123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645 |
- //===-- Analysis.cpp - CodeGen LLVM IR Analysis Utilities -----------------===//
- //
- // The LLVM Compiler Infrastructure
- //
- // This file is distributed under the University of Illinois Open Source
- // License. See LICENSE.TXT for details.
- //
- //===----------------------------------------------------------------------===//
- //
- // This file defines several CodeGen-specific LLVM IR analysis utilities.
- //
- //===----------------------------------------------------------------------===//
- #include "llvm/CodeGen/Analysis.h"
- #include "llvm/Analysis/ValueTracking.h"
- #include "llvm/CodeGen/MachineFunction.h"
- #include "llvm/CodeGen/SelectionDAG.h"
- #include "llvm/IR/DataLayout.h"
- #include "llvm/IR/DerivedTypes.h"
- #include "llvm/IR/Function.h"
- #include "llvm/IR/Instructions.h"
- #include "llvm/IR/IntrinsicInst.h"
- #include "llvm/IR/LLVMContext.h"
- #include "llvm/IR/Module.h"
- #include "llvm/Support/ErrorHandling.h"
- #include "llvm/Support/MathExtras.h"
- #include "llvm/Target/TargetLowering.h"
- #include "llvm/Target/TargetSubtargetInfo.h"
- #include "llvm/Transforms/Utils/GlobalStatus.h"
- using namespace llvm;
- /// Compute the linearized index of a member in a nested aggregate/struct/array
- /// by recursing and accumulating CurIndex as long as there are indices in the
- /// index list.
- unsigned llvm::ComputeLinearIndex(Type *Ty,
- const unsigned *Indices,
- const unsigned *IndicesEnd,
- unsigned CurIndex) {
- // Base case: We're done.
- if (Indices && Indices == IndicesEnd)
- return CurIndex;
- // Given a struct type, recursively traverse the elements.
- if (StructType *STy = dyn_cast<StructType>(Ty)) {
- for (StructType::element_iterator EB = STy->element_begin(),
- EI = EB,
- EE = STy->element_end();
- EI != EE; ++EI) {
- if (Indices && *Indices == unsigned(EI - EB))
- return ComputeLinearIndex(*EI, Indices+1, IndicesEnd, CurIndex);
- CurIndex = ComputeLinearIndex(*EI, nullptr, nullptr, CurIndex);
- }
- assert(!Indices && "Unexpected out of bound");
- return CurIndex;
- }
- // Given an array type, recursively traverse the elements.
- else if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
- Type *EltTy = ATy->getElementType();
- unsigned NumElts = ATy->getNumElements();
- // Compute the Linear offset when jumping one element of the array
- unsigned EltLinearOffset = ComputeLinearIndex(EltTy, nullptr, nullptr, 0);
- if (Indices) {
- assert(*Indices < NumElts && "Unexpected out of bound");
- // If the indice is inside the array, compute the index to the requested
- // elt and recurse inside the element with the end of the indices list
- CurIndex += EltLinearOffset* *Indices;
- return ComputeLinearIndex(EltTy, Indices+1, IndicesEnd, CurIndex);
- }
- CurIndex += EltLinearOffset*NumElts;
- return CurIndex;
- }
- // We haven't found the type we're looking for, so keep searching.
- return CurIndex + 1;
- }
- /// ComputeValueVTs - Given an LLVM IR type, compute a sequence of
- /// EVTs that represent all the individual underlying
- /// non-aggregate types that comprise it.
- ///
- /// If Offsets is non-null, it points to a vector to be filled in
- /// with the in-memory offsets of each of the individual values.
- ///
- void llvm::ComputeValueVTs(const TargetLowering &TLI, const DataLayout &DL,
- Type *Ty, SmallVectorImpl<EVT> &ValueVTs,
- SmallVectorImpl<uint64_t> *Offsets,
- uint64_t StartingOffset) {
- // Given a struct type, recursively traverse the elements.
