12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832 |
- //===- CodeGenPrepare.cpp - Prepare a function for code generation --------===//
- //
- // The LLVM Compiler Infrastructure
- //
- // This file is distributed under the University of Illinois Open Source
- // License. See LICENSE.TXT for details.
- //
- //===----------------------------------------------------------------------===//
- //
- // This pass munges the code in the input function to better prepare it for
- // SelectionDAG-based code generation. This works around limitations in it's
- // basic-block-at-a-time approach. It should eventually be removed.
- //
- //===----------------------------------------------------------------------===//
- #include "llvm/CodeGen/Passes.h"
- #include "llvm/ADT/DenseMap.h"
- #include "llvm/ADT/SmallSet.h"
- #include "llvm/ADT/Statistic.h"
- #include "llvm/Analysis/InstructionSimplify.h"
- #include "llvm/Analysis/TargetLibraryInfo.h"
- #include "llvm/Analysis/TargetTransformInfo.h"
- #include "llvm/IR/CallSite.h"
- #include "llvm/IR/Constants.h"
- #include "llvm/IR/DataLayout.h"
- #include "llvm/IR/DerivedTypes.h"
- #include "llvm/IR/Dominators.h"
- #include "llvm/IR/Function.h"
- #include "llvm/IR/GetElementPtrTypeIterator.h"
- #include "llvm/IR/IRBuilder.h"
- #include "llvm/IR/InlineAsm.h"
- #include "llvm/IR/Instructions.h"
- #include "llvm/IR/IntrinsicInst.h"
- #include "llvm/IR/MDBuilder.h"
- #include "llvm/IR/PatternMatch.h"
- #include "llvm/IR/Statepoint.h"
- #include "llvm/IR/ValueHandle.h"
- #include "llvm/IR/ValueMap.h"
- #include "llvm/Pass.h"
- #include "llvm/Support/CommandLine.h"
- #include "llvm/Support/Debug.h"
- #include "llvm/Support/raw_ostream.h"
- #include "llvm/Target/TargetLowering.h"
- #include "llvm/Target/TargetSubtargetInfo.h"
- #include "llvm/Transforms/Utils/BasicBlockUtils.h"
- #include "llvm/Transforms/Utils/BuildLibCalls.h"
- #include "llvm/Transforms/Utils/BypassSlowDivision.h"
- #include "llvm/Transforms/Utils/Local.h"
- #include "llvm/Transforms/Utils/SimplifyLibCalls.h"
- using namespace llvm;
- using namespace llvm::PatternMatch;
- #define DEBUG_TYPE "codegenprepare"
- STATISTIC(NumBlocksElim, "Number of blocks eliminated");
- STATISTIC(NumPHIsElim, "Number of trivial PHIs eliminated");
- STATISTIC(NumGEPsElim, "Number of GEPs converted to casts");
- STATISTIC(NumCmpUses, "Number of uses of Cmp expressions replaced with uses of "
- "sunken Cmps");
- STATISTIC(NumCastUses, "Number of uses of Cast expressions replaced with uses "
- "of sunken Casts");
- STATISTIC(NumMemoryInsts, "Number of memory instructions whose address "
- "computations were sunk");
- STATISTIC(NumExtsMoved, "Number of [s|z]ext instructions combined with loads");
- STATISTIC(NumExtUses, "Number of uses of [s|z]ext instructions optimized");
- STATISTIC(NumRetsDup, "Number of return instructions duplicated");
- STATISTIC(NumDbgValueMoved, "Number of debug value instructions moved");
- STATISTIC(NumSelectsExpanded, "Number of selects turned into branches");
- STATISTIC(NumAndCmpsMoved, "Number of and/cmp's pushed into branches");
- STATISTIC(NumStoreExtractExposed, "Number of store(extractelement) exposed");
- static cl::opt<bool> DisableBranchOpts(
- "disable-cgp-branch-opts", cl::Hidden, cl::init(false),
- cl::desc("Disable branch optimizations in CodeGenPrepare"));
- static cl::opt<bool>
- DisableGCOpts("disable-cgp-gc-opts", cl::Hidden, cl::init(false),
- cl::desc("Disable GC optimizations in CodeGenPrepare"));
- static cl::opt<bool> DisableSelectToBranch(
- "disable-cgp-select2branch", cl::Hidden, cl::init(false),
- cl::desc("Disable select to branch conversion."));
- static cl::opt<bool> AddrSinkUsingGEPs(
- "addr-sink-using-gep", cl::Hidden, cl::init(false),
- cl::desc("Address sinking in CGP using GEPs."));
- static cl::opt<bool> EnableAndCmpSinking(
- "enable-andcmp-sinking", cl::Hidden, cl::init(true),
- cl::desc("Enable sinkinig and/cmp into branches."));
- static cl::opt<bool> DisableStoreExtract(
- "disable-cgp-store-extract", cl::Hidden, cl::init(false),
- cl::desc("Disable store(extract) optimizations in CodeGenPrepare"));
- static cl::opt<bool> StressStoreExtract(
- "stress-cgp-store-extract", cl::Hidden, cl::init(false),
- cl::desc("Stress test store(extract) optimizations in CodeGenPrepare"));
- static cl::opt<bool> DisableExtLdPromotion(
- "disable-cgp-ext-ld-promotion", cl::Hidden, cl::init(false),
- cl::desc("Disable ext(promotable(ld)) -> promoted(ext(ld)) optimization in "
- "CodeGenPrepare"));
- static cl::opt<bool> StressExtLdPromotion(
- "stress-cgp-ext-ld-promotion", cl::Hidden, cl::init(false),
- cl::desc("Stress test ext(promotable(ld)) -> promoted(ext(ld)) "
- "optimization in CodeGenPrepare"));
- namespace {
- typedef SmallPtrSet<Instruction *, 16> SetOfInstrs;
- struct TypeIsSExt {
- Type *Ty;
- bool IsSExt;
- TypeIsSExt(Type *Ty, bool IsSExt) : Ty(Ty), IsSExt(IsSExt) {}
- };
- typedef DenseMap<Instruction *, TypeIsSExt> InstrToOrigTy;
- class TypePromotionTransaction;
- class CodeGenPrepare : public FunctionPass {
- /// TLI - Keep a pointer of a TargetLowering to consult for determining
- /// transformation profitability.
- const TargetMachine *TM;
- const TargetLowering *TLI;
- const TargetTransformInfo *TTI;
- const TargetLibraryInfo *TLInfo;
- /// CurInstIterator - As we scan instructions optimizing them, this is the
- /// next instruction to optimize. Xforms that can invalidate this should
- /// update it.
- BasicBlock::iterator CurInstIterator;
- /// Keeps track of non-local addresses that have been sunk into a block.
- /// This allows us to avoid inserting duplicate code for blocks with
- /// multiple load/stores of the same address.
- ValueMap<Value*, Value*> SunkAddrs;
- /// Keeps track of all instructions inserted for the current function.
- SetOfInstrs InsertedInsts;
- /// Keeps track of the type of the related instruction before their
- /// promotion for the current function.
- InstrToOrigTy PromotedInsts;
- /// ModifiedDT - If CFG is modified in anyway.
- bool ModifiedDT;
- /// OptSize - True if optimizing for size.
- bool OptSize;
- /// DataLayout for the Function being processed.
- const DataLayout *DL;
- public:
- static char ID; // Pass identification, replacement for typeid
- explicit CodeGenPrepare(const TargetMachine *TM = nullptr)
- : FunctionPass(ID), TM(TM), TLI(nullptr), TTI(nullptr), DL(nullptr) {
- initializeCodeGenPreparePass(*PassRegistry::getPassRegistry());
- }
- bool runOnFunction(Function &F) override;
- const char *getPassName() const override { return "CodeGen Prepare"; }
- void getAnalysisUsage(AnalysisUsage &AU) const override {
- AU.addPreserved<DominatorTreeWrapperPass>();
- AU.addRequired<TargetLibraryInfoWrapperPass>();
- AU.addRequired<TargetTransformInfoWrapperPass>();
- }
- private:
- bool EliminateFallThrough(Function &F);
- bool EliminateMostlyEmptyBlocks(Function &F);
- bool CanMergeBlocks(const BasicBlock *BB, const BasicBlock *DestBB) const;
- void EliminateMostlyEmptyBlock(BasicBlock *BB);
- bool OptimizeBlock(BasicBlock &BB, bool& ModifiedDT);
- bool OptimizeInst(Instruction *I, bool& ModifiedDT);
- bool OptimizeMemoryInst(Instruction *I, Value *Addr,
- Type *AccessTy, unsigned AS);
- bool OptimizeInlineAsmInst(CallInst *CS);
- bool OptimizeCallInst(CallInst *CI, bool& ModifiedDT);
- bool MoveExtToFormExtLoad(Instruction *&I);
- bool OptimizeExtUses(Instruction *I);
- bool OptimizeSelectInst(SelectInst *SI);
- bool OptimizeShuffleVectorInst(ShuffleVectorInst *SI);
- bool OptimizeExtractElementInst(Instruction *Inst);
- bool DupRetToEnableTailCallOpts(BasicBlock *BB);
- bool PlaceDbgValues(Function &F);
- bool sinkAndCmp(Function &F);
- bool ExtLdPromotion(TypePromotionTransaction &TPT, LoadInst *&LI,
- Instruction *&Inst,
- const SmallVectorImpl<Instruction *> &Exts,
- unsigned CreatedInstCost);
- bool splitBranchCondition(Function &F);
- bool simplifyOffsetableRelocate(Instruction &I);
- };
- }
- char CodeGenPrepare::ID = 0;
- INITIALIZE_TM_PASS(CodeGenPrepare, "codegenprepare",
- "Optimize for code generation", false, false)
- FunctionPass *llvm::createCodeGenPreparePass(const TargetMachine *TM) {
- return new CodeGenPrepare(TM);
- }
- bool CodeGenPrepare::runOnFunction(Function &F) {
- if (skipOptnoneFunction(F))
- return false;
- DL = &F.getParent()->getDataLayout();
- bool EverMadeChange = false;
- // Clear per function information.
- InsertedInsts.clear();
- PromotedInsts.clear();
- ModifiedDT = false;
- if (TM)
- TLI = TM->getSubtargetImpl(F)->getTargetLowering();
- TLInfo = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
- TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
- OptSize = F.hasFnAttribute(Attribute::OptimizeForSize);
- /// This optimization identifies DIV instructions that can be
- /// profitably bypassed and carried out with a shorter, faster divide.
- if (!OptSize && TLI && TLI->isSlowDivBypassed()) {
- const DenseMap<unsigned int, unsigned int> &BypassWidths =
- TLI->getBypassSlowDivWidths();
- for (Function::iterator I = F.begin(); I != F.end(); I++)
- EverMadeChange |= bypassSlowDivision(F, I, BypassWidths);
- }
- // Eliminate blocks that contain only PHI nodes and an
- // unconditional branch.
- EverMadeChange |= EliminateMostlyEmptyBlocks(F);
- // llvm.dbg.value is far away from the value then iSel may not be able
- // handle it properly. iSel will drop llvm.dbg.value if it can not
- // find a node corresponding to the value.
- EverMadeChange |= PlaceDbgValues(F);
- // If there is a mask, compare against zero, and branch that can be combined
- // into a single target instruction, push the mask and compare into branch
- // users. Do this before OptimizeBlock -> OptimizeInst ->
- // OptimizeCmpExpression, which perturbs the pattern being searched for.
- if (!DisableBranchOpts) {
- EverMadeChange |= sinkAndCmp(F);
- EverMadeChange |= splitBranchCondition(F);
- }
- bool MadeChange = true;
- while (MadeChange) {
- MadeChange = false;
- for (Function::iterator I = F.begin(); I != F.end(); ) {
- BasicBlock *BB = I++;
- bool ModifiedDTOnIteration = false;
- MadeChange |= OptimizeBlock(*BB, ModifiedDTOnIteration);
- // Restart BB iteration if the dominator tree of the Function was changed
- if (ModifiedDTOnIteration)
- break;
- }
- EverMadeChange |= MadeChange;
- }
- SunkAddrs.clear();
- if (!DisableBranchOpts) {
- MadeChange = false;
- SmallPtrSet<BasicBlock*, 8> WorkList;
- for (BasicBlock &BB : F) {
- SmallVector<BasicBlock *, 2> Successors(succ_begin(&BB), succ_end(&BB));
- MadeChange |= ConstantFoldTerminator(&BB, true);
- if (!MadeChange) continue;
- for (SmallVectorImpl<BasicBlock*>::iterator
- II = Successors.begin(), IE = Successors.end(); II != IE; ++II)
- if (pred_begin(*II) == pred_end(*II))
- WorkList.insert(*II);
- }
- // Delete the dead blocks and any of their dead successors.
- MadeChange |= !WorkList.empty();
- while (!WorkList.empty()) {
- BasicBlock *BB = *WorkList.begin();
- WorkList.erase(BB);
- SmallVector<BasicBlock*, 2> Successors(succ_begin(BB), succ_end(BB));
- DeleteDeadBlock(BB);
- for (SmallVectorImpl<BasicBlock*>::iterator
- II = Successors.begin(), IE = Successors.end(); II != IE; ++II)
- if (pred_begin(*II) == pred_end(*II))
- WorkList.insert(*II);
- }
- // Merge pairs of basic blocks with unconditional branches, connected by
- // a single edge.
- if (EverMadeChange || MadeChange)
- MadeChange |= EliminateFallThrough(F);
- EverMadeChange |= MadeChange;
- }
- if (!DisableGCOpts) {
- SmallVector<Instruction *, 2> Statepoints;
- for (BasicBlock &BB : F)
- for (Instruction &I : BB)
- if (isStatepoint(I))
- Statepoints.push_back(&I);
- for (auto &I : Statepoints)
- EverMadeChange |= simplifyOffsetableRelocate(*I);
- }
- return EverMadeChange;
- }
- /// EliminateFallThrough - Merge basic blocks which are connected
- /// by a single edge, where one of the basic blocks has a single successor
- /// pointing to the other basic block, which has a single predecessor.
- bool CodeGenPrepare::EliminateFallThrough(Function &F) {
- bool Changed = false;
- // Scan all of the blocks in the function, except for the entry block.
