BitcodeWriter.cpp 97 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528
  1. //===--- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ----------------===//
  2. //
  3. // The LLVM Compiler Infrastructure
  4. //
  5. // This file is distributed under the University of Illinois Open Source
  6. // License. See LICENSE.TXT for details.
  7. //
  8. //===----------------------------------------------------------------------===//
  9. //
  10. // Bitcode writer implementation.
  11. //
  12. //===----------------------------------------------------------------------===//
  13. #include "llvm/Bitcode/ReaderWriter.h"
  14. #include "ValueEnumerator.h"
  15. #include "llvm/ADT/Triple.h"
  16. #include "llvm/Bitcode/BitstreamWriter.h"
  17. #include "llvm/Bitcode/LLVMBitCodes.h"
  18. #include "llvm/IR/Constants.h"
  19. #include "llvm/IR/DebugInfoMetadata.h"
  20. #include "llvm/IR/DerivedTypes.h"
  21. #include "llvm/IR/InlineAsm.h"
  22. #include "llvm/IR/Instructions.h"
  23. #include "llvm/IR/Module.h"
  24. #include "llvm/IR/Operator.h"
  25. #include "llvm/IR/UseListOrder.h"
  26. #include "llvm/IR/ValueSymbolTable.h"
  27. #include "llvm/Support/CommandLine.h"
  28. #include "llvm/Support/ErrorHandling.h"
  29. #include "llvm/Support/MathExtras.h"
  30. #include "llvm/Support/Program.h"
  31. #include "llvm/Support/raw_ostream.h"
  32. #include <cctype>
  33. #include <map>
  34. using namespace llvm;
  35. /// These are manifest constants used by the bitcode writer. They do not need to
  36. /// be kept in sync with the reader, but need to be consistent within this file.
  37. enum {
  38. // VALUE_SYMTAB_BLOCK abbrev id's.
  39. VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
  40. VST_ENTRY_7_ABBREV,
  41. VST_ENTRY_6_ABBREV,
  42. VST_BBENTRY_6_ABBREV,
  43. // CONSTANTS_BLOCK abbrev id's.
  44. CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
  45. CONSTANTS_INTEGER_ABBREV,
  46. CONSTANTS_CE_CAST_Abbrev,
  47. CONSTANTS_NULL_Abbrev,
  48. // FUNCTION_BLOCK abbrev id's.
  49. FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
  50. FUNCTION_INST_BINOP_ABBREV,
  51. FUNCTION_INST_BINOP_FLAGS_ABBREV,
  52. FUNCTION_INST_CAST_ABBREV,
  53. FUNCTION_INST_RET_VOID_ABBREV,
  54. FUNCTION_INST_RET_VAL_ABBREV,
  55. FUNCTION_INST_UNREACHABLE_ABBREV,
  56. FUNCTION_INST_GEP_ABBREV,
  57. };
  58. static unsigned GetEncodedCastOpcode(unsigned Opcode) {
  59. switch (Opcode) {
  60. default: llvm_unreachable("Unknown cast instruction!");
  61. case Instruction::Trunc : return bitc::CAST_TRUNC;
  62. case Instruction::ZExt : return bitc::CAST_ZEXT;
  63. case Instruction::SExt : return bitc::CAST_SEXT;
  64. case Instruction::FPToUI : return bitc::CAST_FPTOUI;
  65. case Instruction::FPToSI : return bitc::CAST_FPTOSI;
  66. case Instruction::UIToFP : return bitc::CAST_UITOFP;
  67. case Instruction::SIToFP : return bitc::CAST_SITOFP;
  68. case Instruction::FPTrunc : return bitc::CAST_FPTRUNC;
  69. case Instruction::FPExt : return bitc::CAST_FPEXT;
  70. case Instruction::PtrToInt: return bitc::CAST_PTRTOINT;
  71. case Instruction::IntToPtr: return bitc::CAST_INTTOPTR;
  72. case Instruction::BitCast : return bitc::CAST_BITCAST;
  73. case Instruction::AddrSpaceCast: return bitc::CAST_ADDRSPACECAST;
  74. }
  75. }
  76. static unsigned GetEncodedBinaryOpcode(unsigned Opcode) {
  77. switch (Opcode) {
  78. default: llvm_unreachable("Unknown binary instruction!");
  79. case Instruction::Add:
  80. case Instruction::FAdd: return bitc::BINOP_ADD;
  81. case Instruction::Sub:
  82. case Instruction::FSub: return bitc::BINOP_SUB;
  83. case Instruction::Mul:
  84. case Instruction::FMul: return bitc::BINOP_MUL;
  85. case Instruction::UDiv: return bitc::BINOP_UDIV;
  86. case Instruction::FDiv:
  87. case Instruction::SDiv: return bitc::BINOP_SDIV;
  88. case Instruction::URem: return bitc::BINOP_UREM;
  89. case Instruction::FRem:
  90. case Instruction::SRem: return bitc::BINOP_SREM;
  91. case Instruction::Shl: return bitc::BINOP_SHL;
  92. case Instruction::LShr: return bitc::BINOP_LSHR;
  93. case Instruction::AShr: return bitc::BINOP_ASHR;
  94. case Instruction::And: return bitc::BINOP_AND;
  95. case Instruction::Or: return bitc::BINOP_OR;
  96. case Instruction::Xor: return bitc::BINOP_XOR;
  97. }
  98. }
  99. static unsigned GetEncodedRMWOperation(AtomicRMWInst::BinOp Op) {
  100. switch (Op) {
  101. default: llvm_unreachable("Unknown RMW operation!");
  102. case AtomicRMWInst::Xchg: return bitc::RMW_XCHG;
  103. case AtomicRMWInst::Add: return bitc::RMW_ADD;
  104. case AtomicRMWInst::Sub: return bitc::RMW_SUB;
  105. case AtomicRMWInst::And: return bitc::RMW_AND;
  106. case AtomicRMWInst::Nand: return bitc::RMW_NAND;
  107. case AtomicRMWInst::Or: return bitc::RMW_OR;
  108. case AtomicRMWInst::Xor: return bitc::RMW_XOR;
  109. case AtomicRMWInst::Max: return bitc::RMW_MAX;
  110. case AtomicRMWInst::Min: return bitc::RMW_MIN;
  111. case AtomicRMWInst::UMax: return bitc::RMW_UMAX;
  112. case AtomicRMWInst::UMin: return bitc::RMW_UMIN;
  113. }
  114. }
  115. static unsigned GetEncodedOrdering(AtomicOrdering Ordering) {
  116. switch (Ordering) {
  117. case NotAtomic: return bitc::ORDERING_NOTATOMIC;
  118. case Unordered: return bitc::ORDERING_UNORDERED;
  119. case Monotonic: return bitc::ORDERING_MONOTONIC;
  120. case Acquire: return bitc::ORDERING_ACQUIRE;
  121. case Release: return bitc::ORDERING_RELEASE;
  122. case AcquireRelease: return bitc::ORDERING_ACQREL;
  123. case SequentiallyConsistent: return bitc::ORDERING_SEQCST;
  124. }
  125. llvm_unreachable("Invalid ordering");
  126. }
  127. static unsigned GetEncodedSynchScope(SynchronizationScope SynchScope) {
  128. switch (SynchScope) {
  129. case SingleThread: return bitc::SYNCHSCOPE_SINGLETHREAD;
  130. case CrossThread: return bitc::SYNCHSCOPE_CROSSTHREAD;
  131. }
  132. llvm_unreachable("Invalid synch scope");
  133. }
  134. static void WriteStringRecord(unsigned Code, StringRef Str,
  135. unsigned AbbrevToUse, BitstreamWriter &Stream) {
  136. SmallVector<unsigned, 64> Vals;
  137. // Code: [strchar x N]
  138. for (unsigned i = 0, e = Str.size(); i != e; ++i) {
  139. if (AbbrevToUse && !BitCodeAbbrevOp::isChar6(Str[i]))
  140. AbbrevToUse = 0;
  141. Vals.push_back(Str[i]);
  142. }
  143. // Emit the finished record.
  144. Stream.EmitRecord(Code, Vals, AbbrevToUse);
  145. }
  146. static uint64_t getAttrKindEncoding(Attribute::AttrKind Kind) {
  147. switch (Kind) {
  148. case Attribute::Alignment:
  149. return bitc::ATTR_KIND_ALIGNMENT;
  150. case Attribute::AlwaysInline:
  151. return bitc::ATTR_KIND_ALWAYS_INLINE;
  152. case Attribute::ArgMemOnly:
  153. return bitc::ATTR_KIND_ARGMEMONLY;
  154. case Attribute::Builtin:
  155. return bitc::ATTR_KIND_BUILTIN;
  156. case Attribute::ByVal:
  157. return bitc::ATTR_KIND_BY_VAL;
  158. case Attribute::Convergent:
  159. return bitc::ATTR_KIND_CONVERGENT;
  160. case Attribute::InAlloca:
  161. return bitc::ATTR_KIND_IN_ALLOCA;
  162. case Attribute::Cold:
  163. return bitc::ATTR_KIND_COLD;
  164. case Attribute::InlineHint:
  165. return bitc::ATTR_KIND_INLINE_HINT;
  166. case Attribute::InReg:
  167. return bitc::ATTR_KIND_IN_REG;
  168. case Attribute::JumpTable:
  169. return bitc::ATTR_KIND_JUMP_TABLE;
  170. case Attribute::MinSize:
  171. return bitc::ATTR_KIND_MIN_SIZE;
  172. case Attribute::Naked:
  173. return bitc::ATTR_KIND_NAKED;
  174. case Attribute::Nest:
  175. return bitc::ATTR_KIND_NEST;
  176. case Attribute::NoAlias:
  177. return bitc::ATTR_KIND_NO_ALIAS;
  178. case Attribute::NoBuiltin:
  179. return bitc::ATTR_KIND_NO_BUILTIN;
  180. case Attribute::NoCapture:
  181. return bitc::ATTR_KIND_NO_CAPTURE;
  182. case Attribute::NoDuplicate:
  183. return bitc::ATTR_KIND_NO_DUPLICATE;
  184. case Attribute::NoImplicitFloat:
  185. return bitc::ATTR_KIND_NO_IMPLICIT_FLOAT;
  186. case Attribute::NoInline:
  187. return bitc::ATTR_KIND_NO_INLINE;
  188. case Attribute::NonLazyBind:
  189. return bitc::ATTR_KIND_NON_LAZY_BIND;
  190. case Attribute::NonNull:
  191. return bitc::ATTR_KIND_NON_NULL;
  192. case Attribute::Dereferenceable:
  193. return bitc::ATTR_KIND_DEREFERENCEABLE;
  194. case Attribute::DereferenceableOrNull:
  195. return bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL;
  196. case Attribute::NoRedZone:
  197. return bitc::ATTR_KIND_NO_RED_ZONE;
  198. case Attribute::NoReturn:
  199. return bitc::ATTR_KIND_NO_RETURN;
  200. case Attribute::NoUnwind:
  201. return bitc::ATTR_KIND_NO_UNWIND;
  202. case Attribute::OptimizeForSize:
  203. return bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE;
  204. case Attribute::OptimizeNone:
  205. return bitc::ATTR_KIND_OPTIMIZE_NONE;
  206. case Attribute::ReadNone:
  207. return bitc::ATTR_KIND_READ_NONE;
  208. case Attribute::ReadOnly:
  209. return bitc::ATTR_KIND_READ_ONLY;
  210. case Attribute::Returned:
  211. return bitc::ATTR_KIND_RETURNED;
  212. case Attribute::ReturnsTwice:
  213. return bitc::ATTR_KIND_RETURNS_TWICE;
  214. case Attribute::SExt:
  215. return bitc::ATTR_KIND_S_EXT;
  216. case Attribute::StackAlignment:
  217. return bitc::ATTR_KIND_STACK_ALIGNMENT;
  218. case Attribute::StackProtect:
  219. return bitc::ATTR_KIND_STACK_PROTECT;
  220. case Attribute::StackProtectReq:
  221. return bitc::ATTR_KIND_STACK_PROTECT_REQ;
  222. case Attribute::StackProtectStrong:
  223. return bitc::ATTR_KIND_STACK_PROTECT_STRONG;
  224. case Attribute::SafeStack:
  225. return bitc::ATTR_KIND_SAFESTACK;
  226. case Attribute::StructRet:
  227. return bitc::ATTR_KIND_STRUCT_RET;
  228. case Attribute::SanitizeAddress:
  229. return bitc::ATTR_KIND_SANITIZE_ADDRESS;
  230. case Attribute::SanitizeThread:
  231. return bitc::ATTR_KIND_SANITIZE_THREAD;
  232. case Attribute::SanitizeMemory:
  233. return bitc::ATTR_KIND_SANITIZE_MEMORY;
  234. case Attribute::UWTable:
  235. return bitc::ATTR_KIND_UW_TABLE;
  236. case Attribute::ZExt:
  237. return bitc::ATTR_KIND_Z_EXT;
  238. case Attribute::EndAttrKinds:
  239. llvm_unreachable("Can not encode end-attribute kinds marker.");
  240. case Attribute::None:
  241. llvm_unreachable("Can not encode none-attribute.");
  242. }
  243. llvm_unreachable("Trying to encode unknown attribute");
  244. }
  245. static void WriteAttributeGroupTable(const ValueEnumerator &VE,
  246. BitstreamWriter &Stream) {
  247. const std::vector<AttributeSet> &AttrGrps = VE.getAttributeGroups();
  248. if (AttrGrps.empty()) return;
  249. Stream.EnterSubblock(bitc::PARAMATTR_GROUP_BLOCK_ID, 3);
  250. SmallVector<uint64_t, 64> Record;
  251. for (unsigned i = 0, e = AttrGrps.size(); i != e; ++i) {
  252. AttributeSet AS = AttrGrps[i];
  253. for (unsigned i = 0, e = AS.getNumSlots(); i != e; ++i) {
  254. AttributeSet A = AS.getSlotAttributes(i);
  255. Record.push_back(VE.getAttributeGroupID(A));
  256. Record.push_back(AS.getSlotIndex(i));
  257. for (AttributeSet::iterator I = AS.begin(0), E = AS.end(0);
  258. I != E; ++I) {
  259. Attribute Attr = *I;
  260. if (Attr.isEnumAttribute()) {
  261. Record.push_back(0);
  262. Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum()));
  263. } else if (Attr.isIntAttribute()) {
  264. Record.push_back(1);
  265. Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum()));
  266. Record.push_back(Attr.getValueAsInt());
  267. } else {
  268. StringRef Kind = Attr.getKindAsString();
  269. StringRef Val = Attr.getValueAsString();
  270. Record.push_back(Val.empty() ? 3 : 4);
  271. Record.append(Kind.begin(), Kind.end());
  272. Record.push_back(0);
  273. if (!Val.empty()) {
  274. Record.append(Val.begin(), Val.end());
  275. Record.push_back(0);
  276. }
  277. }
  278. }
  279. Stream.EmitRecord(bitc::PARAMATTR_GRP_CODE_ENTRY, Record);
  280. Record.clear();
  281. }
  282. }
  283. Stream.ExitBlock();
  284. }
  285. static void WriteAttributeTable(const ValueEnumerator &VE,
  286. BitstreamWriter &Stream) {
  287. const std::vector<AttributeSet> &Attrs = VE.getAttributes();
  288. if (Attrs.empty()) return;
  289. Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3);
  290. SmallVector<uint64_t, 64> Record;
  291. for (unsigned i = 0, e = Attrs.size(); i != e; ++i) {
  292. const AttributeSet &A = Attrs[i];
  293. for (unsigned i = 0, e = A.getNumSlots(); i != e; ++i)
  294. Record.push_back(VE.getAttributeGroupID(A.getSlotAttributes(i)));
  295. Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record);
  296. Record.clear();
  297. }
  298. Stream.ExitBlock();
  299. }
  300. /// WriteTypeTable - Write out the type table for a module.
