non-negative or has all low bits zero, then
- // the upper bits are all zero.
- if (KnownZero2[BitWidth-1] || ((KnownZero2 & LowBits) == LowBits))
- KnownZero |= ~LowBits;
- // If the first operand is negative and not all low bits are zero, then
- // the upper bits are all one.
- if (KnownOne2[BitWidth-1] && ((KnownOne2 & LowBits) != 0))
- KnownOne |= ~LowBits;
- assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
- }
- }
- // The sign bit is the LHS's sign bit, except when the result of the
- // remainder is zero.
- if (KnownZero.isNonNegative()) {
- APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0);
- computeKnownBits(I->getOperand(0), LHSKnownZero, LHSKnownOne, DL,
- Depth + 1, Q);
- // If it's known zero, our sign bit is also zero.
- if (LHSKnownZero.isNegative())
- KnownZero.setBit(BitWidth - 1);
- }
- break;
- case Instruction::URem: {
- if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) {
- APInt RA = Rem->getValue();
- if (RA.isPowerOf2()) {
- APInt LowBits = (RA - 1);
- computeKnownBits(I->getOperand(0), KnownZero, KnownOne, DL, Depth + 1,
- Q);
- KnownZero |= ~LowBits;
- KnownOne &= LowBits;
- break;
- }
- }
- // Since the result is less than or equal to either operand, any leading
- // zero bits in either operand must also exist in the result.
- computeKnownBits(I->getOperand(0), KnownZero, KnownOne, DL, Depth + 1, Q);
- computeKnownBits(I->getOperand(1), KnownZero2, KnownOne2, DL, Depth + 1, Q);
- unsigned Leaders = std::max(KnownZero.countLeadingOnes(),
- KnownZero2.countLeadingOnes());
- KnownOne.clearAllBits();
- KnownZero = APInt::getHighBitsSet(BitWidth, Leaders);
- break;
- }
- case Instruction::Alloca: {
- AllocaInst *AI = cast<AllocaInst>(I);
- unsigned Align = AI->getAlignment();
- if (Align == 0)
- Align = DL.getABITypeAlignment(AI->getType()->getElementType());
- if (Align > 0)
- KnownZero = APInt::getLowBitsSet(BitWidth, countTrailingZeros(Align));
- break;
- }
- case Instruction::GetElementPtr: {
- // Analyze all of the subscripts of this getelementptr instruction
- // to determine if we can prove known low zero bits.
- APInt LocalKnownZero(BitWidth, 0), LocalKnownOne(BitWidth, 0);
- computeKnownBits(I->getOperand(0), LocalKnownZero, LocalKnownOne, DL,
- Depth + 1, Q);
- unsigned TrailZ = LocalKnownZero.countTrailingOnes();
- gep_type_iterator GTI = gep_type_begin(I);
- for (unsigned i = 1, e = I->getNumOperands(); i != e; ++i, ++GTI) {
- Value *Index = I->getOperand(i);
- if (StructType *STy = dyn_cast<StructType>(*GTI)) {
- // Handle struct member offset arithmetic.
- // Handle case when index is vector zeroinitializer
- Constant *CIndex = cast<Constant>(Index);
- if (CIndex->isZeroValue())
- continue;
- if (CIndex->getType()->isVectorTy())
- Index = CIndex->getSplatValue();
- unsigned Idx = cast<ConstantInt>(Index)->getZExtValue();
- const StructLayout *SL = DL.getStructLayout(STy);
- uint64_t Offset = SL->getElementOffset(Idx);
- TrailZ = std::min<unsigned>(TrailZ,
- countTrailingZeros(Offset));
- } else {
- // Handle array index arithmetic.
- Type *IndexedTy = GTI.getIndexedType();
- if (!IndexedTy->isSized()) {
- TrailZ = 0;
- break;
- }
- unsigned GEPOpiBits = Index->getType()->getScalarSizeInBits();
- uint64_t TypeSize = DL.getTypeAllocSize(IndexedTy);
- LocalKnownZero = LocalKnownOne = APInt(GEPOpiBits, 0);
- computeKnownBits(Index, LocalKnownZero, LocalKnownOne, DL, Depth + 1,
- Q);
- TrailZ = std::min(TrailZ,
- unsigned(countTrailingZeros(TypeSize) +
- LocalKnownZero.countTrailingOnes()));
- }
- }
- KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ);
- break;
- }
- case Instruction::PHI: {
- PHINode *P = cast<PHINode>(I);
- // Handle the case of a simple two-predecessor recurrence PHI.
- // There's a lot more that could theoretically be done here, but
- // this is sufficient to catch some interesting cases.
- if (P->getNumIncomingValues() == 2) {
- for (unsigned i = 0; i != 2; ++i) {
- Value *L = P->getIncomingValue(i);
- Value *R = P->getIncomingValue(!i);
- Operator *LU = dyn_cast<Operator>(L);
- if (!LU)
- continue;
- unsigned Opcode = LU->getOpcode();
- // Check for operations that have the property that if
- // both their operands have low zero bits, the result
- // will have low zero bits.
- if (Opcode == Instruction::Add ||
- Opcode == Instruction::Sub ||
- Opcode == Instruction::And ||
- Opcode == Instruction::Or ||
- Opcode == Instruction::Mul) {
- Value *LL = LU->getOperand(0);
- Value *LR = LU->getOperand(1);
- // Find a recurrence.
- if (LL == I)
- L = LR;
- else if (LR == I)
- L = LL;
- else
- break;
- // Ok, we have a PHI of the form L op= R. Check for low
- // zero bits.
- computeKnownBits(R, KnownZero2, KnownOne2, DL, Depth + 1, Q);
- // We need to take the minimum number of known bits
- APInt KnownZero3(KnownZero), KnownOne3(KnownOne);
- computeKnownBits(L, KnownZero3, KnownOne3, DL, Depth + 1, Q);
- KnownZero = APInt::getLowBitsSet(BitWidth,
- std::min(KnownZero2.countTrailingOnes(),
- KnownZero3.countTrailingOnes()));
- break;
- }
- }
- }
- // Unreachable blocks may have zero-operand PHI nodes.
- if (P->getNumIncomingValues() == 0)
- break;
- // Otherwise take the unions of the known bit sets of the operands,
- // taking conservative care to avoid excessive recursion.
- if (Depth < MaxDepth - 1 && !KnownZero && !KnownOne) {
- // Skip if every incoming value references to ourself.
- if (dyn_cast_or_null<UndefValue>(P->hasConstantValue()))
- break;
- KnownZero = APInt::getAllOnesValue(BitWidth);
- KnownOne = APInt::getAllOnesValue(BitWidth);
- for (Value *IncValue : P->incoming_values()) {
- // Skip direct self references.
- if (IncValue == P) continue;
- KnownZero2 = APInt(BitWidth, 0);
- KnownOne2 = APInt(BitWidth, 0);
- // Recurse, but cap the recursion to one level, because we don't
- // want to waste time spinning around in loops.
- computeKnownBits(IncValue, KnownZero2, KnownOne2, DL,
- MaxDepth - 1, Q);
- KnownZero &= KnownZero2;
- KnownOne &= KnownOne2;
- // If all bits have been ruled out, there's no need to check
- // more operands.
- if (!KnownZero && !KnownOne)
- break;
- }
- }
- break;
- }
- case Instruction::Call:
- case Instruction::Invoke:
- if (MDNode *MD = cast<Instruction>(I)->getMetadata(LLVMContext::MD_range))
- computeKnownBitsFromRangeMetadata(*MD, KnownZero);
- // If a range metadata is attached to this IntrinsicInst, intersect the
- // explicit range specified by the metadata and the implicit range of
- // the intrinsic.
- if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
- switch (II->getIntrinsicID()) {
- default: break;
- case Intrinsic::ctlz:
- case Intrinsic::cttz: {
- unsigned LowBits = Log2_32(BitWidth)+1;
- // If this call is undefined for 0, the result will be less than 2^n.
- if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext()))
- LowBits -= 1;
- KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - LowBits);
- break;
- }
- case Intrinsic::ctpop: {
- unsigned LowBits = Log2_32(BitWidth)+1;
- KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - LowBits);
- break;
- }
- #if 0 // HLSL Change - remove platform intrinsics
- case Intrinsic::x86_sse42_crc32_64_64:
- KnownZero |= APInt::getHighBitsSet(64, 32);
- break;
- #endif // HLSL Change - remove platform intrinsics
- }
- }
- break;
- case Instruction::ExtractValue:
- if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I->getOperand(0))) {
- ExtractValueInst *EVI = cast<ExtractValueInst>(I);
- if (EVI->getNumIndices() != 1) break;
- if (EVI->getIndices()[0] == 0) {
- switch (II->getIntrinsicID()) {
- default: break;
- case Intrinsic::uadd_with_overflow:
- case Intrinsic::sadd_with_overflow:
- computeKnownBitsAddSub(true, II->getArgOperand(0),
- II->getArgOperand(1), false, KnownZero,
- KnownOne, KnownZero2, KnownOne2, DL, Depth, Q);
- break;
- case Intrinsic::usub_with_overflow:
- case Intrinsic::ssub_with_overflow:
- computeKnownBitsAddSub(false, II->getArgOperand(0),
- II->getArgOperand(1), false, KnownZero,
- KnownOne, KnownZero2, KnownOne2, DL, Depth, Q);
- break;
- case Intrinsic::umul_with_overflow:
- case Intrinsic::smul_with_overflow:
- computeKnownBitsMul(II->getArgOperand(0), II->getArgOperand(1), false,
- KnownZero, KnownOne, KnownZero2, KnownOne2, DL,
- Depth, Q);
- break;
- }
- }
- }
- }
- }
- /// Determine which bits of V are known to be either zero or one and return
- /// them in the KnownZero/KnownOne bit sets.
- ///
- /// NOTE: we cannot consider 'undef' to be "IsZero" here. The problem is that
- /// we cannot optimize based on the assumption that it is zero without changing
- /// it to be an explicit zero. If we don't change it to zero, other code could
- /// optimized based on the contradictory assumption that it is non-zero.
- /// Because instcombine aggressively folds operations with undef args anyway,
- /// this won't lose us code quality.
- ///
- /// This function is defined on values with integer type, values with pointer
- /// type, and vectors of integers. In the case
- /// where V is a vector, known zero, and known one values are the
- /// same width as the vector element, and the bit is set only if it is true
- /// for all of the elements in the vector.
- void computeKnownBits(Value *V, APInt &KnownZero, APInt &KnownOne,
- const DataLayout &DL, unsigned Depth, const Query &Q) {
- assert(V && "No Value?");
- assert(Depth <= MaxDepth && "Limit Search Depth");
- unsigned BitWidth = KnownZero.getBitWidth();
- assert((V->getType()->isIntOrIntVectorTy() ||
- V->getType()->getScalarType()->isPointerTy()) &&
- "Not integer or pointer type!");
- assert((DL.getTypeSizeInBits(V->getType()->getScalarType()) == BitWidth) &&
- (!V->getType()->isIntOrIntVectorTy() ||
- V->getType()->getScalarSizeInBits() == BitWidth) &&
- KnownZero.getBitWidth() == BitWidth &&
- KnownOne.getBitWidth() == BitWidth &&
- "V, KnownOne and KnownZero should have same BitWidth");
- if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
- // We know all of the bits for a constant!
- KnownOne = CI->getValue();
- KnownZero = ~KnownOne;
- return;
- }
- // Null and aggregate-zero are all-zeros.