- for (Function::iterator I = std::next(F.begin()), E = F.end(); I != E;) {
- BasicBlock *BB = I++;
- // If the destination block has a single pred, then this is a trivial
- // edge, just collapse it.
- BasicBlock *SinglePred = BB->getSinglePredecessor();
- // Don't merge if BB's address is taken.
- if (!SinglePred || SinglePred == BB || BB->hasAddressTaken()) continue;
- BranchInst *Term = dyn_cast<BranchInst>(SinglePred->getTerminator());
- if (Term && !Term->isConditional()) {
- Changed = true;
- DEBUG(dbgs() << "To merge:\n"<< *SinglePred << "\n\n\n");
- // Remember if SinglePred was the entry block of the function.
- // If so, we will need to move BB back to the entry position.
- bool isEntry = SinglePred == &SinglePred->getParent()->getEntryBlock();
- MergeBasicBlockIntoOnlyPred(BB, nullptr);
- if (isEntry && BB != &BB->getParent()->getEntryBlock())
- BB->moveBefore(&BB->getParent()->getEntryBlock());
- // We have erased a block. Update the iterator.
- I = BB;
- }
- }
- return Changed;
- }
- /// EliminateMostlyEmptyBlocks - eliminate blocks that contain only PHI nodes,
- /// debug info directives, and an unconditional branch. Passes before isel
- /// (e.g. LSR/loopsimplify) often split edges in ways that are non-optimal for
- /// isel. Start by eliminating these blocks so we can split them the way we
- /// want them.
- bool CodeGenPrepare::EliminateMostlyEmptyBlocks(Function &F) {
- bool MadeChange = false;
- // Note that this intentionally skips the entry block.
- for (Function::iterator I = std::next(F.begin()), E = F.end(); I != E;) {
- BasicBlock *BB = I++;
- // If this block doesn't end with an uncond branch, ignore it.
- BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator());
- if (!BI || !BI->isUnconditional())
- continue;
- // If the instruction before the branch (skipping debug info) isn't a phi
- // node, then other stuff is happening here.
- BasicBlock::iterator BBI = BI;
- if (BBI != BB->begin()) {
- --BBI;
- while (isa<DbgInfoIntrinsic>(BBI)) {
- if (BBI == BB->begin())
- break;
- --BBI;
- }
- if (!isa<DbgInfoIntrinsic>(BBI) && !isa<PHINode>(BBI))
- continue;
- }
- // Do not break infinite loops.
- BasicBlock *DestBB = BI->getSuccessor(0);
- if (DestBB == BB)
- continue;
- if (!CanMergeBlocks(BB, DestBB))
- continue;
- EliminateMostlyEmptyBlock(BB);
- MadeChange = true;
- }
- return MadeChange;
- }
- /// CanMergeBlocks - Return true if we can merge BB into DestBB if there is a
- /// single uncond branch between them, and BB contains no other non-phi
- /// instructions.
- bool CodeGenPrepare::CanMergeBlocks(const BasicBlock *BB,
- const BasicBlock *DestBB) const {
- // We only want to eliminate blocks whose phi nodes are used by phi nodes in
- // the successor. If there are more complex condition (e.g. preheaders),
- // don't mess around with them.
- BasicBlock::const_iterator BBI = BB->begin();
- while (const PHINode *PN = dyn_cast<PHINode>(BBI++)) {
- for (const User *U : PN->users()) {
- const Instruction *UI = cast<Instruction>(U);
- if (UI->getParent() != DestBB || !isa<PHINode>(UI))
- return false;
- // If User is inside DestBB block and it is a PHINode then check
- // incoming value. If incoming value is not from BB then this is
- // a complex condition (e.g. preheaders) we want to avoid here.
- if (UI->getParent() == DestBB) {
- if (const PHINode *UPN = dyn_cast<PHINode>(UI))
- for (unsigned I = 0, E = UPN->getNumIncomingValues(); I != E; ++I) {
- Instruction *Insn = dyn_cast<Instruction>(UPN->getIncomingValue(I));
- if (Insn && Insn->getParent() == BB &&
- Insn->getParent() != UPN->getIncomingBlock(I))
- return false;
- }
- }
- }
- }
- // If BB and DestBB contain any common predecessors, then the phi nodes in BB
- // and DestBB may have conflicting incoming values for the block. If so, we
- // can't merge the block.
- const PHINode *DestBBPN = dyn_cast<PHINode>(DestBB->begin());
- if (!DestBBPN) return true; // no conflict.
- // Collect the preds of BB.
- SmallPtrSet<const BasicBlock*, 16> BBPreds;
- if (const PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) {
- // It is faster to get preds from a PHI than with pred_iterator.
- for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i)
- BBPreds.insert(BBPN->getIncomingBlock(i));
- } else {
- BBPreds.insert(pred_begin(BB), pred_end(BB));
- }
- // Walk the preds of DestBB.
- for (unsigned i = 0, e = DestBBPN->getNumIncomingValues(); i != e; ++i) {
- BasicBlock *Pred = DestBBPN->getIncomingBlock(i);
- if (BBPreds.count(Pred)) { // Common predecessor?
- BBI = DestBB->begin();
- while (const PHINode *PN = dyn_cast<PHINode>(BBI++)) {
- const Value *V1 = PN->getIncomingValueForBlock(Pred);
- const Value *V2 = PN->getIncomingValueForBlock(BB);
- // If V2 is a phi node in BB, look up what the mapped value will be.
- if (const PHINode *V2PN = dyn_cast<PHINode>(V2))
- if (V2PN->getParent() == BB)
- V2 = V2PN->getIncomingValueForBlock(Pred);
- // If there is a conflict, bail out.
- if (V1 != V2) return false;
- }
- }
- }
- return true;
- }
- /// EliminateMostlyEmptyBlock - Eliminate a basic block that have only phi's and
- /// an unconditional branch in it.
- void CodeGenPrepare::EliminateMostlyEmptyBlock(BasicBlock *BB) {
- BranchInst *BI = cast<BranchInst>(BB->getTerminator());
- BasicBlock *DestBB = BI->getSuccessor(0);
- DEBUG(dbgs() << "MERGING MOSTLY EMPTY BLOCKS - BEFORE:\n" << *BB << *DestBB);
- // If the destination block has a single pred, then this is a trivial edge,
- // just collapse it.
- if (BasicBlock *SinglePred = DestBB->getSinglePredecessor()) {
- if (SinglePred != DestBB) {
- // Remember if SinglePred was the entry block of the function. If so, we
- // will need to move BB back to the entry position.
- bool isEntry = SinglePred == &SinglePred->getParent()->getEntryBlock();
- MergeBasicBlockIntoOnlyPred(DestBB, nullptr);
- if (isEntry && BB != &BB->getParent()->getEntryBlock())
- BB->moveBefore(&BB->getParent()->getEntryBlock());
- DEBUG(dbgs() << "AFTER:\n" << *DestBB << "\n\n\n");
- return;
- }
- }
- // Otherwise, we have multiple predecessors of BB. Update the PHIs in DestBB
- // to handle the new incoming edges it is about to have.
- PHINode *PN;
- for (BasicBlock::iterator BBI = DestBB->begin();
- (PN = dyn_cast<PHINode>(BBI)); ++BBI) {
- // Remove the incoming value for BB, and remember it.
- Value *InVal = PN->removeIncomingValue(BB, false);
- // Two options: either the InVal is a phi node defined in BB or it is some
- // value that dominates BB.
- PHINode *InValPhi = dyn_cast<PHINode>(InVal);
- if (InValPhi && InValPhi->getParent() == BB) {
- // Add all of the input values of the input PHI as inputs of this phi.
- for (unsigned i = 0, e = InValPhi->getNumIncomingValues(); i != e; ++i)
- PN->addIncoming(InValPhi->getIncomingValue(i),
- InValPhi->getIncomingBlock(i));
- } else {
- // Otherwise, add one instance of the dominating value for each edge that
- // we will be adding.
- if (PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) {
- for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i)
- PN->addIncoming(InVal, BBPN->getIncomingBlock(i));
- } else {
- for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
- PN->addIncoming(InVal, *PI);
- }
- }
- }
- // The PHIs are now updated, change everything that refers to BB to use
- // DestBB and remove BB.
- BB->replaceAllUsesWith(DestBB);
- BB->eraseFromParent();
- ++NumBlocksElim;
- DEBUG(dbgs() << "AFTER:\n" << *DestBB << "\n\n\n");
- }
- // Computes a map of base pointer relocation instructions to corresponding
- // derived pointer relocation instructions given a vector of all relocate calls
- static void computeBaseDerivedRelocateMap(
- const SmallVectorImpl<User *> &AllRelocateCalls,
- DenseMap<IntrinsicInst *, SmallVector<IntrinsicInst *, 2>> &
- RelocateInstMap) {
- // Collect information in two maps: one primarily for locating the base object
- // while filling the second map; the second map is the final structure holding
- // a mapping between Base and corresponding Derived relocate calls
- DenseMap<std::pair<unsigned, unsigned>, IntrinsicInst *> RelocateIdxMap;
- for (auto &U : AllRelocateCalls) {
- GCRelocateOperands ThisRelocate(U);
- IntrinsicInst *I = cast<IntrinsicInst>(U);
- auto K = std::make_pair(ThisRelocate.getBasePtrIndex(),
- ThisRelocate.getDerivedPtrIndex());
- RelocateIdxMap.insert(std::make_pair(K, I));
- }
- for (auto &Item : RelocateIdxMap) {
- std::pair<unsigned, unsigned> Key = Item.first;
- if (Key.first == Key.second)
- // Base relocation: nothing to insert
- continue;
- IntrinsicInst *I = Item.second;
- auto BaseKey = std::make_pair(Key.first, Key.first);
- // We're iterating over RelocateIdxMap so we cannot modify it.
- auto MaybeBase = RelocateIdxMap.find(BaseKey);
- if (MaybeBase == RelocateIdxMap.end())
- // TODO: We might want to insert a new base object relocate and gep off
- // that, if there are enough derived object relocates.
- continue;
- RelocateInstMap[MaybeBase->second].push_back(I);
- }
- }
- // Accepts a GEP and extracts the operands into a vector provided they're all
- // small integer constants
- static bool getGEPSmallConstantIntOffsetV(GetElementPtrInst *GEP,
- SmallVectorImpl<Value *> &OffsetV) {
- for (unsigned i = 1; i < GEP->getNumOperands(); i++) {
- // Only accept small constant integer operands
- auto Op = dyn_cast<ConstantInt>(GEP->getOperand(i));
- if (!Op || Op->getZExtValue() > 20)
- return false;
- }
- for (unsigned i = 1; i < GEP->getNumOperands(); i++)
- OffsetV.push_back(GEP->getOperand(i));
- return true;
- }
- // Takes a RelocatedBase (base pointer relocation instruction) and Targets to
- // replace, computes a replacement, and affects it.
- static bool
- simplifyRelocatesOffABase(IntrinsicInst *RelocatedBase,
- const SmallVectorImpl<IntrinsicInst *> &Targets) {
- bool MadeChange = false;
- for (auto &ToReplace : Targets) {
- GCRelocateOperands MasterRelocate(RelocatedBase);
- GCRelocateOperands ThisRelocate(ToReplace);
- assert(ThisRelocate.getBasePtrIndex() == MasterRelocate.getBasePtrIndex() &&
- "Not relocating a derived object of the original base object");
- if (ThisRelocate.getBasePtrIndex() == ThisRelocate.getDerivedPtrIndex()) {
- // A duplicate relocate call. TODO: coalesce duplicates.
- continue;
- }
- Value *Base = ThisRelocate.getBasePtr();
- auto Derived = dyn_cast<GetElementPtrInst>(ThisRelocate.getDerivedPtr());
- if (!Derived || Derived->getPointerOperand() != Base)
- continue;
- SmallVector<Value *, 2> OffsetV;
- if (!getGEPSmallConstantIntOffsetV(Derived, OffsetV))
- continue;
- // Create a Builder and replace the target callsite with a gep
- assert(RelocatedBase->getNextNode() && "Should always have one since it's not a terminator");
- // Insert after RelocatedBase
- IRBuilder<> Builder(RelocatedBase->getNextNode());
- Builder.SetCurrentDebugLocation(ToReplace->getDebugLoc());
- // If gc_relocate does not match the actual type, cast it to the right type.
- // In theory, there must be a bitcast after gc_relocate if the type does not
- // match, and we should reuse it to get the derived pointer. But it could be
- // cases like this:
- // bb1:
- // ...
- // %g1 = call coldcc i8 addrspace(1)* @llvm.experimental.gc.relocate.p1i8(...)
- // br label %merge
- //
- // bb2:
- // ...
- // %g2 = call coldcc i8 addrspace(1)* @llvm.experimental.gc.relocate.p1i8(...)
- // br label %merge
- //
- // merge:
- // %p1 = phi i8 addrspace(1)* [ %g1, %bb1 ], [ %g2, %bb2 ]
- // %cast = bitcast i8 addrspace(1)* %p1 in to i32 addrspace(1)*
- //
- // In this case, we can not find the bitcast any more. So we insert a new bitcast
- // no matter there is already one or not. In this way, we can handle all cases, and
- // the extra bitcast should be optimized away in later passes.
- Instruction *ActualRelocatedBase = RelocatedBase;
- if (RelocatedBase->getType() != Base->getType()) {
- ActualRelocatedBase =
- cast<Instruction>(Builder.CreateBitCast(RelocatedBase, Base->getType()));
- }
- Value *Replacement = Builder.CreateGEP(
- Derived->getSourceElementType(), ActualRelocatedBase, makeArrayRef(OffsetV));
- Instruction *ReplacementInst = cast<Instruction>(Replacement);
- Replacement->takeName(ToReplace);
- // If the newly generated derived pointer's type does not match the original derived
- // pointer's type, cast the new derived pointer to match it. Same reasoning as above.
- Instruction *ActualReplacement = ReplacementInst;
- if (ReplacementInst->getType() != ToReplace->getType()) {
- ActualReplacement =
- cast<Instruction>(Builder.CreateBitCast(ReplacementInst, ToReplace->getType()));
- }
- ToReplace->replaceAllUsesWith(ActualReplacement);
- ToReplace->eraseFromParent();
- MadeChange = true;
- }
- return MadeChange;
- }
- // Turns this:
- //
- // %base = ...