  301. static void WriteTypeTable(const ValueEnumerator &VE, BitstreamWriter &Stream) {
  302. const ValueEnumerator::TypeList &TypeList = VE.getTypes();
  303. Stream.EnterSubblock(bitc::TYPE_BLOCK_ID_NEW, 4 /*count from # abbrevs */);
  304. SmallVector<uint64_t, 64> TypeVals;
  305. uint64_t NumBits = VE.computeBitsRequiredForTypeIndicies();
  306. // Abbrev for TYPE_CODE_POINTER.
  307. IntrusiveRefCntPtr<BitCodeAbbrev> Abbv = new BitCodeAbbrev();
  308. Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_POINTER));
  309. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
  310. Abbv->Add(BitCodeAbbrevOp(0)); // Addrspace = 0
  311. unsigned PtrAbbrev = Stream.EmitAbbrev(Abbv.get());
  312. // Abbrev for TYPE_CODE_FUNCTION.
  313. Abbv = new BitCodeAbbrev();
  314. Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION));
  315. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // isvararg
  316. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
  317. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
  318. unsigned FunctionAbbrev = Stream.EmitAbbrev(Abbv.get());
  319. // Abbrev for TYPE_CODE_STRUCT_ANON.
  320. Abbv = new BitCodeAbbrev();
  321. Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_ANON));
  322. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked
  323. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
  324. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
  325. unsigned StructAnonAbbrev = Stream.EmitAbbrev(Abbv.get());
  326. // Abbrev for TYPE_CODE_STRUCT_NAME.
  327. Abbv = new BitCodeAbbrev();
  328. Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAME));
  329. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
  330. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
  331. unsigned StructNameAbbrev = Stream.EmitAbbrev(Abbv.get());
  332. // Abbrev for TYPE_CODE_STRUCT_NAMED.
  333. Abbv = new BitCodeAbbrev();
  334. Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAMED));
  335. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked
  336. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
  337. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
  338. unsigned StructNamedAbbrev = Stream.EmitAbbrev(Abbv.get());
  339. // Abbrev for TYPE_CODE_ARRAY.
  340. Abbv = new BitCodeAbbrev();
  341. Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY));
  342. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // size
  343. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
  344. unsigned ArrayAbbrev = Stream.EmitAbbrev(Abbv.get());
  345. // Emit an entry count so the reader can reserve space.
  346. TypeVals.push_back(TypeList.size());
  347. Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals);
  348. TypeVals.clear();
  349. // Loop over all of the types, emitting each in turn.
  350. for (unsigned i = 0, e = TypeList.size(); i != e; ++i) {
  351. Type *T = TypeList[i];
  352. int AbbrevToUse = 0;
  353. unsigned Code = 0;
  354. switch (T->getTypeID()) {
  355. case Type::VoidTyID: Code = bitc::TYPE_CODE_VOID; break;
  356. case Type::HalfTyID: Code = bitc::TYPE_CODE_HALF; break;
  357. case Type::FloatTyID: Code = bitc::TYPE_CODE_FLOAT; break;
  358. case Type::DoubleTyID: Code = bitc::TYPE_CODE_DOUBLE; break;
  359. case Type::X86_FP80TyID: Code = bitc::TYPE_CODE_X86_FP80; break;
  360. case Type::FP128TyID: Code = bitc::TYPE_CODE_FP128; break;
  361. case Type::PPC_FP128TyID: Code = bitc::TYPE_CODE_PPC_FP128; break;
  362. case Type::LabelTyID: Code = bitc::TYPE_CODE_LABEL; break;
  363. case Type::MetadataTyID: Code = bitc::TYPE_CODE_METADATA; break;
  364. case Type::X86_MMXTyID: Code = bitc::TYPE_CODE_X86_MMX; break;
  365. case Type::IntegerTyID:
  366. // INTEGER: [width]
  367. Code = bitc::TYPE_CODE_INTEGER;
  368. TypeVals.push_back(cast<IntegerType>(T)->getBitWidth());
  369. break;
  370. case Type::PointerTyID: {
  371. PointerType *PTy = cast<PointerType>(T);
  372. // POINTER: [pointee type, address space]
  373. Code = bitc::TYPE_CODE_POINTER;
  374. TypeVals.push_back(VE.getTypeID(PTy->getElementType()));
  375. unsigned AddressSpace = PTy->getAddressSpace();
  376. TypeVals.push_back(AddressSpace);
  377. if (AddressSpace == 0) AbbrevToUse = PtrAbbrev;
  378. break;
  379. }
  380. case Type::FunctionTyID: {
  381. FunctionType *FT = cast<FunctionType>(T);
  382. // FUNCTION: [isvararg, retty, paramty x N]
  383. Code = bitc::TYPE_CODE_FUNCTION;
  384. TypeVals.push_back(FT->isVarArg());
  385. TypeVals.push_back(VE.getTypeID(FT->getReturnType()));
  386. for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i)
  387. TypeVals.push_back(VE.getTypeID(FT->getParamType(i)));
  388. AbbrevToUse = FunctionAbbrev;
  389. break;
  390. }
  391. case Type::StructTyID: {
  392. StructType *ST = cast<StructType>(T);
  393. // STRUCT: [ispacked, eltty x N]
  394. TypeVals.push_back(ST->isPacked());
  395. // Output all of the element types.
  396. for (StructType::element_iterator I = ST->element_begin(),
  397. E = ST->element_end(); I != E; ++I)
  398. TypeVals.push_back(VE.getTypeID(*I));
  399. if (ST->isLiteral()) {
  400. Code = bitc::TYPE_CODE_STRUCT_ANON;
  401. AbbrevToUse = StructAnonAbbrev;
  402. } else {
  403. if (ST->isOpaque()) {
  404. Code = bitc::TYPE_CODE_OPAQUE;
  405. } else {
  406. Code = bitc::TYPE_CODE_STRUCT_NAMED;
  407. AbbrevToUse = StructNamedAbbrev;
  408. }
  409. // Emit the name if it is present.
  410. if (!ST->getName().empty())
  411. WriteStringRecord(bitc::TYPE_CODE_STRUCT_NAME, ST->getName(),
  412. StructNameAbbrev, Stream);
  413. }
  414. break;
  415. }
  416. case Type::ArrayTyID: {
  417. ArrayType *AT = cast<ArrayType>(T);
  418. // ARRAY: [numelts, eltty]
  419. Code = bitc::TYPE_CODE_ARRAY;
  420. TypeVals.push_back(AT->getNumElements());
  421. TypeVals.push_back(VE.getTypeID(AT->getElementType()));
  422. AbbrevToUse = ArrayAbbrev;
  423. break;
  424. }
  425. case Type::VectorTyID: {
  426. VectorType *VT = cast<VectorType>(T);
  427. // VECTOR [numelts, eltty]
  428. Code = bitc::TYPE_CODE_VECTOR;
  429. TypeVals.push_back(VT->getNumElements());
  430. TypeVals.push_back(VE.getTypeID(VT->getElementType()));
  431. break;
  432. }
  433. }
  434. // Emit the finished record.
  435. Stream.EmitRecord(Code, TypeVals, AbbrevToUse);
  436. TypeVals.clear();
  437. }
  438. Stream.ExitBlock();
  439. }
  440. static unsigned getEncodedLinkage(const GlobalValue &GV) {
  441. switch (GV.getLinkage()) {
  442. case GlobalValue::ExternalLinkage:
  443. return 0;
  444. case GlobalValue::WeakAnyLinkage:
  445. return 16;
  446. case GlobalValue::AppendingLinkage:
  447. return 2;
  448. case GlobalValue::InternalLinkage:
  449. return 3;
  450. case GlobalValue::LinkOnceAnyLinkage:
  451. return 18;
  452. case GlobalValue::ExternalWeakLinkage:
  453. return 7;
  454. case GlobalValue::CommonLinkage:
  455. return 8;
  456. case GlobalValue::PrivateLinkage:
  457. return 9;
  458. case GlobalValue::WeakODRLinkage:
  459. return 17;
  460. case GlobalValue::LinkOnceODRLinkage:
  461. return 19;
  462. case GlobalValue::AvailableExternallyLinkage:
  463. return 12;
  464. }
  465. llvm_unreachable("Invalid linkage");
  466. }
  467. static unsigned getEncodedVisibility(const GlobalValue &GV) {
  468. switch (GV.getVisibility()) {
  469. case GlobalValue::DefaultVisibility: return 0;
  470. case GlobalValue::HiddenVisibility: return 1;
  471. case GlobalValue::ProtectedVisibility: return 2;
  472. }
  473. llvm_unreachable("Invalid visibility");
  474. }
  475. static unsigned getEncodedDLLStorageClass(const GlobalValue &GV) {
  476. switch (GV.getDLLStorageClass()) {
  477. case GlobalValue::DefaultStorageClass: return 0;
  478. case GlobalValue::DLLImportStorageClass: return 1;
  479. case GlobalValue::DLLExportStorageClass: return 2;
  480. }
  481. llvm_unreachable("Invalid DLL storage class");
  482. }
  483. static unsigned getEncodedThreadLocalMode(const GlobalValue &GV) {
  484. switch (GV.getThreadLocalMode()) {
  485. case GlobalVariable::NotThreadLocal: return 0;
  486. case GlobalVariable::GeneralDynamicTLSModel: return 1;
  487. case GlobalVariable::LocalDynamicTLSModel: return 2;
  488. case GlobalVariable::InitialExecTLSModel: return 3;
  489. case GlobalVariable::LocalExecTLSModel: return 4;
  490. }
  491. llvm_unreachable("Invalid TLS model");
  492. }
  493. static unsigned getEncodedComdatSelectionKind(const Comdat &C) {
  494. switch (C.getSelectionKind()) {
  495. case Comdat::Any:
  496. return bitc::COMDAT_SELECTION_KIND_ANY;
  497. case Comdat::ExactMatch:
  498. return bitc::COMDAT_SELECTION_KIND_EXACT_MATCH;
  499. case Comdat::Largest:
  500. return bitc::COMDAT_SELECTION_KIND_LARGEST;
  501. case Comdat::NoDuplicates:
  502. return bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES;
  503. case Comdat::SameSize:
  504. return bitc::COMDAT_SELECTION_KIND_SAME_SIZE;
  505. }
  506. llvm_unreachable("Invalid selection kind");
  507. }
  508. static void writeComdats(const ValueEnumerator &VE, BitstreamWriter &Stream) {
  509. SmallVector<uint16_t, 64> Vals;
  510. for (const Comdat *C : VE.getComdats()) {
  511. // COMDAT: [selection_kind, name]
  512. Vals.push_back(getEncodedComdatSelectionKind(*C));
  513. size_t Size = C->getName().size();
  514. assert(isUInt<16>(Size));
  515. Vals.push_back(Size);
  516. for (char Chr : C->getName())
  517. Vals.push_back((unsigned char)Chr);
  518. Stream.EmitRecord(bitc::MODULE_CODE_COMDAT, Vals, /*AbbrevToUse=*/0);
  519. Vals.clear();
  520. }
  521. }
  522. // Emit top-level description of module, including target triple, inline asm,
  523. // descriptors for global variables, and function prototype info.
  524. static void WriteModuleInfo(const Module *M, const ValueEnumerator &VE,
  525. BitstreamWriter &Stream) {
  526. // Emit various pieces of data attached to a module.
  527. if (!M->getTargetTriple().empty())
  528. WriteStringRecord(bitc::MODULE_CODE_TRIPLE, M->getTargetTriple(),
  529. 0/*TODO*/, Stream);
  530. const std::string &DL = M->getDataLayoutStr();
  531. if (!DL.empty())
  532. WriteStringRecord(bitc::MODULE_CODE_DATALAYOUT, DL, 0 /*TODO*/, Stream);
  533. if (!M->getModuleInlineAsm().empty())
  534. WriteStringRecord(bitc::MODULE_CODE_ASM, M->getModuleInlineAsm(),
  535. 0/*TODO*/, Stream);
  536. // Emit information about sections and GC, computing how many there are. Also
  537. // compute the maximum alignment value.
  538. std::map<std::string, unsigned> SectionMap;
  539. std::map<std::string, unsigned> GCMap;
  540. unsigned MaxAlignment = 0;
  541. unsigned MaxGlobalType = 0;
  542. for (const GlobalValue &GV : M->globals()) {
  543. MaxAlignment = std::max(MaxAlignment, GV.getAlignment());
  544. MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV.getValueType()));
  545. if (GV.hasSection()) {
  546. // Give section names unique ID's.
  547. unsigned &Entry = SectionMap[GV.getSection()];
  548. if (!Entry) {
  549. WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, GV.getSection(),
  550. 0/*TODO*/, Stream);
  551. Entry = SectionMap.size();
  552. }
  553. }
  554. }
  555. for (const Function &F : *M) {
  556. MaxAlignment = std::max(MaxAlignment, F.getAlignment());
  557. if (F.hasSection()) {
  558. // Give section names unique ID's.
  559. unsigned &Entry = SectionMap[F.getSection()];
  560. if (!Entry) {
  561. WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, F.getSection(),
  562. 0/*TODO*/, Stream);
  563. Entry = SectionMap.size();
  564. }
  565. }
  566. if (F.hasGC()) {
  567. // Same for GC names.
  568. unsigned &Entry = GCMap[F.getGC()];
  569. if (!Entry) {
  570. WriteStringRecord(bitc::MODULE_CODE_GCNAME, F.getGC(),
  571. 0/*TODO*/, Stream);
  572. Entry = GCMap.size();
  573. }
  574. }
  575. }
  576. // Emit abbrev for globals, now that we know # sections and max alignment.
  577. unsigned SimpleGVarAbbrev = 0;
  578. if (!M->global_empty()) {
  579. // Add an abbrev for common globals with no visibility or thread localness.