- if (isa<ConstantPointerNull>(V) ||
- isa<ConstantAggregateZero>(V)) {
- KnownOne.clearAllBits();
- KnownZero = APInt::getAllOnesValue(BitWidth);
- return;
- }
- // Handle a constant vector by taking the intersection of the known bits of
- // each element. There is no real need to handle ConstantVector here, because
- // we don't handle undef in any particularly useful way.
- if (ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(V)) {
- // We know that CDS must be a vector of integers. Take the intersection of
- // each element.
- KnownZero.setAllBits(); KnownOne.setAllBits();
- APInt Elt(KnownZero.getBitWidth(), 0);
- for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
- Elt = CDS->getElementAsInteger(i);
- KnownZero &= ~Elt;
- KnownOne &= Elt;
- }
- return;
- }
- // The address of an aligned GlobalValue has trailing zeros.
- if (auto *GO = dyn_cast<GlobalObject>(V)) {
- unsigned Align = GO->getAlignment();
- if (Align == 0) {
- if (auto *GVar = dyn_cast<GlobalVariable>(GO)) {
- Type *ObjectType = GVar->getType()->getElementType();
- if (ObjectType->isSized()) {
- // If the object is defined in the current Module, we'll be giving
- // it the preferred alignment. Otherwise, we have to assume that it
- // may only have the minimum ABI alignment.
- if (GVar->isStrongDefinitionForLinker())
- Align = DL.getPreferredAlignment(GVar);
- else
- Align = DL.getABITypeAlignment(ObjectType);
- }
- }
- }
- if (Align > 0)
- KnownZero = APInt::getLowBitsSet(BitWidth,
- countTrailingZeros(Align));
- else
- KnownZero.clearAllBits();
- KnownOne.clearAllBits();
- return;
- }
- if (Argument *A = dyn_cast<Argument>(V)) {
- unsigned Align = A->getType()->isPointerTy() ? A->getParamAlignment() : 0;
- if (!Align && A->hasStructRetAttr()) {
- // An sret parameter has at least the ABI alignment of the return type.
- Type *EltTy = cast<PointerType>(A->getType())->getElementType();
- if (EltTy->isSized())
- Align = DL.getABITypeAlignment(EltTy);
- }
- if (Align)
- KnownZero = APInt::getLowBitsSet(BitWidth, countTrailingZeros(Align));
- else
- KnownZero.clearAllBits();
- KnownOne.clearAllBits();
- // Don't give up yet... there might be an assumption that provides more
- // information...
- computeKnownBitsFromAssume(V, KnownZero, KnownOne, DL, Depth, Q);
- // Or a dominating condition for that matter
- if (EnableDomConditions && Depth <= DomConditionsMaxDepth)
- computeKnownBitsFromDominatingCondition(V, KnownZero, KnownOne, DL,
- Depth, Q);
- return;
- }
- // Start out not knowing anything.
- KnownZero.clearAllBits(); KnownOne.clearAllBits();
- // Limit search depth.
- // All recursive calls that increase depth must come after this.
- if (Depth == MaxDepth)
- return;
- // A weak GlobalAlias is totally unknown. A non-weak GlobalAlias has
- // the bits of its aliasee.
- if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
- if (!GA->mayBeOverridden())
- computeKnownBits(GA->getAliasee(), KnownZero, KnownOne, DL, Depth + 1, Q);
- return;
- }
- if (Operator *I = dyn_cast<Operator>(V))
- computeKnownBitsFromOperator(I, KnownZero, KnownOne, DL, Depth, Q);
- // computeKnownBitsFromAssume and computeKnownBitsFromDominatingCondition
- // strictly refines KnownZero and KnownOne. Therefore, we run them after
- // computeKnownBitsFromOperator.
- // Check whether a nearby assume intrinsic can determine some known bits.
- computeKnownBitsFromAssume(V, KnownZero, KnownOne, DL, Depth, Q);
- // Check whether there's a dominating condition which implies something about
- // this value at the given context.
- if (EnableDomConditions && Depth <= DomConditionsMaxDepth)
- computeKnownBitsFromDominatingCondition(V, KnownZero, KnownOne, DL, Depth,
- Q);
- assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
- }
- /// Determine whether the sign bit is known to be zero or one.
- /// Convenience wrapper around computeKnownBits.
- void ComputeSignBit(Value *V, bool &KnownZero, bool &KnownOne,
- const DataLayout &DL, unsigned Depth, const Query &Q) {
- unsigned BitWidth = getBitWidth(V->getType(), DL);
- if (!BitWidth) {
- KnownZero = false;
- KnownOne = false;
- return;
- }
- APInt ZeroBits(BitWidth, 0);
- APInt OneBits(BitWidth, 0);
- computeKnownBits(V, ZeroBits, OneBits, DL, Depth, Q);
- KnownOne = OneBits[BitWidth - 1];
- KnownZero = ZeroBits[BitWidth - 1];
- }
- /// Return true if the given value is known to have exactly one
- /// bit set when defined. For vectors return true if every element is known to
- /// be a power of two when defined. Supports values with integer or pointer
- /// types and vectors of integers.
- bool isKnownToBeAPowerOfTwo(Value *V, bool OrZero, unsigned Depth,
- const Query &Q, const DataLayout &DL) {
- if (Constant *C = dyn_cast<Constant>(V)) {
- if (C->isNullValue())
- return OrZero;
- if (ConstantInt *CI = dyn_cast<ConstantInt>(C))
- return CI->getValue().isPowerOf2();
- // TODO: Handle vector constants.
- }
- // 1 << X is clearly a power of two if the one is not shifted off the end. If
- // it is shifted off the end then the result is undefined.
- if (match(V, m_Shl(m_One(), m_Value())))
- return true;
- // (signbit) >>l X is clearly a power of two if the one is not shifted off the
- // bottom. If it is shifted off the bottom then the result is undefined.
- if (match(V, m_LShr(m_SignBit(), m_Value())))
- return true;
- // The remaining tests are all recursive, so bail out if we hit the limit.
- if (Depth++ == MaxDepth)
- return false;
- Value *X = nullptr, *Y = nullptr;
- // A shift of a power of two is a power of two or zero.
- if (OrZero && (match(V, m_Shl(m_Value(X), m_Value())) ||
- match(V, m_Shr(m_Value(X), m_Value()))))
- return isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q, DL);
- if (ZExtInst *ZI = dyn_cast<ZExtInst>(V))
- return isKnownToBeAPowerOfTwo(ZI->getOperand(0), OrZero, Depth, Q, DL);
- if (SelectInst *SI = dyn_cast<SelectInst>(V))
- return isKnownToBeAPowerOfTwo(SI->getTrueValue(), OrZero, Depth, Q, DL) &&
- isKnownToBeAPowerOfTwo(SI->getFalseValue(), OrZero, Depth, Q, DL);
- if (OrZero && match(V, m_And(m_Value(X), m_Value(Y)))) {
- // A power of two and'd with anything is a power of two or zero.
- if (isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q, DL) ||
- isKnownToBeAPowerOfTwo(Y, /*OrZero*/ true, Depth, Q, DL))
- return true;
- // X & (-X) is always a power of two or zero.
- if (match(X, m_Neg(m_Specific(Y))) || match(Y, m_Neg(m_Specific(X))))
- return true;
- return false;
- }
- // Adding a power-of-two or zero to the same power-of-two or zero yields
- // either the original power-of-two, a larger power-of-two or zero.
- if (match(V, m_Add(m_Value(X), m_Value(Y)))) {
- OverflowingBinaryOperator *VOBO = cast<OverflowingBinaryOperator>(V);
- if (OrZero || VOBO->hasNoUnsignedWrap() || VOBO->hasNoSignedWrap()) {
- if (match(X, m_And(m_Specific(Y), m_Value())) ||
- match(X, m_And(m_Value(), m_Specific(Y))))
- if (isKnownToBeAPowerOfTwo(Y, OrZero, Depth, Q, DL))
- return true;
- if (match(Y, m_And(m_Specific(X), m_Value())) ||
- match(Y, m_And(m_Value(), m_Specific(X))))
- if (isKnownToBeAPowerOfTwo(X, OrZero, Depth, Q, DL))
- return true;
- unsigned BitWidth = V->getType()->getScalarSizeInBits();
- APInt LHSZeroBits(BitWidth, 0), LHSOneBits(BitWidth, 0);
- computeKnownBits(X, LHSZeroBits, LHSOneBits, DL, Depth, Q);
- APInt RHSZeroBits(BitWidth, 0), RHSOneBits(BitWidth, 0);
- computeKnownBits(Y, RHSZeroBits, RHSOneBits, DL, Depth, Q);
- // If i8 V is a power of two or zero:
- // ZeroBits: 1 1 1 0 1 1 1 1
- // ~ZeroBits: 0 0 0 1 0 0 0 0
- if ((~(LHSZeroBits & RHSZeroBits)).isPowerOf2())
- // If OrZero isn't set, we cannot give back a zero result.
- // Make sure either the LHS or RHS has a bit set.
- if (OrZero || RHSOneBits.getBoolValue() || LHSOneBits.getBoolValue())
- return true;
- }
- }
- // An exact divide or right shift can only shift off zero bits, so the result
- // is a power of two only if the first operand is a power of two and not
- // copying a sign bit (sdiv int_min, 2).
- if (match(V, m_Exact(m_LShr(m_Value(), m_Value()))) ||
- match(V, m_Exact(m_UDiv(m_Value(), m_Value())))) {
- return isKnownToBeAPowerOfTwo(cast<Operator>(V)->getOperand(0), OrZero,
- Depth, Q, DL);
- }
- return false;
- }
- /// \brief Test whether a GEP's result is known to be non-null.
- ///
- /// Uses properties inherent in a GEP to try to determine whether it is known
- /// to be non-null.
- ///
- /// Currently this routine does not support vector GEPs.
- static bool isGEPKnownNonNull(GEPOperator *GEP, const DataLayout &DL,
- unsigned Depth, const Query &Q) {
- if (!GEP->isInBounds() || GEP->getPointerAddressSpace() != 0)
- return false;
- // FIXME: Support vector-GEPs.
- assert(GEP->getType()->isPointerTy() && "We only support plain pointer GEP");
- // If the base pointer is non-null, we cannot walk to a null address with an
- // inbounds GEP in address space zero.
- if (isKnownNonZero(GEP->getPointerOperand(), DL, Depth, Q))
- return true;
- // Walk the GEP operands and see if any operand introduces a non-zero offset.
- // If so, then the GEP cannot produce a null pointer, as doing so would
- // inherently violate the inbounds contract within address space zero.
- for (gep_type_iterator GTI = gep_type_begin(GEP), GTE = gep_type_end(GEP);
- GTI != GTE; ++GTI) {
- // Struct types are easy -- they must always be indexed by a constant.
- if (StructType *STy = dyn_cast<StructType>(*GTI)) {
- ConstantInt *OpC = cast<ConstantInt>(GTI.getOperand());
- unsigned ElementIdx = OpC->getZExtValue();
- const StructLayout *SL = DL.getStructLayout(STy);
- uint64_t ElementOffset = SL->getElementOffset(ElementIdx);
- if (ElementOffset > 0)
- return true;
- continue;
- }
- // If we have a zero-sized type, the index doesn't matter. Keep looping.
- if (DL.getTypeAllocSize(GTI.getIndexedType()) == 0)
- continue;
- // Fast path the constant operand case both for efficiency and so we don't
- // increment Depth when just zipping down an all-constant GEP.
- if (ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand())) {
- if (!OpC->isZero())
- return true;
- continue;
- }
- // We post-increment Depth here because while isKnownNonZero increments it
- // as well, when we pop back up that increment won't persist. We don't want
- // to recurse 10k times just because we have 10k GEP operands. We don't
- // bail completely out because we want to handle constant GEPs regardless
- // of depth.