- // %ptr = gep %base + 15
- // %tok = statepoint (%fun, i32 0, i32 0, i32 0, %base, %ptr)
- // %base' = relocate(%tok, i32 4, i32 4)
- // %ptr' = relocate(%tok, i32 4, i32 5)
- // %val = load %ptr'
- //
- // into this:
- //
- // %base = ...
- // %ptr = gep %base + 15
- // %tok = statepoint (%fun, i32 0, i32 0, i32 0, %base, %ptr)
- // %base' = gc.relocate(%tok, i32 4, i32 4)
- // %ptr' = gep %base' + 15
- // %val = load %ptr'
- bool CodeGenPrepare::simplifyOffsetableRelocate(Instruction &I) {
- bool MadeChange = false;
- SmallVector<User *, 2> AllRelocateCalls;
- for (auto *U : I.users())
- if (isGCRelocate(dyn_cast<Instruction>(U)))
- // Collect all the relocate calls associated with a statepoint
- AllRelocateCalls.push_back(U);
- // We need atleast one base pointer relocation + one derived pointer
- // relocation to mangle
- if (AllRelocateCalls.size() < 2)
- return false;
- // RelocateInstMap is a mapping from the base relocate instruction to the
- // corresponding derived relocate instructions
- DenseMap<IntrinsicInst *, SmallVector<IntrinsicInst *, 2>> RelocateInstMap;
- computeBaseDerivedRelocateMap(AllRelocateCalls, RelocateInstMap);
- if (RelocateInstMap.empty())
- return false;
- for (auto &Item : RelocateInstMap)
- // Item.first is the RelocatedBase to offset against
- // Item.second is the vector of Targets to replace
- MadeChange = simplifyRelocatesOffABase(Item.first, Item.second);
- return MadeChange;
- }
- /// SinkCast - Sink the specified cast instruction into its user blocks
- static bool SinkCast(CastInst *CI) {
- BasicBlock *DefBB = CI->getParent();
- /// InsertedCasts - Only insert a cast in each block once.
- DenseMap<BasicBlock*, CastInst*> InsertedCasts;
- bool MadeChange = false;
- for (Value::user_iterator UI = CI->user_begin(), E = CI->user_end();
- UI != E; ) {
- Use &TheUse = UI.getUse();
- Instruction *User = cast<Instruction>(*UI);
- // Figure out which BB this cast is used in. For PHI's this is the
- // appropriate predecessor block.
- BasicBlock *UserBB = User->getParent();
- if (PHINode *PN = dyn_cast<PHINode>(User)) {
- UserBB = PN->getIncomingBlock(TheUse);
- }
- // Preincrement use iterator so we don't invalidate it.
- ++UI;
- // If this user is in the same block as the cast, don't change the cast.
- if (UserBB == DefBB) continue;
- // If we have already inserted a cast into this block, use it.
- CastInst *&InsertedCast = InsertedCasts[UserBB];
- if (!InsertedCast) {
- BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt();
- InsertedCast =
- CastInst::Create(CI->getOpcode(), CI->getOperand(0), CI->getType(), "",
- InsertPt);
- }
- // Replace a use of the cast with a use of the new cast.
- TheUse = InsertedCast;
- MadeChange = true;
- ++NumCastUses;
- }
- // If we removed all uses, nuke the cast.
- if (CI->use_empty()) {
- CI->eraseFromParent();
- MadeChange = true;
- }
- return MadeChange;
- }
- /// OptimizeNoopCopyExpression - If the specified cast instruction is a noop
- /// copy (e.g. it's casting from one pointer type to another, i32->i8 on PPC),
- /// sink it into user blocks to reduce the number of virtual
- /// registers that must be created and coalesced.
- ///
- /// Return true if any changes are made.
- ///
- static bool OptimizeNoopCopyExpression(CastInst *CI, const TargetLowering &TLI,
- const DataLayout &DL) {
- // If this is a noop copy,
- EVT SrcVT = TLI.getValueType(DL, CI->getOperand(0)->getType());
- EVT DstVT = TLI.getValueType(DL, CI->getType());
- // This is an fp<->int conversion?
- if (SrcVT.isInteger() != DstVT.isInteger())
- return false;
- // If this is an extension, it will be a zero or sign extension, which
- // isn't a noop.
- if (SrcVT.bitsLT(DstVT)) return false;
- // If these values will be promoted, find out what they will be promoted
- // to. This helps us consider truncates on PPC as noop copies when they
- // are.
- if (TLI.getTypeAction(CI->getContext(), SrcVT) ==
- TargetLowering::TypePromoteInteger)
- SrcVT = TLI.getTypeToTransformTo(CI->getContext(), SrcVT);
- if (TLI.getTypeAction(CI->getContext(), DstVT) ==
- TargetLowering::TypePromoteInteger)
- DstVT = TLI.getTypeToTransformTo(CI->getContext(), DstVT);
- // If, after promotion, these are the same types, this is a noop copy.
- if (SrcVT != DstVT)
- return false;
- return SinkCast(CI);
- }
- /// CombineUAddWithOverflow - try to combine CI into a call to the
- /// llvm.uadd.with.overflow intrinsic if possible.
- ///
- /// Return true if any changes were made.
- static bool CombineUAddWithOverflow(CmpInst *CI) {
- Value *A, *B;
- Instruction *AddI;
- if (!match(CI,
- m_UAddWithOverflow(m_Value(A), m_Value(B), m_Instruction(AddI))))
- return false;
- Type *Ty = AddI->getType();
- if (!isa<IntegerType>(Ty))
- return false;
- // We don't want to move around uses of condition values this late, so we we
- // check if it is legal to create the call to the intrinsic in the basic
- // block containing the icmp:
- if (AddI->getParent() != CI->getParent() && !AddI->hasOneUse())
- return false;
- #ifndef NDEBUG
- // Someday m_UAddWithOverflow may get smarter, but this is a safe assumption
- // for now:
- if (AddI->hasOneUse())
- assert(*AddI->user_begin() == CI && "expected!");
- #endif
- Module *M = CI->getParent()->getParent()->getParent();
- Value *F = Intrinsic::getDeclaration(M, Intrinsic::uadd_with_overflow, Ty);
- auto *InsertPt = AddI->hasOneUse() ? CI : AddI;
- auto *UAddWithOverflow =
- CallInst::Create(F, {A, B}, "uadd.overflow", InsertPt);
- auto *UAdd = ExtractValueInst::Create(UAddWithOverflow, 0, "uadd", InsertPt);
- auto *Overflow =
- ExtractValueInst::Create(UAddWithOverflow, 1, "overflow", InsertPt);
- CI->replaceAllUsesWith(Overflow);
- AddI->replaceAllUsesWith(UAdd);
- CI->eraseFromParent();
- AddI->eraseFromParent();
- return true;
- }
- /// SinkCmpExpression - Sink the given CmpInst into user blocks to reduce
- /// the number of virtual registers that must be created and coalesced. This is
- /// a clear win except on targets with multiple condition code registers
- /// (PowerPC), where it might lose; some adjustment may be wanted there.
- ///
- /// Return true if any changes are made.
- static bool SinkCmpExpression(CmpInst *CI) {
- BasicBlock *DefBB = CI->getParent();
- /// InsertedCmp - Only insert a cmp in each block once.
- DenseMap<BasicBlock*, CmpInst*> InsertedCmps;
- bool MadeChange = false;
- for (Value::user_iterator UI = CI->user_begin(), E = CI->user_end();
- UI != E; ) {
- Use &TheUse = UI.getUse();
- Instruction *User = cast<Instruction>(*UI);
- // Preincrement use iterator so we don't invalidate it.
- ++UI;
- // Don't bother for PHI nodes.
- if (isa<PHINode>(User))
- continue;
- // Figure out which BB this cmp is used in.
- BasicBlock *UserBB = User->getParent();
- // If this user is in the same block as the cmp, don't change the cmp.
- if (UserBB == DefBB) continue;
- // If we have already inserted a cmp into this block, use it.
- CmpInst *&InsertedCmp = InsertedCmps[UserBB];
- if (!InsertedCmp) {
- BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt();
- InsertedCmp =
- CmpInst::Create(CI->getOpcode(),
- CI->getPredicate(), CI->getOperand(0),
- CI->getOperand(1), "", InsertPt);
- }
- // Replace a use of the cmp with a use of the new cmp.
- TheUse = InsertedCmp;
- MadeChange = true;
- ++NumCmpUses;
- }
- // If we removed all uses, nuke the cmp.
- if (CI->use_empty()) {
- CI->eraseFromParent();
- MadeChange = true;
- }
- return MadeChange;
- }
- static bool OptimizeCmpExpression(CmpInst *CI) {
- if (SinkCmpExpression(CI))
- return true;
- if (CombineUAddWithOverflow(CI))
- return true;
- return false;
- }
- /// isExtractBitsCandidateUse - Check if the candidates could
- /// be combined with shift instruction, which includes:
- /// 1. Truncate instruction
- /// 2. And instruction and the imm is a mask of the low bits:
- /// imm & (imm+1) == 0
- static bool isExtractBitsCandidateUse(Instruction *User) {
- if (!isa<TruncInst>(User)) {
- if (User->getOpcode() != Instruction::And ||
- !isa<ConstantInt>(User->getOperand(1)))
- return false;
- const APInt &Cimm = cast<ConstantInt>(User->getOperand(1))->getValue();
- if ((Cimm & (Cimm + 1)).getBoolValue())
- return false;
- }
- return true;
- }
- /// SinkShiftAndTruncate - sink both shift and truncate instruction
- /// to the use of truncate's BB.
- static bool
- SinkShiftAndTruncate(BinaryOperator *ShiftI, Instruction *User, ConstantInt *CI,
- DenseMap<BasicBlock *, BinaryOperator *> &InsertedShifts,
- const TargetLowering &TLI, const DataLayout &DL) {
- BasicBlock *UserBB = User->getParent();
- DenseMap<BasicBlock *, CastInst *> InsertedTruncs;
- TruncInst *TruncI = dyn_cast<TruncInst>(User);
- bool MadeChange = false;
- for (Value::user_iterator TruncUI = TruncI->user_begin(),
- TruncE = TruncI->user_end();
- TruncUI != TruncE;) {
- Use &TruncTheUse = TruncUI.getUse();
- Instruction *TruncUser = cast<Instruction>(*TruncUI);
- // Preincrement use iterator so we don't invalidate it.
- ++TruncUI;
- int ISDOpcode = TLI.InstructionOpcodeToISD(TruncUser->getOpcode());
- if (!ISDOpcode)
- continue;
- // If the use is actually a legal node, there will not be an
- // implicit truncate.
- // FIXME: always querying the result type is just an
- // approximation; some nodes' legality is determined by the
- // operand or other means. There's no good way to find out though.
- if (TLI.isOperationLegalOrCustom(
- ISDOpcode, TLI.getValueType(DL, TruncUser->getType(), true)))
- continue;
- // Don't bother for PHI nodes.
- if (isa<PHINode>(TruncUser))
- continue;
- BasicBlock *TruncUserBB = TruncUser->getParent();
- if (UserBB == TruncUserBB)
- continue;
- BinaryOperator *&InsertedShift = InsertedShifts[TruncUserBB];
- CastInst *&InsertedTrunc = InsertedTruncs[TruncUserBB];
- if (!InsertedShift && !InsertedTrunc) {
- BasicBlock::iterator InsertPt = TruncUserBB->getFirstInsertionPt();
- // Sink the shift
- if (ShiftI->getOpcode() == Instruction::AShr)
- InsertedShift =
- BinaryOperator::CreateAShr(ShiftI->getOperand(0), CI, "", InsertPt);
- else
- InsertedShift =
- BinaryOperator::CreateLShr(ShiftI->getOperand(0), CI, "", InsertPt);
- // Sink the trunc
- BasicBlock::iterator TruncInsertPt = TruncUserBB->getFirstInsertionPt();
- TruncInsertPt++;
- InsertedTrunc = CastInst::Create(TruncI->getOpcode(), InsertedShift,
- TruncI->getType(), "", TruncInsertPt);
- MadeChange = true;
- TruncTheUse = InsertedTrunc;
- }
- }
- return MadeChange;
- }
- /// OptimizeExtractBits - sink the shift *right* instruction into user blocks if
- /// the uses could potentially be combined with this shift instruction and
- /// generate BitExtract instruction. It will only be applied if the architecture
- /// supports BitExtract instruction. Here is an example:
- /// BB1:
- /// %x.extract.shift = lshr i64 %arg1, 32
- /// BB2:
- /// %x.extract.trunc = trunc i64 %x.extract.shift to i16
- /// ==>
- ///
- /// BB2:
- /// %x.extract.shift.1 = lshr i64 %arg1, 32
- /// %x.extract.trunc = trunc i64 %x.extract.shift.1 to i16
- ///
- /// CodeGen will recoginze the pattern in BB2 and generate BitExtract
- /// instruction.
- /// Return true if any changes are made.
- static bool OptimizeExtractBits(BinaryOperator *ShiftI, ConstantInt *CI,
- const TargetLowering &TLI,
- const DataLayout &DL) {
- BasicBlock *DefBB = ShiftI->getParent();
- /// Only insert instructions in each block once.
- DenseMap<BasicBlock *, BinaryOperator *> InsertedShifts;
- bool shiftIsLegal = TLI.isTypeLegal(TLI.getValueType(DL, ShiftI->getType()));
- bool MadeChange = false;
- for (Value::user_iterator UI = ShiftI->user_begin(), E = ShiftI->user_end();
- UI != E;) {
- Use &TheUse = UI.getUse();
- Instruction *User = cast<Instruction>(*UI);
- // Preincrement use iterator so we don't invalidate it.
- ++UI;
- // Don't bother for PHI nodes.
- if (isa<PHINode>(User))
- continue;
- if (!isExtractBitsCandidateUse(User))
- continue;
- BasicBlock *UserBB = User->getParent();
- if (UserBB == DefBB) {
- // If the shift and truncate instruction are in the same BB. The use of
- // the truncate(TruncUse) may still introduce another truncate if not
- // legal. In this case, we would like to sink both shift and truncate
- // instruction to the BB of TruncUse.