  580. IntrusiveRefCntPtr<BitCodeAbbrev> Abbv = new BitCodeAbbrev();
  581. Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR));
  582. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
  583. Log2_32_Ceil(MaxGlobalType+1)));
  584. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // AddrSpace << 2
  585. //| explicitType << 1
  586. //| constant
  587. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Initializer.
  588. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 5)); // Linkage.
  589. if (MaxAlignment == 0) // Alignment.
  590. Abbv->Add(BitCodeAbbrevOp(0));
  591. else {
  592. unsigned MaxEncAlignment = Log2_32(MaxAlignment)+1;
  593. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
  594. Log2_32_Ceil(MaxEncAlignment+1)));
  595. }
  596. if (SectionMap.empty()) // Section.
  597. Abbv->Add(BitCodeAbbrevOp(0));
  598. else
  599. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
  600. Log2_32_Ceil(SectionMap.size()+1)));
  601. // Don't bother emitting vis + thread local.
  602. SimpleGVarAbbrev = Stream.EmitAbbrev(Abbv.get());
  603. }
  604. // Emit the global variable information.
  605. SmallVector<unsigned, 64> Vals;
  606. for (const GlobalVariable &GV : M->globals()) {
  607. unsigned AbbrevToUse = 0;
  608. // GLOBALVAR: [type, isconst, initid,
  609. // linkage, alignment, section, visibility, threadlocal,
  610. // unnamed_addr, externally_initialized, dllstorageclass,
  611. // comdat]
  612. Vals.push_back(VE.getTypeID(GV.getValueType()));
  613. Vals.push_back(GV.getType()->getAddressSpace() << 2 | 2 | (GV.isConstant() ? 1 : 0)); // HLSL Change - bitwise | was used with unsigned int and bool
  614. Vals.push_back(GV.isDeclaration() ? 0 :
  615. (VE.getValueID(GV.getInitializer()) + 1));
  616. Vals.push_back(getEncodedLinkage(GV));
  617. Vals.push_back(Log2_32(GV.getAlignment())+1);
  618. Vals.push_back(GV.hasSection() ? SectionMap[GV.getSection()] : 0);
  619. if (GV.isThreadLocal() ||
  620. GV.getVisibility() != GlobalValue::DefaultVisibility ||
  621. GV.hasUnnamedAddr() || GV.isExternallyInitialized() ||
  622. GV.getDLLStorageClass() != GlobalValue::DefaultStorageClass ||
  623. GV.hasComdat()) {
  624. Vals.push_back(getEncodedVisibility(GV));
  625. Vals.push_back(getEncodedThreadLocalMode(GV));
  626. Vals.push_back(GV.hasUnnamedAddr());
  627. Vals.push_back(GV.isExternallyInitialized());
  628. Vals.push_back(getEncodedDLLStorageClass(GV));
  629. Vals.push_back(GV.hasComdat() ? VE.getComdatID(GV.getComdat()) : 0);
  630. } else {
  631. AbbrevToUse = SimpleGVarAbbrev;
  632. }
  633. Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse);
  634. Vals.clear();
  635. }
  636. // Emit the function proto information.
  637. for (const Function &F : *M) {
  638. // FUNCTION: [type, callingconv, isproto, linkage, paramattrs, alignment,
  639. // section, visibility, gc, unnamed_addr, prologuedata,
  640. // dllstorageclass, comdat, prefixdata, personalityfn]
  641. Vals.push_back(VE.getTypeID(F.getFunctionType()));
  642. Vals.push_back(F.getCallingConv());
  643. Vals.push_back(F.isDeclaration());
  644. Vals.push_back(getEncodedLinkage(F));
  645. Vals.push_back(VE.getAttributeID(F.getAttributes()));
  646. Vals.push_back(Log2_32(F.getAlignment())+1);
  647. Vals.push_back(F.hasSection() ? SectionMap[F.getSection()] : 0);
  648. Vals.push_back(getEncodedVisibility(F));
  649. Vals.push_back(F.hasGC() ? GCMap[F.getGC()] : 0);
  650. Vals.push_back(F.hasUnnamedAddr());
  651. Vals.push_back(F.hasPrologueData() ? (VE.getValueID(F.getPrologueData()) + 1)
  652. : 0);
  653. Vals.push_back(getEncodedDLLStorageClass(F));
  654. Vals.push_back(F.hasComdat() ? VE.getComdatID(F.getComdat()) : 0);
  655. Vals.push_back(F.hasPrefixData() ? (VE.getValueID(F.getPrefixData()) + 1)
  656. : 0);
  657. Vals.push_back(
  658. F.hasPersonalityFn() ? (VE.getValueID(F.getPersonalityFn()) + 1) : 0);
  659. unsigned AbbrevToUse = 0;
  660. Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse);
  661. Vals.clear();
  662. }
  663. // Emit the alias information.
  664. for (const GlobalAlias &A : M->aliases()) {
  665. // ALIAS: [alias type, aliasee val#, linkage, visibility]
  666. Vals.push_back(VE.getTypeID(A.getType()));
  667. Vals.push_back(VE.getValueID(A.getAliasee()));
  668. Vals.push_back(getEncodedLinkage(A));
  669. Vals.push_back(getEncodedVisibility(A));
  670. Vals.push_back(getEncodedDLLStorageClass(A));
  671. Vals.push_back(getEncodedThreadLocalMode(A));
  672. Vals.push_back(A.hasUnnamedAddr());
  673. unsigned AbbrevToUse = 0;
  674. Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals, AbbrevToUse);
  675. Vals.clear();
  676. }
  677. }
  678. static uint64_t GetOptimizationFlags(const Value *V) {
  679. uint64_t Flags = 0;
  680. if (const auto *OBO = dyn_cast<OverflowingBinaryOperator>(V)) {
  681. if (OBO->hasNoSignedWrap())
  682. Flags |= 1 << bitc::OBO_NO_SIGNED_WRAP;
  683. if (OBO->hasNoUnsignedWrap())
  684. Flags |= 1 << bitc::OBO_NO_UNSIGNED_WRAP;
  685. } else if (const auto *PEO = dyn_cast<PossiblyExactOperator>(V)) {
  686. if (PEO->isExact())
  687. Flags |= 1 << bitc::PEO_EXACT;
  688. } else if (const auto *FPMO = dyn_cast<FPMathOperator>(V)) {
  689. if (FPMO->hasUnsafeAlgebra())
  690. Flags |= FastMathFlags::UnsafeAlgebra;
  691. if (FPMO->hasNoNaNs())
  692. Flags |= FastMathFlags::NoNaNs;
  693. if (FPMO->hasNoInfs())
  694. Flags |= FastMathFlags::NoInfs;
  695. if (FPMO->hasNoSignedZeros())
  696. Flags |= FastMathFlags::NoSignedZeros;
  697. if (FPMO->hasAllowReciprocal())
  698. Flags |= FastMathFlags::AllowReciprocal;
  699. }
  700. return Flags;
  701. }
  702. static void WriteValueAsMetadata(const ValueAsMetadata *MD,
  703. const ValueEnumerator &VE,
  704. BitstreamWriter &Stream,
  705. SmallVectorImpl<uint64_t> &Record) {
  706. // Mimic an MDNode with a value as one operand.
  707. Value *V = MD->getValue();
  708. Record.push_back(VE.getTypeID(V->getType()));
  709. Record.push_back(VE.getValueID(V));
  710. Stream.EmitRecord(bitc::METADATA_VALUE, Record, 0);
  711. Record.clear();
  712. }
  713. static void WriteMDTuple(const MDTuple *N, const ValueEnumerator &VE,
  714. BitstreamWriter &Stream,
  715. SmallVectorImpl<uint64_t> &Record, unsigned Abbrev) {
  716. for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
  717. Metadata *MD = N->getOperand(i);
  718. assert(!(MD && isa<LocalAsMetadata>(MD)) &&
  719. "Unexpected function-local metadata");
  720. Record.push_back(VE.getMetadataOrNullID(MD));
  721. }
  722. Stream.EmitRecord(N->isDistinct() ? bitc::METADATA_DISTINCT_NODE
  723. : bitc::METADATA_NODE,
  724. Record, Abbrev);
  725. Record.clear();
  726. }
  727. static void WriteDILocation(const DILocation *N, const ValueEnumerator &VE,
  728. BitstreamWriter &Stream,
  729. SmallVectorImpl<uint64_t> &Record,
  730. unsigned Abbrev) {
  731. Record.push_back(N->isDistinct());
  732. Record.push_back(N->getLine());
  733. Record.push_back(N->getColumn());
  734. Record.push_back(VE.getMetadataID(N->getScope()));
  735. Record.push_back(VE.getMetadataOrNullID(N->getInlinedAt()));
  736. Stream.EmitRecord(bitc::METADATA_LOCATION, Record, Abbrev);
  737. Record.clear();
  738. }
  739. static void WriteGenericDINode(const GenericDINode *N,
  740. const ValueEnumerator &VE,
  741. BitstreamWriter &Stream,
  742. SmallVectorImpl<uint64_t> &Record,
  743. unsigned Abbrev) {
  744. Record.push_back(N->isDistinct());
  745. Record.push_back(N->getTag());
  746. Record.push_back(0); // Per-tag version field; unused for now.
  747. for (auto &I : N->operands())
  748. Record.push_back(VE.getMetadataOrNullID(I));
  749. Stream.EmitRecord(bitc::METADATA_GENERIC_DEBUG, Record, Abbrev);
  750. Record.clear();
  751. }
  752. static uint64_t rotateSign(int64_t I) {
  753. uint64_t U = I;
  754. return I < 0 ? ~(U << 1) : U << 1;
  755. }
  756. static void WriteDISubrange(const DISubrange *N, const ValueEnumerator &,
  757. BitstreamWriter &Stream,
  758. SmallVectorImpl<uint64_t> &Record,
  759. unsigned Abbrev) {
  760. Record.push_back(N->isDistinct());
  761. Record.push_back(N->getCount());
  762. Record.push_back(rotateSign(N->getLowerBound()));
  763. Stream.EmitRecord(bitc::METADATA_SUBRANGE, Record, Abbrev);
  764. Record.clear();
  765. }
  766. static void WriteDIEnumerator(const DIEnumerator *N, const ValueEnumerator &VE,
  767. BitstreamWriter &Stream,
  768. SmallVectorImpl<uint64_t> &Record,
  769. unsigned Abbrev) {
  770. Record.push_back(N->isDistinct());
  771. Record.push_back(rotateSign(N->getValue()));
  772. Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
  773. Stream.EmitRecord(bitc::METADATA_ENUMERATOR, Record, Abbrev);
  774. Record.clear();
  775. }
  776. static void WriteDIBasicType(const DIBasicType *N, const ValueEnumerator &VE,
  777. BitstreamWriter &Stream,
  778. SmallVectorImpl<uint64_t> &Record,
  779. unsigned Abbrev) {
  780. Record.push_back(N->isDistinct());
  781. Record.push_back(N->getTag());
  782. Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
  783. Record.push_back(N->getSizeInBits());
  784. Record.push_back(N->getAlignInBits());
  785. Record.push_back(N->getEncoding());
  786. Stream.EmitRecord(bitc::METADATA_BASIC_TYPE, Record, Abbrev);
  787. Record.clear();
  788. }
  789. static void WriteDIDerivedType(const DIDerivedType *N,
  790. const ValueEnumerator &VE,
  791. BitstreamWriter &Stream,
  792. SmallVectorImpl<uint64_t> &Record,
  793. unsigned Abbrev) {
  794. Record.push_back(N->isDistinct());
  795. Record.push_back(N->getTag());
  796. Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
  797. Record.push_back(VE.getMetadataOrNullID(N->getFile()));
  798. Record.push_back(N->getLine());
  799. Record.push_back(VE.getMetadataOrNullID(N->getScope()));
  800. Record.push_back(VE.getMetadataOrNullID(N->getBaseType()));
  801. Record.push_back(N->getSizeInBits());
  802. Record.push_back(N->getAlignInBits());
  803. Record.push_back(N->getOffsetInBits());
  804. Record.push_back(N->getFlags());
  805. Record.push_back(VE.getMetadataOrNullID(N->getExtraData()));
  806. Stream.EmitRecord(bitc::METADATA_DERIVED_TYPE, Record, Abbrev);
  807. Record.clear();
  808. }
  809. static void WriteDICompositeType(const DICompositeType *N,
  810. const ValueEnumerator &VE,
  811. BitstreamWriter &Stream,
  812. SmallVectorImpl<uint64_t> &Record,
  813. unsigned Abbrev) {
  814. Record.push_back(N->isDistinct());
  815. Record.push_back(N->getTag());
  816. Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
  817. Record.push_back(VE.getMetadataOrNullID(N->getFile()));
  818. Record.push_back(N->getLine());
  819. Record.push_back(VE.getMetadataOrNullID(N->getScope()));
  820. Record.push_back(VE.getMetadataOrNullID(N->getBaseType()));
  821. Record.push_back(N->getSizeInBits());
  822. Record.push_back(N->getAlignInBits());
  823. Record.push_back(N->getOffsetInBits());
  824. Record.push_back(N->getFlags());
  825. Record.push_back(VE.getMetadataOrNullID(N->getElements().get()));
  826. Record.push_back(N->getRuntimeLang());
  827. Record.push_back(VE.getMetadataOrNullID(N->getVTableHolder()));
  828. Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get()));
  829. Record.push_back(VE.getMetadataOrNullID(N->getRawIdentifier()));
  830. Stream.EmitRecord(bitc::METADATA_COMPOSITE_TYPE, Record, Abbrev);
  831. Record.clear();
  832. }
  833. static void WriteDISubroutineType(const DISubroutineType *N,
  834. const ValueEnumerator &VE,
  835. BitstreamWriter &Stream,
  836. SmallVectorImpl<uint64_t> &Record,
  837. unsigned Abbrev) {
  838. Record.push_back(N->isDistinct());
  839. Record.push_back(N->getFlags());
  840. Record.push_back(VE.getMetadataOrNullID(N->getTypeArray().get()));
  841. Stream.EmitRecord(bitc::METADATA_SUBROUTINE_TYPE, Record, Abbrev);
  842. Record.clear();
  843. }
  844. static void WriteDIFile(const DIFile *N, const ValueEnumerator &VE,
  845. BitstreamWriter &Stream,
  846. SmallVectorImpl<uint64_t> &Record, unsigned Abbrev) {
  847. Record.push_back(N->isDistinct());
  848. Record.push_back(VE.getMetadataOrNullID(N->getRawFilename()));
  849. Record.push_back(VE.getMetadataOrNullID(N->getRawDirectory()));
  850. Stream.EmitRecord(bitc::METADATA_FILE, Record, Abbrev);
  851. Record.clear();
  852. }
  853. static void WriteDICompileUnit(const DICompileUnit *N,
  854. const ValueEnumerator &VE,
  855. BitstreamWriter &Stream,
  856. SmallVectorImpl<uint64_t> &Record,
  857. unsigned Abbrev) {
  858. Record.push_back(N->isDistinct());
  859. Record.push_back(N->getSourceLanguage());
  860. Record.push_back(VE.getMetadataOrNullID(N->getFile()));
  861. Record.push_back(VE.getMetadataOrNullID(N->getRawProducer()));
  862. Record.push_back(N->isOptimized());
  863. Record.push_back(VE.getMetadataOrNullID(N->getRawFlags()));
  864. Record.push_back(N->getRuntimeVersion());