- if (Depth++ >= MaxDepth)
- continue;
- if (isKnownNonZero(GTI.getOperand(), DL, Depth, Q))
- return true;
- }
- return false;
- }
- /// Does the 'Range' metadata (which must be a valid MD_range operand list)
- /// ensure that the value it's attached to is never Value? 'RangeType' is
- /// is the type of the value described by the range.
- static bool rangeMetadataExcludesValue(MDNode* Ranges,
- const APInt& Value) {
- const unsigned NumRanges = Ranges->getNumOperands() / 2;
- assert(NumRanges >= 1);
- for (unsigned i = 0; i < NumRanges; ++i) {
- ConstantInt *Lower =
- mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 0));
- ConstantInt *Upper =
- mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 1));
- ConstantRange Range(Lower->getValue(), Upper->getValue());
- if (Range.contains(Value))
- return false;
- }
- return true;
- }
- /// Return true if the given value is known to be non-zero when defined.
- /// For vectors return true if every element is known to be non-zero when
- /// defined. Supports values with integer or pointer type and vectors of
- /// integers.
- bool isKnownNonZero(Value *V, const DataLayout &DL, unsigned Depth,
- const Query &Q) {
- if (Constant *C = dyn_cast<Constant>(V)) {
- if (C->isNullValue())
- return false;
- if (isa<ConstantInt>(C))
- // Must be non-zero due to null test above.
- return true;
- // TODO: Handle vectors
- return false;
- }
- if (Instruction* I = dyn_cast<Instruction>(V)) {
- if (MDNode *Ranges = I->getMetadata(LLVMContext::MD_range)) {
- // If the possible ranges don't contain zero, then the value is
- // definitely non-zero.
- if (IntegerType* Ty = dyn_cast<IntegerType>(V->getType())) {
- const APInt ZeroValue(Ty->getBitWidth(), 0);
- if (rangeMetadataExcludesValue(Ranges, ZeroValue))
- return true;
- }
- }
- }
- // The remaining tests are all recursive, so bail out if we hit the limit.
- if (Depth++ >= MaxDepth)
- return false;
- // Check for pointer simplifications.
- if (V->getType()->isPointerTy()) {
- if (isKnownNonNull(V))
- return true;
- if (GEPOperator *GEP = dyn_cast<GEPOperator>(V))
- if (isGEPKnownNonNull(GEP, DL, Depth, Q))
- return true;
- }
- unsigned BitWidth = getBitWidth(V->getType()->getScalarType(), DL);
- // X | Y != 0 if X != 0 or Y != 0.
- Value *X = nullptr, *Y = nullptr;
- if (match(V, m_Or(m_Value(X), m_Value(Y))))
- return isKnownNonZero(X, DL, Depth, Q) || isKnownNonZero(Y, DL, Depth, Q);
- // ext X != 0 if X != 0.
- if (isa<SExtInst>(V) || isa<ZExtInst>(V))
- return isKnownNonZero(cast<Instruction>(V)->getOperand(0), DL, Depth, Q);
- // shl X, Y != 0 if X is odd. Note that the value of the shift is undefined
- // if the lowest bit is shifted off the end.
- if (BitWidth && match(V, m_Shl(m_Value(X), m_Value(Y)))) {
- // shl nuw can't remove any non-zero bits.
- OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V);
- if (BO->hasNoUnsignedWrap())
- return isKnownNonZero(X, DL, Depth, Q);
- APInt KnownZero(BitWidth, 0);
- APInt KnownOne(BitWidth, 0);
- computeKnownBits(X, KnownZero, KnownOne, DL, Depth, Q);
- if (KnownOne[0])
- return true;
- }
- // shr X, Y != 0 if X is negative. Note that the value of the shift is not
- // defined if the sign bit is shifted off the end.
- else if (match(V, m_Shr(m_Value(X), m_Value(Y)))) {
- // shr exact can only shift out zero bits.
- PossiblyExactOperator *BO = cast<PossiblyExactOperator>(V);
- if (BO->isExact())
- return isKnownNonZero(X, DL, Depth, Q);
- bool XKnownNonNegative, XKnownNegative;
- ComputeSignBit(X, XKnownNonNegative, XKnownNegative, DL, Depth, Q);
- if (XKnownNegative)
- return true;
- }
- // div exact can only produce a zero if the dividend is zero.
- else if (match(V, m_Exact(m_IDiv(m_Value(X), m_Value())))) {
- return isKnownNonZero(X, DL, Depth, Q);
- }
- // X + Y.
- else if (match(V, m_Add(m_Value(X), m_Value(Y)))) {
- bool XKnownNonNegative, XKnownNegative;
- bool YKnownNonNegative, YKnownNegative;
- ComputeSignBit(X, XKnownNonNegative, XKnownNegative, DL, Depth, Q);
- ComputeSignBit(Y, YKnownNonNegative, YKnownNegative, DL, Depth, Q);
- // If X and Y are both non-negative (as signed values) then their sum is not
- // zero unless both X and Y are zero.
- if (XKnownNonNegative && YKnownNonNegative)
- if (isKnownNonZero(X, DL, Depth, Q) || isKnownNonZero(Y, DL, Depth, Q))
- return true;
- // If X and Y are both negative (as signed values) then their sum is not
- // zero unless both X and Y equal INT_MIN.
- if (BitWidth && XKnownNegative && YKnownNegative) {
- APInt KnownZero(BitWidth, 0);
- APInt KnownOne(BitWidth, 0);
- APInt Mask = APInt::getSignedMaxValue(BitWidth);
- // The sign bit of X is set. If some other bit is set then X is not equal
- // to INT_MIN.
- computeKnownBits(X, KnownZero, KnownOne, DL, Depth, Q);
- if ((KnownOne & Mask) != 0)
- return true;
- // The sign bit of Y is set. If some other bit is set then Y is not equal
- // to INT_MIN.
- computeKnownBits(Y, KnownZero, KnownOne, DL, Depth, Q);
- if ((KnownOne & Mask) != 0)
- return true;
- }
- // The sum of a non-negative number and a power of two is not zero.
- if (XKnownNonNegative &&
- isKnownToBeAPowerOfTwo(Y, /*OrZero*/ false, Depth, Q, DL))
- return true;
- if (YKnownNonNegative &&
- isKnownToBeAPowerOfTwo(X, /*OrZero*/ false, Depth, Q, DL))
- return true;
- }
- // X * Y.
- else if (match(V, m_Mul(m_Value(X), m_Value(Y)))) {
- OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V);
- // If X and Y are non-zero then so is X * Y as long as the multiplication
- // does not overflow.
- if ((BO->hasNoSignedWrap() || BO->hasNoUnsignedWrap()) &&
- isKnownNonZero(X, DL, Depth, Q) && isKnownNonZero(Y, DL, Depth, Q))
- return true;
- }
- // (C ? X : Y) != 0 if X != 0 and Y != 0.
- else if (SelectInst *SI = dyn_cast<SelectInst>(V)) {
- if (isKnownNonZero(SI->getTrueValue(), DL, Depth, Q) &&
- isKnownNonZero(SI->getFalseValue(), DL, Depth, Q))
- return true;
- }
- if (!BitWidth) return false;
- APInt KnownZero(BitWidth, 0);
- APInt KnownOne(BitWidth, 0);
- computeKnownBits(V, KnownZero, KnownOne, DL, Depth, Q);
- return KnownOne != 0;
- }
- /// Return true if 'V & Mask' is known to be zero. We use this predicate to
- /// simplify operations downstream. Mask is known to be zero for bits that V
- /// cannot have.
- ///
- /// This function is defined on values with integer type, values with pointer
- /// type, and vectors of integers. In the case
- /// where V is a vector, the mask, known zero, and known one values are the
- /// same width as the vector element, and the bit is set only if it is true
- /// for all of the elements in the vector.
- bool MaskedValueIsZero(Value *V, const APInt &Mask, const DataLayout &DL,
- unsigned Depth, const Query &Q) {
- APInt KnownZero(Mask.getBitWidth(), 0), KnownOne(Mask.getBitWidth(), 0);
- computeKnownBits(V, KnownZero, KnownOne, DL, Depth, Q);
- return (KnownZero & Mask) == Mask;
- }
- /// Return the number of times the sign bit of the register is replicated into
- /// the other bits. We know that at least 1 bit is always equal to the sign bit
- /// (itself), but other cases can give us information. For example, immediately
- /// after an "ashr X, 2", we know that the top 3 bits are all equal to each
- /// other, so we return 3.
- ///
- /// 'Op' must have a scalar integer type.
- ///
- unsigned ComputeNumSignBits(Value *V, const DataLayout &DL, unsigned Depth,
- const Query &Q) {
- unsigned TyBits = DL.getTypeSizeInBits(V->getType()->getScalarType());
- unsigned Tmp, Tmp2;
- unsigned FirstAnswer = 1;
- // Note that ConstantInt is handled by the general computeKnownBits case
- // below.
- if (Depth == 6)
- return 1; // Limit search depth.
- Operator *U = dyn_cast<Operator>(V);
- switch (Operator::getOpcode(V)) {
- default: break;
- case Instruction::SExt:
- Tmp = TyBits - U->getOperand(0)->getType()->getScalarSizeInBits();
- return ComputeNumSignBits(U->getOperand(0), DL, Depth + 1, Q) + Tmp;
- case Instruction::SDiv: {
- const APInt *Denominator;
- // sdiv X, C -> adds log(C) sign bits.
- if (match(U->getOperand(1), m_APInt(Denominator))) {
- // Ignore non-positive denominator.
- if (!Denominator->isStrictlyPositive())
- break;
- // Calculate the incoming numerator bits.
- unsigned NumBits = ComputeNumSignBits(U->getOperand(0), DL, Depth + 1, Q);
- // Add floor(log(C)) bits to the numerator bits.
- return std::min(TyBits, NumBits + Denominator->logBase2());
- }
- break;
- }
- case Instruction::SRem: {
- const APInt *Denominator;
- // srem X, C -> we know that the result is within [-C+1,C) when C is a
- // positive constant. This let us put a lower bound on the number of sign
- // bits.
- if (match(U->getOperand(1), m_APInt(Denominator))) {
- // Ignore non-positive denominator.
- if (!Denominator->isStrictlyPositive())
- break;
- // Calculate the incoming numerator bits. SRem by a positive constant
- // can't lower the number of sign bits.
- unsigned NumrBits =
- ComputeNumSignBits(U->getOperand(0), DL, Depth + 1, Q);
- // Calculate the leading sign bit constraints by examining the
- // denominator. Given that the denominator is positive, there are two
- // cases:
- //
- // 1. the numerator is positive. The result range is [0,C) and [0,C) u<
- // (1 << ceilLogBase2(C)).
- //
- // 2. the numerator is negative. Then the result range is (-C,0] and
- // integers in (-C,0] are either 0 or >u (-1 << ceilLogBase2(C)).
- //
- // Thus a lower bound on the number of sign bits is `TyBits -
- // ceilLogBase2(C)`.
- unsigned ResBits = TyBits - Denominator->ceilLogBase2();
- return std::max(NumrBits, ResBits);
- }
- break;
- }
- case Instruction::AShr: {
- Tmp = ComputeNumSignBits(U->getOperand(0), DL, Depth + 1, Q);
- // ashr X, C -> adds C sign bits. Vectors too.