- if (StructType *STy = dyn_cast<StructType>(Ty)) {
- const StructLayout *SL = DL.getStructLayout(STy);
- for (StructType::element_iterator EB = STy->element_begin(),
- EI = EB,
- EE = STy->element_end();
- EI != EE; ++EI)
- ComputeValueVTs(TLI, DL, *EI, ValueVTs, Offsets,
- StartingOffset + SL->getElementOffset(EI - EB));
- return;
- }
- // Given an array type, recursively traverse the elements.
- if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
- Type *EltTy = ATy->getElementType();
- uint64_t EltSize = DL.getTypeAllocSize(EltTy);
- for (unsigned i = 0, e = ATy->getNumElements(); i != e; ++i)
- ComputeValueVTs(TLI, DL, EltTy, ValueVTs, Offsets,
- StartingOffset + i * EltSize);
- return;
- }
- // Interpret void as zero return values.
- if (Ty->isVoidTy())
- return;
- // Base case: we can get an EVT for this LLVM IR type.
- ValueVTs.push_back(TLI.getValueType(DL, Ty));
- if (Offsets)
- Offsets->push_back(StartingOffset);
- }
- /// ExtractTypeInfo - Returns the type info, possibly bitcast, encoded in V.
- GlobalValue *llvm::ExtractTypeInfo(Value *V) {
- V = V->stripPointerCasts();
- GlobalValue *GV = dyn_cast<GlobalValue>(V);
- GlobalVariable *Var = dyn_cast<GlobalVariable>(V);
- if (Var && Var->getName() == "llvm.eh.catch.all.value") {
- assert(Var->hasInitializer() &&
- "The EH catch-all value must have an initializer");
- Value *Init = Var->getInitializer();
- GV = dyn_cast<GlobalValue>(Init);
- if (!GV) V = cast<ConstantPointerNull>(Init);
- }
- assert((GV || isa<ConstantPointerNull>(V)) &&
- "TypeInfo must be a global variable or NULL");
- return GV;
- }
- /// hasInlineAsmMemConstraint - Return true if the inline asm instruction being
- /// processed uses a memory 'm' constraint.
- bool
- llvm::hasInlineAsmMemConstraint(InlineAsm::ConstraintInfoVector &CInfos,
- const TargetLowering &TLI) {
- for (unsigned i = 0, e = CInfos.size(); i != e; ++i) {
- InlineAsm::ConstraintInfo &CI = CInfos[i];
- for (unsigned j = 0, ee = CI.Codes.size(); j != ee; ++j) {
- TargetLowering::ConstraintType CType = TLI.getConstraintType(CI.Codes[j]);
- if (CType == TargetLowering::C_Memory)
- return true;
- }
- // Indirect operand accesses access memory.
- if (CI.isIndirect)
- return true;
- }
- return false;
- }
- /// getFCmpCondCode - Return the ISD condition code corresponding to
- /// the given LLVM IR floating-point condition code. This includes
- /// consideration of global floating-point math flags.
- ///
- ISD::CondCode llvm::getFCmpCondCode(FCmpInst::Predicate Pred) {
- switch (Pred) {
- case FCmpInst::FCMP_FALSE: return ISD::SETFALSE;
- case FCmpInst::FCMP_OEQ: return ISD::SETOEQ;
- case FCmpInst::FCMP_OGT: return ISD::SETOGT;
- case FCmpInst::FCMP_OGE: return ISD::SETOGE;
- case FCmpInst::FCMP_OLT: return ISD::SETOLT;
- case FCmpInst::FCMP_OLE: return ISD::SETOLE;
- case FCmpInst::FCMP_ONE: return ISD::SETONE;
- case FCmpInst::FCMP_ORD: return ISD::SETO;
- case FCmpInst::FCMP_UNO: return ISD::SETUO;
- case FCmpInst::FCMP_UEQ: return ISD::SETUEQ;
- case FCmpInst::FCMP_UGT: return ISD::SETUGT;
- case FCmpInst::FCMP_UGE: return ISD::SETUGE;
- case FCmpInst::FCMP_ULT: return ISD::SETULT;
- case FCmpInst::FCMP_ULE: return ISD::SETULE;
- case FCmpInst::FCMP_UNE: return ISD::SETUNE;
- case FCmpInst::FCMP_TRUE: return ISD::SETTRUE;
- default: llvm_unreachable("Invalid FCmp predicate opcode!");
- }
- }
- ISD::CondCode llvm::getFCmpCodeWithoutNaN(ISD::CondCode CC) {
- switch (CC) {
- case ISD::SETOEQ: case ISD::SETUEQ: return ISD::SETEQ;
- case ISD::SETONE: case ISD::SETUNE: return ISD::SETNE;
- case ISD::SETOLT: case ISD::SETULT: return ISD::SETLT;
- case ISD::SETOLE: case ISD::SETULE: return ISD::SETLE;
- case ISD::SETOGT: case ISD::SETUGT: return ISD::SETGT;
- case ISD::SETOGE: case ISD::SETUGE: return ISD::SETGE;
- default: return CC;
- }
- }
- /// getICmpCondCode - Return the ISD condition code corresponding to
- /// the given LLVM IR integer condition code.