  865. Record.push_back(VE.getMetadataOrNullID(N->getRawSplitDebugFilename()));
  866. Record.push_back(N->getEmissionKind());
  867. Record.push_back(VE.getMetadataOrNullID(N->getEnumTypes().get()));
  868. Record.push_back(VE.getMetadataOrNullID(N->getRetainedTypes().get()));
  869. Record.push_back(VE.getMetadataOrNullID(N->getSubprograms().get()));
  870. Record.push_back(VE.getMetadataOrNullID(N->getGlobalVariables().get()));
  871. Record.push_back(VE.getMetadataOrNullID(N->getImportedEntities().get()));
  872. Record.push_back(N->getDWOId());
  873. Stream.EmitRecord(bitc::METADATA_COMPILE_UNIT, Record, Abbrev);
  874. Record.clear();
  875. }
  876. static void WriteDISubprogram(const DISubprogram *N, const ValueEnumerator &VE,
  877. BitstreamWriter &Stream,
  878. SmallVectorImpl<uint64_t> &Record,
  879. unsigned Abbrev) {
  880. Record.push_back(N->isDistinct());
  881. Record.push_back(VE.getMetadataOrNullID(N->getScope()));
  882. Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
  883. Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName()));
  884. Record.push_back(VE.getMetadataOrNullID(N->getFile()));
  885. Record.push_back(N->getLine());
  886. Record.push_back(VE.getMetadataOrNullID(N->getType()));
  887. Record.push_back(N->isLocalToUnit());
  888. Record.push_back(N->isDefinition());
  889. Record.push_back(N->getScopeLine());
  890. Record.push_back(VE.getMetadataOrNullID(N->getContainingType()));
  891. Record.push_back(N->getVirtuality());
  892. Record.push_back(N->getVirtualIndex());
  893. Record.push_back(N->getFlags());
  894. Record.push_back(N->isOptimized());
  895. Record.push_back(VE.getMetadataOrNullID(N->getRawFunction()));
  896. Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get()));
  897. Record.push_back(VE.getMetadataOrNullID(N->getDeclaration()));
  898. Record.push_back(VE.getMetadataOrNullID(N->getVariables().get()));
  899. Stream.EmitRecord(bitc::METADATA_SUBPROGRAM, Record, Abbrev);
  900. Record.clear();
  901. }
  902. static void WriteDILexicalBlock(const DILexicalBlock *N,
  903. const ValueEnumerator &VE,
  904. BitstreamWriter &Stream,
  905. SmallVectorImpl<uint64_t> &Record,
  906. unsigned Abbrev) {
  907. Record.push_back(N->isDistinct());
  908. Record.push_back(VE.getMetadataOrNullID(N->getScope()));
  909. Record.push_back(VE.getMetadataOrNullID(N->getFile()));
  910. Record.push_back(N->getLine());
  911. Record.push_back(N->getColumn());
  912. Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK, Record, Abbrev);
  913. Record.clear();
  914. }
  915. static void WriteDILexicalBlockFile(const DILexicalBlockFile *N,
  916. const ValueEnumerator &VE,
  917. BitstreamWriter &Stream,
  918. SmallVectorImpl<uint64_t> &Record,
  919. unsigned Abbrev) {
  920. Record.push_back(N->isDistinct());
  921. Record.push_back(VE.getMetadataOrNullID(N->getScope()));
  922. Record.push_back(VE.getMetadataOrNullID(N->getFile()));
  923. Record.push_back(N->getDiscriminator());
  924. Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK_FILE, Record, Abbrev);
  925. Record.clear();
  926. }
  927. static void WriteDINamespace(const DINamespace *N, const ValueEnumerator &VE,
  928. BitstreamWriter &Stream,
  929. SmallVectorImpl<uint64_t> &Record,
  930. unsigned Abbrev) {
  931. Record.push_back(N->isDistinct());
  932. Record.push_back(VE.getMetadataOrNullID(N->getScope()));
  933. Record.push_back(VE.getMetadataOrNullID(N->getFile()));
  934. Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
  935. Record.push_back(N->getLine());
  936. Stream.EmitRecord(bitc::METADATA_NAMESPACE, Record, Abbrev);
  937. Record.clear();
  938. }
  939. static void WriteDIModule(const DIModule *N, const ValueEnumerator &VE,
  940. BitstreamWriter &Stream,
  941. SmallVectorImpl<uint64_t> &Record, unsigned Abbrev) {
  942. Record.push_back(N->isDistinct());
  943. for (auto &I : N->operands())
  944. Record.push_back(VE.getMetadataOrNullID(I));
  945. Stream.EmitRecord(bitc::METADATA_MODULE, Record, Abbrev);
  946. Record.clear();
  947. }
  948. static void WriteDITemplateTypeParameter(const DITemplateTypeParameter *N,
  949. const ValueEnumerator &VE,
  950. BitstreamWriter &Stream,
  951. SmallVectorImpl<uint64_t> &Record,
  952. unsigned Abbrev) {
  953. Record.push_back(N->isDistinct());
  954. Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
  955. Record.push_back(VE.getMetadataOrNullID(N->getType()));
  956. Stream.EmitRecord(bitc::METADATA_TEMPLATE_TYPE, Record, Abbrev);
  957. Record.clear();
  958. }
  959. static void WriteDITemplateValueParameter(const DITemplateValueParameter *N,
  960. const ValueEnumerator &VE,
  961. BitstreamWriter &Stream,
  962. SmallVectorImpl<uint64_t> &Record,
  963. unsigned Abbrev) {
  964. Record.push_back(N->isDistinct());
  965. Record.push_back(N->getTag());
  966. Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
  967. Record.push_back(VE.getMetadataOrNullID(N->getType()));
  968. Record.push_back(VE.getMetadataOrNullID(N->getValue()));
  969. Stream.EmitRecord(bitc::METADATA_TEMPLATE_VALUE, Record, Abbrev);
  970. Record.clear();
  971. }
  972. static void WriteDIGlobalVariable(const DIGlobalVariable *N,
  973. const ValueEnumerator &VE,
  974. BitstreamWriter &Stream,
  975. SmallVectorImpl<uint64_t> &Record,
  976. unsigned Abbrev) {
  977. Record.push_back(N->isDistinct());
  978. Record.push_back(VE.getMetadataOrNullID(N->getScope()));
  979. Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
  980. Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName()));
  981. Record.push_back(VE.getMetadataOrNullID(N->getFile()));
  982. Record.push_back(N->getLine());
  983. Record.push_back(VE.getMetadataOrNullID(N->getType()));
  984. Record.push_back(N->isLocalToUnit());
  985. Record.push_back(N->isDefinition());
  986. Record.push_back(VE.getMetadataOrNullID(N->getRawVariable()));
  987. Record.push_back(VE.getMetadataOrNullID(N->getStaticDataMemberDeclaration()));
  988. Stream.EmitRecord(bitc::METADATA_GLOBAL_VAR, Record, Abbrev);
  989. Record.clear();
  990. }
  991. static void WriteDILocalVariable(const DILocalVariable *N,
  992. const ValueEnumerator &VE,
  993. BitstreamWriter &Stream,
  994. SmallVectorImpl<uint64_t> &Record,
  995. unsigned Abbrev) {
  996. Record.push_back(N->isDistinct());
  997. Record.push_back(N->getTag());
  998. Record.push_back(VE.getMetadataOrNullID(N->getScope()));
  999. Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
  1000. Record.push_back(VE.getMetadataOrNullID(N->getFile()));
  1001. Record.push_back(N->getLine());
  1002. Record.push_back(VE.getMetadataOrNullID(N->getType()));
  1003. Record.push_back(N->getArg());
  1004. Record.push_back(N->getFlags());
  1005. Stream.EmitRecord(bitc::METADATA_LOCAL_VAR, Record, Abbrev);
  1006. Record.clear();
  1007. }
  1008. static void WriteDIExpression(const DIExpression *N, const ValueEnumerator &,
  1009. BitstreamWriter &Stream,
  1010. SmallVectorImpl<uint64_t> &Record,
  1011. unsigned Abbrev) {
  1012. Record.reserve(N->getElements().size() + 1);
  1013. Record.push_back(N->isDistinct());
  1014. Record.append(N->elements_begin(), N->elements_end());
  1015. Stream.EmitRecord(bitc::METADATA_EXPRESSION, Record, Abbrev);
  1016. Record.clear();
  1017. }
  1018. static void WriteDIObjCProperty(const DIObjCProperty *N,
  1019. const ValueEnumerator &VE,
  1020. BitstreamWriter &Stream,
  1021. SmallVectorImpl<uint64_t> &Record,
  1022. unsigned Abbrev) {
  1023. Record.push_back(N->isDistinct());
  1024. Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
  1025. Record.push_back(VE.getMetadataOrNullID(N->getFile()));
  1026. Record.push_back(N->getLine());
  1027. Record.push_back(VE.getMetadataOrNullID(N->getRawSetterName()));
  1028. Record.push_back(VE.getMetadataOrNullID(N->getRawGetterName()));
  1029. Record.push_back(N->getAttributes());
  1030. Record.push_back(VE.getMetadataOrNullID(N->getType()));
  1031. Stream.EmitRecord(bitc::METADATA_OBJC_PROPERTY, Record, Abbrev);
  1032. Record.clear();
  1033. }
  1034. static void WriteDIImportedEntity(const DIImportedEntity *N,
  1035. const ValueEnumerator &VE,
  1036. BitstreamWriter &Stream,
  1037. SmallVectorImpl<uint64_t> &Record,
  1038. unsigned Abbrev) {
  1039. Record.push_back(N->isDistinct());
  1040. Record.push_back(N->getTag());
  1041. Record.push_back(VE.getMetadataOrNullID(N->getScope()));
  1042. Record.push_back(VE.getMetadataOrNullID(N->getEntity()));
  1043. Record.push_back(N->getLine());
  1044. Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
  1045. Stream.EmitRecord(bitc::METADATA_IMPORTED_ENTITY, Record, Abbrev);
  1046. Record.clear();
  1047. }
  1048. static void WriteModuleMetadata(const Module *M,
  1049. const ValueEnumerator &VE,
  1050. BitstreamWriter &Stream) {
  1051. const auto &MDs = VE.getMDs();
  1052. if (MDs.empty() && M->named_metadata_empty())
  1053. return;
  1054. Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
  1055. unsigned MDSAbbrev = 0;
  1056. if (VE.hasMDString()) {
  1057. // Abbrev for METADATA_STRING.
  1058. IntrusiveRefCntPtr<BitCodeAbbrev> Abbv = new BitCodeAbbrev();
  1059. Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_STRING));
  1060. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
  1061. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
  1062. MDSAbbrev = Stream.EmitAbbrev(Abbv.get());
  1063. }
  1064. // Initialize MDNode abbreviations.
  1065. #define HANDLE_MDNODE_LEAF(CLASS) unsigned CLASS##Abbrev = 0;
  1066. #include "llvm/IR/Metadata.def"
  1067. if (VE.hasDILocation()) {
  1068. // Abbrev for METADATA_LOCATION.
  1069. //
  1070. // Assume the column is usually under 128, and always output the inlined-at
  1071. // location (it's never more expensive than building an array size 1).
  1072. IntrusiveRefCntPtr<BitCodeAbbrev> Abbv = new BitCodeAbbrev();
  1073. Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_LOCATION));
  1074. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));
  1075. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
  1076. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
  1077. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
  1078. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
  1079. DILocationAbbrev = Stream.EmitAbbrev(Abbv.get());
  1080. }
  1081. if (VE.hasGenericDINode()) {
  1082. // Abbrev for METADATA_GENERIC_DEBUG.
  1083. //
  1084. // Assume the column is usually under 128, and always output the inlined-at
  1085. // location (it's never more expensive than building an array size 1).
  1086. IntrusiveRefCntPtr<BitCodeAbbrev> Abbv = new BitCodeAbbrev();
  1087. Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_GENERIC_DEBUG));
  1088. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));
  1089. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
  1090. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));
  1091. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
  1092. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
  1093. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
  1094. GenericDINodeAbbrev = Stream.EmitAbbrev(Abbv.get());
  1095. }
  1096. unsigned NameAbbrev = 0;
  1097. if (!M->named_metadata_empty()) {
  1098. // Abbrev for METADATA_NAME.
  1099. IntrusiveRefCntPtr<BitCodeAbbrev> Abbv = new BitCodeAbbrev();
  1100. Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_NAME));
  1101. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
  1102. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
  1103. NameAbbrev = Stream.EmitAbbrev(Abbv.get());
  1104. }
  1105. SmallVector<uint64_t, 64> Record;
  1106. for (const Metadata *MD : MDs) {
  1107. if (const MDNode *N = dyn_cast<MDNode>(MD)) {
  1108. assert(N->isResolved() && "Expected forward references to be resolved");
  1109. switch (N->getMetadataID()) {
  1110. default:
  1111. llvm_unreachable("Invalid MDNode subclass");
  1112. #define HANDLE_MDNODE_LEAF(CLASS) \
  1113. case Metadata::CLASS##Kind: \
  1114. Write##CLASS(cast<CLASS>(N), VE, Stream, Record, CLASS##Abbrev); \
  1115. continue;
  1116. #include "llvm/IR/Metadata.def"
  1117. }
  1118. }
  1119. if (const auto *MDC = dyn_cast<ConstantAsMetadata>(MD)) {
  1120. WriteValueAsMetadata(MDC, VE, Stream, Record);
  1121. continue;
  1122. }
  1123. const MDString *MDS = cast<MDString>(MD);
  1124. // Code: [strchar x N]
  1125. Record.append(MDS->bytes_begin(), MDS->bytes_end());
  1126. // Emit the finished record.
  1127. Stream.EmitRecord(bitc::METADATA_STRING, Record, MDSAbbrev);
  1128. Record.clear();
  1129. }
  1130. // Write named metadata.
  1131. for (const NamedMDNode &NMD : M->named_metadata()) {
  1132. // Write name.
  1133. StringRef Str = NMD.getName();
  1134. Record.append(Str.bytes_begin(), Str.bytes_end());
  1135. Stream.EmitRecord(bitc::METADATA_NAME, Record, NameAbbrev);
  1136. Record.clear();
  1137. // Write named metadata operands.