- const APInt *ShAmt;
- if (match(U->getOperand(1), m_APInt(ShAmt))) {
- Tmp += ShAmt->getZExtValue();
- if (Tmp > TyBits) Tmp = TyBits;
- }
- return Tmp;
- }
- case Instruction::Shl: {
- const APInt *ShAmt;
- if (match(U->getOperand(1), m_APInt(ShAmt))) {
- // shl destroys sign bits.
- Tmp = ComputeNumSignBits(U->getOperand(0), DL, Depth + 1, Q);
- Tmp2 = ShAmt->getZExtValue();
- if (Tmp2 >= TyBits || // Bad shift.
- Tmp2 >= Tmp) break; // Shifted all sign bits out.
- return Tmp - Tmp2;
- }
- break;
- }
- case Instruction::And:
- case Instruction::Or:
- case Instruction::Xor: // NOT is handled here.
- // Logical binary ops preserve the number of sign bits at the worst.
- Tmp = ComputeNumSignBits(U->getOperand(0), DL, Depth + 1, Q);
- if (Tmp != 1) {
- Tmp2 = ComputeNumSignBits(U->getOperand(1), DL, Depth + 1, Q);
- FirstAnswer = std::min(Tmp, Tmp2);
- // We computed what we know about the sign bits as our first
- // answer. Now proceed to the generic code that uses
- // computeKnownBits, and pick whichever answer is better.
- }
- break;
- case Instruction::Select:
- Tmp = ComputeNumSignBits(U->getOperand(1), DL, Depth + 1, Q);
- if (Tmp == 1) return 1; // Early out.
- Tmp2 = ComputeNumSignBits(U->getOperand(2), DL, Depth + 1, Q);
- return std::min(Tmp, Tmp2);
- case Instruction::Add:
- // Add can have at most one carry bit. Thus we know that the output
- // is, at worst, one more bit than the inputs.
- Tmp = ComputeNumSignBits(U->getOperand(0), DL, Depth + 1, Q);
- if (Tmp == 1) return 1; // Early out.
- // Special case decrementing a value (ADD X, -1):
- if (const auto *CRHS = dyn_cast<Constant>(U->getOperand(1)))
- if (CRHS->isAllOnesValue()) {
- APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0);
- computeKnownBits(U->getOperand(0), KnownZero, KnownOne, DL, Depth + 1,
- Q);
- // If the input is known to be 0 or 1, the output is 0/-1, which is all
- // sign bits set.
- if ((KnownZero | APInt(TyBits, 1)).isAllOnesValue())
- return TyBits;
- // If we are subtracting one from a positive number, there is no carry
- // out of the result.
- if (KnownZero.isNegative())
- return Tmp;
- }
- Tmp2 = ComputeNumSignBits(U->getOperand(1), DL, Depth + 1, Q);
- if (Tmp2 == 1) return 1;
- return std::min(Tmp, Tmp2)-1;
- case Instruction::Sub:
- Tmp2 = ComputeNumSignBits(U->getOperand(1), DL, Depth + 1, Q);
- if (Tmp2 == 1) return 1;
- // Handle NEG.
- if (const auto *CLHS = dyn_cast<Constant>(U->getOperand(0)))
- if (CLHS->isNullValue()) {
- APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0);
- computeKnownBits(U->getOperand(1), KnownZero, KnownOne, DL, Depth + 1,
- Q);
- // If the input is known to be 0 or 1, the output is 0/-1, which is all
- // sign bits set.
- if ((KnownZero | APInt(TyBits, 1)).isAllOnesValue())
- return TyBits;
- // If the input is known to be positive (the sign bit is known clear),
- // the output of the NEG has the same number of sign bits as the input.
- if (KnownZero.isNegative())
- return Tmp2;
- // Otherwise, we treat this like a SUB.
- }
- // Sub can have at most one carry bit. Thus we know that the output
- // is, at worst, one more bit than the inputs.
- Tmp = ComputeNumSignBits(U->getOperand(0), DL, Depth + 1, Q);
- if (Tmp == 1) return 1; // Early out.
- return std::min(Tmp, Tmp2)-1;
- case Instruction::PHI: {
- PHINode *PN = cast<PHINode>(U);
- unsigned NumIncomingValues = PN->getNumIncomingValues();
- // Don't analyze large in-degree PHIs.
- if (NumIncomingValues > 4) break;
- // Unreachable blocks may have zero-operand PHI nodes.
- if (NumIncomingValues == 0) break;
- // Take the minimum of all incoming values. This can't infinitely loop
- // because of our depth threshold.
- Tmp = ComputeNumSignBits(PN->getIncomingValue(0), DL, Depth + 1, Q);
- for (unsigned i = 1, e = NumIncomingValues; i != e; ++i) {
- if (Tmp == 1) return Tmp;
- Tmp = std::min(
- Tmp, ComputeNumSignBits(PN->getIncomingValue(i), DL, Depth + 1, Q));
- }
- return Tmp;
- }
- case Instruction::Trunc:
- // FIXME: it's tricky to do anything useful for this, but it is an important
- // case for targets like X86.
- break;
- }
- // Finally, if we can prove that the top bits of the result are 0's or 1's,
- // use this information.
- APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0);
- APInt Mask;
- computeKnownBits(V, KnownZero, KnownOne, DL, Depth, Q);
- if (KnownZero.isNegative()) { // sign bit is 0
- Mask = KnownZero;
- } else if (KnownOne.isNegative()) { // sign bit is 1;
- Mask = KnownOne;
- } else {
- // Nothing known.
- return FirstAnswer;
- }
- // Okay, we know that the sign bit in Mask is set. Use CLZ to determine
- // the number of identical bits in the top of the input value.
- Mask = ~Mask;
- Mask <<= Mask.getBitWidth()-TyBits;
- // Return # leading zeros. We use 'min' here in case Val was zero before
- // shifting. We don't want to return '64' as for an i32 "0".
- return std::max(FirstAnswer, std::min(TyBits, Mask.countLeadingZeros()));
- }
- /// This function computes the integer multiple of Base that equals V.
- /// If successful, it returns true and returns the multiple in
- /// Multiple. If unsuccessful, it returns false. It looks
- /// through SExt instructions only if LookThroughSExt is true.
- bool llvm::ComputeMultiple(Value *V, unsigned Base, Value *&Multiple,
- bool LookThroughSExt, unsigned Depth) {
- const unsigned MaxDepth = 6;
- assert(V && "No Value?");
- assert(Depth <= MaxDepth && "Limit Search Depth");
- assert(V->getType()->isIntegerTy() && "Not integer or pointer type!");
- Type *T = V->getType();
- ConstantInt *CI = dyn_cast<ConstantInt>(V);
- if (Base == 0)
- return false;
- if (Base == 1) {
- Multiple = V;
- return true;
- }
- ConstantExpr *CO = dyn_cast<ConstantExpr>(V);
- Constant *BaseVal = ConstantInt::get(T, Base);
- if (CO && CO == BaseVal) {
- // Multiple is 1.
- Multiple = ConstantInt::get(T, 1);
- return true;
- }
- if (CI && CI->getZExtValue() % Base == 0) {
- Multiple = ConstantInt::get(T, CI->getZExtValue() / Base);
- return true;
- }
- if (Depth == MaxDepth) return false; // Limit search depth.
- Operator *I = dyn_cast<Operator>(V);
- if (!I) return false;
- switch (I->getOpcode()) {
- default: break;
- case Instruction::SExt:
- if (!LookThroughSExt) return false;
- // otherwise fall through to ZExt
- case Instruction::ZExt:
- return ComputeMultiple(I->getOperand(0), Base, Multiple,
- LookThroughSExt, Depth+1);
- case Instruction::Shl:
- case Instruction::Mul: {
- Value *Op0 = I->getOperand(0);
- Value *Op1 = I->getOperand(1);
- if (I->getOpcode() == Instruction::Shl) {
- ConstantInt *Op1CI = dyn_cast<ConstantInt>(Op1);
- if (!Op1CI) return false;
- // Turn Op0 << Op1 into Op0 * 2^Op1
- APInt Op1Int = Op1CI->getValue();
- uint64_t BitToSet = Op1Int.getLimitedValue(Op1Int.getBitWidth() - 1);
- APInt API(Op1Int.getBitWidth(), 0);
- API.setBit(BitToSet);
- Op1 = ConstantInt::get(V->getContext(), API);
- }
- Value *Mul0 = nullptr;
- if (ComputeMultiple(Op0, Base, Mul0, LookThroughSExt, Depth+1)) {
- if (Constant *Op1C = dyn_cast<Constant>(Op1))
- if (Constant *MulC = dyn_cast<Constant>(Mul0)) {
- if (Op1C->getType()->getPrimitiveSizeInBits() <
- MulC->getType()->getPrimitiveSizeInBits())
- Op1C = ConstantExpr::getZExt(Op1C, MulC->getType());
- if (Op1C->getType()->getPrimitiveSizeInBits() >
- MulC->getType()->getPrimitiveSizeInBits())
- MulC = ConstantExpr::getZExt(MulC, Op1C->getType());
- // V == Base * (Mul0 * Op1), so return (Mul0 * Op1)
- Multiple = ConstantExpr::getMul(MulC, Op1C);
- return true;
- }
- if (ConstantInt *Mul0CI = dyn_cast<ConstantInt>(Mul0))
- if (Mul0CI->getValue() == 1) {
- // V == Base * Op1, so return Op1
- Multiple = Op1;
- return true;
- }
- }
- Value *Mul1 = nullptr;
- if (ComputeMultiple(Op1, Base, Mul1, LookThroughSExt, Depth+1)) {
- if (Constant *Op0C = dyn_cast<Constant>(Op0))
- if (Constant *MulC = dyn_cast<Constant>(Mul1)) {
- if (Op0C->getType()->getPrimitiveSizeInBits() <
- MulC->getType()->getPrimitiveSizeInBits())
- Op0C = ConstantExpr::getZExt(Op0C, MulC->getType());
- if (Op0C->getType()->getPrimitiveSizeInBits() >
- MulC->getType()->getPrimitiveSizeInBits())
- MulC = ConstantExpr::getZExt(MulC, Op0C->getType());
- // V == Base * (Mul1 * Op0), so return (Mul1 * Op0)
- Multiple = ConstantExpr::getMul(MulC, Op0C);
- return true;
- }
- if (ConstantInt *Mul1CI = dyn_cast<ConstantInt>(Mul1))
- if (Mul1CI->getValue() == 1) {
- // V == Base * Op0, so return Op0
- Multiple = Op0;
- return true;
- }
- }
- }
- }
- // We could not determine if V is a multiple of Base.
- return false;
- }
- /// Return true if we can prove that the specified FP value is never equal to
- /// -0.0.
- ///
- /// NOTE: this function will need to be revisited when we support non-default
- /// rounding modes!
- ///
- bool llvm::CannotBeNegativeZero(const Value *V, unsigned Depth) {
- if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V))
- return !CFP->getValueAPF().isNegZero();
- // FIXME: Magic number! At the least, this should be given a name because it's
- // used similarly in CannotBeOrderedLessThanZero(). A better fix may be to
- // expose it as a parameter, so it can be used for testing / experimenting.
- if (Depth == 6)
- return false; // Limit search depth.
- const Operator *I = dyn_cast<Operator>(V);
- if (!I) return false;
- // Check if the nsz fast-math flag is set
- if (const FPMathOperator *FPOp = dyn_cast<FPMathOperator>(I)) // HLSL Change - FPO -> FPOp (macro collision)
- if (FPOp->hasNoSignedZeros()) // HLSL Change - FPO -> FPOp (macro collision)
- return true;
- // (add x, 0.0) is guaranteed to return +0.0, not -0.0.