- // for example:
- // BB1:
- // i64 shift.result = lshr i64 opnd, imm
- // trunc.result = trunc shift.result to i16
- //
- // BB2:
- // ----> We will have an implicit truncate here if the architecture does
- // not have i16 compare.
- // cmp i16 trunc.result, opnd2
- //
- if (isa<TruncInst>(User) && shiftIsLegal
- // If the type of the truncate is legal, no trucate will be
- // introduced in other basic blocks.
- &&
- (!TLI.isTypeLegal(TLI.getValueType(DL, User->getType()))))
- MadeChange =
- SinkShiftAndTruncate(ShiftI, User, CI, InsertedShifts, TLI, DL);
- continue;
- }
- // If we have already inserted a shift into this block, use it.
- BinaryOperator *&InsertedShift = InsertedShifts[UserBB];
- if (!InsertedShift) {
- BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt();
- if (ShiftI->getOpcode() == Instruction::AShr)
- InsertedShift =
- BinaryOperator::CreateAShr(ShiftI->getOperand(0), CI, "", InsertPt);
- else
- InsertedShift =
- BinaryOperator::CreateLShr(ShiftI->getOperand(0), CI, "", InsertPt);
- MadeChange = true;
- }
- // Replace a use of the shift with a use of the new shift.
- TheUse = InsertedShift;
- }
- // If we removed all uses, nuke the shift.
- if (ShiftI->use_empty())
- ShiftI->eraseFromParent();
- return MadeChange;
- }
- // ScalarizeMaskedLoad() translates masked load intrinsic, like
- // <16 x i32 > @llvm.masked.load( <16 x i32>* %addr, i32 align,
- // <16 x i1> %mask, <16 x i32> %passthru)
- // to a chain of basic blocks, whith loading element one-by-one if
- // the appropriate mask bit is set
- //
- // %1 = bitcast i8* %addr to i32*
- // %2 = extractelement <16 x i1> %mask, i32 0
- // %3 = icmp eq i1 %2, true
- // br i1 %3, label %cond.load, label %else
- //
- //cond.load: ; preds = %0
- // %4 = getelementptr i32* %1, i32 0
- // %5 = load i32* %4
- // %6 = insertelement <16 x i32> undef, i32 %5, i32 0
- // br label %else
- //
- //else: ; preds = %0, %cond.load
- // %res.phi.else = phi <16 x i32> [ %6, %cond.load ], [ undef, %0 ]
- // %7 = extractelement <16 x i1> %mask, i32 1
- // %8 = icmp eq i1 %7, true
- // br i1 %8, label %cond.load1, label %else2
- //
- //cond.load1: ; preds = %else
- // %9 = getelementptr i32* %1, i32 1
- // %10 = load i32* %9
- // %11 = insertelement <16 x i32> %res.phi.else, i32 %10, i32 1
- // br label %else2
- //
- //else2: ; preds = %else, %cond.load1
- // %res.phi.else3 = phi <16 x i32> [ %11, %cond.load1 ], [ %res.phi.else, %else ]
- // %12 = extractelement <16 x i1> %mask, i32 2
- // %13 = icmp eq i1 %12, true
- // br i1 %13, label %cond.load4, label %else5
- //
- static void ScalarizeMaskedLoad(CallInst *CI) {
- Value *Ptr = CI->getArgOperand(0);
- Value *Src0 = CI->getArgOperand(3);
- Value *Mask = CI->getArgOperand(2);
- VectorType *VecType = dyn_cast<VectorType>(CI->getType());
- Type *EltTy = VecType->getElementType();
- assert(VecType && "Unexpected return type of masked load intrinsic");
- IRBuilder<> Builder(CI->getContext());
- Instruction *InsertPt = CI;
- BasicBlock *IfBlock = CI->getParent();
- BasicBlock *CondBlock = nullptr;
- BasicBlock *PrevIfBlock = CI->getParent();
- Builder.SetInsertPoint(InsertPt);
- Builder.SetCurrentDebugLocation(CI->getDebugLoc());
- // Bitcast %addr fron i8* to EltTy*
- Type *NewPtrType =
- EltTy->getPointerTo(cast<PointerType>(Ptr->getType())->getAddressSpace());
- Value *FirstEltPtr = Builder.CreateBitCast(Ptr, NewPtrType);
- Value *UndefVal = UndefValue::get(VecType);
- // The result vector
- Value *VResult = UndefVal;
- PHINode *Phi = nullptr;
- Value *PrevPhi = UndefVal;
- unsigned VectorWidth = VecType->getNumElements();
- for (unsigned Idx = 0; Idx < VectorWidth; ++Idx) {
- // Fill the "else" block, created in the previous iteration
- //
- // %res.phi.else3 = phi <16 x i32> [ %11, %cond.load1 ], [ %res.phi.else, %else ]
- // %mask_1 = extractelement <16 x i1> %mask, i32 Idx
- // %to_load = icmp eq i1 %mask_1, true
- // br i1 %to_load, label %cond.load, label %else
- //
- if (Idx > 0) {
- Phi = Builder.CreatePHI(VecType, 2, "res.phi.else");
- Phi->addIncoming(VResult, CondBlock);
- Phi->addIncoming(PrevPhi, PrevIfBlock);
- PrevPhi = Phi;
- VResult = Phi;
- }
- Value *Predicate = Builder.CreateExtractElement(Mask, Builder.getInt32(Idx));
- Value *Cmp = Builder.CreateICmp(ICmpInst::ICMP_EQ, Predicate,
- ConstantInt::get(Predicate->getType(), 1));
- // Create "cond" block
- //
- // %EltAddr = getelementptr i32* %1, i32 0
- // %Elt = load i32* %EltAddr
- // VResult = insertelement <16 x i32> VResult, i32 %Elt, i32 Idx
- //
- CondBlock = IfBlock->splitBasicBlock(InsertPt, "cond.load");
- Builder.SetInsertPoint(InsertPt);
- Value *Gep =
- Builder.CreateInBoundsGEP(EltTy, FirstEltPtr, Builder.getInt32(Idx));
- LoadInst* Load = Builder.CreateLoad(Gep, false);
- VResult = Builder.CreateInsertElement(VResult, Load, Builder.getInt32(Idx));
- // Create "else" block, fill it in the next iteration
- BasicBlock *NewIfBlock = CondBlock->splitBasicBlock(InsertPt, "else");
- Builder.SetInsertPoint(InsertPt);
- Instruction *OldBr = IfBlock->getTerminator();
- BranchInst::Create(CondBlock, NewIfBlock, Cmp, OldBr);
- OldBr->eraseFromParent();
- PrevIfBlock = IfBlock;
- IfBlock = NewIfBlock;
- }
- Phi = Builder.CreatePHI(VecType, 2, "res.phi.select");
- Phi->addIncoming(VResult, CondBlock);
- Phi->addIncoming(PrevPhi, PrevIfBlock);
- Value *NewI = Builder.CreateSelect(Mask, Phi, Src0);
- CI->replaceAllUsesWith(NewI);
- CI->eraseFromParent();
- }
- // ScalarizeMaskedStore() translates masked store intrinsic, like
- // void @llvm.masked.store(<16 x i32> %src, <16 x i32>* %addr, i32 align,
- // <16 x i1> %mask)
- // to a chain of basic blocks, that stores element one-by-one if
- // the appropriate mask bit is set
- //
- // %1 = bitcast i8* %addr to i32*
- // %2 = extractelement <16 x i1> %mask, i32 0
- // %3 = icmp eq i1 %2, true
- // br i1 %3, label %cond.store, label %else
- //
- // cond.store: ; preds = %0
- // %4 = extractelement <16 x i32> %val, i32 0
- // %5 = getelementptr i32* %1, i32 0
- // store i32 %4, i32* %5
- // br label %else
- //
- // else: ; preds = %0, %cond.store
- // %6 = extractelement <16 x i1> %mask, i32 1
- // %7 = icmp eq i1 %6, true
- // br i1 %7, label %cond.store1, label %else2
- //
- // cond.store1: ; preds = %else
- // %8 = extractelement <16 x i32> %val, i32 1
- // %9 = getelementptr i32* %1, i32 1
- // store i32 %8, i32* %9
- // br label %else2
- // . . .
- static void ScalarizeMaskedStore(CallInst *CI) {
- Value *Ptr = CI->getArgOperand(1);
- Value *Src = CI->getArgOperand(0);
- Value *Mask = CI->getArgOperand(3);
- VectorType *VecType = dyn_cast<VectorType>(Src->getType());
- Type *EltTy = VecType->getElementType();
- assert(VecType && "Unexpected data type in masked store intrinsic");
- IRBuilder<> Builder(CI->getContext());
- Instruction *InsertPt = CI;
- BasicBlock *IfBlock = CI->getParent();
- Builder.SetInsertPoint(InsertPt);
- Builder.SetCurrentDebugLocation(CI->getDebugLoc());
- // Bitcast %addr fron i8* to EltTy*
- Type *NewPtrType =
- EltTy->getPointerTo(cast<PointerType>(Ptr->getType())->getAddressSpace());
- Value *FirstEltPtr = Builder.CreateBitCast(Ptr, NewPtrType);
- unsigned VectorWidth = VecType->getNumElements();
- for (unsigned Idx = 0; Idx < VectorWidth; ++Idx) {
- // Fill the "else" block, created in the previous iteration
- //
- // %mask_1 = extractelement <16 x i1> %mask, i32 Idx
- // %to_store = icmp eq i1 %mask_1, true
- // br i1 %to_load, label %cond.store, label %else
- //
- Value *Predicate = Builder.CreateExtractElement(Mask, Builder.getInt32(Idx));
- Value *Cmp = Builder.CreateICmp(ICmpInst::ICMP_EQ, Predicate,
- ConstantInt::get(Predicate->getType(), 1));
- // Create "cond" block
- //
- // %OneElt = extractelement <16 x i32> %Src, i32 Idx
- // %EltAddr = getelementptr i32* %1, i32 0
- // %store i32 %OneElt, i32* %EltAddr
- //
- BasicBlock *CondBlock = IfBlock->splitBasicBlock(InsertPt, "cond.store");
- Builder.SetInsertPoint(InsertPt);
-
- Value *OneElt = Builder.CreateExtractElement(Src, Builder.getInt32(Idx));
- Value *Gep =
- Builder.CreateInBoundsGEP(EltTy, FirstEltPtr, Builder.getInt32(Idx));
- Builder.CreateStore(OneElt, Gep);
- // Create "else" block, fill it in the next iteration
- BasicBlock *NewIfBlock = CondBlock->splitBasicBlock(InsertPt, "else");
- Builder.SetInsertPoint(InsertPt);
- Instruction *OldBr = IfBlock->getTerminator();
- BranchInst::Create(CondBlock, NewIfBlock, Cmp, OldBr);
- OldBr->eraseFromParent();
- IfBlock = NewIfBlock;
- }
- CI->eraseFromParent();
- }
- bool CodeGenPrepare::OptimizeCallInst(CallInst *CI, bool& ModifiedDT) {
- BasicBlock *BB = CI->getParent();
- // Lower inline assembly if we can.
- // If we found an inline asm expession, and if the target knows how to
- // lower it to normal LLVM code, do so now.
- if (TLI && isa<InlineAsm>(CI->getCalledValue())) {
- if (TLI->ExpandInlineAsm(CI)) {
- // Avoid invalidating the iterator.
- CurInstIterator = BB->begin();
- // Avoid processing instructions out of order, which could cause
- // reuse before a value is defined.
- SunkAddrs.clear();
- return true;
- }
- // Sink address computing for memory operands into the block.
- if (OptimizeInlineAsmInst(CI))
- return true;
- }
- // Align the pointer arguments to this call if the target thinks it's a good
- // idea
- unsigned MinSize, PrefAlign;
- if (TLI && TLI->shouldAlignPointerArgs(CI, MinSize, PrefAlign)) {
- for (auto &Arg : CI->arg_operands()) {
- // We want to align both objects whose address is used directly and
- // objects whose address is used in casts and GEPs, though it only makes
- // sense for GEPs if the offset is a multiple of the desired alignment and
- // if size - offset meets the size threshold.
- if (!Arg->getType()->isPointerTy())
- continue;
- APInt Offset(DL->getPointerSizeInBits(
- cast<PointerType>(Arg->getType())->getAddressSpace()),
- 0);
- Value *Val = Arg->stripAndAccumulateInBoundsConstantOffsets(*DL, Offset);
- uint64_t Offset2 = Offset.getLimitedValue();
- if ((Offset2 & (PrefAlign-1)) != 0)
- continue;
- AllocaInst *AI;
- if ((AI = dyn_cast<AllocaInst>(Val)) && AI->getAlignment() < PrefAlign &&
- DL->getTypeAllocSize(AI->getAllocatedType()) >= MinSize + Offset2)
- AI->setAlignment(PrefAlign);
- // Global variables can only be aligned if they are defined in this
- // object (i.e. they are uniquely initialized in this object), and
- // over-aligning global variables that have an explicit section is
- // forbidden.
- GlobalVariable *GV;
- if ((GV = dyn_cast<GlobalVariable>(Val)) && GV->hasUniqueInitializer() &&
- !GV->hasSection() && GV->getAlignment() < PrefAlign &&
- DL->getTypeAllocSize(GV->getType()->getElementType()) >=
- MinSize + Offset2)
- GV->setAlignment(PrefAlign);
- }
- // If this is a memcpy (or similar) then we may be able to improve the
- // alignment
- if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(CI)) {
- unsigned Align = getKnownAlignment(MI->getDest(), *DL);
- if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI))
- Align = std::min(Align, getKnownAlignment(MTI->getSource(), *DL));
- if (Align > MI->getAlignment())
- MI->setAlignment(ConstantInt::get(MI->getAlignmentType(), Align));
- }
- }
- IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI);
- if (II) {
- switch (II->getIntrinsicID()) {
- default: break;
- case Intrinsic::objectsize: {
- // Lower all uses of llvm.objectsize.*
- bool Min = (cast<ConstantInt>(II->getArgOperand(1))->getZExtValue() == 1);
- Type *ReturnTy = CI->getType();
- Constant *RetVal = ConstantInt::get(ReturnTy, Min ? 0 : -1ULL);
- // Substituting this can cause recursive simplifications, which can
- // invalidate our iterator. Use a WeakVH to hold onto it in case this
- // happens.