  1138. for (const MDNode *N : NMD.operands())
  1139. Record.push_back(VE.getMetadataID(N));
  1140. Stream.EmitRecord(bitc::METADATA_NAMED_NODE, Record, 0);
  1141. Record.clear();
  1142. }
  1143. Stream.ExitBlock();
  1144. }
  1145. static void WriteFunctionLocalMetadata(const Function &F,
  1146. const ValueEnumerator &VE,
  1147. BitstreamWriter &Stream) {
  1148. bool StartedMetadataBlock = false;
  1149. SmallVector<uint64_t, 64> Record;
  1150. const SmallVectorImpl<const LocalAsMetadata *> &MDs =
  1151. VE.getFunctionLocalMDs();
  1152. for (unsigned i = 0, e = MDs.size(); i != e; ++i) {
  1153. assert(MDs[i] && "Expected valid function-local metadata");
  1154. if (!StartedMetadataBlock) {
  1155. Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
  1156. StartedMetadataBlock = true;
  1157. }
  1158. WriteValueAsMetadata(MDs[i], VE, Stream, Record);
  1159. }
  1160. if (StartedMetadataBlock)
  1161. Stream.ExitBlock();
  1162. }
  1163. static void WriteMetadataAttachment(const Function &F,
  1164. const ValueEnumerator &VE,
  1165. BitstreamWriter &Stream) {
  1166. Stream.EnterSubblock(bitc::METADATA_ATTACHMENT_ID, 3);
  1167. SmallVector<uint64_t, 64> Record;
  1168. // Write metadata attachments
  1169. // METADATA_ATTACHMENT - [m x [value, [n x [id, mdnode]]]
  1170. SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
  1171. F.getAllMetadata(MDs);
  1172. if (!MDs.empty()) {
  1173. for (const auto &I : MDs) {
  1174. Record.push_back(I.first);
  1175. Record.push_back(VE.getMetadataID(I.second));
  1176. }
  1177. Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0);
  1178. Record.clear();
  1179. }
  1180. for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
  1181. for (BasicBlock::const_iterator I = BB->begin(), E = BB->end();
  1182. I != E; ++I) {
  1183. MDs.clear();
  1184. I->getAllMetadataOtherThanDebugLoc(MDs);
  1185. // If no metadata, ignore instruction.
  1186. if (MDs.empty()) continue;
  1187. Record.push_back(VE.getInstructionID(I));
  1188. for (unsigned i = 0, e = MDs.size(); i != e; ++i) {
  1189. Record.push_back(MDs[i].first);
  1190. Record.push_back(VE.getMetadataID(MDs[i].second));
  1191. }
  1192. Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0);
  1193. Record.clear();
  1194. }
  1195. Stream.ExitBlock();
  1196. }
  1197. static void WriteModuleMetadataStore(const Module *M, BitstreamWriter &Stream) {
  1198. SmallVector<uint64_t, 64> Record;
  1199. // Write metadata kinds
  1200. // METADATA_KIND - [n x [id, name]]
  1201. SmallVector<StringRef, 8> Names;
  1202. M->getMDKindNames(Names);
  1203. if (Names.empty()) return;
  1204. Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
  1205. for (unsigned MDKindID = 0, e = Names.size(); MDKindID != e; ++MDKindID) {
  1206. Record.push_back(MDKindID);
  1207. StringRef KName = Names[MDKindID];
  1208. Record.append(KName.begin(), KName.end());
  1209. Stream.EmitRecord(bitc::METADATA_KIND, Record, 0);
  1210. Record.clear();
  1211. }
  1212. Stream.ExitBlock();
  1213. }
  1214. static void emitSignedInt64(SmallVectorImpl<uint64_t> &Vals, uint64_t V) {
  1215. if ((int64_t)V >= 0)
  1216. Vals.push_back(V << 1);
  1217. else
  1218. Vals.push_back((-V << 1) | 1);
  1219. }
  1220. static void WriteConstants(unsigned FirstVal, unsigned LastVal,
  1221. const ValueEnumerator &VE,
  1222. BitstreamWriter &Stream, bool isGlobal) {
  1223. if (FirstVal == LastVal) return;
  1224. Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4);
  1225. unsigned AggregateAbbrev = 0;
  1226. unsigned String8Abbrev = 0;
  1227. unsigned CString7Abbrev = 0;
  1228. unsigned CString6Abbrev = 0;
  1229. // If this is a constant pool for the module, emit module-specific abbrevs.
  1230. if (isGlobal) {
  1231. // Abbrev for CST_CODE_AGGREGATE.
  1232. IntrusiveRefCntPtr<BitCodeAbbrev> Abbv = new BitCodeAbbrev();
  1233. Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE));
  1234. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
  1235. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal+1)));
  1236. AggregateAbbrev = Stream.EmitAbbrev(Abbv.get());
  1237. // Abbrev for CST_CODE_STRING.
  1238. Abbv = new BitCodeAbbrev();
  1239. Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING));
  1240. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
  1241. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
  1242. String8Abbrev = Stream.EmitAbbrev(Abbv.get());
  1243. // Abbrev for CST_CODE_CSTRING.
  1244. Abbv = new BitCodeAbbrev();
  1245. Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING));
  1246. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
  1247. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
  1248. CString7Abbrev = Stream.EmitAbbrev(Abbv.get());
  1249. // Abbrev for CST_CODE_CSTRING.
  1250. Abbv = new BitCodeAbbrev();
  1251. Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING));
  1252. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
  1253. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
  1254. CString6Abbrev = Stream.EmitAbbrev(Abbv.get());
  1255. }
  1256. SmallVector<uint64_t, 64> Record;
  1257. const ValueEnumerator::ValueList &Vals = VE.getValues();
  1258. Type *LastTy = nullptr;
  1259. for (unsigned i = FirstVal; i != LastVal; ++i) {
  1260. const Value *V = Vals[i].first;
  1261. // If we need to switch types, do so now.
  1262. if (V->getType() != LastTy) {
  1263. LastTy = V->getType();
  1264. Record.push_back(VE.getTypeID(LastTy));
  1265. Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record,
  1266. CONSTANTS_SETTYPE_ABBREV);
  1267. Record.clear();
  1268. }
  1269. if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) {
  1270. Record.push_back(unsigned(IA->hasSideEffects()) |
  1271. unsigned(IA->isAlignStack()) << 1 |
  1272. unsigned(IA->getDialect()&1) << 2);
  1273. // Add the asm string.
  1274. const std::string &AsmStr = IA->getAsmString();
  1275. Record.push_back(AsmStr.size());
  1276. Record.append(AsmStr.begin(), AsmStr.end());
  1277. // Add the constraint string.
  1278. const std::string &ConstraintStr = IA->getConstraintString();
  1279. Record.push_back(ConstraintStr.size());
  1280. Record.append(ConstraintStr.begin(), ConstraintStr.end());
  1281. Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record);
  1282. Record.clear();
  1283. continue;
  1284. }
  1285. const Constant *C = cast<Constant>(V);
  1286. unsigned Code = -1U;
  1287. unsigned AbbrevToUse = 0;
  1288. if (C->isNullValue()) {
  1289. Code = bitc::CST_CODE_NULL;
  1290. } else if (isa<UndefValue>(C)) {
  1291. Code = bitc::CST_CODE_UNDEF;
  1292. } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) {
  1293. if (IV->getBitWidth() <= 64) {
  1294. uint64_t V = IV->getSExtValue();
  1295. emitSignedInt64(Record, V);
  1296. Code = bitc::CST_CODE_INTEGER;
  1297. AbbrevToUse = CONSTANTS_INTEGER_ABBREV;
  1298. } else { // Wide integers, > 64 bits in size.
  1299. // We have an arbitrary precision integer value to write whose
  1300. // bit width is > 64. However, in canonical unsigned integer
  1301. // format it is likely that the high bits are going to be zero.
  1302. // So, we only write the number of active words.
  1303. unsigned NWords = IV->getValue().getActiveWords();
  1304. const uint64_t *RawWords = IV->getValue().getRawData();
  1305. for (unsigned i = 0; i != NWords; ++i) {
  1306. emitSignedInt64(Record, RawWords[i]);
  1307. }
  1308. Code = bitc::CST_CODE_WIDE_INTEGER;
  1309. }
  1310. } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
  1311. Code = bitc::CST_CODE_FLOAT;
  1312. Type *Ty = CFP->getType();
  1313. if (Ty->isHalfTy() || Ty->isFloatTy() || Ty->isDoubleTy()) {
  1314. Record.push_back(CFP->getValueAPF().bitcastToAPInt().getZExtValue());
  1315. } else if (Ty->isX86_FP80Ty()) {
  1316. // api needed to prevent premature destruction
  1317. // bits are not in the same order as a normal i80 APInt, compensate.
  1318. APInt api = CFP->getValueAPF().bitcastToAPInt();
  1319. const uint64_t *p = api.getRawData();
  1320. Record.push_back((p[1] << 48) | (p[0] >> 16));
  1321. Record.push_back(p[0] & 0xffffLL);
  1322. } else if (Ty->isFP128Ty() || Ty->isPPC_FP128Ty()) {
  1323. APInt api = CFP->getValueAPF().bitcastToAPInt();
  1324. const uint64_t *p = api.getRawData();
  1325. Record.push_back(p[0]);
  1326. Record.push_back(p[1]);
  1327. } else {
  1328. assert (0 && "Unknown FP type!");
  1329. }
  1330. } else if (isa<ConstantDataSequential>(C) &&
  1331. cast<ConstantDataSequential>(C)->isString()) {
  1332. const ConstantDataSequential *Str = cast<ConstantDataSequential>(C);
  1333. // Emit constant strings specially.
  1334. unsigned NumElts = Str->getNumElements();
  1335. // If this is a null-terminated string, use the denser CSTRING encoding.
  1336. if (Str->isCString()) {
  1337. Code = bitc::CST_CODE_CSTRING;
  1338. --NumElts; // Don't encode the null, which isn't allowed by char6.
  1339. } else {
  1340. Code = bitc::CST_CODE_STRING;
  1341. AbbrevToUse = String8Abbrev;
  1342. }
  1343. bool isCStr7 = Code == bitc::CST_CODE_CSTRING;
  1344. bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING;
  1345. for (unsigned i = 0; i != NumElts; ++i) {
  1346. unsigned char V = Str->getElementAsInteger(i);
  1347. Record.push_back(V);
  1348. isCStr7 &= (V & 128) == 0;
  1349. if (isCStrChar6)
  1350. isCStrChar6 = BitCodeAbbrevOp::isChar6(V);
  1351. }
  1352. if (isCStrChar6)
  1353. AbbrevToUse = CString6Abbrev;
  1354. else if (isCStr7)
  1355. AbbrevToUse = CString7Abbrev;
  1356. } else if (const ConstantDataSequential *CDS =
  1357. dyn_cast<ConstantDataSequential>(C)) {
  1358. Code = bitc::CST_CODE_DATA;
  1359. Type *EltTy = CDS->getType()->getElementType();
  1360. if (isa<IntegerType>(EltTy)) {
  1361. for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i)
  1362. Record.push_back(CDS->getElementAsInteger(i));
  1363. } else if (EltTy->isFloatTy()) {
  1364. for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
  1365. union { float F; uint32_t I; };
  1366. F = CDS->getElementAsFloat(i);
  1367. Record.push_back(I);
  1368. }
  1369. } else {
  1370. assert(EltTy->isDoubleTy() && "Unknown ConstantData element type");
  1371. for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
  1372. union { double F; uint64_t I; };
  1373. F = CDS->getElementAsDouble(i);
  1374. Record.push_back(I);
  1375. }
  1376. }
  1377. } else if (isa<ConstantArray>(C) || isa<ConstantStruct>(C) ||
  1378. isa<ConstantVector>(C)) {
  1379. Code = bitc::CST_CODE_AGGREGATE;
  1380. for (const Value *Op : C->operands())
  1381. Record.push_back(VE.getValueID(Op));
  1382. AbbrevToUse = AggregateAbbrev;
  1383. } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
  1384. switch (CE->getOpcode()) {
  1385. default:
  1386. if (Instruction::isCast(CE->getOpcode())) {
  1387. Code = bitc::CST_CODE_CE_CAST;
  1388. Record.push_back(GetEncodedCastOpcode(CE->getOpcode()));
  1389. Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
  1390. Record.push_back(VE.getValueID(C->getOperand(0)));
  1391. AbbrevToUse = CONSTANTS_CE_CAST_Abbrev;
  1392. } else {
  1393. assert(CE->getNumOperands() == 2 && "Unknown constant expr!");
  1394. Code = bitc::CST_CODE_CE_BINOP;
  1395. Record.push_back(GetEncodedBinaryOpcode(CE->getOpcode()));
  1396. Record.push_back(VE.getValueID(C->getOperand(0)));
  1397. Record.push_back(VE.getValueID(C->getOperand(1)));
  1398. uint64_t Flags = GetOptimizationFlags(CE);
  1399. if (Flags != 0)
  1400. Record.push_back(Flags);
  1401. }
  1402. break;
  1403. case Instruction::GetElementPtr: {
  1404. Code = bitc::CST_CODE_CE_GEP;
  1405. const auto *GO = cast<GEPOperator>(C);
  1406. if (GO->isInBounds())
  1407. Code = bitc::CST_CODE_CE_INBOUNDS_GEP;
  1408. Record.push_back(VE.getTypeID(GO->getSourceElementType()));
  1409. for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) {
  1410. Record.push_back(VE.getTypeID(C->getOperand(i)->getType()));
  1411. Record.push_back(VE.getValueID(C->getOperand(i)));
  1412. }
  1413. break;
  1414. }
  1415. case Instruction::Select:
  1416. Code = bitc::CST_CODE_CE_SELECT;
  1417. Record.push_back(VE.getValueID(C->getOperand(0)));
  1418. Record.push_back(VE.getValueID(C->getOperand(1)));
  1419. Record.push_back(VE.getValueID(C->getOperand(2)));
  1420. break;
  1421. case Instruction::ExtractElement:
  1422. Code = bitc::CST_CODE_CE_EXTRACTELT;
  1423. Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
  1424. Record.push_back(VE.getValueID(C->getOperand(0)));
  1425. Record.push_back(VE.getTypeID(C->getOperand(1)->getType()));
  1426. Record.push_back(VE.getValueID(C->getOperand(1)));
  1427. break;
  1428. case Instruction::InsertElement:
  1429. Code = bitc::CST_CODE_CE_INSERTELT;
  1430. Record.push_back(VE.getValueID(C->getOperand(0)));
  1431. Record.push_back(VE.getValueID(C->getOperand(1)));
  1432. Record.push_back(VE.getTypeID(C->getOperand(2)->getType()));
  1433. Record.push_back(VE.getValueID(C->getOperand(2)));
  1434. break;
  1435. case Instruction::ShuffleVector:
  1436. // If the return type and argument types are the same, this is a
  1437. // standard shufflevector instruction. If the types are different,
  1438. // then the shuffle is widening or truncating the input vectors, and
  1439. // the argument type must also be encoded.