- if (I->getOpcode() == Instruction::FAdd)
- if (ConstantFP *CFP = dyn_cast<ConstantFP>(I->getOperand(1)))
- if (CFP->isNullValue())
- return true;
- // sitofp and uitofp turn into +0.0 for zero.
- if (isa<SIToFPInst>(I) || isa<UIToFPInst>(I))
- return true;
- if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I))
- // sqrt(-0.0) = -0.0, no other negative results are possible.
- if (II->getIntrinsicID() == Intrinsic::sqrt)
- return CannotBeNegativeZero(II->getArgOperand(0), Depth+1);
- if (const CallInst *CI = dyn_cast<CallInst>(I))
- if (const Function *F = CI->getCalledFunction()) {
- if (F->isDeclaration()) {
- // abs(x) != -0.0
- if (F->getName() == "abs") return true;
- // fabs[lf](x) != -0.0
- if (F->getName() == "fabs") return true;
- if (F->getName() == "fabsf") return true;
- if (F->getName() == "fabsl") return true;
- if (F->getName() == "sqrt" || F->getName() == "sqrtf" ||
- F->getName() == "sqrtl")
- return CannotBeNegativeZero(CI->getArgOperand(0), Depth+1);
- }
- }
- return false;
- }
- bool llvm::CannotBeOrderedLessThanZero(const Value *V, unsigned Depth) {
- if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V))
- return !CFP->getValueAPF().isNegative() || CFP->getValueAPF().isZero();
- // FIXME: Magic number! At the least, this should be given a name because it's
- // used similarly in CannotBeNegativeZero(). A better fix may be to
- // expose it as a parameter, so it can be used for testing / experimenting.
- if (Depth == 6)
- return false; // Limit search depth.
- const Operator *I = dyn_cast<Operator>(V);
- if (!I) return false;
- switch (I->getOpcode()) {
- default: break;
- case Instruction::FMul:
- // x*x is always non-negative or a NaN.
- if (I->getOperand(0) == I->getOperand(1))
- return true;
- // Fall through
- case Instruction::FAdd:
- case Instruction::FDiv:
- case Instruction::FRem:
- return CannotBeOrderedLessThanZero(I->getOperand(0), Depth+1) &&
- CannotBeOrderedLessThanZero(I->getOperand(1), Depth+1);
- case Instruction::FPExt:
- case Instruction::FPTrunc:
- // Widening/narrowing never change sign.
- return CannotBeOrderedLessThanZero(I->getOperand(0), Depth+1);
- case Instruction::Call:
- if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I))
- switch (II->getIntrinsicID()) {
- default: break;
- case Intrinsic::exp:
- case Intrinsic::exp2:
- case Intrinsic::fabs:
- case Intrinsic::sqrt:
- return true;
- case Intrinsic::powi:
- if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) {
- // powi(x,n) is non-negative if n is even.
- if (CI->getBitWidth() <= 64 && CI->getSExtValue() % 2u == 0)
- return true;
- }
- return CannotBeOrderedLessThanZero(I->getOperand(0), Depth+1);
- case Intrinsic::fma:
- case Intrinsic::fmuladd:
- // x*x+y is non-negative if y is non-negative.
- return I->getOperand(0) == I->getOperand(1) &&
- CannotBeOrderedLessThanZero(I->getOperand(2), Depth+1);
- }
- break;
- }
- return false;
- }
- /// If the specified value can be set by repeating the same byte in memory,
- /// return the i8 value that it is represented with. This is
- /// true for all i8 values obviously, but is also true for i32 0, i32 -1,
- /// i16 0xF0F0, double 0.0 etc. If the value can't be handled with a repeated
- /// byte store (e.g. i16 0x1234), return null.
- Value *llvm::isBytewiseValue(Value *V) {
- // All byte-wide stores are splatable, even of arbitrary variables.
- if (V->getType()->isIntegerTy(8)) return V;
- // Handle 'null' ConstantArrayZero etc.
- if (Constant *C = dyn_cast<Constant>(V))
- if (C->isNullValue())
- return Constant::getNullValue(Type::getInt8Ty(V->getContext()));
- // Constant float and double values can be handled as integer values if the
- // corresponding integer value is "byteable". An important case is 0.0.
- if (ConstantFP *CFP = dyn_cast<ConstantFP>(V)) {
- if (CFP->getType()->isFloatTy())
- V = ConstantExpr::getBitCast(CFP, Type::getInt32Ty(V->getContext()));
- if (CFP->getType()->isDoubleTy())
- V = ConstantExpr::getBitCast(CFP, Type::getInt64Ty(V->getContext()));
- // Don't handle long double formats, which have strange constraints.
- }
- // We can handle constant integers that are multiple of 8 bits.
- if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
- if (CI->getBitWidth() % 8 == 0) {
- assert(CI->getBitWidth() > 8 && "8 bits should be handled above!");
- if (!CI->getValue().isSplat(8))
- return nullptr;
- return ConstantInt::get(V->getContext(), CI->getValue().trunc(8));
- }
- }
- // A ConstantDataArray/Vector is splatable if all its members are equal and
- // also splatable.
- if (ConstantDataSequential *CA = dyn_cast<ConstantDataSequential>(V)) {
- Value *Elt = CA->getElementAsConstant(0);
- Value *Val = isBytewiseValue(Elt);
- if (!Val)
- return nullptr;
- for (unsigned I = 1, E = CA->getNumElements(); I != E; ++I)
- if (CA->getElementAsConstant(I) != Elt)
- return nullptr;
- return Val;
- }
- // Conceptually, we could handle things like:
- // %a = zext i8 %X to i16
- // %b = shl i16 %a, 8
- // %c = or i16 %a, %b
- // but until there is an example that actually needs this, it doesn't seem
- // worth worrying about.
- return nullptr;
- }
- // This is the recursive version of BuildSubAggregate. It takes a few different
- // arguments. Idxs is the index within the nested struct From that we are
- // looking at now (which is of type IndexedType). IdxSkip is the number of
- // indices from Idxs that should be left out when inserting into the resulting
- // struct. To is the result struct built so far, new insertvalue instructions
- // build on that.
- static Value *BuildSubAggregate(Value *From, Value* To, Type *IndexedType,
- SmallVectorImpl<unsigned> &Idxs,
- unsigned IdxSkip,
- Instruction *InsertBefore) {
- llvm::StructType *STy = dyn_cast<llvm::StructType>(IndexedType);
- if (STy) {
- // Save the original To argument so we can modify it
- Value *OrigTo = To;
- // General case, the type indexed by Idxs is a struct
- for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
- // Process each struct element recursively
- Idxs.push_back(i);
- Value *PrevTo = To;
- To = BuildSubAggregate(From, To, STy->getElementType(i), Idxs, IdxSkip,
- InsertBefore);
- Idxs.pop_back();
- if (!To) {
- // Couldn't find any inserted value for this index? Cleanup
- while (PrevTo != OrigTo) {
- InsertValueInst* Del = cast<InsertValueInst>(PrevTo);
- PrevTo = Del->getAggregateOperand();
- Del->eraseFromParent();
- }
- // Stop processing elements
- break;
- }
- }
- // If we successfully found a value for each of our subaggregates
- if (To)
- return To;
- }
- // Base case, the type indexed by SourceIdxs is not a struct, or not all of
- // the struct's elements had a value that was inserted directly. In the latter
- // case, perhaps we can't determine each of the subelements individually, but
- // we might be able to find the complete struct somewhere.
- // Find the value that is at that particular spot
- Value *V = FindInsertedValue(From, Idxs);
- if (!V)
- return nullptr;
- // Insert the value in the new (sub) aggregrate
- return llvm::InsertValueInst::Create(To, V, makeArrayRef(Idxs).slice(IdxSkip),
- "tmp", InsertBefore);
- }
- // This helper takes a nested struct and extracts a part of it (which is again a
- // struct) into a new value. For example, given the struct:
- // { a, { b, { c, d }, e } }
- // and the indices "1, 1" this returns
- // { c, d }.
- //
- // It does this by inserting an insertvalue for each element in the resulting
- // struct, as opposed to just inserting a single struct. This will only work if
- // each of the elements of the substruct are known (ie, inserted into From by an
- // insertvalue instruction somewhere).
- //
- // All inserted insertvalue instructions are inserted before InsertBefore
- static Value *BuildSubAggregate(Value *From, ArrayRef<unsigned> idx_range,
- Instruction *InsertBefore) {
- assert(InsertBefore && "Must have someplace to insert!");
- Type *IndexedType = ExtractValueInst::getIndexedType(From->getType(),
- idx_range);
- Value *To = UndefValue::get(IndexedType);
- SmallVector<unsigned, 10> Idxs(idx_range.begin(), idx_range.end());
- unsigned IdxSkip = Idxs.size();
- return BuildSubAggregate(From, To, IndexedType, Idxs, IdxSkip, InsertBefore);
- }
- /// Given an aggregrate and an sequence of indices, see if
- /// the scalar value indexed is already around as a register, for example if it
- /// were inserted directly into the aggregrate.
- ///
- /// If InsertBefore is not null, this function will duplicate (modified)
- /// insertvalues when a part of a nested struct is extracted.
- Value *llvm::FindInsertedValue(Value *V, ArrayRef<unsigned> idx_range,
- Instruction *InsertBefore) {
- // Nothing to index? Just return V then (this is useful at the end of our
- // recursion).
- if (idx_range.empty())
- return V;
- // We have indices, so V should have an indexable type.
- assert((V->getType()->isStructTy() || V->getType()->isArrayTy()) &&
- "Not looking at a struct or array?");
- assert(ExtractValueInst::getIndexedType(V->getType(), idx_range) &&
- "Invalid indices for type?");
- if (Constant *C = dyn_cast<Constant>(V)) {
- C = C->getAggregateElement(idx_range[0]);
- if (!C) return nullptr;
- return FindInsertedValue(C, idx_range.slice(1), InsertBefore);
- }
- if (InsertValueInst *I = dyn_cast<InsertValueInst>(V)) {
- // Loop the indices for the insertvalue instruction in parallel with the
- // requested indices
- const unsigned *req_idx = idx_range.begin();
- for (const unsigned *i = I->idx_begin(), *e = I->idx_end();
- i != e; ++i, ++req_idx) {
- if (req_idx == idx_range.end()) {
- // We can't handle this without inserting insertvalues
- if (!InsertBefore)
- return nullptr;
- // The requested index identifies a part of a nested aggregate. Handle
- // this specially. For example,
- // %A = insertvalue { i32, {i32, i32 } } undef, i32 10, 1, 0
- // %B = insertvalue { i32, {i32, i32 } } %A, i32 11, 1, 1
- // %C = extractvalue {i32, { i32, i32 } } %B, 1
- // This can be changed into
- // %A = insertvalue {i32, i32 } undef, i32 10, 0
- // %C = insertvalue {i32, i32 } %A, i32 11, 1
- // which allows the unused 0,0 element from the nested struct to be
- // removed.
- return BuildSubAggregate(V, makeArrayRef(idx_range.begin(), req_idx),
- InsertBefore);
- }
- // This insert value inserts something else than what we are looking for.
- // See if the (aggregrate) value inserted into has the value we are
- // looking for, then.
- if (*req_idx != *i)
- return FindInsertedValue(I->getAggregateOperand(), idx_range,
- InsertBefore);
- }
- // If we end up here, the indices of the insertvalue match with those
- // requested (though possibly only partially). Now we recursively look at
- // the inserted value, passing any remaining indices.