- ///
- ISD::CondCode llvm::getICmpCondCode(ICmpInst::Predicate Pred) {
- switch (Pred) {
- case ICmpInst::ICMP_EQ: return ISD::SETEQ;
- case ICmpInst::ICMP_NE: return ISD::SETNE;
- case ICmpInst::ICMP_SLE: return ISD::SETLE;
- case ICmpInst::ICMP_ULE: return ISD::SETULE;
- case ICmpInst::ICMP_SGE: return ISD::SETGE;
- case ICmpInst::ICMP_UGE: return ISD::SETUGE;
- case ICmpInst::ICMP_SLT: return ISD::SETLT;
- case ICmpInst::ICMP_ULT: return ISD::SETULT;
- case ICmpInst::ICMP_SGT: return ISD::SETGT;
- case ICmpInst::ICMP_UGT: return ISD::SETUGT;
- default:
- llvm_unreachable("Invalid ICmp predicate opcode!");
- }
- }
- static bool isNoopBitcast(Type *T1, Type *T2,
- const TargetLoweringBase& TLI) {
- return T1 == T2 || (T1->isPointerTy() && T2->isPointerTy()) ||
- (isa<VectorType>(T1) && isa<VectorType>(T2) &&
- TLI.isTypeLegal(EVT::getEVT(T1)) && TLI.isTypeLegal(EVT::getEVT(T2)));
- }
- /// Look through operations that will be free to find the earliest source of
- /// this value.
- ///
- /// @param ValLoc If V has aggegate type, we will be interested in a particular
- /// scalar component. This records its address; the reverse of this list gives a
- /// sequence of indices appropriate for an extractvalue to locate the important
- /// value. This value is updated during the function and on exit will indicate
- /// similar information for the Value returned.
- ///
- /// @param DataBits If this function looks through truncate instructions, this
- /// will record the smallest size attained.
- static const Value *getNoopInput(const Value *V,
- SmallVectorImpl<unsigned> &ValLoc,
- unsigned &DataBits,
- const TargetLoweringBase &TLI,
- const DataLayout &DL) {
- while (true) {
- // Try to look through V1; if V1 is not an instruction, it can't be looked
- // through.
- const Instruction *I = dyn_cast<Instruction>(V);
- if (!I || I->getNumOperands() == 0) return V;
- const Value *NoopInput = nullptr;
- Value *Op = I->getOperand(0);
- if (isa<BitCastInst>(I)) {
- // Look through truly no-op bitcasts.
- if (isNoopBitcast(Op->getType(), I->getType(), TLI))
- NoopInput = Op;
- } else if (isa<GetElementPtrInst>(I)) {
- // Look through getelementptr
- if (cast<GetElementPtrInst>(I)->hasAllZeroIndices())
- NoopInput = Op;
- } else if (isa<IntToPtrInst>(I)) {
- // Look through inttoptr.
- // Make sure this isn't a truncating or extending cast. We could
- // support this eventually, but don't bother for now.