- WeakVH IterHandle(CurInstIterator);
- replaceAndRecursivelySimplify(CI, RetVal,
- TLInfo, nullptr);
- // If the iterator instruction was recursively deleted, start over at the
- // start of the block.
- if (IterHandle != CurInstIterator) {
- CurInstIterator = BB->begin();
- SunkAddrs.clear();
- }
- return true;
- }
- case Intrinsic::masked_load: {
- // Scalarize unsupported vector masked load
- if (!TTI->isLegalMaskedLoad(CI->getType(), 1)) {
- ScalarizeMaskedLoad(CI);
- ModifiedDT = true;
- return true;
- }
- return false;
- }
- case Intrinsic::masked_store: {
- if (!TTI->isLegalMaskedStore(CI->getArgOperand(0)->getType(), 1)) {
- ScalarizeMaskedStore(CI);
- ModifiedDT = true;
- return true;
- }
- return false;
- }
- #if 0 // HLSL Change - remove platform intrinsics
- case Intrinsic::aarch64_stlxr:
- case Intrinsic::aarch64_stxr: {
- ZExtInst *ExtVal = dyn_cast<ZExtInst>(CI->getArgOperand(0));
- if (!ExtVal || !ExtVal->hasOneUse() ||
- ExtVal->getParent() == CI->getParent())
- return false;
- // Sink a zext feeding stlxr/stxr before it, so it can be folded into it.
- ExtVal->moveBefore(CI);
- // Mark this instruction as "inserted by CGP", so that other
- // optimizations don't touch it.
- InsertedInsts.insert(ExtVal);
- return true;
- }
- #endif // HLSL Change - remove platform intrinsics
- }
- if (TLI) {
- // Unknown address space.
- // TODO: Target hook to pick which address space the intrinsic cares
- // about?
- unsigned AddrSpace = ~0u;
- SmallVector<Value*, 2> PtrOps;
- Type *AccessTy;
- if (TLI->GetAddrModeArguments(II, PtrOps, AccessTy, AddrSpace))
- while (!PtrOps.empty())
- if (OptimizeMemoryInst(II, PtrOps.pop_back_val(), AccessTy, AddrSpace))
- return true;
- }
- }
- // From here on out we're working with named functions.
- if (!CI->getCalledFunction()) return false;
- // Lower all default uses of _chk calls. This is very similar
- // to what InstCombineCalls does, but here we are only lowering calls
- // to fortified library functions (e.g. __memcpy_chk) that have the default
- // "don't know" as the objectsize. Anything else should be left alone.
- FortifiedLibCallSimplifier Simplifier(TLInfo, true);
- if (Value *V = Simplifier.optimizeCall(CI)) {
- CI->replaceAllUsesWith(V);
- CI->eraseFromParent();
- return true;
- }
- return false;
- }
- /// DupRetToEnableTailCallOpts - Look for opportunities to duplicate return
- /// instructions to the predecessor to enable tail call optimizations. The
- /// case it is currently looking for is:
- /// @code
- /// bb0:
- /// %tmp0 = tail call i32 @f0()
- /// br label %return
- /// bb1:
- /// %tmp1 = tail call i32 @f1()
- /// br label %return
- /// bb2:
- /// %tmp2 = tail call i32 @f2()
- /// br label %return
- /// return:
- /// %retval = phi i32 [ %tmp0, %bb0 ], [ %tmp1, %bb1 ], [ %tmp2, %bb2 ]
- /// ret i32 %retval
- /// @endcode
- ///
- /// =>
- ///
- /// @code
- /// bb0:
- /// %tmp0 = tail call i32 @f0()
- /// ret i32 %tmp0
- /// bb1:
- /// %tmp1 = tail call i32 @f1()
- /// ret i32 %tmp1
- /// bb2:
- /// %tmp2 = tail call i32 @f2()
- /// ret i32 %tmp2
- /// @endcode
- bool CodeGenPrepare::DupRetToEnableTailCallOpts(BasicBlock *BB) {
- if (!TLI)
- return false;
- ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator());
- if (!RI)
- return false;
- PHINode *PN = nullptr;
- BitCastInst *BCI = nullptr;
- Value *V = RI->getReturnValue();
- if (V) {
- BCI = dyn_cast<BitCastInst>(V);
- if (BCI)
- V = BCI->getOperand(0);
- PN = dyn_cast<PHINode>(V);
- if (!PN)
- return false;
- }
- if (PN && PN->getParent() != BB)
- return false;
- // It's not safe to eliminate the sign / zero extension of the return value.
- // See llvm::isInTailCallPosition().
- const Function *F = BB->getParent();
- AttributeSet CallerAttrs = F->getAttributes();
- if (CallerAttrs.hasAttribute(AttributeSet::ReturnIndex, Attribute::ZExt) ||
- CallerAttrs.hasAttribute(AttributeSet::ReturnIndex, Attribute::SExt))
- return false;
- // Make sure there are no instructions between the PHI and return, or that the
- // return is the first instruction in the block.
- if (PN) {
- BasicBlock::iterator BI = BB->begin();
- do { ++BI; } while (isa<DbgInfoIntrinsic>(BI));
- if (&*BI == BCI)
- // Also skip over the bitcast.
- ++BI;
- if (&*BI != RI)
- return false;
- } else {
- BasicBlock::iterator BI = BB->begin();
- while (isa<DbgInfoIntrinsic>(BI)) ++BI;
- if (&*BI != RI)
- return false;
- }
- /// Only dup the ReturnInst if the CallInst is likely to be emitted as a tail
- /// call.
- SmallVector<CallInst*, 4> TailCalls;
- if (PN) {
- for (unsigned I = 0, E = PN->getNumIncomingValues(); I != E; ++I) {
- CallInst *CI = dyn_cast<CallInst>(PN->getIncomingValue(I));
- // Make sure the phi value is indeed produced by the tail call.
- if (CI && CI->hasOneUse() && CI->getParent() == PN->getIncomingBlock(I) &&
- TLI->mayBeEmittedAsTailCall(CI))
- TailCalls.push_back(CI);
- }
- } else {
- SmallPtrSet<BasicBlock*, 4> VisitedBBs;
- for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE; ++PI) {
- if (!VisitedBBs.insert(*PI).second)
- continue;
- BasicBlock::InstListType &InstList = (*PI)->getInstList();
- BasicBlock::InstListType::reverse_iterator RI = InstList.rbegin();
- BasicBlock::InstListType::reverse_iterator RE = InstList.rend();
- do { ++RI; } while (RI != RE && isa<DbgInfoIntrinsic>(&*RI));
- if (RI == RE)
- continue;
- CallInst *CI = dyn_cast<CallInst>(&*RI);
- if (CI && CI->use_empty() && TLI->mayBeEmittedAsTailCall(CI))
- TailCalls.push_back(CI);
- }
- }
- bool Changed = false;
- for (unsigned i = 0, e = TailCalls.size(); i != e; ++i) {
- CallInst *CI = TailCalls[i];
- CallSite CS(CI);
- // Conservatively require the attributes of the call to match those of the
- // return. Ignore noalias because it doesn't affect the call sequence.
- AttributeSet CalleeAttrs = CS.getAttributes();
- if (AttrBuilder(CalleeAttrs, AttributeSet::ReturnIndex).
- removeAttribute(Attribute::NoAlias) !=
- AttrBuilder(CalleeAttrs, AttributeSet::ReturnIndex).
- removeAttribute(Attribute::NoAlias))
- continue;
- // Make sure the call instruction is followed by an unconditional branch to
- // the return block.
- BasicBlock *CallBB = CI->getParent();
- BranchInst *BI = dyn_cast<BranchInst>(CallBB->getTerminator());
- if (!BI || !BI->isUnconditional() || BI->getSuccessor(0) != BB)
- continue;
- // Duplicate the return into CallBB.
- (void)FoldReturnIntoUncondBranch(RI, BB, CallBB);
- ModifiedDT = Changed = true;
- ++NumRetsDup;
- }
- // If we eliminated all predecessors of the block, delete the block now.
- if (Changed && !BB->hasAddressTaken() && pred_begin(BB) == pred_end(BB))
- BB->eraseFromParent();
- return Changed;
- }
- //===----------------------------------------------------------------------===//
- // Memory Optimization
- //===----------------------------------------------------------------------===//
- namespace {
- /// ExtAddrMode - This is an extended version of TargetLowering::AddrMode
- /// which holds actual Value*'s for register values.
- struct ExtAddrMode : public TargetLowering::AddrMode {
- Value *BaseReg;
- Value *ScaledReg;
- ExtAddrMode() : BaseReg(nullptr), ScaledReg(nullptr) {}
- void print(raw_ostream &OS) const;
- void dump() const;
- bool operator==(const ExtAddrMode& O) const {
- return (BaseReg == O.BaseReg) && (ScaledReg == O.ScaledReg) &&
- (BaseGV == O.BaseGV) && (BaseOffs == O.BaseOffs) &&
- (HasBaseReg == O.HasBaseReg) && (Scale == O.Scale);
- }
- };
- #ifndef NDEBUG
- static inline raw_ostream &operator<<(raw_ostream &OS, const ExtAddrMode &AM) {
- AM.print(OS);
- return OS;
- }
- #endif
- void ExtAddrMode::print(raw_ostream &OS) const {
- bool NeedPlus = false;
- OS << "[";
- if (BaseGV) {
- OS << (NeedPlus ? " + " : "")
- << "GV:";
- BaseGV->printAsOperand(OS, /*PrintType=*/false);
- NeedPlus = true;
- }
- if (BaseOffs) {
- OS << (NeedPlus ? " + " : "")
- << BaseOffs;
- NeedPlus = true;
- }
- if (BaseReg) {
- OS << (NeedPlus ? " + " : "")
- << "Base:";
- BaseReg->printAsOperand(OS, /*PrintType=*/false);
- NeedPlus = true;
- }
- if (Scale) {
- OS << (NeedPlus ? " + " : "")
- << Scale << "*";
- ScaledReg->printAsOperand(OS, /*PrintType=*/false);
- }
- OS << ']';
- }
- #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
- void ExtAddrMode::dump() const {
- print(dbgs());
- dbgs() << '\n';
- }
- #endif
- /// \brief This class provides transaction based operation on the IR.
- /// Every change made through this class is recorded in the internal state and
- /// can be undone (rollback) until commit is called.
- class TypePromotionTransaction {
- /// \brief This represents the common interface of the individual transaction.
- /// Each class implements the logic for doing one specific modification on
- /// the IR via the TypePromotionTransaction.
- class TypePromotionAction {
- protected:
- /// The Instruction modified.
- Instruction *Inst;
- public:
- /// \brief Constructor of the action.
- /// The constructor performs the related action on the IR.
- TypePromotionAction(Instruction *Inst) : Inst(Inst) {}
- virtual ~TypePromotionAction() {}
- /// \brief Undo the modification done by this action.
- /// When this method is called, the IR must be in the same state as it was
- /// before this action was applied.
- /// \pre Undoing the action works if and only if the IR is in the exact same
- /// state as it was directly after this action was applied.
- virtual void undo() = 0;
- /// \brief Advocate every change made by this action.
- /// When the results on the IR of the action are to be kept, it is important
- /// to call this function, otherwise hidden information may be kept forever.
- virtual void commit() {
- // Nothing to be done, this action is not doing anything.
- }
- };
- /// \brief Utility to remember the position of an instruction.
- class InsertionHandler {
- /// Position of an instruction.
- /// Either an instruction:
- /// - Is the first in a basic block: BB is used.
- /// - Has a previous instructon: PrevInst is used.
- union {
- Instruction *PrevInst;
- BasicBlock *BB;
- } Point;
- /// Remember whether or not the instruction had a previous instruction.
- bool HasPrevInstruction;
- public:
- /// \brief Record the position of \p Inst.
- InsertionHandler(Instruction *Inst) {
- BasicBlock::iterator It = Inst;
- HasPrevInstruction = (It != (Inst->getParent()->begin()));
- if (HasPrevInstruction)
- Point.PrevInst = --It;
- else
- Point.BB = Inst->getParent();
- }
- /// \brief Insert \p Inst at the recorded position.
- void insert(Instruction *Inst) {
- if (HasPrevInstruction) {
- if (Inst->getParent())
- Inst->removeFromParent();
- Inst->insertAfter(Point.PrevInst);
- } else {
- Instruction *Position = Point.BB->getFirstInsertionPt();
- if (Inst->getParent())
- Inst->moveBefore(Position);
- else
- Inst->insertBefore(Position);
- }
- }
- };
- /// \brief Move an instruction before another.
- class InstructionMoveBefore : public TypePromotionAction {
- /// Original position of the instruction.
- InsertionHandler Position;
- public:
- /// \brief Move \p Inst before \p Before.
- InstructionMoveBefore(Instruction *Inst, Instruction *Before)
- : TypePromotionAction(Inst), Position(Inst) {
- DEBUG(dbgs() << "Do: move: " << *Inst << "\nbefore: " << *Before << "\n");
- Inst->moveBefore(Before);
- }
- /// \brief Move the instruction back to its original position.
- void undo() override {
- DEBUG(dbgs() << "Undo: moveBefore: " << *Inst << "\n");
- Position.insert(Inst);
- }
- };
- /// \brief Set the operand of an instruction with a new value.
- class OperandSetter : public TypePromotionAction {
- /// Original operand of the instruction.
- Value *Origin;
- /// Index of the modified instruction.
- unsigned Idx;
- public:
- /// \brief Set \p Idx operand of \p Inst with \p NewVal.
- OperandSetter(Instruction *Inst, unsigned Idx, Value *NewVal)
- : TypePromotionAction(Inst), Idx(Idx) {
- DEBUG(dbgs() << "Do: setOperand: " << Idx << "\n"
- << "for:" << *Inst << "\n"
- << "with:" << *NewVal << "\n");
- Origin = Inst->getOperand(Idx);
- Inst->setOperand(Idx, NewVal);
- }
- /// \brief Restore the original value of the instruction.
- void undo() override {
- DEBUG(dbgs() << "Undo: setOperand:" << Idx << "\n"
- << "for: " << *Inst << "\n"
- << "with: " << *Origin << "\n");
- Inst->setOperand(Idx, Origin);
- }
- };
- /// \brief Hide the operands of an instruction.