- return FindInsertedValue(I->getInsertedValueOperand(),
- makeArrayRef(req_idx, idx_range.end()),
- InsertBefore);
- }
- if (ExtractValueInst *I = dyn_cast<ExtractValueInst>(V)) {
- // If we're extracting a value from an aggregrate that was extracted from
- // something else, we can extract from that something else directly instead.
- // However, we will need to chain I's indices with the requested indices.
- // Calculate the number of indices required
- unsigned size = I->getNumIndices() + idx_range.size();
- // Allocate some space to put the new indices in
- SmallVector<unsigned, 5> Idxs;
- Idxs.reserve(size);
- // Add indices from the extract value instruction
- Idxs.append(I->idx_begin(), I->idx_end());
- // Add requested indices
- Idxs.append(idx_range.begin(), idx_range.end());
- assert(Idxs.size() == size
- && "Number of indices added not correct?");
- return FindInsertedValue(I->getAggregateOperand(), Idxs, InsertBefore);
- }
- // Otherwise, we don't know (such as, extracting from a function return value
- // or load instruction)
- return nullptr;
- }
- /// Analyze the specified pointer to see if it can be expressed as a base
- /// pointer plus a constant offset. Return the base and offset to the caller.
- Value *llvm::GetPointerBaseWithConstantOffset(Value *Ptr, int64_t &Offset,
- const DataLayout &DL) {
- unsigned BitWidth = DL.getPointerTypeSizeInBits(Ptr->getType());
- APInt ByteOffset(BitWidth, 0);
- while (1) {
- if (Ptr->getType()->isVectorTy())
- break;
- if (GEPOperator *GEP = dyn_cast<GEPOperator>(Ptr)) {
- APInt GEPOffset(BitWidth, 0);
- if (!GEP->accumulateConstantOffset(DL, GEPOffset))
- break;
- ByteOffset += GEPOffset;
- Ptr = GEP->getPointerOperand();
- } else if (Operator::getOpcode(Ptr) == Instruction::BitCast ||
- Operator::getOpcode(Ptr) == Instruction::AddrSpaceCast) {
- Ptr = cast<Operator>(Ptr)->getOperand(0);
- } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(Ptr)) {
- if (GA->mayBeOverridden())
- break;
- Ptr = GA->getAliasee();
- } else {
- break;
- }
- }
- Offset = ByteOffset.getSExtValue();
- return Ptr;
- }
- /// This function computes the length of a null-terminated C string pointed to
- /// by V. If successful, it returns true and returns the string in Str.
- /// If unsuccessful, it returns false.
- bool llvm::getConstantStringInfo(const Value *V, StringRef &Str,
- uint64_t Offset, bool TrimAtNul) {
- assert(V);
- // Look through bitcast instructions and geps.
- V = V->stripPointerCasts();
- // If the value is a GEP instruction or constant expression, treat it as an
- // offset.
- if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
- // Make sure the GEP has exactly three arguments.
- if (GEP->getNumOperands() != 3)
- return false;
- // Make sure the index-ee is a pointer to array of i8.
- PointerType *PT = cast<PointerType>(GEP->getOperand(0)->getType());
- ArrayType *AT = dyn_cast<ArrayType>(PT->getElementType());
- if (!AT || !AT->getElementType()->isIntegerTy(8))
- return false;
- // Check to make sure that the first operand of the GEP is an integer and
- // has value 0 so that we are sure we're indexing into the initializer.
- const ConstantInt *FirstIdx = dyn_cast<ConstantInt>(GEP->getOperand(1));
- if (!FirstIdx || !FirstIdx->isZero())
- return false;
- // If the second index isn't a ConstantInt, then this is a variable index
- // into the array. If this occurs, we can't say anything meaningful about
- // the string.
- uint64_t StartIdx = 0;
- if (const ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(2)))
- StartIdx = CI->getZExtValue();
- else
- return false;
- return getConstantStringInfo(GEP->getOperand(0), Str, StartIdx + Offset,
- TrimAtNul);
- }
- // The GEP instruction, constant or instruction, must reference a global
- // variable that is a constant and is initialized. The referenced constant
- // initializer is the array that we'll use for optimization.
- const GlobalVariable *GV = dyn_cast<GlobalVariable>(V);
- if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer())
- return false;
- // Handle the all-zeros case
- if (GV->getInitializer()->isNullValue()) {
- // This is a degenerate case. The initializer is constant zero so the
- // length of the string must be zero.
- Str = "";
- return true;
- }
- // Must be a Constant Array
- const ConstantDataArray *Array =
- dyn_cast<ConstantDataArray>(GV->getInitializer());
- if (!Array || !Array->isString())
- return false;
- // Get the number of elements in the array
- uint64_t NumElts = Array->getType()->getArrayNumElements();
- // Start out with the entire array in the StringRef.
- Str = Array->getAsString();
- if (Offset > NumElts)
- return false;
- // Skip over 'offset' bytes.
- Str = Str.substr(Offset);
- if (TrimAtNul) {
- // Trim off the \0 and anything after it. If the array is not nul
- // terminated, we just return the whole end of string. The client may know
- // some other way that the string is length-bound.
- Str = Str.substr(0, Str.find('\0'));
- }
- return true;
- }
- // These next two are very similar to the above, but also look through PHI
- // nodes.
- // TODO: See if we can integrate these two together.
- /// If we can compute the length of the string pointed to by
- /// the specified pointer, return 'len+1'. If we can't, return 0.
- static uint64_t GetStringLengthH(Value *V, SmallPtrSetImpl<PHINode*> &PHIs) {
- // Look through noop bitcast instructions.
- V = V->stripPointerCasts();
- // If this is a PHI node, there are two cases: either we have already seen it
- // or we haven't.
- if (PHINode *PN = dyn_cast<PHINode>(V)) {
- if (!PHIs.insert(PN).second)
- return ~0ULL; // already in the set.
- // If it was new, see if all the input strings are the same length.
- uint64_t LenSoFar = ~0ULL;
- for (Value *IncValue : PN->incoming_values()) {
- uint64_t Len = GetStringLengthH(IncValue, PHIs);
- if (Len == 0) return 0; // Unknown length -> unknown.
- if (Len == ~0ULL) continue;
- if (Len != LenSoFar && LenSoFar != ~0ULL)
- return 0; // Disagree -> unknown.
- LenSoFar = Len;
- }
- // Success, all agree.
- return LenSoFar;
- }
- // strlen(select(c,x,y)) -> strlen(x) ^ strlen(y)
- if (SelectInst *SI = dyn_cast<SelectInst>(V)) {
- uint64_t Len1 = GetStringLengthH(SI->getTrueValue(), PHIs);
- if (Len1 == 0) return 0;
- uint64_t Len2 = GetStringLengthH(SI->getFalseValue(), PHIs);
- if (Len2 == 0) return 0;
- if (Len1 == ~0ULL) return Len2;
- if (Len2 == ~0ULL) return Len1;
- if (Len1 != Len2) return 0;
- return Len1;
- }
- // Otherwise, see if we can read the string.
- StringRef StrData;
- if (!getConstantStringInfo(V, StrData))
- return 0;
- return StrData.size()+1;
- }
- /// If we can compute the length of the string pointed to by
- /// the specified pointer, return 'len+1'. If we can't, return 0.
- uint64_t llvm::GetStringLength(Value *V) {
- if (!V->getType()->isPointerTy()) return 0;
- SmallPtrSet<PHINode*, 32> PHIs;
- uint64_t Len = GetStringLengthH(V, PHIs);
- // If Len is ~0ULL, we had an infinite phi cycle: this is dead code, so return
- // an empty string as a length.
- return Len == ~0ULL ? 1 : Len;
- }
- /// \brief \p PN defines a loop-variant pointer to an object. Check if the
- /// previous iteration of the loop was referring to the same object as \p PN.
- static bool isSameUnderlyingObjectInLoop(PHINode *PN, LoopInfo *LI) {
- // Find the loop-defined value.
- Loop *L = LI->getLoopFor(PN->getParent());
- if (PN->getNumIncomingValues() != 2)
- return true;
- // Find the value from previous iteration.
- auto *PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(0));
- if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L)
- PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(1));
- if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L)
- return true;
- // If a new pointer is loaded in the loop, the pointer references a different
- // object in every iteration. E.g.:
- // for (i)
- // int *p = a[i];
- // ...
- if (auto *Load = dyn_cast<LoadInst>(PrevValue))
- if (!L->isLoopInvariant(Load->getPointerOperand()))
- return false;
- return true;
- }
- Value *llvm::GetUnderlyingObject(Value *V, const DataLayout &DL,
- unsigned MaxLookup) {
- if (!V->getType()->isPointerTy())
- return V;
- for (unsigned Count = 0; MaxLookup == 0 || Count < MaxLookup; ++Count) {
- if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
- V = GEP->getPointerOperand();
- } else if (Operator::getOpcode(V) == Instruction::BitCast ||
- Operator::getOpcode(V) == Instruction::AddrSpaceCast) {
- V = cast<Operator>(V)->getOperand(0);
- } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
- if (GA->mayBeOverridden())
- return V;
- V = GA->getAliasee();
- } else {
- // See if InstructionSimplify knows any relevant tricks.
- if (Instruction *I = dyn_cast<Instruction>(V))
- // TODO: Acquire a DominatorTree and AssumptionCache and use them.
- if (Value *Simplified = SimplifyInstruction(I, DL, nullptr)) {
- V = Simplified;
- continue;
- }
- return V;
- }
- assert(V->getType()->isPointerTy() && "Unexpected operand type!");
- }
- return V;
- }
- void llvm::GetUnderlyingObjects(Value *V, SmallVectorImpl<Value *> &Objects,
- const DataLayout &DL, LoopInfo *LI,
- unsigned MaxLookup) {
- SmallPtrSet<Value *, 4> Visited;
- SmallVector<Value *, 4> Worklist;
- Worklist.push_back(V);
- do {
- Value *P = Worklist.pop_back_val();
- P = GetUnderlyingObject(P, DL, MaxLookup);
- if (!Visited.insert(P).second)
- continue;
- if (SelectInst *SI = dyn_cast<SelectInst>(P)) {
- Worklist.push_back(SI->getTrueValue());
- Worklist.push_back(SI->getFalseValue());
- continue;
- }
- if (PHINode *PN = dyn_cast<PHINode>(P)) {
- // If this PHI changes the underlying object in every iteration of the
- // loop, don't look through it. Consider:
- // int **A;
- // for (i) {
- // Prev = Curr; // Prev = PHI (Prev_0, Curr)
- // Curr = A[i];
- // *Prev, *Curr;
- //
- // Prev is tracking Curr one iteration behind so they refer to different
- // underlying objects.
- if (!LI || !LI->isLoopHeader(PN->getParent()) ||
- isSameUnderlyingObjectInLoop(PN, LI))
- for (Value *IncValue : PN->incoming_values())
- Worklist.push_back(IncValue);
- continue;
- }
- Objects.push_back(P);
- } while (!Worklist.empty());
- }
- /// Return true if the only users of this pointer are lifetime markers.