- if (!isa<VectorType>(I->getType()) &&
- DL.getPointerSizeInBits() ==
- cast<IntegerType>(Op->getType())->getBitWidth())
- NoopInput = Op;
- } else if (isa<PtrToIntInst>(I)) {
- // Look through ptrtoint.
- // Make sure this isn't a truncating or extending cast. We could
- // support this eventually, but don't bother for now.
- if (!isa<VectorType>(I->getType()) &&
- DL.getPointerSizeInBits() ==
- cast<IntegerType>(I->getType())->getBitWidth())
- NoopInput = Op;
- } else if (isa<TruncInst>(I) &&
- TLI.allowTruncateForTailCall(Op->getType(), I->getType())) {
- DataBits = std::min(DataBits, I->getType()->getPrimitiveSizeInBits());
- NoopInput = Op;
- } else if (isa<CallInst>(I)) {
- // Look through call (skipping callee)
- for (User::const_op_iterator i = I->op_begin(), e = I->op_end() - 1;
- i != e; ++i) {
- unsigned attrInd = i - I->op_begin() + 1;
- if (cast<CallInst>(I)->paramHasAttr(attrInd, Attribute::Returned) &&
- isNoopBitcast((*i)->getType(), I->getType(), TLI)) {
- NoopInput = *i;
- break;
- }
- }
- } else if (isa<InvokeInst>(I)) {
- // Look through invoke (skipping BB, BB, Callee)
- for (User::const_op_iterator i = I->op_begin(), e = I->op_end() - 3;
- i != e; ++i) {
- unsigned attrInd = i - I->op_begin() + 1;
- if (cast<InvokeInst>(I)->paramHasAttr(attrInd, Attribute::Returned) &&
- isNoopBitcast((*i)->getType(), I->getType(), TLI)) {
- NoopInput = *i;
- break;
- }
- }
- } else if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(V)) {
- // Value may come from either the aggregate or the scalar
- ArrayRef<unsigned> InsertLoc = IVI->getIndices();
- if (ValLoc.size() >= InsertLoc.size() &&
- std::equal(InsertLoc.begin(), InsertLoc.end(), ValLoc.rbegin())) {
- // The type being inserted is a nested sub-type of the aggregate; we
- // have to remove those initial indices to get the location we're
- // interested in for the operand.
- ValLoc.resize(ValLoc.size() - InsertLoc.size());
- NoopInput = IVI->getInsertedValueOperand();
- } else {
- // The struct we're inserting into has the value we're interested in, no
- // change of address.
- NoopInput = Op;
- }
- } else if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(V)) {
- // The part we're interested in will inevitably be some sub-section of the
- // previous aggregate. Combine the two paths to obtain the true address of
- // our element.
- ArrayRef<unsigned> ExtractLoc = EVI->getIndices();
- ValLoc.append(ExtractLoc.rbegin(), ExtractLoc.rend());
- NoopInput = Op;
- }
- // Terminate if we couldn't find anything to look through.
- if (!NoopInput)
- return V;
- V = NoopInput;
- }
- }
- /// Return true if this scalar return value only has bits discarded on its path
- /// from the "tail call" to the "ret". This includes the obvious noop
- /// instructions handled by getNoopInput above as well as free truncations (or
- /// extensions prior to the call).
- static bool slotOnlyDiscardsData(const Value *RetVal, const Value *CallVal,
- SmallVectorImpl<unsigned> &RetIndices,
- SmallVectorImpl<unsigned> &CallIndices,
- bool AllowDifferingSizes,
- const TargetLoweringBase &TLI,
- const DataLayout &DL) {
- // Trace the sub-value needed by the return value as far back up the graph as
- // possible, in the hope that it will intersect with the value produced by the
- // call. In the simple case with no "returned" attribute, the hope is actually
- // that we end up back at the tail call instruction itself.
- unsigned BitsRequired = UINT_MAX;
- RetVal = getNoopInput(RetVal, RetIndices, BitsRequired, TLI, DL);
- // If this slot in the value returned is undef, it doesn't matter what the
- // call puts there, it'll be fine.