- /// Do as if this instruction was not using any of its operands.
- class OperandsHider : public TypePromotionAction {
- /// The list of original operands.
- SmallVector<Value *, 4> OriginalValues;
- public:
- /// \brief Remove \p Inst from the uses of the operands of \p Inst.
- OperandsHider(Instruction *Inst) : TypePromotionAction(Inst) {
- DEBUG(dbgs() << "Do: OperandsHider: " << *Inst << "\n");
- unsigned NumOpnds = Inst->getNumOperands();
- OriginalValues.reserve(NumOpnds);
- for (unsigned It = 0; It < NumOpnds; ++It) {
- // Save the current operand.
- Value *Val = Inst->getOperand(It);
- OriginalValues.push_back(Val);
- // Set a dummy one.
- // We could use OperandSetter here, but that would implied an overhead
- // that we are not willing to pay.
- Inst->setOperand(It, UndefValue::get(Val->getType()));
- }
- }
- /// \brief Restore the original list of uses.
- void undo() override {
- DEBUG(dbgs() << "Undo: OperandsHider: " << *Inst << "\n");
- for (unsigned It = 0, EndIt = OriginalValues.size(); It != EndIt; ++It)
- Inst->setOperand(It, OriginalValues[It]);
- }
- };
- /// \brief Build a truncate instruction.
- class TruncBuilder : public TypePromotionAction {
- Value *Val;
- public:
- /// \brief Build a truncate instruction of \p Opnd producing a \p Ty
- /// result.
- /// trunc Opnd to Ty.
- TruncBuilder(Instruction *Opnd, Type *Ty) : TypePromotionAction(Opnd) {
- IRBuilder<> Builder(Opnd);
- Val = Builder.CreateTrunc(Opnd, Ty, "promoted");
- DEBUG(dbgs() << "Do: TruncBuilder: " << *Val << "\n");
- }
- /// \brief Get the built value.
- Value *getBuiltValue() { return Val; }
- /// \brief Remove the built instruction.
- void undo() override {
- DEBUG(dbgs() << "Undo: TruncBuilder: " << *Val << "\n");
- if (Instruction *IVal = dyn_cast<Instruction>(Val))
- IVal->eraseFromParent();
- }
- };
- /// \brief Build a sign extension instruction.
- class SExtBuilder : public TypePromotionAction {
- Value *Val;
- public:
- /// \brief Build a sign extension instruction of \p Opnd producing a \p Ty
- /// result.
- /// sext Opnd to Ty.
- SExtBuilder(Instruction *InsertPt, Value *Opnd, Type *Ty)
- : TypePromotionAction(InsertPt) {
- IRBuilder<> Builder(InsertPt);
- Val = Builder.CreateSExt(Opnd, Ty, "promoted");
- DEBUG(dbgs() << "Do: SExtBuilder: " << *Val << "\n");
- }
- /// \brief Get the built value.
- Value *getBuiltValue() { return Val; }
- /// \brief Remove the built instruction.
- void undo() override {
- DEBUG(dbgs() << "Undo: SExtBuilder: " << *Val << "\n");
- if (Instruction *IVal = dyn_cast<Instruction>(Val))
- IVal->eraseFromParent();
- }
- };
- /// \brief Build a zero extension instruction.
- class ZExtBuilder : public TypePromotionAction {
- Value *Val;
- public:
- /// \brief Build a zero extension instruction of \p Opnd producing a \p Ty
- /// result.
- /// zext Opnd to Ty.
- ZExtBuilder(Instruction *InsertPt, Value *Opnd, Type *Ty)
- : TypePromotionAction(InsertPt) {
- IRBuilder<> Builder(InsertPt);
- Val = Builder.CreateZExt(Opnd, Ty, "promoted");
- DEBUG(dbgs() << "Do: ZExtBuilder: " << *Val << "\n");
- }
- /// \brief Get the built value.
- Value *getBuiltValue() { return Val; }
- /// \brief Remove the built instruction.
- void undo() override {
- DEBUG(dbgs() << "Undo: ZExtBuilder: " << *Val << "\n");
- if (Instruction *IVal = dyn_cast<Instruction>(Val))
- IVal->eraseFromParent();
- }
- };
- /// \brief Mutate an instruction to another type.
- class TypeMutator : public TypePromotionAction {
- /// Record the original type.
- Type *OrigTy;
- public:
- /// \brief Mutate the type of \p Inst into \p NewTy.
- TypeMutator(Instruction *Inst, Type *NewTy)
- : TypePromotionAction(Inst), OrigTy(Inst->getType()) {
- DEBUG(dbgs() << "Do: MutateType: " << *Inst << " with " << *NewTy
- << "\n");
- Inst->mutateType(NewTy);
- }
- /// \brief Mutate the instruction back to its original type.
- void undo() override {
- DEBUG(dbgs() << "Undo: MutateType: " << *Inst << " with " << *OrigTy
- << "\n");
- Inst->mutateType(OrigTy);
- }
- };
- /// \brief Replace the uses of an instruction by another instruction.
- class UsesReplacer : public TypePromotionAction {
- /// Helper structure to keep track of the replaced uses.
- struct InstructionAndIdx {
- /// The instruction using the instruction.
- Instruction *Inst;
- /// The index where this instruction is used for Inst.
- unsigned Idx;
- InstructionAndIdx(Instruction *Inst, unsigned Idx)
- : Inst(Inst), Idx(Idx) {}
- };
- /// Keep track of the original uses (pair Instruction, Index).
- SmallVector<InstructionAndIdx, 4> OriginalUses;
- typedef SmallVectorImpl<InstructionAndIdx>::iterator use_iterator;
- public:
- /// \brief Replace all the use of \p Inst by \p New.
- UsesReplacer(Instruction *Inst, Value *New) : TypePromotionAction(Inst) {
- DEBUG(dbgs() << "Do: UsersReplacer: " << *Inst << " with " << *New
- << "\n");
- // Record the original uses.
- for (Use &U : Inst->uses()) {
- Instruction *UserI = cast<Instruction>(U.getUser());
- OriginalUses.push_back(InstructionAndIdx(UserI, U.getOperandNo()));
- }
- // Now, we can replace the uses.
- Inst->replaceAllUsesWith(New);
- }
- /// \brief Reassign the original uses of Inst to Inst.
- void undo() override {
- DEBUG(dbgs() << "Undo: UsersReplacer: " << *Inst << "\n");
- for (use_iterator UseIt = OriginalUses.begin(),
- EndIt = OriginalUses.end();
- UseIt != EndIt; ++UseIt) {
- UseIt->Inst->setOperand(UseIt->Idx, Inst);
- }
- }
- };
- /// \brief Remove an instruction from the IR.
- class InstructionRemover : public TypePromotionAction {
- /// Original position of the instruction.
- InsertionHandler Inserter;
- /// Helper structure to hide all the link to the instruction. In other
- /// words, this helps to do as if the instruction was removed.
- OperandsHider Hider;
- /// Keep track of the uses replaced, if any.
- UsesReplacer *Replacer;
- public:
- /// \brief Remove all reference of \p Inst and optinally replace all its
- /// uses with New.
- /// \pre If !Inst->use_empty(), then New != nullptr
- InstructionRemover(Instruction *Inst, Value *New = nullptr)
- : TypePromotionAction(Inst), Inserter(Inst), Hider(Inst),
- Replacer(nullptr) {
- if (New)
- Replacer = new UsesReplacer(Inst, New);
- DEBUG(dbgs() << "Do: InstructionRemover: " << *Inst << "\n");
- Inst->removeFromParent();
- }
- ~InstructionRemover() override { delete Replacer; }
- /// \brief Really remove the instruction.
- void commit() override { delete Inst; }
- /// \brief Resurrect the instruction and reassign it to the proper uses if
- /// new value was provided when build this action.
- void undo() override {
- DEBUG(dbgs() << "Undo: InstructionRemover: " << *Inst << "\n");
- Inserter.insert(Inst);
- if (Replacer)
- Replacer->undo();
- Hider.undo();
- }
- };
- public:
- /// Restoration point.
- /// The restoration point is a pointer to an action instead of an iterator
- /// because the iterator may be invalidated but not the pointer.
- typedef const TypePromotionAction *ConstRestorationPt;
- /// Advocate every changes made in that transaction.
- void commit();
- /// Undo all the changes made after the given point.
- void rollback(ConstRestorationPt Point);
- /// Get the current restoration point.
- ConstRestorationPt getRestorationPoint() const;
- /// \name API for IR modification with state keeping to support rollback.
- /// @{
- /// Same as Instruction::setOperand.
- void setOperand(Instruction *Inst, unsigned Idx, Value *NewVal);
- /// Same as Instruction::eraseFromParent.
- void eraseInstruction(Instruction *Inst, Value *NewVal = nullptr);
- /// Same as Value::replaceAllUsesWith.
- void replaceAllUsesWith(Instruction *Inst, Value *New);
- /// Same as Value::mutateType.
- void mutateType(Instruction *Inst, Type *NewTy);
- /// Same as IRBuilder::createTrunc.
- Value *createTrunc(Instruction *Opnd, Type *Ty);
- /// Same as IRBuilder::createSExt.
- Value *createSExt(Instruction *Inst, Value *Opnd, Type *Ty);
- /// Same as IRBuilder::createZExt.
- Value *createZExt(Instruction *Inst, Value *Opnd, Type *Ty);
- /// Same as Instruction::moveBefore.
- void moveBefore(Instruction *Inst, Instruction *Before);
- /// @}
- private:
- /// The ordered list of actions made so far.
- SmallVector<std::unique_ptr<TypePromotionAction>, 16> Actions;
- typedef SmallVectorImpl<std::unique_ptr<TypePromotionAction>>::iterator CommitPt;
- };
- void TypePromotionTransaction::setOperand(Instruction *Inst, unsigned Idx,
- Value *NewVal) {
- Actions.push_back(
- make_unique<TypePromotionTransaction::OperandSetter>(Inst, Idx, NewVal));
- }
- void TypePromotionTransaction::eraseInstruction(Instruction *Inst,
- Value *NewVal) {
- Actions.push_back(
- make_unique<TypePromotionTransaction::InstructionRemover>(Inst, NewVal));
- }
- void TypePromotionTransaction::replaceAllUsesWith(Instruction *Inst,
- Value *New) {
- Actions.push_back(make_unique<TypePromotionTransaction::UsesReplacer>(Inst, New));
- }
- void TypePromotionTransaction::mutateType(Instruction *Inst, Type *NewTy) {
- Actions.push_back(make_unique<TypePromotionTransaction::TypeMutator>(Inst, NewTy));
- }
- Value *TypePromotionTransaction::createTrunc(Instruction *Opnd,
- Type *Ty) {
- std::unique_ptr<TruncBuilder> Ptr(new TruncBuilder(Opnd, Ty));
- Value *Val = Ptr->getBuiltValue();
- Actions.push_back(std::move(Ptr));
- return Val;
- }
- Value *TypePromotionTransaction::createSExt(Instruction *Inst,
- Value *Opnd, Type *Ty) {
- std::unique_ptr<SExtBuilder> Ptr(new SExtBuilder(Inst, Opnd, Ty));
- Value *Val = Ptr->getBuiltValue();
- Actions.push_back(std::move(Ptr));
- return Val;
- }
- Value *TypePromotionTransaction::createZExt(Instruction *Inst,
- Value *Opnd, Type *Ty) {
- std::unique_ptr<ZExtBuilder> Ptr(new ZExtBuilder(Inst, Opnd, Ty));
- Value *Val = Ptr->getBuiltValue();
- Actions.push_back(std::move(Ptr));
- return Val;
- }
- void TypePromotionTransaction::moveBefore(Instruction *Inst,
- Instruction *Before) {
- Actions.push_back(
- make_unique<TypePromotionTransaction::InstructionMoveBefore>(Inst, Before));
- }
- TypePromotionTransaction::ConstRestorationPt
- TypePromotionTransaction::getRestorationPoint() const {
- return !Actions.empty() ? Actions.back().get() : nullptr;
- }
- void TypePromotionTransaction::commit() {
- for (CommitPt It = Actions.begin(), EndIt = Actions.end(); It != EndIt;
- ++It)
- (*It)->commit();
- Actions.clear();
- }
- void TypePromotionTransaction::rollback(
- TypePromotionTransaction::ConstRestorationPt Point) {
- while (!Actions.empty() && Point != Actions.back().get()) {
- std::unique_ptr<TypePromotionAction> Curr = Actions.pop_back_val();
- Curr->undo();
- }
- }
- /// \brief A helper class for matching addressing modes.
- ///
- /// This encapsulates the logic for matching the target-legal addressing modes.
- class AddressingModeMatcher {
- SmallVectorImpl<Instruction*> &AddrModeInsts;
- const TargetMachine &TM;
- const TargetLowering &TLI;
- const DataLayout &DL;
- /// AccessTy/MemoryInst - This is the type for the access (e.g. double) and
- /// the memory instruction that we're computing this address for.
- Type *AccessTy;
- unsigned AddrSpace;
- Instruction *MemoryInst;
- /// AddrMode - This is the addressing mode that we're building up. This is
- /// part of the return value of this addressing mode matching stuff.
- ExtAddrMode &AddrMode;
- /// The instructions inserted by other CodeGenPrepare optimizations.
- const SetOfInstrs &InsertedInsts;
- /// A map from the instructions to their type before promotion.
- InstrToOrigTy &PromotedInsts;
- /// The ongoing transaction where every action should be registered.
- TypePromotionTransaction &TPT;
- /// IgnoreProfitability - This is set to true when we should not do
- /// profitability checks. When true, IsProfitableToFoldIntoAddressingMode
- /// always returns true.
- bool IgnoreProfitability;
- AddressingModeMatcher(SmallVectorImpl<Instruction *> &AMI,
- const TargetMachine &TM, Type *AT, unsigned AS,
- Instruction *MI, ExtAddrMode &AM,
- const SetOfInstrs &InsertedInsts,
- InstrToOrigTy &PromotedInsts,
- TypePromotionTransaction &TPT)
- : AddrModeInsts(AMI), TM(TM),
- TLI(*TM.getSubtargetImpl(*MI->getParent()->getParent())
- ->getTargetLowering()),
- DL(MI->getModule()->getDataLayout()), AccessTy(AT), AddrSpace(AS),
- MemoryInst(MI), AddrMode(AM), InsertedInsts(InsertedInsts),
- PromotedInsts(PromotedInsts), TPT(TPT) {
- IgnoreProfitability = false;
- }
- public:
- /// Match - Find the maximal addressing mode that a load/store of V can fold,
- /// give an access type of AccessTy. This returns a list of involved
- /// instructions in AddrModeInsts.