- bool llvm::onlyUsedByLifetimeMarkers(const Value *V) {
- for (const User *U : V->users()) {
- const IntrinsicInst *II = dyn_cast<IntrinsicInst>(U);
- if (!II) return false;
- if (II->getIntrinsicID() != Intrinsic::lifetime_start &&
- II->getIntrinsicID() != Intrinsic::lifetime_end)
- return false;
- }
- return true;
- }
- static bool isDereferenceableFromAttribute(const Value *BV, APInt Offset,
- Type *Ty, const DataLayout &DL,
- const Instruction *CtxI,
- const DominatorTree *DT,
- const TargetLibraryInfo *TLI) {
- assert(Offset.isNonNegative() && "offset can't be negative");
- assert(Ty->isSized() && "must be sized");
-
- APInt DerefBytes(Offset.getBitWidth(), 0);
- bool CheckForNonNull = false;
- if (const Argument *A = dyn_cast<Argument>(BV)) {
- DerefBytes = A->getDereferenceableBytes();
- if (!DerefBytes.getBoolValue()) {
- DerefBytes = A->getDereferenceableOrNullBytes();
- CheckForNonNull = true;
- }
- } else if (auto CS = ImmutableCallSite(BV)) {
- DerefBytes = CS.getDereferenceableBytes(0);
- if (!DerefBytes.getBoolValue()) {
- DerefBytes = CS.getDereferenceableOrNullBytes(0);
- CheckForNonNull = true;
- }
- } else if (const LoadInst *LI = dyn_cast<LoadInst>(BV)) {
- if (MDNode *MD = LI->getMetadata(LLVMContext::MD_dereferenceable)) {
- ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(0));
- DerefBytes = CI->getLimitedValue();
- }
- if (!DerefBytes.getBoolValue()) {
- if (MDNode *MD =
- LI->getMetadata(LLVMContext::MD_dereferenceable_or_null)) {
- ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(0));
- DerefBytes = CI->getLimitedValue();
- }
- CheckForNonNull = true;
- }
- }
-
- if (DerefBytes.getBoolValue())
- if (DerefBytes.uge(Offset + DL.getTypeStoreSize(Ty)))
- if (!CheckForNonNull || isKnownNonNullAt(BV, CtxI, DT, TLI))
- return true;
- return false;
- }
- static bool isDereferenceableFromAttribute(const Value *V, const DataLayout &DL,
- const Instruction *CtxI,
- const DominatorTree *DT,
- const TargetLibraryInfo *TLI) {
- Type *VTy = V->getType();
- Type *Ty = VTy->getPointerElementType();
- if (!Ty->isSized())
- return false;
-
- APInt Offset(DL.getTypeStoreSizeInBits(VTy), 0);
- return isDereferenceableFromAttribute(V, Offset, Ty, DL, CtxI, DT, TLI);
- }
- /// Return true if Value is always a dereferenceable pointer.
- ///
- /// Test if V is always a pointer to allocated and suitably aligned memory for
- /// a simple load or store.
- static bool isDereferenceablePointer(const Value *V, const DataLayout &DL,
- const Instruction *CtxI,
- const DominatorTree *DT,
- const TargetLibraryInfo *TLI,
- SmallPtrSetImpl<const Value *> &Visited) {
- // Note that it is not safe to speculate into a malloc'd region because
- // malloc may return null.
- // These are obviously ok.
- if (isa<AllocaInst>(V)) return true;
- // It's not always safe to follow a bitcast, for example:
- // bitcast i8* (alloca i8) to i32*
- // would result in a 4-byte load from a 1-byte alloca. However,
- // if we're casting from a pointer from a type of larger size
- // to a type of smaller size (or the same size), and the alignment
- // is at least as large as for the resulting pointer type, then
- // we can look through the bitcast.
- if (const BitCastOperator *BC = dyn_cast<BitCastOperator>(V)) {
- Type *STy = BC->getSrcTy()->getPointerElementType(),
- *DTy = BC->getDestTy()->getPointerElementType();
- if (STy->isSized() && DTy->isSized() &&
- (DL.getTypeStoreSize(STy) >= DL.getTypeStoreSize(DTy)) &&
- (DL.getABITypeAlignment(STy) >= DL.getABITypeAlignment(DTy)))
- return isDereferenceablePointer(BC->getOperand(0), DL, CtxI,
- DT, TLI, Visited);
- }
- // Global variables which can't collapse to null are ok.
- if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(V))
- return !GV->hasExternalWeakLinkage();
- // byval arguments are okay.
- if (const Argument *A = dyn_cast<Argument>(V))
- if (A->hasByValAttr())
- return true;
-
- if (isDereferenceableFromAttribute(V, DL, CtxI, DT, TLI))
- return true;
- // For GEPs, determine if the indexing lands within the allocated object.
- if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
- Type *VTy = GEP->getType();
- Type *Ty = VTy->getPointerElementType();
- const Value *Base = GEP->getPointerOperand();
- // Conservatively require that the base pointer be fully dereferenceable.
- if (!Visited.insert(Base).second)
- return false;
- if (!isDereferenceablePointer(Base, DL, CtxI,
- DT, TLI, Visited))
- return false;
-
- APInt Offset(DL.getPointerTypeSizeInBits(VTy), 0);
- if (!GEP->accumulateConstantOffset(DL, Offset))
- return false;
-
- // Check if the load is within the bounds of the underlying object.
- uint64_t LoadSize = DL.getTypeStoreSize(Ty);
- Type *BaseType = Base->getType()->getPointerElementType();
- return (Offset + LoadSize).ule(DL.getTypeAllocSize(BaseType));
- }
- // For gc.relocate, look through relocations
- if (const IntrinsicInst *I = dyn_cast<IntrinsicInst>(V))
- if (I->getIntrinsicID() == Intrinsic::experimental_gc_relocate) {
- GCRelocateOperands RelocateInst(I);
- return isDereferenceablePointer(RelocateInst.getDerivedPtr(), DL, CtxI,
- DT, TLI, Visited);
- }
- if (const AddrSpaceCastInst *ASC = dyn_cast<AddrSpaceCastInst>(V))
- return isDereferenceablePointer(ASC->getOperand(0), DL, CtxI,
- DT, TLI, Visited);
- // If we don't know, assume the worst.
- return false;
- }
- bool llvm::isDereferenceablePointer(const Value *V, const DataLayout &DL,
- const Instruction *CtxI,
- const DominatorTree *DT,
- const TargetLibraryInfo *TLI) {
- // When dereferenceability information is provided by a dereferenceable
- // attribute, we know exactly how many bytes are dereferenceable. If we can
- // determine the exact offset to the attributed variable, we can use that
- // information here.
- Type *VTy = V->getType();
- Type *Ty = VTy->getPointerElementType();
- if (Ty->isSized()) {
- APInt Offset(DL.getTypeStoreSizeInBits(VTy), 0);
- const Value *BV = V->stripAndAccumulateInBoundsConstantOffsets(DL, Offset);
-
- if (Offset.isNonNegative())
- if (isDereferenceableFromAttribute(BV, Offset, Ty, DL,
- CtxI, DT, TLI))
- return true;
- }
- SmallPtrSet<const Value *, 32> Visited;
- return ::isDereferenceablePointer(V, DL, CtxI, DT, TLI, Visited);
- }
- bool llvm::isSafeToSpeculativelyExecute(const Value *V,
- const Instruction *CtxI,
- const DominatorTree *DT,
- const TargetLibraryInfo *TLI) {
- const Operator *Inst = dyn_cast<Operator>(V);
- if (!Inst)
- return false;
- for (unsigned i = 0, e = Inst->getNumOperands(); i != e; ++i)
- if (Constant *C = dyn_cast<Constant>(Inst->getOperand(i)))
- if (C->canTrap())
- return false;
- switch (Inst->getOpcode()) {
- default:
- return true;
- case Instruction::UDiv:
- case Instruction::URem: {
- // x / y is undefined if y == 0.
- const APInt *V;
- if (match(Inst->getOperand(1), m_APInt(V)))
- return *V != 0;
- return false;
- }
- case Instruction::SDiv:
- case Instruction::SRem: {
- // x / y is undefined if y == 0 or x == INT_MIN and y == -1
- const APInt *Numerator, *Denominator;
- if (!match(Inst->getOperand(1), m_APInt(Denominator)))
- return false;
- // We cannot hoist this division if the denominator is 0.
- if (*Denominator == 0)
- return false;
- // It's safe to hoist if the denominator is not 0 or -1.
- if (*Denominator != -1)
- return true;
- // At this point we know that the denominator is -1. It is safe to hoist as
- // long we know that the numerator is not INT_MIN.
- if (match(Inst->getOperand(0), m_APInt(Numerator)))
- return !Numerator->isMinSignedValue();
- // The numerator *might* be MinSignedValue.
- return false;
- }
- case Instruction::Load: {
- const LoadInst *LI = cast<LoadInst>(Inst);
- if (!LI->isUnordered() ||
- // Speculative load may create a race that did not exist in the source.
- LI->getParent()->getParent()->hasFnAttribute(Attribute::SanitizeThread))
- return false;
- const DataLayout &DL = LI->getModule()->getDataLayout();
- return isDereferenceablePointer(LI->getPointerOperand(), DL, CtxI, DT, TLI);
- }
- case Instruction::Call: {
- if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
- switch (II->getIntrinsicID()) {
- // These synthetic intrinsics have no side-effects and just mark
- // information about their operands.
- // FIXME: There are other no-op synthetic instructions that potentially
- // should be considered at least *safe* to speculate...
- case Intrinsic::dbg_declare:
- case Intrinsic::dbg_value:
- return true;
- case Intrinsic::bswap:
- case Intrinsic::ctlz:
- case Intrinsic::ctpop:
- case Intrinsic::cttz:
- case Intrinsic::objectsize:
- case Intrinsic::sadd_with_overflow:
- case Intrinsic::smul_with_overflow:
- case Intrinsic::ssub_with_overflow:
- case Intrinsic::uadd_with_overflow:
- case Intrinsic::umul_with_overflow:
- case Intrinsic::usub_with_overflow:
- return true;
- // Sqrt should be OK, since the llvm sqrt intrinsic isn't defined to set
- // errno like libm sqrt would.
- case Intrinsic::sqrt:
- case Intrinsic::fma:
- case Intrinsic::fmuladd:
- case Intrinsic::fabs:
- case Intrinsic::minnum:
- case Intrinsic::maxnum:
- return true;
- // TODO: some fp intrinsics are marked as having the same error handling
- // as libm. They're safe to speculate when they won't error.
- // TODO: are convert_{from,to}_fp16 safe?
- // TODO: can we list target-specific intrinsics here?
- default: break;
- }
- }
- return false; // The called function could have undefined behavior or
- // side-effects, even if marked readnone nounwind.
- }
- case Instruction::VAArg:
- case Instruction::Alloca:
- case Instruction::Invoke:
- case Instruction::PHI:
- case Instruction::Store:
- case Instruction::Ret:
- case Instruction::Br:
- case Instruction::IndirectBr:
- case Instruction::Switch:
- case Instruction::Unreachable:
- case Instruction::Fence:
- case Instruction::LandingPad:
- case Instruction::AtomicRMW:
- case Instruction::AtomicCmpXchg:
- case Instruction::Resume:
- return false; // Misc instructions which have effects
- }
- }
- /// Return true if we know that the specified value is never null.
- bool llvm::isKnownNonNull(const Value *V, const TargetLibraryInfo *TLI) {
- // Alloca never returns null, malloc might.
- if (isa<AllocaInst>(V)) return true;
- // A byval, inalloca, or nonnull argument is never null.
- if (const Argument *A = dyn_cast<Argument>(V))
- return A->hasByValOrInAllocaAttr() || A->hasNonNullAttr();
- // Global values are not null unless extern weak.
- if (const GlobalValue *GV = dyn_cast<GlobalValue>(V))
- return !GV->hasExternalWeakLinkage();
- // A Load tagged w/nonnull metadata is never null.
- if (const LoadInst *LI = dyn_cast<LoadInst>(V))
- return LI->getMetadata(LLVMContext::MD_nonnull);
- if (auto CS = ImmutableCallSite(V))
- if (CS.isReturnNonNull())
- return true;
- // operator new never returns null.