- if (isa<UndefValue>(RetVal))
- return true;
- // Now do a similar search up through the graph to find where the value
- // actually returned by the "tail call" comes from. In the simple case without
- // a "returned" attribute, the search will be blocked immediately and the loop
- // a Noop.
- unsigned BitsProvided = UINT_MAX;
- CallVal = getNoopInput(CallVal, CallIndices, BitsProvided, TLI, DL);
- // There's no hope if we can't actually trace them to (the same part of!) the
- // same value.
- if (CallVal != RetVal || CallIndices != RetIndices)
- return false;
- // However, intervening truncates may have made the call non-tail. Make sure
- // all the bits that are needed by the "ret" have been provided by the "tail
- // call". FIXME: with sufficiently cunning bit-tracking, we could look through
- // extensions too.
- if (BitsProvided < BitsRequired ||
- (!AllowDifferingSizes && BitsProvided != BitsRequired))
- return false;
- return true;
- }
- /// For an aggregate type, determine whether a given index is within bounds or
- /// not.
- static bool indexReallyValid(CompositeType *T, unsigned Idx) {
- if (ArrayType *AT = dyn_cast<ArrayType>(T))
- return Idx < AT->getNumElements();
- return Idx < cast<StructType>(T)->getNumElements();
- }
- /// Move the given iterators to the next leaf type in depth first traversal.
- ///
- /// Performs a depth-first traversal of the type as specified by its arguments,
- /// stopping at the next leaf node (which may be a legitimate scalar type or an
- /// empty struct or array).
- ///
- /// @param SubTypes List of the partial components making up the type from
- /// outermost to innermost non-empty aggregate. The element currently
- /// represented is SubTypes.back()->getTypeAtIndex(Path.back() - 1).
- ///
- /// @param Path Set of extractvalue indices leading from the outermost type
- /// (SubTypes[0]) to the leaf node currently represented.
- ///
- /// @returns true if a new type was found, false otherwise. Calling this
- /// function again on a finished iterator will repeatedly return
- /// false. SubTypes.back()->getTypeAtIndex(Path.back()) is either an empty
- /// aggregate or a non-aggregate
- static bool advanceToNextLeafType(SmallVectorImpl<CompositeType *> &SubTypes,
- SmallVectorImpl<unsigned> &Path) {
- // First march back up the tree until we can successfully increment one of the
- // coordinates in Path.
- while (!Path.empty() && !indexReallyValid(SubTypes.back(), Path.back() + 1)) {
- Path.pop_back();
- SubTypes.pop_back();
- }
- // If we reached the top, then the iterator is done.
- if (Path.empty())
- return false;
- // We know there's *some* valid leaf now, so march back down the tree picking
- // out the left-most element at each node.
- ++Path.back();
- Type *DeeperType = SubTypes.back()->getTypeAtIndex(Path.back());
- while (DeeperType->isAggregateType()) {
- CompositeType *CT = cast<CompositeType>(DeeperType);
- if (!indexReallyValid(CT, 0))
- return true;
- SubTypes.push_back(CT);
- Path.push_back(0);
- DeeperType = CT->getTypeAtIndex(0U);
- }
- return true;
- }
- /// Find the first non-empty, scalar-like type in Next and setup the iterator
- /// components.
- ///
- /// Assuming Next is an aggregate of some kind, this function will traverse the
- /// tree from left to right (i.e. depth-first) looking for the first
- /// non-aggregate type which will play a role in function return.
- ///
- /// For example, if Next was {[0 x i64], {{}, i32, {}}, i32} then we would setup
- /// Path as [1, 1] and SubTypes as [Next, {{}, i32, {}}] to represent the first
- /// i32 in that type.
- static bool firstRealType(Type *Next,
- SmallVectorImpl<CompositeType *> &SubTypes,
- SmallVectorImpl<unsigned> &Path) {
- // First initialise the iterator components to the first "leaf" node
- // (i.e. node with no valid sub-type at any index, so {} does count as a leaf
- // despite nominally being an aggregate).