- /// \p InsertedInsts The instructions inserted by other CodeGenPrepare
- /// optimizations.
- /// \p PromotedInsts maps the instructions to their type before promotion.
- /// \p The ongoing transaction where every action should be registered.
- static ExtAddrMode Match(Value *V, Type *AccessTy, unsigned AS,
- Instruction *MemoryInst,
- SmallVectorImpl<Instruction*> &AddrModeInsts,
- const TargetMachine &TM,
- const SetOfInstrs &InsertedInsts,
- InstrToOrigTy &PromotedInsts,
- TypePromotionTransaction &TPT) {
- ExtAddrMode Result;
- bool Success = AddressingModeMatcher(AddrModeInsts, TM, AccessTy, AS,
- MemoryInst, Result, InsertedInsts,
- PromotedInsts, TPT).MatchAddr(V, 0);
- (void)Success; assert(Success && "Couldn't select *anything*?");
- return Result;
- }
- private:
- bool MatchScaledValue(Value *ScaleReg, int64_t Scale, unsigned Depth);
- bool MatchAddr(Value *V, unsigned Depth);
- bool MatchOperationAddr(User *Operation, unsigned Opcode, unsigned Depth,
- bool *MovedAway = nullptr);
- bool IsProfitableToFoldIntoAddressingMode(Instruction *I,
- ExtAddrMode &AMBefore,
- ExtAddrMode &AMAfter);
- bool ValueAlreadyLiveAtInst(Value *Val, Value *KnownLive1, Value *KnownLive2);
- bool IsPromotionProfitable(unsigned NewCost, unsigned OldCost,
- Value *PromotedOperand) const;
- };
- /// MatchScaledValue - Try adding ScaleReg*Scale to the current addressing mode.
- /// Return true and update AddrMode if this addr mode is legal for the target,
- /// false if not.
- bool AddressingModeMatcher::MatchScaledValue(Value *ScaleReg, int64_t Scale,
- unsigned Depth) {
- // If Scale is 1, then this is the same as adding ScaleReg to the addressing
- // mode. Just process that directly.
- if (Scale == 1)
- return MatchAddr(ScaleReg, Depth);
- // If the scale is 0, it takes nothing to add this.
- if (Scale == 0)
- return true;
- // If we already have a scale of this value, we can add to it, otherwise, we
- // need an available scale field.
- if (AddrMode.Scale != 0 && AddrMode.ScaledReg != ScaleReg)
- return false;
- ExtAddrMode TestAddrMode = AddrMode;
- // Add scale to turn X*4+X*3 -> X*7. This could also do things like
- // [A+B + A*7] -> [B+A*8].
- TestAddrMode.Scale += Scale;
- TestAddrMode.ScaledReg = ScaleReg;
- // If the new address isn't legal, bail out.
- if (!TLI.isLegalAddressingMode(DL, TestAddrMode, AccessTy, AddrSpace))
- return false;
- // It was legal, so commit it.
- AddrMode = TestAddrMode;
- // Okay, we decided that we can add ScaleReg+Scale to AddrMode. Check now
- // to see if ScaleReg is actually X+C. If so, we can turn this into adding
- // X*Scale + C*Scale to addr mode.
- ConstantInt *CI = nullptr; Value *AddLHS = nullptr;
- if (isa<Instruction>(ScaleReg) && // not a constant expr.
- match(ScaleReg, m_Add(m_Value(AddLHS), m_ConstantInt(CI)))) {
- TestAddrMode.ScaledReg = AddLHS;
- TestAddrMode.BaseOffs += CI->getSExtValue()*TestAddrMode.Scale;
- // If this addressing mode is legal, commit it and remember that we folded
- // this instruction.
- if (TLI.isLegalAddressingMode(DL, TestAddrMode, AccessTy, AddrSpace)) {
- AddrModeInsts.push_back(cast<Instruction>(ScaleReg));
- AddrMode = TestAddrMode;
- return true;
- }
- }
- // Otherwise, not (x+c)*scale, just return what we have.
- return true;
- }
- /// MightBeFoldableInst - This is a little filter, which returns true if an
- /// addressing computation involving I might be folded into a load/store
- /// accessing it. This doesn't need to be perfect, but needs to accept at least
- /// the set of instructions that MatchOperationAddr can.
- static bool MightBeFoldableInst(Instruction *I) {
- switch (I->getOpcode()) {
- case Instruction::BitCast:
- case Instruction::AddrSpaceCast:
- // Don't touch identity bitcasts.
- if (I->getType() == I->getOperand(0)->getType())
- return false;
- return I->getType()->isPointerTy() || I->getType()->isIntegerTy();
- case Instruction::PtrToInt:
- // PtrToInt is always a noop, as we know that the int type is pointer sized.
- return true;
- case Instruction::IntToPtr:
- // We know the input is intptr_t, so this is foldable.
- return true;
- case Instruction::Add:
- return true;
- case Instruction::Mul:
- case Instruction::Shl:
- // Can only handle X*C and X << C.
- return isa<ConstantInt>(I->getOperand(1));
- case Instruction::GetElementPtr:
- return true;
- default:
- return false;
- }
- }
- /// \brief Check whether or not \p Val is a legal instruction for \p TLI.
- /// \note \p Val is assumed to be the product of some type promotion.
- /// Therefore if \p Val has an undefined state in \p TLI, this is assumed
- /// to be legal, as the non-promoted value would have had the same state.
- static bool isPromotedInstructionLegal(const TargetLowering &TLI,
- const DataLayout &DL, Value *Val) {
- Instruction *PromotedInst = dyn_cast<Instruction>(Val);
- if (!PromotedInst)
- return false;
- int ISDOpcode = TLI.InstructionOpcodeToISD(PromotedInst->getOpcode());
- // If the ISDOpcode is undefined, it was undefined before the promotion.
- if (!ISDOpcode)
- return true;
- // Otherwise, check if the promoted instruction is legal or not.
- return TLI.isOperationLegalOrCustom(
- ISDOpcode, TLI.getValueType(DL, PromotedInst->getType()));
- }
- /// \brief Hepler class to perform type promotion.
- class TypePromotionHelper {
- /// \brief Utility function to check whether or not a sign or zero extension
- /// of \p Inst with \p ConsideredExtType can be moved through \p Inst by
- /// either using the operands of \p Inst or promoting \p Inst.
- /// The type of the extension is defined by \p IsSExt.
- /// In other words, check if:
- /// ext (Ty Inst opnd1 opnd2 ... opndN) to ConsideredExtType.
- /// #1 Promotion applies:
- /// ConsideredExtType Inst (ext opnd1 to ConsideredExtType, ...).
- /// #2 Operand reuses:
- /// ext opnd1 to ConsideredExtType.
- /// \p PromotedInsts maps the instructions to their type before promotion.
- static bool canGetThrough(const Instruction *Inst, Type *ConsideredExtType,
- const InstrToOrigTy &PromotedInsts, bool IsSExt);
- /// \brief Utility function to determine if \p OpIdx should be promoted when
- /// promoting \p Inst.
- static bool shouldExtOperand(const Instruction *Inst, int OpIdx) {
- if (isa<SelectInst>(Inst) && OpIdx == 0)
- return false;
- return true;
- }
- /// \brief Utility function to promote the operand of \p Ext when this
- /// operand is a promotable trunc or sext or zext.
- /// \p PromotedInsts maps the instructions to their type before promotion.
- /// \p CreatedInstsCost[out] contains the cost of all instructions
- /// created to promote the operand of Ext.
- /// Newly added extensions are inserted in \p Exts.
- /// Newly added truncates are inserted in \p Truncs.
- /// Should never be called directly.
- /// \return The promoted value which is used instead of Ext.
- static Value *promoteOperandForTruncAndAnyExt(
- Instruction *Ext, TypePromotionTransaction &TPT,
- InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost,
- SmallVectorImpl<Instruction *> *Exts,
- SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI);
- /// \brief Utility function to promote the operand of \p Ext when this
- /// operand is promotable and is not a supported trunc or sext.
- /// \p PromotedInsts maps the instructions to their type before promotion.
- /// \p CreatedInstsCost[out] contains the cost of all the instructions
- /// created to promote the operand of Ext.
- /// Newly added extensions are inserted in \p Exts.
- /// Newly added truncates are inserted in \p Truncs.
- /// Should never be called directly.
- /// \return The promoted value which is used instead of Ext.
- static Value *promoteOperandForOther(Instruction *Ext,
- TypePromotionTransaction &TPT,
- InstrToOrigTy &PromotedInsts,
- unsigned &CreatedInstsCost,
- SmallVectorImpl<Instruction *> *Exts,
- SmallVectorImpl<Instruction *> *Truncs,
- const TargetLowering &TLI, bool IsSExt);
- /// \see promoteOperandForOther.
- static Value *signExtendOperandForOther(
- Instruction *Ext, TypePromotionTransaction &TPT,
- InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost,
- SmallVectorImpl<Instruction *> *Exts,
- SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) {
- return promoteOperandForOther(Ext, TPT, PromotedInsts, CreatedInstsCost,
- Exts, Truncs, TLI, true);
- }
- /// \see promoteOperandForOther.
- static Value *zeroExtendOperandForOther(
- Instruction *Ext, TypePromotionTransaction &TPT,
- InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost,
- SmallVectorImpl<Instruction *> *Exts,
- SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) {
- return promoteOperandForOther(Ext, TPT, PromotedInsts, CreatedInstsCost,
- Exts, Truncs, TLI, false);
- }
- public:
- /// Type for the utility function that promotes the operand of Ext.
- typedef Value *(*Action)(Instruction *Ext, TypePromotionTransaction &TPT,
- InstrToOrigTy &PromotedInsts,
- unsigned &CreatedInstsCost,
- SmallVectorImpl<Instruction *> *Exts,
- SmallVectorImpl<Instruction *> *Truncs,
- const TargetLowering &TLI);
- /// \brief Given a sign/zero extend instruction \p Ext, return the approriate
- /// action to promote the operand of \p Ext instead of using Ext.
- /// \return NULL if no promotable action is possible with the current
- /// sign extension.
- /// \p InsertedInsts keeps track of all the instructions inserted by the
- /// other CodeGenPrepare optimizations. This information is important
- /// because we do not want to promote these instructions as CodeGenPrepare
- /// will reinsert them later. Thus creating an infinite loop: create/remove.
- /// \p PromotedInsts maps the instructions to their type before promotion.
- static Action getAction(Instruction *Ext, const SetOfInstrs &InsertedInsts,
- const TargetLowering &TLI,
- const InstrToOrigTy &PromotedInsts);
- };
- bool TypePromotionHelper::canGetThrough(const Instruction *Inst,
- Type *ConsideredExtType,
- const InstrToOrigTy &PromotedInsts,
- bool IsSExt) {
- // The promotion helper does not know how to deal with vector types yet.
- // To be able to fix that, we would need to fix the places where we
- // statically extend, e.g., constants and such.
- if (Inst->getType()->isVectorTy())
- return false;
- // We can always get through zext.
- if (isa<ZExtInst>(Inst))
- return true;
- // sext(sext) is ok too.
- if (IsSExt && isa<SExtInst>(Inst))
- return true;
- // We can get through binary operator, if it is legal. In other words, the
- // binary operator must have a nuw or nsw flag.
- const BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Inst);
- if (BinOp && isa<OverflowingBinaryOperator>(BinOp) &&
- ((!IsSExt && BinOp->hasNoUnsignedWrap()) ||
- (IsSExt && BinOp->hasNoSignedWrap())))
- return true;
- // Check if we can do the following simplification.
- // ext(trunc(opnd)) --> ext(opnd)
- if (!isa<TruncInst>(Inst))
- return false;
- Value *OpndVal = Inst->getOperand(0);
- // Check if we can use this operand in the extension.
- // If the type is larger than the result type of the extension,
- // we cannot.
- if (!OpndVal->getType()->isIntegerTy() ||
- OpndVal->getType()->getIntegerBitWidth() >
- ConsideredExtType->getIntegerBitWidth())
- return false;
- // If the operand of the truncate is not an instruction, we will not have
- // any information on the dropped bits.
- // (Actually we could for constant but it is not worth the extra logic).
- Instruction *Opnd = dyn_cast<Instruction>(OpndVal);
- if (!Opnd)
- return false;
- // Check if the source of the type is narrow enough.
- // I.e., check that trunc just drops extended bits of the same kind of
- // the extension.
- // #1 get the type of the operand and check the kind of the extended bits.
- const Type *OpndType;
- InstrToOrigTy::const_iterator It = PromotedInsts.find(Opnd);
- if (It != PromotedInsts.end() && It->second.IsSExt == IsSExt)
- OpndType = It->second.Ty;
- else if ((IsSExt && isa<SExtInst>(Opnd)) || (!IsSExt && isa<ZExtInst>(Opnd)))
- OpndType = Opnd->getOperand(0)->getType();
- else
- return false;
- // #2 check that the truncate just drop extended bits.
- if (Inst->getType()->getIntegerBitWidth() >= OpndType->getIntegerBitWidth())
- return true;
- return false;
- }
- TypePromotionHelper::Action TypePromotionHelper::getAction(
- Instruction *Ext, const SetOfInstrs &InsertedInsts,
- const TargetLowering &TLI, const InstrToOrigTy &PromotedInsts) {
- assert((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) &&
- "Unexpected instruction type");
- Instruction *ExtOpnd = dyn_cast<Instruction>(Ext->getOperand(0));
- Type *ExtTy = Ext->getType();
- bool IsSExt = isa<SExtInst>(Ext);
- // If the operand of the extension is not an instruction, we cannot
- // get through.
- // If it, check we can get through.
- if (!ExtOpnd || !canGetThrough(ExtOpnd, ExtTy, PromotedInsts, IsSExt))
- return nullptr;
- // Do not promote if the operand has been added by codegenprepare.
