123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359 |
- //===----------- VectorUtils.cpp - Vectorizer utility functions -----------===//
- //
- // The LLVM Compiler Infrastructure
- //
- // This file is distributed under the University of Illinois Open Source
- // License. See LICENSE.TXT for details.
- //
- //===----------------------------------------------------------------------===//
- //
- // This file defines vectorizer utilities.
- //
- //===----------------------------------------------------------------------===//
- #include "llvm/Analysis/LoopInfo.h"
- #include "llvm/Analysis/ScalarEvolutionExpressions.h"
- #include "llvm/Analysis/ScalarEvolution.h"
- #include "llvm/Analysis/VectorUtils.h"
- #include "llvm/IR/GetElementPtrTypeIterator.h"
- #include "llvm/IR/PatternMatch.h"
- #include "llvm/IR/Value.h"
- /// \brief Identify if the intrinsic is trivially vectorizable.
- /// This method returns true if the intrinsic's argument types are all
- /// scalars for the scalar form of the intrinsic and all vectors for
- /// the vector form of the intrinsic.
- bool llvm::isTriviallyVectorizable(Intrinsic::ID ID) {
- switch (ID) {
- case Intrinsic::sqrt:
- case Intrinsic::sin:
- case Intrinsic::cos:
- case Intrinsic::exp:
- case Intrinsic::exp2:
- case Intrinsic::log:
- case Intrinsic::log10:
- case Intrinsic::log2:
- case Intrinsic::fabs:
- case Intrinsic::minnum:
- case Intrinsic::maxnum:
- case Intrinsic::copysign:
- case Intrinsic::floor:
- case Intrinsic::ceil:
- case Intrinsic::trunc:
- case Intrinsic::rint:
- case Intrinsic::nearbyint:
- case Intrinsic::round:
- case Intrinsic::bswap:
- case Intrinsic::ctpop:
- case Intrinsic::pow:
- case Intrinsic::fma:
- case Intrinsic::fmuladd:
- case Intrinsic::ctlz:
- case Intrinsic::cttz:
- case Intrinsic::powi:
- return true;
- default:
- return false;
- }
- }
- /// \brief Identifies if the intrinsic has a scalar operand. It check for
- /// ctlz,cttz and powi special intrinsics whose argument is scalar.
- bool llvm::hasVectorInstrinsicScalarOpd(Intrinsic::ID ID,
- unsigned ScalarOpdIdx) {
- switch (ID) {
- case Intrinsic::ctlz:
- case Intrinsic::cttz:
- case Intrinsic::powi:
- return (ScalarOpdIdx == 1);
- default:
- return false;
- }
- }
- /// \brief Check call has a unary float signature
- /// It checks following:
- /// a) call should have a single argument
- /// b) argument type should be floating point type
- /// c) call instruction type and argument type should be same
- /// d) call should only reads memory.
- /// If all these condition is met then return ValidIntrinsicID
- /// else return not_intrinsic.
- llvm::Intrinsic::ID
- llvm::checkUnaryFloatSignature(const CallInst &I,
- Intrinsic::ID ValidIntrinsicID) {
- if (I.getNumArgOperands() != 1 ||
- !I.getArgOperand(0)->getType()->isFloatingPointTy() ||
- I.getType() != I.getArgOperand(0)->getType() || !I.onlyReadsMemory())
- return Intrinsic::not_intrinsic;
- return ValidIntrinsicID;
- }
- /// \brief Check call has a binary float signature
- /// It checks following:
- /// a) call should have 2 arguments.
- /// b) arguments type should be floating point type
- /// c) call instruction type and arguments type should be same
- /// d) call should only reads memory.
- /// If all these condition is met then return ValidIntrinsicID
- /// else return not_intrinsic.
- llvm::Intrinsic::ID
- llvm::checkBinaryFloatSignature(const CallInst &I,
- Intrinsic::ID ValidIntrinsicID) {
- if (I.getNumArgOperands() != 2 ||
- !I.getArgOperand(0)->getType()->isFloatingPointTy() ||
- !I.getArgOperand(1)->getType()->isFloatingPointTy() ||
- I.getType() != I.getArgOperand(0)->getType() ||
- I.getType() != I.getArgOperand(1)->getType() || !I.onlyReadsMemory())
- return Intrinsic::not_intrinsic;
- return ValidIntrinsicID;
- }
- /// \brief Returns intrinsic ID for call.
- /// For the input call instruction it finds mapping intrinsic and returns
- /// its ID, in case it does not found it return not_intrinsic.
- llvm::Intrinsic::ID llvm::getIntrinsicIDForCall(CallInst *CI,
- const TargetLibraryInfo *TLI) {
- // If we have an intrinsic call, check if it is trivially vectorizable.