- while (Next->isAggregateType() &&
- indexReallyValid(cast<CompositeType>(Next), 0)) {
- SubTypes.push_back(cast<CompositeType>(Next));
- Path.push_back(0);
- Next = cast<CompositeType>(Next)->getTypeAtIndex(0U);
- }
- // If there's no Path now, Next was originally scalar already (or empty
- // leaf). We're done.
- if (Path.empty())
- return true;
- // Otherwise, use normal iteration to keep looking through the tree until we
- // find a non-aggregate type.
- while (SubTypes.back()->getTypeAtIndex(Path.back())->isAggregateType()) {
- if (!advanceToNextLeafType(SubTypes, Path))
- return false;
- }
- return true;
- }
- /// Set the iterator data-structures to the next non-empty, non-aggregate
- /// subtype.
- static bool nextRealType(SmallVectorImpl<CompositeType *> &SubTypes,
- SmallVectorImpl<unsigned> &Path) {
- do {
- if (!advanceToNextLeafType(SubTypes, Path))
- return false;
- assert(!Path.empty() && "found a leaf but didn't set the path?");
- } while (SubTypes.back()->getTypeAtIndex(Path.back())->isAggregateType());
- return true;
- }
- /// Test if the given instruction is in a position to be optimized
- /// with a tail-call. This roughly means that it's in a block with
- /// a return and there's nothing that needs to be scheduled
- /// between it and the return.
- ///
- /// This function only tests target-independent requirements.
- bool llvm::isInTailCallPosition(ImmutableCallSite CS, const TargetMachine &TM) {
- const Instruction *I = CS.getInstruction();
- const BasicBlock *ExitBB = I->getParent();
- const TerminatorInst *Term = ExitBB->getTerminator();
- const ReturnInst *Ret = dyn_cast<ReturnInst>(Term);
- // The block must end in a return statement or unreachable.
- //
- // FIXME: Decline tailcall if it's not guaranteed and if the block ends in
- // an unreachable, for now. The way tailcall optimization is currently
- // implemented means it will add an epilogue followed by a jump. That is
- // not profitable. Also, if the callee is a special function (e.g.
- // longjmp on x86), it can end up causing miscompilation that has not
- // been fully understood.
- if (!Ret &&
- (!TM.Options.GuaranteedTailCallOpt || !isa<UnreachableInst>(Term)))
- return false;
- // If I will have a chain, make sure no other instruction that will have a
- // chain interposes between I and the return.
- if (I->mayHaveSideEffects() || I->mayReadFromMemory() ||
- !isSafeToSpeculativelyExecute(I))
- for (BasicBlock::const_iterator BBI = std::prev(ExitBB->end(), 2);; --BBI) {
- if (&*BBI == I)
- break;
- // Debug info intrinsics do not get in the way of tail call optimization.
- if (isa<DbgInfoIntrinsic>(BBI))
- continue;
- if (BBI->mayHaveSideEffects() || BBI->mayReadFromMemory() ||
- !isSafeToSpeculativelyExecute(BBI))
- return false;
- }
- const Function *F = ExitBB->getParent();
- return returnTypeIsEligibleForTailCall(
- F, I, Ret, *TM.getSubtargetImpl(*F)->getTargetLowering());
- }
- bool llvm::returnTypeIsEligibleForTailCall(const Function *F,
- const Instruction *I,
- const ReturnInst *Ret,
- const TargetLoweringBase &TLI) {
- // If the block ends with a void return or unreachable, it doesn't matter
- // what the call's return type is.
- if (!Ret || Ret->getNumOperands() == 0) return true;
- // If the return value is undef, it doesn't matter what the call's
- // return type is.
- if (isa<UndefValue>(Ret->getOperand(0))) return true;
- // Make sure the attributes attached to each return are compatible.
- AttrBuilder CallerAttrs(F->getAttributes(),
- AttributeSet::ReturnIndex);
- AttrBuilder CalleeAttrs(cast<CallInst>(I)->getAttributes(),
- AttributeSet::ReturnIndex);
- // Noalias is completely benign as far as calling convention goes, it
- // shouldn't affect whether the call is a tail call.