- if (isOperatorNewLikeFn(V, TLI, /*LookThroughBitCast=*/true))
- return true;
- return false;
- }
- static bool isKnownNonNullFromDominatingCondition(const Value *V,
- const Instruction *CtxI,
- const DominatorTree *DT) {
- unsigned NumUsesExplored = 0;
- for (auto U : V->users()) {
- // Avoid massive lists
- if (NumUsesExplored >= DomConditionsMaxUses)
- break;
- NumUsesExplored++;
- // Consider only compare instructions uniquely controlling a branch
- const ICmpInst *Cmp = dyn_cast<ICmpInst>(U);
- if (!Cmp)
- continue;
- if (DomConditionsSingleCmpUse && !Cmp->hasOneUse())
- continue;
- for (auto *CmpU : Cmp->users()) {
- const BranchInst *BI = dyn_cast<BranchInst>(CmpU);
- if (!BI)
- continue;
-
- assert(BI->isConditional() && "uses a comparison!");
- BasicBlock *NonNullSuccessor = nullptr;
- CmpInst::Predicate Pred;
- if (match(const_cast<ICmpInst*>(Cmp),
- m_c_ICmp(Pred, m_Specific(V), m_Zero()))) {
- if (Pred == ICmpInst::ICMP_EQ)
- NonNullSuccessor = BI->getSuccessor(1);
- else if (Pred == ICmpInst::ICMP_NE)
- NonNullSuccessor = BI->getSuccessor(0);
- }
- if (NonNullSuccessor) {
- BasicBlockEdge Edge(BI->getParent(), NonNullSuccessor);
- if (Edge.isSingleEdge() && DT->dominates(Edge, CtxI->getParent()))
- return true;
- }
- }
- }
- return false;
- }
- bool llvm::isKnownNonNullAt(const Value *V, const Instruction *CtxI,
- const DominatorTree *DT, const TargetLibraryInfo *TLI) {
- if (isKnownNonNull(V, TLI))
- return true;
- return CtxI ? ::isKnownNonNullFromDominatingCondition(V, CtxI, DT) : false;
- }
- OverflowResult llvm::computeOverflowForUnsignedMul(Value *LHS, Value *RHS,
- const DataLayout &DL,
- AssumptionCache *AC,
- const Instruction *CxtI,
- const DominatorTree *DT) {
- // Multiplying n * m significant bits yields a result of n + m significant
- // bits. If the total number of significant bits does not exceed the
- // result bit width (minus 1), there is no overflow.
- // This means if we have enough leading zero bits in the operands
- // we can guarantee that the result does not overflow.
- // Ref: "Hacker's Delight" by Henry Warren
- unsigned BitWidth = LHS->getType()->getScalarSizeInBits();
- APInt LHSKnownZero(BitWidth, 0);
- APInt LHSKnownOne(BitWidth, 0);
- APInt RHSKnownZero(BitWidth, 0);
- APInt RHSKnownOne(BitWidth, 0);
- computeKnownBits(LHS, LHSKnownZero, LHSKnownOne, DL, /*Depth=*/0, AC, CxtI,
- DT);
- computeKnownBits(RHS, RHSKnownZero, RHSKnownOne, DL, /*Depth=*/0, AC, CxtI,
- DT);
- // Note that underestimating the number of zero bits gives a more
- // conservative answer.
- unsigned ZeroBits = LHSKnownZero.countLeadingOnes() +
- RHSKnownZero.countLeadingOnes();
- // First handle the easy case: if we have enough zero bits there's
- // definitely no overflow.
- if (ZeroBits >= BitWidth)
- return OverflowResult::NeverOverflows;
- // Get the largest possible values for each operand.
- APInt LHSMax = ~LHSKnownZero;
- APInt RHSMax = ~RHSKnownZero;
- // We know the multiply operation doesn't overflow if the maximum values for
- // each operand will not overflow after we multiply them together.
- bool MaxOverflow;
- LHSMax.umul_ov(RHSMax, MaxOverflow);
- if (!MaxOverflow)
- return OverflowResult::NeverOverflows;
- // We know it always overflows if multiplying the smallest possible values for
- // the operands also results in overflow.
- bool MinOverflow;
- LHSKnownOne.umul_ov(RHSKnownOne, MinOverflow);
- if (MinOverflow)
- return OverflowResult::AlwaysOverflows;
- return OverflowResult::MayOverflow;
- }
- OverflowResult llvm::computeOverflowForUnsignedAdd(Value *LHS, Value *RHS,
- const DataLayout &DL,
- AssumptionCache *AC,
- const Instruction *CxtI,
- const DominatorTree *DT) {
- bool LHSKnownNonNegative, LHSKnownNegative;
- ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, DL, /*Depth=*/0,
- AC, CxtI, DT);
- if (LHSKnownNonNegative || LHSKnownNegative) {
- bool RHSKnownNonNegative, RHSKnownNegative;
- ComputeSignBit(RHS, RHSKnownNonNegative, RHSKnownNegative, DL, /*Depth=*/0,
- AC, CxtI, DT);
- if (LHSKnownNegative && RHSKnownNegative) {
- // The sign bit is set in both cases: this MUST overflow.
- // Create a simple add instruction, and insert it into the struct.
- return OverflowResult::AlwaysOverflows;
- }
- if (LHSKnownNonNegative && RHSKnownNonNegative) {
- // The sign bit is clear in both cases: this CANNOT overflow.
- // Create a simple add instruction, and insert it into the struct.
- return OverflowResult::NeverOverflows;
- }
- }
- return OverflowResult::MayOverflow;
- }
- static SelectPatternFlavor matchSelectPattern(ICmpInst::Predicate Pred,
- Value *CmpLHS, Value *CmpRHS,
- Value *TrueVal, Value *FalseVal,
- Value *&LHS, Value *&RHS) {
- LHS = CmpLHS;
- RHS = CmpRHS;
- // (icmp X, Y) ? X : Y
- if (TrueVal == CmpLHS && FalseVal == CmpRHS) {
- switch (Pred) {
- default: return SPF_UNKNOWN; // Equality.
- case ICmpInst::ICMP_UGT:
- case ICmpInst::ICMP_UGE: return SPF_UMAX;
- case ICmpInst::ICMP_SGT:
- case ICmpInst::ICMP_SGE: return SPF_SMAX;
- case ICmpInst::ICMP_ULT:
- case ICmpInst::ICMP_ULE: return SPF_UMIN;
- case ICmpInst::ICMP_SLT:
- case ICmpInst::ICMP_SLE: return SPF_SMIN;
- }
- }
- // (icmp X, Y) ? Y : X
- if (TrueVal == CmpRHS && FalseVal == CmpLHS) {
- switch (Pred) {
- default: return SPF_UNKNOWN; // Equality.
- case ICmpInst::ICMP_UGT:
- case ICmpInst::ICMP_UGE: return SPF_UMIN;
- case ICmpInst::ICMP_SGT:
- case ICmpInst::ICMP_SGE: return SPF_SMIN;
- case ICmpInst::ICMP_ULT:
- case ICmpInst::ICMP_ULE: return SPF_UMAX;
- case ICmpInst::ICMP_SLT:
- case ICmpInst::ICMP_SLE: return SPF_SMAX;
- }
- }
- if (ConstantInt *C1 = dyn_cast<ConstantInt>(CmpRHS)) {
- if ((CmpLHS == TrueVal && match(FalseVal, m_Neg(m_Specific(CmpLHS)))) ||
- (CmpLHS == FalseVal && match(TrueVal, m_Neg(m_Specific(CmpLHS))))) {
- // ABS(X) ==> (X >s 0) ? X : -X and (X >s -1) ? X : -X
- // NABS(X) ==> (X >s 0) ? -X : X and (X >s -1) ? -X : X
- if (Pred == ICmpInst::ICMP_SGT && (C1->isZero() || C1->isMinusOne())) {
- return (CmpLHS == TrueVal) ? SPF_ABS : SPF_NABS;
- }
- // ABS(X) ==> (X <s 0) ? -X : X and (X <s 1) ? -X : X
- // NABS(X) ==> (X <s 0) ? X : -X and (X <s 1) ? X : -X
- if (Pred == ICmpInst::ICMP_SLT && (C1->isZero() || C1->isOne())) {
- return (CmpLHS == FalseVal) ? SPF_ABS : SPF_NABS;
- }
- }
-
- // Y >s C ? ~Y : ~C == ~Y <s ~C ? ~Y : ~C = SMIN(~Y, ~C)
- if (const auto *C2 = dyn_cast<ConstantInt>(FalseVal)) {
- if (C1->getType() == C2->getType() && ~C1->getValue() == C2->getValue() &&
- (match(TrueVal, m_Not(m_Specific(CmpLHS))) ||
- match(CmpLHS, m_Not(m_Specific(TrueVal))))) {
- LHS = TrueVal;
- RHS = FalseVal;
- return SPF_SMIN;
- }
- }
- }
- // TODO: (X > 4) ? X : 5 --> (X >= 5) ? X : 5 --> MAX(X, 5)
- return SPF_UNKNOWN;
- }
- static Constant *lookThroughCast(ICmpInst *CmpI, Value *V1, Value *V2,
- Instruction::CastOps *CastOp) {
- CastInst *CI = dyn_cast<CastInst>(V1);
- Constant *C = dyn_cast<Constant>(V2);
- if (!CI || !C)
- return nullptr;
- *CastOp = CI->getOpcode();
- if (isa<SExtInst>(CI) && CmpI->isSigned()) {
- Constant *T = ConstantExpr::getTrunc(C, CI->getSrcTy());
- // This is only valid if the truncated value can be sign-extended
- // back to the original value.
- if (ConstantExpr::getSExt(T, C->getType()) == C)
- return T;
- return nullptr;
- }
- if (isa<ZExtInst>(CI) && CmpI->isUnsigned())
- return ConstantExpr::getTrunc(C, CI->getSrcTy());
- if (isa<TruncInst>(CI))
- return ConstantExpr::getIntegerCast(C, CI->getSrcTy(), CmpI->isSigned());
- return nullptr;
- }
- SelectPatternFlavor llvm::matchSelectPattern(Value *V,
- Value *&LHS, Value *&RHS,
- Instruction::CastOps *CastOp) {
- SelectInst *SI = dyn_cast<SelectInst>(V);
- if (!SI) return SPF_UNKNOWN;
- ICmpInst *CmpI = dyn_cast<ICmpInst>(SI->getCondition());
- if (!CmpI) return SPF_UNKNOWN;
- ICmpInst::Predicate Pred = CmpI->getPredicate();
- Value *CmpLHS = CmpI->getOperand(0);
- Value *CmpRHS = CmpI->getOperand(1);
- Value *TrueVal = SI->getTrueValue();
- Value *FalseVal = SI->getFalseValue();
- // Bail out early.
- if (CmpI->isEquality())
- return SPF_UNKNOWN;
- // Deal with type mismatches.
- if (CastOp && CmpLHS->getType() != TrueVal->getType()) {
- if (Constant *C = lookThroughCast(CmpI, TrueVal, FalseVal, CastOp))
- return ::matchSelectPattern(Pred, CmpLHS, CmpRHS,
- cast<CastInst>(TrueVal)->getOperand(0), C,
- LHS, RHS);
- if (Constant *C = lookThroughCast(CmpI, FalseVal, TrueVal, CastOp))
- return ::matchSelectPattern(Pred, CmpLHS, CmpRHS,
- C, cast<CastInst>(FalseVal)->getOperand(0),
- LHS, RHS);
- }
- return ::matchSelectPattern(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal,
- LHS, RHS);
- }
|