- if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI)) {
- Intrinsic::ID ID = II->getIntrinsicID();
- if (isTriviallyVectorizable(ID) || ID == Intrinsic::lifetime_start ||
- ID == Intrinsic::lifetime_end || ID == Intrinsic::assume)
- return ID;
- return Intrinsic::not_intrinsic;
- }
- if (!TLI)
- return Intrinsic::not_intrinsic;
- LibFunc::Func Func;
- Function *F = CI->getCalledFunction();
- // We're going to make assumptions on the semantics of the functions, check
- // that the target knows that it's available in this environment and it does
- // not have local linkage.
- if (!F || F->hasLocalLinkage() || !TLI->getLibFunc(F->getName(), Func))
- return Intrinsic::not_intrinsic;
- // Otherwise check if we have a call to a function that can be turned into a
- // vector intrinsic.
- switch (Func) {
- default:
- break;
- case LibFunc::sin:
- case LibFunc::sinf:
- case LibFunc::sinl:
- return checkUnaryFloatSignature(*CI, Intrinsic::sin);
- case LibFunc::cos:
- case LibFunc::cosf:
- case LibFunc::cosl:
- return checkUnaryFloatSignature(*CI, Intrinsic::cos);
- case LibFunc::exp:
- case LibFunc::expf:
- case LibFunc::expl:
- return checkUnaryFloatSignature(*CI, Intrinsic::exp);
- case LibFunc::exp2:
- case LibFunc::exp2f:
- case LibFunc::exp2l:
- return checkUnaryFloatSignature(*CI, Intrinsic::exp2);
- case LibFunc::log:
- case LibFunc::logf:
- case LibFunc::logl:
- return checkUnaryFloatSignature(*CI, Intrinsic::log);
- case LibFunc::log10:
- case LibFunc::log10f:
- case LibFunc::log10l:
- return checkUnaryFloatSignature(*CI, Intrinsic::log10);
- case LibFunc::log2:
- case LibFunc::log2f:
- case LibFunc::log2l:
- return checkUnaryFloatSignature(*CI, Intrinsic::log2);
- case LibFunc::fabs:
- case LibFunc::fabsf:
- case LibFunc::fabsl:
- return checkUnaryFloatSignature(*CI, Intrinsic::fabs);
- case LibFunc::fmin:
- case LibFunc::fminf:
- case LibFunc::fminl:
- return checkBinaryFloatSignature(*CI, Intrinsic::minnum);
- case LibFunc::fmax:
- case LibFunc::fmaxf:
- case LibFunc::fmaxl:
- return checkBinaryFloatSignature(*CI, Intrinsic::maxnum);
- case LibFunc::copysign:
- case LibFunc::copysignf:
- case LibFunc::copysignl:
- return checkBinaryFloatSignature(*CI, Intrinsic::copysign);
- case LibFunc::floor:
- case LibFunc::floorf:
- case LibFunc::floorl:
- return checkUnaryFloatSignature(*CI, Intrinsic::floor);
- case LibFunc::ceil:
- case LibFunc::ceilf:
- case LibFunc::ceill:
- return checkUnaryFloatSignature(*CI, Intrinsic::ceil);
- case LibFunc::trunc:
- case LibFunc::truncf:
- case LibFunc::truncl:
- return checkUnaryFloatSignature(*CI, Intrinsic::trunc);
- case LibFunc::rint:
- case LibFunc::rintf:
- case LibFunc::rintl:
- return checkUnaryFloatSignature(*CI, Intrinsic::rint);
- case LibFunc::nearbyint:
- case LibFunc::nearbyintf:
- case LibFunc::nearbyintl:
- return checkUnaryFloatSignature(*CI, Intrinsic::nearbyint);
- case LibFunc::round:
- case LibFunc::roundf:
- case LibFunc::roundl:
- return checkUnaryFloatSignature(*CI, Intrinsic::round);
- case LibFunc::pow:
- case LibFunc::powf:
- case LibFunc::powl:
- return checkBinaryFloatSignature(*CI, Intrinsic::pow);
- }
- return Intrinsic::not_intrinsic;
- }
- /// \brief Find the operand of the GEP that should be checked for consecutive
- /// stores. This ignores trailing indices that have no effect on the final
- /// pointer.
- unsigned llvm::getGEPInductionOperand(const GetElementPtrInst *Gep) {
- const DataLayout &DL = Gep->getModule()->getDataLayout();
- unsigned LastOperand = Gep->getNumOperands() - 1;
- unsigned GEPAllocSize = DL.getTypeAllocSize(
- cast<PointerType>(Gep->getType()->getScalarType())->getElementType());
- // Walk backwards and try to peel off zeros.