  1440. if (C->getType() == C->getOperand(0)->getType()) {
  1441. Code = bitc::CST_CODE_CE_SHUFFLEVEC;
  1442. } else {
  1443. Code = bitc::CST_CODE_CE_SHUFVEC_EX;
  1444. Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
  1445. }
  1446. Record.push_back(VE.getValueID(C->getOperand(0)));
  1447. Record.push_back(VE.getValueID(C->getOperand(1)));
  1448. Record.push_back(VE.getValueID(C->getOperand(2)));
  1449. break;
  1450. case Instruction::ICmp:
  1451. case Instruction::FCmp:
  1452. Code = bitc::CST_CODE_CE_CMP;
  1453. Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
  1454. Record.push_back(VE.getValueID(C->getOperand(0)));
  1455. Record.push_back(VE.getValueID(C->getOperand(1)));
  1456. Record.push_back(CE->getPredicate());
  1457. break;
  1458. }
  1459. } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) {
  1460. Code = bitc::CST_CODE_BLOCKADDRESS;
  1461. Record.push_back(VE.getTypeID(BA->getFunction()->getType()));
  1462. Record.push_back(VE.getValueID(BA->getFunction()));
  1463. Record.push_back(VE.getGlobalBasicBlockID(BA->getBasicBlock()));
  1464. } else {
  1465. #ifndef NDEBUG
  1466. C->dump();
  1467. #endif
  1468. llvm_unreachable("Unknown constant!");
  1469. }
  1470. Stream.EmitRecord(Code, Record, AbbrevToUse);
  1471. Record.clear();
  1472. }
  1473. Stream.ExitBlock();
  1474. }
  1475. static void WriteModuleConstants(const ValueEnumerator &VE,
  1476. BitstreamWriter &Stream) {
  1477. const ValueEnumerator::ValueList &Vals = VE.getValues();
  1478. // Find the first constant to emit, which is the first non-globalvalue value.
  1479. // We know globalvalues have been emitted by WriteModuleInfo.
  1480. for (unsigned i = 0, e = Vals.size(); i != e; ++i) {
  1481. if (!isa<GlobalValue>(Vals[i].first)) {
  1482. WriteConstants(i, Vals.size(), VE, Stream, true);
  1483. return;
  1484. }
  1485. }
  1486. }
  1487. /// PushValueAndType - The file has to encode both the value and type id for
  1488. /// many values, because we need to know what type to create for forward
  1489. /// references. However, most operands are not forward references, so this type
  1490. /// field is not needed.
  1491. ///
  1492. /// This function adds V's value ID to Vals. If the value ID is higher than the
  1493. /// instruction ID, then it is a forward reference, and it also includes the
  1494. /// type ID. The value ID that is written is encoded relative to the InstID.
  1495. static bool PushValueAndType(const Value *V, unsigned InstID,
  1496. SmallVectorImpl<unsigned> &Vals,
  1497. ValueEnumerator &VE) {
  1498. unsigned ValID = VE.getValueID(V);
  1499. // Make encoding relative to the InstID.
  1500. Vals.push_back(InstID - ValID);
  1501. if (ValID >= InstID) {
  1502. Vals.push_back(VE.getTypeID(V->getType()));
  1503. return true;
  1504. }
  1505. return false;
  1506. }
  1507. /// pushValue - Like PushValueAndType, but where the type of the value is
  1508. /// omitted (perhaps it was already encoded in an earlier operand).
  1509. static void pushValue(const Value *V, unsigned InstID,
  1510. SmallVectorImpl<unsigned> &Vals,
  1511. ValueEnumerator &VE) {
  1512. unsigned ValID = VE.getValueID(V);
  1513. Vals.push_back(InstID - ValID);
  1514. }
  1515. static void pushValueSigned(const Value *V, unsigned InstID,
  1516. SmallVectorImpl<uint64_t> &Vals,
  1517. ValueEnumerator &VE) {
  1518. unsigned ValID = VE.getValueID(V);
  1519. int64_t diff = ((int32_t)InstID - (int32_t)ValID);
  1520. emitSignedInt64(Vals, diff);
  1521. }
  1522. /// WriteInstruction - Emit an instruction to the specified stream.
  1523. static void WriteInstruction(const Instruction &I, unsigned InstID,
  1524. ValueEnumerator &VE, BitstreamWriter &Stream,
  1525. SmallVectorImpl<unsigned> &Vals) {
  1526. unsigned Code = 0;
  1527. unsigned AbbrevToUse = 0;
  1528. VE.setInstructionID(&I);
  1529. switch (I.getOpcode()) {
  1530. default:
  1531. if (Instruction::isCast(I.getOpcode())) {
  1532. Code = bitc::FUNC_CODE_INST_CAST;
  1533. if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))
  1534. AbbrevToUse = FUNCTION_INST_CAST_ABBREV;
  1535. Vals.push_back(VE.getTypeID(I.getType()));
  1536. Vals.push_back(GetEncodedCastOpcode(I.getOpcode()));
  1537. } else {
  1538. assert(isa<BinaryOperator>(I) && "Unknown instruction!");
  1539. Code = bitc::FUNC_CODE_INST_BINOP;
  1540. if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))
  1541. AbbrevToUse = FUNCTION_INST_BINOP_ABBREV;
  1542. pushValue(I.getOperand(1), InstID, Vals, VE);
  1543. Vals.push_back(GetEncodedBinaryOpcode(I.getOpcode()));
  1544. uint64_t Flags = GetOptimizationFlags(&I);
  1545. if (Flags != 0) {
  1546. if (AbbrevToUse == FUNCTION_INST_BINOP_ABBREV)
  1547. AbbrevToUse = FUNCTION_INST_BINOP_FLAGS_ABBREV;
  1548. Vals.push_back(Flags);
  1549. }
  1550. }
  1551. break;
  1552. case Instruction::GetElementPtr: {
  1553. Code = bitc::FUNC_CODE_INST_GEP;
  1554. AbbrevToUse = FUNCTION_INST_GEP_ABBREV;
  1555. auto &GEPInst = cast<GetElementPtrInst>(I);
  1556. Vals.push_back(GEPInst.isInBounds());
  1557. Vals.push_back(VE.getTypeID(GEPInst.getSourceElementType()));
  1558. for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
  1559. PushValueAndType(I.getOperand(i), InstID, Vals, VE);
  1560. break;
  1561. }
  1562. case Instruction::ExtractValue: {
  1563. Code = bitc::FUNC_CODE_INST_EXTRACTVAL;
  1564. PushValueAndType(I.getOperand(0), InstID, Vals, VE);
  1565. const ExtractValueInst *EVI = cast<ExtractValueInst>(&I);
  1566. Vals.append(EVI->idx_begin(), EVI->idx_end());
  1567. break;
  1568. }
  1569. case Instruction::InsertValue: {
  1570. Code = bitc::FUNC_CODE_INST_INSERTVAL;
  1571. PushValueAndType(I.getOperand(0), InstID, Vals, VE);
  1572. PushValueAndType(I.getOperand(1), InstID, Vals, VE);
  1573. const InsertValueInst *IVI = cast<InsertValueInst>(&I);
  1574. Vals.append(IVI->idx_begin(), IVI->idx_end());
  1575. break;
  1576. }
  1577. case Instruction::Select:
  1578. Code = bitc::FUNC_CODE_INST_VSELECT;
  1579. PushValueAndType(I.getOperand(1), InstID, Vals, VE);
  1580. pushValue(I.getOperand(2), InstID, Vals, VE);
  1581. PushValueAndType(I.getOperand(0), InstID, Vals, VE);
  1582. break;
  1583. case Instruction::ExtractElement:
  1584. Code = bitc::FUNC_CODE_INST_EXTRACTELT;
  1585. PushValueAndType(I.getOperand(0), InstID, Vals, VE);
  1586. PushValueAndType(I.getOperand(1), InstID, Vals, VE);
  1587. break;
  1588. case Instruction::InsertElement:
  1589. Code = bitc::FUNC_CODE_INST_INSERTELT;
  1590. PushValueAndType(I.getOperand(0), InstID, Vals, VE);
  1591. pushValue(I.getOperand(1), InstID, Vals, VE);
  1592. PushValueAndType(I.getOperand(2), InstID, Vals, VE);
  1593. break;
  1594. case Instruction::ShuffleVector:
  1595. Code = bitc::FUNC_CODE_INST_SHUFFLEVEC;
  1596. PushValueAndType(I.getOperand(0), InstID, Vals, VE);
  1597. pushValue(I.getOperand(1), InstID, Vals, VE);
  1598. pushValue(I.getOperand(2), InstID, Vals, VE);
  1599. break;
  1600. case Instruction::ICmp:
  1601. case Instruction::FCmp: {
  1602. // compare returning Int1Ty or vector of Int1Ty
  1603. Code = bitc::FUNC_CODE_INST_CMP2;
  1604. PushValueAndType(I.getOperand(0), InstID, Vals, VE);
  1605. pushValue(I.getOperand(1), InstID, Vals, VE);
  1606. Vals.push_back(cast<CmpInst>(I).getPredicate());
  1607. uint64_t Flags = GetOptimizationFlags(&I);
  1608. if (Flags != 0)
  1609. Vals.push_back(Flags);
  1610. break;
  1611. }
  1612. case Instruction::Ret:
  1613. {
  1614. Code = bitc::FUNC_CODE_INST_RET;
  1615. unsigned NumOperands = I.getNumOperands();
  1616. if (NumOperands == 0)
  1617. AbbrevToUse = FUNCTION_INST_RET_VOID_ABBREV;
  1618. else if (NumOperands == 1) {
  1619. if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))
  1620. AbbrevToUse = FUNCTION_INST_RET_VAL_ABBREV;
  1621. } else {
  1622. for (unsigned i = 0, e = NumOperands; i != e; ++i)
  1623. PushValueAndType(I.getOperand(i), InstID, Vals, VE);
  1624. }
  1625. }
  1626. break;
  1627. case Instruction::Br:
  1628. {
  1629. Code = bitc::FUNC_CODE_INST_BR;
  1630. const BranchInst &II = cast<BranchInst>(I);
  1631. Vals.push_back(VE.getValueID(II.getSuccessor(0)));
  1632. if (II.isConditional()) {
  1633. Vals.push_back(VE.getValueID(II.getSuccessor(1)));
  1634. pushValue(II.getCondition(), InstID, Vals, VE);
  1635. }
  1636. }
  1637. break;
  1638. case Instruction::Switch:
  1639. {
  1640. Code = bitc::FUNC_CODE_INST_SWITCH;
  1641. const SwitchInst &SI = cast<SwitchInst>(I);
  1642. Vals.push_back(VE.getTypeID(SI.getCondition()->getType()));
  1643. pushValue(SI.getCondition(), InstID, Vals, VE);
  1644. Vals.push_back(VE.getValueID(SI.getDefaultDest()));
  1645. for (SwitchInst::ConstCaseIt i = SI.case_begin(), e = SI.case_end();
  1646. i != e; ++i) {
  1647. Vals.push_back(VE.getValueID(i.getCaseValue()));
  1648. Vals.push_back(VE.getValueID(i.getCaseSuccessor()));
  1649. }
  1650. }
  1651. break;
  1652. case Instruction::IndirectBr:
  1653. Code = bitc::FUNC_CODE_INST_INDIRECTBR;
  1654. Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));
  1655. // Encode the address operand as relative, but not the basic blocks.
  1656. pushValue(I.getOperand(0), InstID, Vals, VE);
  1657. for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i)
  1658. Vals.push_back(VE.getValueID(I.getOperand(i)));
  1659. break;
  1660. case Instruction::Invoke: {
  1661. const InvokeInst *II = cast<InvokeInst>(&I);
  1662. const Value *Callee = II->getCalledValue();
  1663. FunctionType *FTy = II->getFunctionType();
  1664. Code = bitc::FUNC_CODE_INST_INVOKE;
  1665. Vals.push_back(VE.getAttributeID(II->getAttributes()));
  1666. Vals.push_back(II->getCallingConv() | 1 << 13);
  1667. Vals.push_back(VE.getValueID(II->getNormalDest()));
  1668. Vals.push_back(VE.getValueID(II->getUnwindDest()));
  1669. Vals.push_back(VE.getTypeID(FTy));
  1670. PushValueAndType(Callee, InstID, Vals, VE);
  1671. // Emit value #'s for the fixed parameters.
  1672. for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
  1673. pushValue(I.getOperand(i), InstID, Vals, VE); // fixed param.
  1674. // Emit type/value pairs for varargs params.
  1675. if (FTy->isVarArg()) {
  1676. for (unsigned i = FTy->getNumParams(), e = I.getNumOperands()-3;
  1677. i != e; ++i)
  1678. PushValueAndType(I.getOperand(i), InstID, Vals, VE); // vararg
  1679. }
  1680. break;
  1681. }
  1682. case Instruction::Resume:
  1683. Code = bitc::FUNC_CODE_INST_RESUME;
  1684. PushValueAndType(I.getOperand(0), InstID, Vals, VE);
  1685. break;
  1686. case Instruction::Unreachable:
  1687. Code = bitc::FUNC_CODE_INST_UNREACHABLE;
  1688. AbbrevToUse = FUNCTION_INST_UNREACHABLE_ABBREV;
  1689. break;
  1690. case Instruction::PHI: {
  1691. const PHINode &PN = cast<PHINode>(I);
  1692. Code = bitc::FUNC_CODE_INST_PHI;
  1693. // With the newer instruction encoding, forward references could give
  1694. // negative valued IDs. This is most common for PHIs, so we use
  1695. // signed VBRs.
  1696. SmallVector<uint64_t, 128> Vals64;
  1697. Vals64.push_back(VE.getTypeID(PN.getType()));
  1698. for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) {
  1699. pushValueSigned(PN.getIncomingValue(i), InstID, Vals64, VE);
  1700. Vals64.push_back(VE.getValueID(PN.getIncomingBlock(i)));
  1701. }
  1702. // Emit a Vals64 vector and exit.