- CallerAttrs = CallerAttrs.removeAttribute(Attribute::NoAlias);
- CalleeAttrs = CalleeAttrs.removeAttribute(Attribute::NoAlias);
- bool AllowDifferingSizes = true;
- if (CallerAttrs.contains(Attribute::ZExt)) {
- if (!CalleeAttrs.contains(Attribute::ZExt))
- return false;
- AllowDifferingSizes = false;
- CallerAttrs.removeAttribute(Attribute::ZExt);
- CalleeAttrs.removeAttribute(Attribute::ZExt);
- } else if (CallerAttrs.contains(Attribute::SExt)) {
- if (!CalleeAttrs.contains(Attribute::SExt))
- return false;
- AllowDifferingSizes = false;
- CallerAttrs.removeAttribute(Attribute::SExt);
- CalleeAttrs.removeAttribute(Attribute::SExt);
- }
- // If they're still different, there's some facet we don't understand
- // (currently only "inreg", but in future who knows). It may be OK but the
- // only safe option is to reject the tail call.
- if (CallerAttrs != CalleeAttrs)
- return false;
- const Value *RetVal = Ret->getOperand(0), *CallVal = I;
- SmallVector<unsigned, 4> RetPath, CallPath;
- SmallVector<CompositeType *, 4> RetSubTypes, CallSubTypes;
- bool RetEmpty = !firstRealType(RetVal->getType(), RetSubTypes, RetPath);
- bool CallEmpty = !firstRealType(CallVal->getType(), CallSubTypes, CallPath);
- // Nothing's actually returned, it doesn't matter what the callee put there
- // it's a valid tail call.
- if (RetEmpty)
- return true;
- // Iterate pairwise through each of the value types making up the tail call
- // and the corresponding return. For each one we want to know whether it's
- // essentially going directly from the tail call to the ret, via operations
- // that end up not generating any code.
- //
- // We allow a certain amount of covariance here. For example it's permitted
- // for the tail call to define more bits than the ret actually cares about
- // (e.g. via a truncate).
- do {
- if (CallEmpty) {
- // We've exhausted the values produced by the tail call instruction, the
- // rest are essentially undef. The type doesn't really matter, but we need
- // *something*.
- Type *SlotType = RetSubTypes.back()->getTypeAtIndex(RetPath.back());
- CallVal = UndefValue::get(SlotType);
- }
- // The manipulations performed when we're looking through an insertvalue or
- // an extractvalue would happen at the front of the RetPath list, so since
- // we have to copy it anyway it's more efficient to create a reversed copy.
- SmallVector<unsigned, 4> TmpRetPath(RetPath.rbegin(), RetPath.rend());
- SmallVector<unsigned, 4> TmpCallPath(CallPath.rbegin(), CallPath.rend());
- // Finally, we can check whether the value produced by the tail call at this
- // index is compatible with the value we return.
- if (!slotOnlyDiscardsData(RetVal, CallVal, TmpRetPath, TmpCallPath,
- AllowDifferingSizes, TLI,
- F->getParent()->getDataLayout()))
- return false;
- CallEmpty = !nextRealType(CallSubTypes, CallPath);
- } while(nextRealType(RetSubTypes, RetPath));
- return true;
- }
- bool llvm::canBeOmittedFromSymbolTable(const GlobalValue *GV) {
- if (!GV->hasLinkOnceODRLinkage())
- return false;
- if (GV->hasUnnamedAddr())
- return true;
- // If it is a non constant variable, it needs to be uniqued across shared
- // objects.
- if (const GlobalVariable *Var = dyn_cast<GlobalVariable>(GV)) {
- if (!Var->isConstant())
- return false;
- }
- // An alias can point to a variable. We could try to resolve the alias to
- // decide, but for now just don't hide them.
- if (isa<GlobalAlias>(GV))
- return false;
- GlobalStatus GS;
- if (GlobalStatus::analyzeGlobal(GV, GS))
- return false;
- return !GS.IsCompared;
- }
|