- while (LastOperand > 1 &&
- match(Gep->getOperand(LastOperand), llvm::PatternMatch::m_Zero())) {
- // Find the type we're currently indexing into.
- gep_type_iterator GEPTI = gep_type_begin(Gep);
- std::advance(GEPTI, LastOperand - 1);
- // If it's a type with the same allocation size as the result of the GEP we
- // can peel off the zero index.
- if (DL.getTypeAllocSize(*GEPTI) != GEPAllocSize)
- break;
- --LastOperand;
- }
- return LastOperand;
- }
- /// \brief If the argument is a GEP, then returns the operand identified by
- /// getGEPInductionOperand. However, if there is some other non-loop-invariant
- /// operand, it returns that instead.
- llvm::Value *llvm::stripGetElementPtr(llvm::Value *Ptr, ScalarEvolution *SE,
- Loop *Lp) {
- GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr);
- if (!GEP)
- return Ptr;
- unsigned InductionOperand = getGEPInductionOperand(GEP);
- // Check that all of the gep indices are uniform except for our induction
- // operand.
- for (unsigned i = 0, e = GEP->getNumOperands(); i != e; ++i)
- if (i != InductionOperand &&
- !SE->isLoopInvariant(SE->getSCEV(GEP->getOperand(i)), Lp))
- return Ptr;
- return GEP->getOperand(InductionOperand);
- }
- /// \brief If a value has only one user that is a CastInst, return it.
- llvm::Value *llvm::getUniqueCastUse(llvm::Value *Ptr, Loop *Lp, Type *Ty) {
- llvm::Value *UniqueCast = nullptr;
- for (User *U : Ptr->users()) {
- CastInst *CI = dyn_cast<CastInst>(U);
- if (CI && CI->getType() == Ty) {
- if (!UniqueCast)
- UniqueCast = CI;
- else
- return nullptr;
- }
- }
- return UniqueCast;
- }
- /// \brief Get the stride of a pointer access in a loop. Looks for symbolic
- /// strides "a[i*stride]". Returns the symbolic stride, or null otherwise.
- llvm::Value *llvm::getStrideFromPointer(llvm::Value *Ptr, ScalarEvolution *SE,
- Loop *Lp) {
- const PointerType *PtrTy = dyn_cast<PointerType>(Ptr->getType());
- if (!PtrTy || PtrTy->isAggregateType())
- return nullptr;
- // Try to remove a gep instruction to make the pointer (actually index at this
- // point) easier analyzable. If OrigPtr is equal to Ptr we are analzying the
- // pointer, otherwise, we are analyzing the index.
- llvm::Value *OrigPtr = Ptr;
- // The size of the pointer access.
- int64_t PtrAccessSize = 1;
- Ptr = stripGetElementPtr(Ptr, SE, Lp);
- const SCEV *V = SE->getSCEV(Ptr);
- if (Ptr != OrigPtr)
- // Strip off casts.
- while (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(V))
- V = C->getOperand();
- const SCEVAddRecExpr *S = dyn_cast<SCEVAddRecExpr>(V);
- if (!S)
- return nullptr;
- V = S->getStepRecurrence(*SE);
- if (!V)
- return nullptr;
- // Strip off the size of access multiplication if we are still analyzing the
- // pointer.
- if (OrigPtr == Ptr) {
- const DataLayout &DL = Lp->getHeader()->getModule()->getDataLayout();
- DL.getTypeAllocSize(PtrTy->getElementType());
- if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(V)) {
- if (M->getOperand(0)->getSCEVType() != scConstant)
- return nullptr;
- const APInt &APStepVal =
- cast<SCEVConstant>(M->getOperand(0))->getValue()->getValue();
- // Huge step value - give up.
- if (APStepVal.getBitWidth() > 64)
- return nullptr;
- int64_t StepVal = APStepVal.getSExtValue();
- if (PtrAccessSize != StepVal)
- return nullptr;
- V = M->getOperand(1);
- }
- }
- // Strip off casts.
- Type *StripedOffRecurrenceCast = nullptr;
- if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(V)) {
- StripedOffRecurrenceCast = C->getType();
- V = C->getOperand();
- }
- // Look for the loop invariant symbolic value.
- const SCEVUnknown *U = dyn_cast<SCEVUnknown>(V);
- if (!U)
- return nullptr;
- llvm::Value *Stride = U->getValue();
- if (!Lp->isLoopInvariant(Stride))
- return nullptr;
- // If we have stripped off the recurrence cast we have to make sure that we
- // return the value that is used in this loop so that we can replace it later.
- if (StripedOffRecurrenceCast)
- Stride = getUniqueCastUse(Stride, Lp, StripedOffRecurrenceCast);
- return Stride;
- }
|