  1703. Stream.EmitRecord(Code, Vals64, AbbrevToUse);
  1704. Vals64.clear();
  1705. return;
  1706. }
  1707. case Instruction::LandingPad: {
  1708. const LandingPadInst &LP = cast<LandingPadInst>(I);
  1709. Code = bitc::FUNC_CODE_INST_LANDINGPAD;
  1710. Vals.push_back(VE.getTypeID(LP.getType()));
  1711. Vals.push_back(LP.isCleanup());
  1712. Vals.push_back(LP.getNumClauses());
  1713. for (unsigned I = 0, E = LP.getNumClauses(); I != E; ++I) {
  1714. if (LP.isCatch(I))
  1715. Vals.push_back(LandingPadInst::Catch);
  1716. else
  1717. Vals.push_back(LandingPadInst::Filter);
  1718. PushValueAndType(LP.getClause(I), InstID, Vals, VE);
  1719. }
  1720. break;
  1721. }
  1722. case Instruction::Alloca: {
  1723. Code = bitc::FUNC_CODE_INST_ALLOCA;
  1724. const AllocaInst &AI = cast<AllocaInst>(I);
  1725. Vals.push_back(VE.getTypeID(AI.getAllocatedType()));
  1726. Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));
  1727. Vals.push_back(VE.getValueID(I.getOperand(0))); // size.
  1728. unsigned AlignRecord = Log2_32(AI.getAlignment()) + 1;
  1729. assert(Log2_32(Value::MaximumAlignment) + 1 < 1 << 5 &&
  1730. "not enough bits for maximum alignment");
  1731. assert(AlignRecord < 1 << 5 && "alignment greater than 1 << 64");
  1732. AlignRecord |= AI.isUsedWithInAlloca() << 5;
  1733. AlignRecord |= 1 << 6;
  1734. Vals.push_back(AlignRecord);
  1735. break;
  1736. }
  1737. case Instruction::Load:
  1738. if (cast<LoadInst>(I).isAtomic()) {
  1739. Code = bitc::FUNC_CODE_INST_LOADATOMIC;
  1740. PushValueAndType(I.getOperand(0), InstID, Vals, VE);
  1741. } else {
  1742. Code = bitc::FUNC_CODE_INST_LOAD;
  1743. if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) // ptr
  1744. AbbrevToUse = FUNCTION_INST_LOAD_ABBREV;
  1745. }
  1746. Vals.push_back(VE.getTypeID(I.getType()));
  1747. Vals.push_back(Log2_32(cast<LoadInst>(I).getAlignment())+1);
  1748. Vals.push_back(cast<LoadInst>(I).isVolatile());
  1749. if (cast<LoadInst>(I).isAtomic()) {
  1750. Vals.push_back(GetEncodedOrdering(cast<LoadInst>(I).getOrdering()));
  1751. Vals.push_back(GetEncodedSynchScope(cast<LoadInst>(I).getSynchScope()));
  1752. }
  1753. break;
  1754. case Instruction::Store:
  1755. if (cast<StoreInst>(I).isAtomic())
  1756. Code = bitc::FUNC_CODE_INST_STOREATOMIC;
  1757. else
  1758. Code = bitc::FUNC_CODE_INST_STORE;
  1759. PushValueAndType(I.getOperand(1), InstID, Vals, VE); // ptrty + ptr
  1760. PushValueAndType(I.getOperand(0), InstID, Vals, VE); // valty + val
  1761. Vals.push_back(Log2_32(cast<StoreInst>(I).getAlignment())+1);
  1762. Vals.push_back(cast<StoreInst>(I).isVolatile());
  1763. if (cast<StoreInst>(I).isAtomic()) {
  1764. Vals.push_back(GetEncodedOrdering(cast<StoreInst>(I).getOrdering()));
  1765. Vals.push_back(GetEncodedSynchScope(cast<StoreInst>(I).getSynchScope()));
  1766. }
  1767. break;
  1768. case Instruction::AtomicCmpXchg:
  1769. Code = bitc::FUNC_CODE_INST_CMPXCHG;
  1770. PushValueAndType(I.getOperand(0), InstID, Vals, VE); // ptrty + ptr
  1771. PushValueAndType(I.getOperand(1), InstID, Vals, VE); // cmp.
  1772. pushValue(I.getOperand(2), InstID, Vals, VE); // newval.
  1773. Vals.push_back(cast<AtomicCmpXchgInst>(I).isVolatile());
  1774. Vals.push_back(GetEncodedOrdering(
  1775. cast<AtomicCmpXchgInst>(I).getSuccessOrdering()));
  1776. Vals.push_back(GetEncodedSynchScope(
  1777. cast<AtomicCmpXchgInst>(I).getSynchScope()));
  1778. Vals.push_back(GetEncodedOrdering(
  1779. cast<AtomicCmpXchgInst>(I).getFailureOrdering()));
  1780. Vals.push_back(cast<AtomicCmpXchgInst>(I).isWeak());
  1781. break;
  1782. case Instruction::AtomicRMW:
  1783. Code = bitc::FUNC_CODE_INST_ATOMICRMW;
  1784. PushValueAndType(I.getOperand(0), InstID, Vals, VE); // ptrty + ptr
  1785. pushValue(I.getOperand(1), InstID, Vals, VE); // val.
  1786. Vals.push_back(GetEncodedRMWOperation(
  1787. cast<AtomicRMWInst>(I).getOperation()));
  1788. Vals.push_back(cast<AtomicRMWInst>(I).isVolatile());
  1789. Vals.push_back(GetEncodedOrdering(cast<AtomicRMWInst>(I).getOrdering()));
  1790. Vals.push_back(GetEncodedSynchScope(
  1791. cast<AtomicRMWInst>(I).getSynchScope()));
  1792. break;
  1793. case Instruction::Fence:
  1794. Code = bitc::FUNC_CODE_INST_FENCE;
  1795. Vals.push_back(GetEncodedOrdering(cast<FenceInst>(I).getOrdering()));
  1796. Vals.push_back(GetEncodedSynchScope(cast<FenceInst>(I).getSynchScope()));
  1797. break;
  1798. case Instruction::Call: {
  1799. const CallInst &CI = cast<CallInst>(I);
  1800. FunctionType *FTy = CI.getFunctionType();
  1801. Code = bitc::FUNC_CODE_INST_CALL;
  1802. Vals.push_back(VE.getAttributeID(CI.getAttributes()));
  1803. Vals.push_back((CI.getCallingConv() << 1) | unsigned(CI.isTailCall()) |
  1804. unsigned(CI.isMustTailCall()) << 14 | 1 << 15);
  1805. Vals.push_back(VE.getTypeID(FTy));
  1806. PushValueAndType(CI.getCalledValue(), InstID, Vals, VE); // Callee
  1807. // Emit value #'s for the fixed parameters.
  1808. for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) {
  1809. // Check for labels (can happen with asm labels).
  1810. if (FTy->getParamType(i)->isLabelTy())
  1811. Vals.push_back(VE.getValueID(CI.getArgOperand(i)));
  1812. else
  1813. pushValue(CI.getArgOperand(i), InstID, Vals, VE); // fixed param.
  1814. }
  1815. // Emit type/value pairs for varargs params.
  1816. if (FTy->isVarArg()) {
  1817. for (unsigned i = FTy->getNumParams(), e = CI.getNumArgOperands();
  1818. i != e; ++i)
  1819. PushValueAndType(CI.getArgOperand(i), InstID, Vals, VE); // varargs
  1820. }
  1821. break;
  1822. }
  1823. case Instruction::VAArg:
  1824. Code = bitc::FUNC_CODE_INST_VAARG;
  1825. Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); // valistty
  1826. pushValue(I.getOperand(0), InstID, Vals, VE); // valist.
  1827. Vals.push_back(VE.getTypeID(I.getType())); // restype.
  1828. break;
  1829. }
  1830. Stream.EmitRecord(Code, Vals, AbbrevToUse);
  1831. Vals.clear();
  1832. }
  1833. // Emit names for globals/functions etc.
  1834. static void WriteValueSymbolTable(const ValueSymbolTable &VST,
  1835. const ValueEnumerator &VE,
  1836. BitstreamWriter &Stream) {
  1837. if (VST.empty()) return;
  1838. Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4);
  1839. // FIXME: Set up the abbrev, we know how many values there are!
  1840. // FIXME: We know if the type names can use 7-bit ascii.
  1841. SmallVector<unsigned, 64> NameVals;
  1842. // HLSL Change - Begin
  1843. // Read the named values from a sorted list instead of the original list
  1844. // to ensure the binary is the same no matter what values ever existed.
  1845. SmallVector<const ValueName *, 16> SortedTable;
  1846. for (ValueSymbolTable::const_iterator SI = VST.begin(), SE = VST.end();
  1847. SI != SE; ++SI) {
  1848. SortedTable.push_back(&(*SI));
  1849. }
  1850. // The keys are unique, so there shouldn't be stability issues
  1851. std::sort(SortedTable.begin(), SortedTable.end(), [](const ValueName *A, const ValueName *B) {
  1852. return (*A).first() < (*B).first();
  1853. });
  1854. for (const ValueName *SI : SortedTable) {
  1855. auto &Name = *SI;
  1856. // HLSL Change - End
  1857. #if 0 // HLSL Change
  1858. for (ValueSymbolTable::const_iterator SI = VST.begin(), SE = VST.end();
  1859. SI != SE; ++SI) {
  1860. const ValueName &Name = *SI;
  1861. #endif // HLSL Change
  1862. // Figure out the encoding to use for the name.
  1863. bool is7Bit = true;
  1864. bool isChar6 = true;
  1865. for (const char *C = Name.getKeyData(), *E = C+Name.getKeyLength();
  1866. C != E; ++C) {
  1867. if (isChar6)
  1868. isChar6 = BitCodeAbbrevOp::isChar6(*C);
  1869. if ((unsigned char)*C & 128) {
  1870. is7Bit = false;
  1871. break; // don't bother scanning the rest.
  1872. }
  1873. }
  1874. unsigned AbbrevToUse = VST_ENTRY_8_ABBREV;
  1875. // VST_ENTRY: [valueid, namechar x N]
  1876. // VST_BBENTRY: [bbid, namechar x N]
  1877. unsigned Code;
  1878. if (isa<BasicBlock>(SI->getValue())) {
  1879. Code = bitc::VST_CODE_BBENTRY;
  1880. if (isChar6)
  1881. AbbrevToUse = VST_BBENTRY_6_ABBREV;
  1882. } else {
  1883. Code = bitc::VST_CODE_ENTRY;
  1884. if (isChar6)
  1885. AbbrevToUse = VST_ENTRY_6_ABBREV;
  1886. else if (is7Bit)
  1887. AbbrevToUse = VST_ENTRY_7_ABBREV;
  1888. }
  1889. NameVals.push_back(VE.getValueID(SI->getValue()));
  1890. for (const char *P = Name.getKeyData(),
  1891. *E = Name.getKeyData()+Name.getKeyLength(); P != E; ++P)
  1892. NameVals.push_back((unsigned char)*P);
  1893. // Emit the finished record.
  1894. Stream.EmitRecord(Code, NameVals, AbbrevToUse);
  1895. NameVals.clear();
  1896. }
  1897. Stream.ExitBlock();
  1898. }
  1899. static void WriteUseList(ValueEnumerator &VE, UseListOrder &&Order,
  1900. BitstreamWriter &Stream) {
  1901. assert(Order.Shuffle.size() >= 2 && "Shuffle too small");
  1902. unsigned Code;
  1903. if (isa<BasicBlock>(Order.V))
  1904. Code = bitc::USELIST_CODE_BB;
  1905. else
  1906. Code = bitc::USELIST_CODE_DEFAULT;
  1907. SmallVector<uint64_t, 64> Record(Order.Shuffle.begin(), Order.Shuffle.end());
  1908. Record.push_back(VE.getValueID(Order.V));
  1909. Stream.EmitRecord(Code, Record);
  1910. }
  1911. static void WriteUseListBlock(const Function *F, ValueEnumerator &VE,
  1912. BitstreamWriter &Stream) {
  1913. assert(VE.shouldPreserveUseListOrder() &&
  1914. "Expected to be preserving use-list order");
  1915. auto hasMore = [&]() {
  1916. return !VE.UseListOrders.empty() && VE.UseListOrders.back().F == F;
  1917. };
  1918. if (!hasMore())
  1919. // Nothing to do.
  1920. return;
  1921. Stream.EnterSubblock(bitc::USELIST_BLOCK_ID, 3);
  1922. while (hasMore()) {
  1923. WriteUseList(VE, std::move(VE.UseListOrders.back()), Stream);
  1924. VE.UseListOrders.pop_back();
  1925. }
  1926. Stream.ExitBlock();
  1927. }
  1928. /// WriteFunction - Emit a function body to the module stream.
  1929. static void WriteFunction(const Function &F, ValueEnumerator &VE,
  1930. BitstreamWriter &Stream) {
  1931. Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4);
  1932. VE.incorporateFunction(F);
  1933. SmallVector<unsigned, 64> Vals;
  1934. // Emit the number of basic blocks, so the reader can create them ahead of
  1935. // time.
  1936. Vals.push_back(VE.getBasicBlocks().size());
  1937. Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals);
  1938. Vals.clear();
  1939. // If there are function-local constants, emit them now.
  1940. unsigned CstStart, CstEnd;
  1941. VE.getFunctionConstantRange(CstStart, CstEnd);
  1942. WriteConstants(CstStart, CstEnd, VE, Stream, false);
  1943. // If there is function-local metadata, emit it now.
  1944. WriteFunctionLocalMetadata(F, VE, Stream);
  1945. // Keep a running idea of what the instruction ID is.
  1946. unsigned InstID = CstEnd;
  1947. bool NeedsMetadataAttachment = F.hasMetadata();
  1948. DILocation *LastDL = nullptr;
  1949. // Finally, emit all the instructions, in order.
  1950. for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
  1951. for (BasicBlock::const_iterator I = BB->begin(), E = BB->end();
  1952. I != E; ++I) {
  1953. WriteInstruction(*I, InstID, VE, Stream, Vals);
  1954. if (!I->getType()->isVoidTy())
  1955. ++InstID;
  1956. // If the instruction has metadata, write a metadata attachment later.
  1957. NeedsMetadataAttachment |= I->hasMetadataOtherThanDebugLoc();
  1958. // If the instruction has a debug location, emit it.
  1959. DILocation *DL = I->getDebugLoc();
  1960. if (!DL)
  1961. continue;
  1962. if (DL == LastDL) {
  1963. // Just repeat the same debug loc as last time.
  1964. Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC_AGAIN, Vals);
  1965. continue;
  1966. }
  1967. Vals.push_back(DL->getLine());
  1968. Vals.push_back(DL->getColumn());
  1969. Vals.push_back(VE.getMetadataOrNullID(DL->getScope()));
  1970. Vals.push_back(VE.getMetadataOrNullID(DL->getInlinedAt()));
  1971. Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC, Vals);
  1972. Vals.clear();
  1973. LastDL = DL;
  1974. }
  1975. // Emit names for all the instructions etc.
  1976. WriteValueSymbolTable(F.getValueSymbolTable(), VE, Stream);
  1977. if (NeedsMetadataAttachment)
  1978. WriteMetadataAttachment(F, VE, Stream);
  1979. if (VE.shouldPreserveUseListOrder())
  1980. WriteUseListBlock(&F, VE, Stream);
  1981. VE.purgeFunction();
  1982. Stream.ExitBlock();
  1983. }
  1984. // Emit blockinfo, which defines the standard abbreviations etc.
  1985. static void WriteBlockInfo(const ValueEnumerator &VE, BitstreamWriter &Stream) {
  1986. // We only want to emit block info records for blocks that have multiple
  1987. // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK.
  1988. // Other blocks can define their abbrevs inline.
  1989. Stream.EnterBlockInfoBlock(2);
  1990. { // 8-bit fixed-width VST_ENTRY/VST_BBENTRY strings.
  1991. IntrusiveRefCntPtr<BitCodeAbbrev> Abbv = new BitCodeAbbrev();
  1992. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3));
  1993. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
  1994. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
  1995. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
  1996. if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
  1997. Abbv.get()) != VST_ENTRY_8_ABBREV)
  1998. llvm_unreachable("Unexpected abbrev ordering!");
  1999. }
  2000. { // 7-bit fixed width VST_ENTRY strings.
  2001. IntrusiveRefCntPtr<BitCodeAbbrev> Abbv = new BitCodeAbbrev();
  2002. Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
  2003. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
  2004. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
  2005. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
  2006. if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
  2007. Abbv.get()) != VST_ENTRY_7_ABBREV)
  2008. llvm_unreachable("Unexpected abbrev ordering!");
  2009. }
  2010. { // 6-bit char6 VST_ENTRY strings.
  2011. IntrusiveRefCntPtr<BitCodeAbbrev> Abbv = new BitCodeAbbrev();
  2012. Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
  2013. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
  2014. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
  2015. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
  2016. if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
  2017. Abbv.get()) != VST_ENTRY_6_ABBREV)
  2018. llvm_unreachable("Unexpected abbrev ordering!");
  2019. }
  2020. { // 6-bit char6 VST_BBENTRY strings.
  2021. IntrusiveRefCntPtr<BitCodeAbbrev> Abbv = new BitCodeAbbrev();
  2022. Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY));
  2023. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
  2024. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
  2025. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
  2026. if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
  2027. Abbv.get()) != VST_BBENTRY_6_ABBREV)
  2028. llvm_unreachable("Unexpected abbrev ordering!");
  2029. }
  2030. { // SETTYPE abbrev for CONSTANTS_BLOCK.
  2031. IntrusiveRefCntPtr<BitCodeAbbrev> Abbv = new BitCodeAbbrev();
  2032. Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE));
  2033. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
  2034. VE.computeBitsRequiredForTypeIndicies()));
  2035. if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
  2036. Abbv.get()) != CONSTANTS_SETTYPE_ABBREV)
  2037. llvm_unreachable("Unexpected abbrev ordering!");
  2038. }
  2039. { // INTEGER abbrev for CONSTANTS_BLOCK.
  2040. IntrusiveRefCntPtr<BitCodeAbbrev> Abbv = new BitCodeAbbrev();
  2041. Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER));
  2042. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
  2043. if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
  2044. Abbv.get()) != CONSTANTS_INTEGER_ABBREV)
  2045. llvm_unreachable("Unexpected abbrev ordering!");
  2046. }
  2047. { // CE_CAST abbrev for CONSTANTS_BLOCK.
  2048. IntrusiveRefCntPtr<BitCodeAbbrev> Abbv = new BitCodeAbbrev();
  2049. Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST));
  2050. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // cast opc
  2051. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // typeid
  2052. VE.computeBitsRequiredForTypeIndicies()));
  2053. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id
  2054. if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
  2055. Abbv.get()) != CONSTANTS_CE_CAST_Abbrev)
  2056. llvm_unreachable("Unexpected abbrev ordering!");
  2057. }
  2058. { // NULL abbrev for CONSTANTS_BLOCK.
  2059. IntrusiveRefCntPtr<BitCodeAbbrev> Abbv = new BitCodeAbbrev();
  2060. Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL));
  2061. if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
  2062. Abbv.get()) != CONSTANTS_NULL_Abbrev)
  2063. llvm_unreachable("Unexpected abbrev ordering!");
  2064. }
  2065. // FIXME: This should only use space for first class types!
  2066. { // INST_LOAD abbrev for FUNCTION_BLOCK.
  2067. IntrusiveRefCntPtr<BitCodeAbbrev> Abbv = new BitCodeAbbrev();
  2068. Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD));
  2069. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr
  2070. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty
  2071. VE.computeBitsRequiredForTypeIndicies()));
  2072. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align
  2073. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile
  2074. if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
  2075. Abbv.get()) != FUNCTION_INST_LOAD_ABBREV)
  2076. llvm_unreachable("Unexpected abbrev ordering!");
  2077. }
  2078. { // INST_BINOP abbrev for FUNCTION_BLOCK.
  2079. IntrusiveRefCntPtr<BitCodeAbbrev> Abbv = new BitCodeAbbrev();
  2080. Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP));
  2081. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS
  2082. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS
  2083. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
  2084. if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
  2085. Abbv.get()) != FUNCTION_INST_BINOP_ABBREV)
  2086. llvm_unreachable("Unexpected abbrev ordering!");
  2087. }
  2088. { // INST_BINOP_FLAGS abbrev for FUNCTION_BLOCK.
  2089. IntrusiveRefCntPtr<BitCodeAbbrev> Abbv = new BitCodeAbbrev();
  2090. Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP));
  2091. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS
  2092. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS
  2093. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
  2094. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); // flags
  2095. if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
  2096. Abbv.get()) != FUNCTION_INST_BINOP_FLAGS_ABBREV)
  2097. llvm_unreachable("Unexpected abbrev ordering!");
  2098. }
  2099. { // INST_CAST abbrev for FUNCTION_BLOCK.
  2100. IntrusiveRefCntPtr<BitCodeAbbrev> Abbv = new BitCodeAbbrev();
  2101. Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST));
  2102. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // OpVal
  2103. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty
  2104. VE.computeBitsRequiredForTypeIndicies()));
  2105. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
  2106. if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
  2107. Abbv.get()) != FUNCTION_INST_CAST_ABBREV)
  2108. llvm_unreachable("Unexpected abbrev ordering!");
  2109. }
  2110. { // INST_RET abbrev for FUNCTION_BLOCK.
  2111. IntrusiveRefCntPtr<BitCodeAbbrev> Abbv = new BitCodeAbbrev();
  2112. Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET));
  2113. if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
  2114. Abbv.get()) != FUNCTION_INST_RET_VOID_ABBREV)
  2115. llvm_unreachable("Unexpected abbrev ordering!");
  2116. }
  2117. { // INST_RET abbrev for FUNCTION_BLOCK.
  2118. IntrusiveRefCntPtr<BitCodeAbbrev> Abbv = new BitCodeAbbrev();
  2119. Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET));
  2120. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID
  2121. if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
  2122. Abbv.get()) != FUNCTION_INST_RET_VAL_ABBREV)
  2123. llvm_unreachable("Unexpected abbrev ordering!");
  2124. }
  2125. { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK.
  2126. IntrusiveRefCntPtr<BitCodeAbbrev> Abbv = new BitCodeAbbrev();
  2127. Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE));
  2128. if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
  2129. Abbv.get()) != FUNCTION_INST_UNREACHABLE_ABBREV)
  2130. llvm_unreachable("Unexpected abbrev ordering!");
  2131. }
  2132. {
  2133. IntrusiveRefCntPtr<BitCodeAbbrev> Abbv = new BitCodeAbbrev();
  2134. Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_GEP));
  2135. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));
  2136. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty
  2137. Log2_32_Ceil(VE.getTypes().size() + 1)));
  2138. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
  2139. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
  2140. if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv.get()) !=
  2141. FUNCTION_INST_GEP_ABBREV)
  2142. llvm_unreachable("Unexpected abbrev ordering!");
  2143. }
  2144. Stream.ExitBlock();
  2145. }
  2146. /// WriteModule - Emit the specified module to the bitstream.
  2147. static void WriteModule(const Module *M, BitstreamWriter &Stream,
  2148. bool ShouldPreserveUseListOrder) {
  2149. Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3);
  2150. SmallVector<unsigned, 1> Vals;
  2151. unsigned CurVersion = 1;
  2152. Vals.push_back(CurVersion);
  2153. Stream.EmitRecord(bitc::MODULE_CODE_VERSION, Vals);
  2154. // Analyze the module, enumerating globals, functions, etc.
  2155. ValueEnumerator VE(*M, ShouldPreserveUseListOrder);
  2156. // Emit blockinfo, which defines the standard abbreviations etc.
  2157. WriteBlockInfo(VE, Stream);
  2158. // Emit information about attribute groups.
  2159. WriteAttributeGroupTable(VE, Stream);
  2160. // Emit information about parameter attributes.
  2161. WriteAttributeTable(VE, Stream);
  2162. // Emit information describing all of the types in the module.
  2163. WriteTypeTable(VE, Stream);
  2164. writeComdats(VE, Stream);
  2165. // Emit top-level description of module, including target triple, inline asm,
  2166. // descriptors for global variables, and function prototype info.
  2167. WriteModuleInfo(M, VE, Stream);
  2168. // Emit constants.
  2169. WriteModuleConstants(VE, Stream);
  2170. // Emit metadata.
  2171. WriteModuleMetadata(M, VE, Stream);
  2172. // Emit metadata.
  2173. WriteModuleMetadataStore(M, Stream);
  2174. // Emit names for globals/functions etc.
  2175. WriteValueSymbolTable(M->getValueSymbolTable(), VE, Stream);
  2176. // Emit module-level use-lists.
  2177. if (VE.shouldPreserveUseListOrder())
  2178. WriteUseListBlock(nullptr, VE, Stream);
  2179. // Emit function bodies.
  2180. for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F)
  2181. if (!F->isDeclaration())
  2182. WriteFunction(*F, VE, Stream);
  2183. Stream.ExitBlock();
  2184. }
  2185. /// EmitDarwinBCHeader - If generating a bc file on darwin, we have to emit a
  2186. /// header and trailer to make it compatible with the system archiver. To do
  2187. /// this we emit the following header, and then emit a trailer that pads the
  2188. /// file out to be a multiple of 16 bytes.
  2189. ///
  2190. /// struct bc_header {
  2191. /// uint32_t Magic; // 0x0B17C0DE
  2192. /// uint32_t Version; // Version, currently always 0.
  2193. /// uint32_t BitcodeOffset; // Offset to traditional bitcode file.
  2194. /// uint32_t BitcodeSize; // Size of traditional bitcode file.
  2195. /// uint32_t CPUType; // CPU specifier.
  2196. /// ... potentially more later ...
  2197. /// };
  2198. enum {
  2199. DarwinBCSizeFieldOffset = 3*4, // Offset to bitcode_size.
  2200. DarwinBCHeaderSize = 5*4
  2201. };
  2202. static void WriteInt32ToBuffer(uint32_t Value, SmallVectorImpl<char> &Buffer,
  2203. uint32_t &Position) {
  2204. support::endian::write32le(&Buffer[Position], Value);
  2205. Position += 4;
  2206. }
  2207. static void EmitDarwinBCHeaderAndTrailer(SmallVectorImpl<char> &Buffer,
  2208. const Triple &TT) {
  2209. unsigned CPUType = ~0U;
  2210. // Match x86_64-*, i[3-9]86-*, powerpc-*, powerpc64-*, arm-*, thumb-*,
  2211. // armv[0-9]-*, thumbv[0-9]-*, armv5te-*, or armv6t2-*. The CPUType is a magic
  2212. // number from /usr/include/mach/machine.h. It is ok to reproduce the
  2213. // specific constants here because they are implicitly part of the Darwin ABI.
  2214. enum {
  2215. DARWIN_CPU_ARCH_ABI64 = 0x01000000,
  2216. DARWIN_CPU_TYPE_X86 = 7,
  2217. DARWIN_CPU_TYPE_ARM = 12,
  2218. DARWIN_CPU_TYPE_POWERPC = 18
  2219. };
  2220. Triple::ArchType Arch = TT.getArch();
  2221. if (Arch == Triple::x86_64)
  2222. CPUType = DARWIN_CPU_TYPE_X86 | DARWIN_CPU_ARCH_ABI64;
  2223. else if (Arch == Triple::x86)
  2224. CPUType = DARWIN_CPU_TYPE_X86;
  2225. else if (Arch == Triple::ppc)
  2226. CPUType = DARWIN_CPU_TYPE_POWERPC;
  2227. else if (Arch == Triple::ppc64)
  2228. CPUType = DARWIN_CPU_TYPE_POWERPC | DARWIN_CPU_ARCH_ABI64;
  2229. else if (Arch == Triple::arm || Arch == Triple::thumb)
  2230. CPUType = DARWIN_CPU_TYPE_ARM;
  2231. // Traditional Bitcode starts after header.
  2232. assert(Buffer.size() >= DarwinBCHeaderSize &&
  2233. "Expected header size to be reserved");
  2234. unsigned BCOffset = DarwinBCHeaderSize;
  2235. unsigned BCSize = Buffer.size()-DarwinBCHeaderSize;
  2236. // Write the magic and version.
  2237. unsigned Position = 0;
  2238. WriteInt32ToBuffer(0x0B17C0DE , Buffer, Position);
  2239. WriteInt32ToBuffer(0 , Buffer, Position); // Version.
  2240. WriteInt32ToBuffer(BCOffset , Buffer, Position);
  2241. WriteInt32ToBuffer(BCSize , Buffer, Position);
  2242. WriteInt32ToBuffer(CPUType , Buffer, Position);
  2243. // If the file is not a multiple of 16 bytes, insert dummy padding.
  2244. while (Buffer.size() & 15)
  2245. Buffer.push_back(0);
  2246. }
  2247. /// WriteBitcodeToFile - Write the specified module to the specified output
  2248. /// stream.
  2249. void llvm::WriteBitcodeToFile(const Module *M, raw_ostream &Out,
  2250. bool ShouldPreserveUseListOrder) {
  2251. SmallVector<char, 0> Buffer;
  2252. Buffer.reserve(256*1024);
  2253. // If this is darwin or another generic macho target, reserve space for the
  2254. // header.
  2255. Triple TT(M->getTargetTriple());
  2256. if (TT.isOSDarwin())
  2257. Buffer.insert(Buffer.begin(), DarwinBCHeaderSize, 0);
  2258. // Emit the module into the buffer.
  2259. {
  2260. BitstreamWriter Stream(Buffer);
  2261. // Emit the file header.
  2262. Stream.Emit((unsigned)'B', 8);
  2263. Stream.Emit((unsigned)'C', 8);
  2264. Stream.Emit(0x0, 4);
  2265. Stream.Emit(0xC, 4);
  2266. Stream.Emit(0xE, 4);
  2267. Stream.Emit(0xD, 4);
  2268. // Emit the module.
  2269. WriteModule(M, Stream, ShouldPreserveUseListOrder);
  2270. }
  2271. if (TT.isOSDarwin())
  2272. EmitDarwinBCHeaderAndTrailer(Buffer, TT);
  2273. // Write the generated bitstream to "Out".
  2274. Out.write((char*)&Buffer.front(), Buffer.size());
  2275. }