- // Otherwise, it means we are undoing an optimization that is likely to be
- // redone, thus causing potential infinite loop.
- if (isa<TruncInst>(ExtOpnd) && InsertedInsts.count(ExtOpnd))
- return nullptr;
- // SExt or Trunc instructions.
- // Return the related handler.
- if (isa<SExtInst>(ExtOpnd) || isa<TruncInst>(ExtOpnd) ||
- isa<ZExtInst>(ExtOpnd))
- return promoteOperandForTruncAndAnyExt;
- // Regular instruction.
- // Abort early if we will have to insert non-free instructions.
- if (!ExtOpnd->hasOneUse() && !TLI.isTruncateFree(ExtTy, ExtOpnd->getType()))
- return nullptr;
- return IsSExt ? signExtendOperandForOther : zeroExtendOperandForOther;
- }
- Value *TypePromotionHelper::promoteOperandForTruncAndAnyExt(
- llvm::Instruction *SExt, TypePromotionTransaction &TPT,
- InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost,
- SmallVectorImpl<Instruction *> *Exts,
- SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) {
- // By construction, the operand of SExt is an instruction. Otherwise we cannot
- // get through it and this method should not be called.
- Instruction *SExtOpnd = cast<Instruction>(SExt->getOperand(0));
- Value *ExtVal = SExt;
- bool HasMergedNonFreeExt = false;
- if (isa<ZExtInst>(SExtOpnd)) {
- // Replace s|zext(zext(opnd))
- // => zext(opnd).
- HasMergedNonFreeExt = !TLI.isExtFree(SExtOpnd);
- Value *ZExt =
- TPT.createZExt(SExt, SExtOpnd->getOperand(0), SExt->getType());
- TPT.replaceAllUsesWith(SExt, ZExt);
- TPT.eraseInstruction(SExt);
- ExtVal = ZExt;
- } else {
- // Replace z|sext(trunc(opnd)) or sext(sext(opnd))
- // => z|sext(opnd).
- TPT.setOperand(SExt, 0, SExtOpnd->getOperand(0));
- }
- CreatedInstsCost = 0;
- // Remove dead code.
- if (SExtOpnd->use_empty())
- TPT.eraseInstruction(SExtOpnd);
- // Check if the extension is still needed.
- Instruction *ExtInst = dyn_cast<Instruction>(ExtVal);
- if (!ExtInst || ExtInst->getType() != ExtInst->getOperand(0)->getType()) {
- if (ExtInst) {
- if (Exts)
- Exts->push_back(ExtInst);
- CreatedInstsCost = !TLI.isExtFree(ExtInst) && !HasMergedNonFreeExt;
- }
- return ExtVal;
- }
- // At this point we have: ext ty opnd to ty.
- // Reassign the uses of ExtInst to the opnd and remove ExtInst.
- Value *NextVal = ExtInst->getOperand(0);
- TPT.eraseInstruction(ExtInst, NextVal);
- return NextVal;
- }
- Value *TypePromotionHelper::promoteOperandForOther(
- Instruction *Ext, TypePromotionTransaction &TPT,
- InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost,
- SmallVectorImpl<Instruction *> *Exts,
- SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI,
- bool IsSExt) {
- // By construction, the operand of Ext is an instruction. Otherwise we cannot
- // get through it and this method should not be called.
- Instruction *ExtOpnd = cast<Instruction>(Ext->getOperand(0));
- CreatedInstsCost = 0;
- if (!ExtOpnd->hasOneUse()) {
- // ExtOpnd will be promoted.
- // All its uses, but Ext, will need to use a truncated value of the
- // promoted version.
- // Create the truncate now.
- Value *Trunc = TPT.createTrunc(Ext, ExtOpnd->getType());
- if (Instruction *ITrunc = dyn_cast<Instruction>(Trunc)) {
- ITrunc->removeFromParent();
- // Insert it just after the definition.
- ITrunc->insertAfter(ExtOpnd);
- if (Truncs)
- Truncs->push_back(ITrunc);
- }
- TPT.replaceAllUsesWith(ExtOpnd, Trunc);
- // Restore the operand of Ext (which has been replace by the previous call
- // to replaceAllUsesWith) to avoid creating a cycle trunc <-> sext.
- TPT.setOperand(Ext, 0, ExtOpnd);
- }
- // Get through the Instruction:
- // 1. Update its type.
- // 2. Replace the uses of Ext by Inst.
- // 3. Extend each operand that needs to be extended.
- // Remember the original type of the instruction before promotion.
- // This is useful to know that the high bits are sign extended bits.
- PromotedInsts.insert(std::pair<Instruction *, TypeIsSExt>(
- ExtOpnd, TypeIsSExt(ExtOpnd->getType(), IsSExt)));
- // Step #1.
- TPT.mutateType(ExtOpnd, Ext->getType());
- // Step #2.
- TPT.replaceAllUsesWith(Ext, ExtOpnd);
- // Step #3.
- Instruction *ExtForOpnd = Ext;
- DEBUG(dbgs() << "Propagate Ext to operands\n");
- for (int OpIdx = 0, EndOpIdx = ExtOpnd->getNumOperands(); OpIdx != EndOpIdx;
- ++OpIdx) {
- DEBUG(dbgs() << "Operand:\n" << *(ExtOpnd->getOperand(OpIdx)) << '\n');
- if (ExtOpnd->getOperand(OpIdx)->getType() == Ext->getType() ||
- !shouldExtOperand(ExtOpnd, OpIdx)) {
- DEBUG(dbgs() << "No need to propagate\n");
- continue;
- }
- // Check if we can statically extend the operand.
- Value *Opnd = ExtOpnd->getOperand(OpIdx);
- if (const ConstantInt *Cst = dyn_cast<ConstantInt>(Opnd)) {
- DEBUG(dbgs() << "Statically extend\n");
- unsigned BitWidth = Ext->getType()->getIntegerBitWidth();
- APInt CstVal = IsSExt ? Cst->getValue().sext(BitWidth)
- : Cst->getValue().zext(BitWidth);
- TPT.setOperand(ExtOpnd, OpIdx, ConstantInt::get(Ext->getType(), CstVal));
- continue;
- }
- // UndefValue are typed, so we have to statically sign extend them.
- if (isa<UndefValue>(Opnd)) {
- DEBUG(dbgs() << "Statically extend\n");
- TPT.setOperand(ExtOpnd, OpIdx, UndefValue::get(Ext->getType()));
- continue;
- }
- // Otherwise we have to explicity sign extend the operand.
- // Check if Ext was reused to extend an operand.
- if (!ExtForOpnd) {
- // If yes, create a new one.
- DEBUG(dbgs() << "More operands to ext\n");
- Value *ValForExtOpnd = IsSExt ? TPT.createSExt(Ext, Opnd, Ext->getType())
- : TPT.createZExt(Ext, Opnd, Ext->getType());
- if (!isa<Instruction>(ValForExtOpnd)) {
- TPT.setOperand(ExtOpnd, OpIdx, ValForExtOpnd);
- continue;
- }
- ExtForOpnd = cast<Instruction>(ValForExtOpnd);
- }
- if (Exts)
- Exts->push_back(ExtForOpnd);
- TPT.setOperand(ExtForOpnd, 0, Opnd);
- // Move the sign extension before the insertion point.
- TPT.moveBefore(ExtForOpnd, ExtOpnd);
- TPT.setOperand(ExtOpnd, OpIdx, ExtForOpnd);
- CreatedInstsCost += !TLI.isExtFree(ExtForOpnd);
- // If more sext are required, new instructions will have to be created.
- ExtForOpnd = nullptr;
- }
- if (ExtForOpnd == Ext) {
- DEBUG(dbgs() << "Extension is useless now\n");
- TPT.eraseInstruction(Ext);
- }
- return ExtOpnd;
- }
- /// IsPromotionProfitable - Check whether or not promoting an instruction
- /// to a wider type was profitable.
- /// \p NewCost gives the cost of extension instructions created by the
- /// promotion.
- /// \p OldCost gives the cost of extension instructions before the promotion
- /// plus the number of instructions that have been
- /// matched in the addressing mode the promotion.
- /// \p PromotedOperand is the value that has been promoted.
- /// \return True if the promotion is profitable, false otherwise.
- bool AddressingModeMatcher::IsPromotionProfitable(
- unsigned NewCost, unsigned OldCost, Value *PromotedOperand) const {
- DEBUG(dbgs() << "OldCost: " << OldCost << "\tNewCost: " << NewCost << '\n');
- // The cost of the new extensions is greater than the cost of the
- // old extension plus what we folded.
- // This is not profitable.
- if (NewCost > OldCost)
- return false;
- if (NewCost < OldCost)
- return true;
- // The promotion is neutral but it may help folding the sign extension in
- // loads for instance.
- // Check that we did not create an illegal instruction.
- return isPromotedInstructionLegal(TLI, DL, PromotedOperand);
- }
- /// MatchOperationAddr - Given an instruction or constant expr, see if we can
- /// fold the operation into the addressing mode. If so, update the addressing
- /// mode and return true, otherwise return false without modifying AddrMode.
- /// If \p MovedAway is not NULL, it contains the information of whether or
- /// not AddrInst has to be folded into the addressing mode on success.
- /// If \p MovedAway == true, \p AddrInst will not be part of the addressing
- /// because it has been moved away.
- /// Thus AddrInst must not be added in the matched instructions.
- /// This state can happen when AddrInst is a sext, since it may be moved away.
- /// Therefore, AddrInst may not be valid when MovedAway is true and it must
- /// not be referenced anymore.
- bool AddressingModeMatcher::MatchOperationAddr(User *AddrInst, unsigned Opcode,
- unsigned Depth,
- bool *MovedAway) {
- // Avoid exponential behavior on extremely deep expression trees.
- if (Depth >= 5) return false;
- // By default, all matched instructions stay in place.
- if (MovedAway)
- *MovedAway = false;
- switch (Opcode) {
- case Instruction::PtrToInt:
- // PtrToInt is always a noop, as we know that the int type is pointer sized.
- return MatchAddr(AddrInst->getOperand(0), Depth);
- case Instruction::IntToPtr: {
- auto AS = AddrInst->getType()->getPointerAddressSpace();
- auto PtrTy = MVT::getIntegerVT(DL.getPointerSizeInBits(AS));
- // This inttoptr is a no-op if the integer type is pointer sized.
- if (TLI.getValueType(DL, AddrInst->getOperand(0)->getType()) == PtrTy)
- return MatchAddr(AddrInst->getOperand(0), Depth);
- return false;
- }
- case Instruction::BitCast:
- // BitCast is always a noop, and we can handle it as long as it is
- // int->int or pointer->pointer (we don't want int<->fp or something).
- if ((AddrInst->getOperand(0)->getType()->isPointerTy() ||
- AddrInst->getOperand(0)->getType()->isIntegerTy()) &&
- // Don't touch identity bitcasts. These were probably put here by LSR,
- // and we don't want to mess around with them. Assume it knows what it
- // is doing.
- AddrInst->getOperand(0)->getType() != AddrInst->getType())
- return MatchAddr(AddrInst->getOperand(0), Depth);
- return false;
- case Instruction::AddrSpaceCast: {
- unsigned SrcAS
- = AddrInst->getOperand(0)->getType()->getPointerAddressSpace();
- unsigned DestAS = AddrInst->getType()->getPointerAddressSpace();
- if (TLI.isNoopAddrSpaceCast(SrcAS, DestAS))
- return MatchAddr(AddrInst->getOperand(0), Depth);
- return false;
- }
- case Instruction::Add: {
- // Check to see if we can merge in the RHS then the LHS. If so, we win.
- ExtAddrMode BackupAddrMode = AddrMode;
- unsigned OldSize = AddrModeInsts.size();
- // Start a transaction at this point.
- // The LHS may match but not the RHS.
- // Therefore, we need a higher level restoration point to undo partially
- // matched operation.
- TypePromotionTransaction::ConstRestorationPt LastKnownGood =
- TPT.getRestorationPoint();
- if (MatchAddr(AddrInst->getOperand(1), Depth+1) &&
- MatchAddr(AddrInst->getOperand(0), Depth+1))
- return true;
- // Restore the old addr mode info.
- AddrMode = BackupAddrMode;
- AddrModeInsts.resize(OldSize);
- TPT.rollback(LastKnownGood);
- // Otherwise this was over-aggressive. Try merging in the LHS then the RHS.
- if (MatchAddr(AddrInst->getOperand(0), Depth+1) &&
- MatchAddr(AddrInst->getOperand(1), Depth+1))
- return true;
- // Otherwise we definitely can't merge the ADD in.
- AddrMode = BackupAddrMode;
- AddrModeInsts.resize(OldSize);
- TPT.rollback(LastKnownGood);
- break;
- }
- //case Instruction::Or:
- // TODO: We can handle "Or Val, Imm" iff this OR is equivalent to an ADD.
- //break;
- case Instruction::Mul:
- case Instruction::Shl: {
- // Can only handle X*C and X << C.
- ConstantInt *RHS = dyn_cast<ConstantInt>(AddrInst->getOperand(1));
- if (!RHS)
- return false;
- int64_t Scale = RHS->getSExtValue();
- if (Opcode == Instruction::Shl)
- Scale = 1LL << Scale;
- return MatchScaledValue(AddrInst->getOperand(0), Scale, Depth);
- }
- case Instruction::GetElementPtr: {
- // Scan the GEP. We check it if it contains constant offsets and at most
- // one variable offset.
- int VariableOperand = -1;
- unsigned VariableScale = 0;
- int64_t ConstantOffset = 0;
- gep_type_iterator GTI = gep_type_begin(AddrInst);
- for (unsigned i = 1, e = AddrInst->getNumOperands(); i != e; ++i, ++GTI) {
- if (StructType *STy = dyn_cast<StructType>(*GTI)) {
- const StructLayout *SL = DL.getStructLayout(STy);
- unsigned Idx =
- cast<ConstantInt>(AddrInst->getOperand(i))->getZExtValue();
- ConstantOffset += SL->getElementOffset(Idx);
- } else {
- uint64_t TypeSize = DL.getTypeAllocSize(GTI.getIndexedType());
- if (ConstantInt *CI = dyn_cast<ConstantInt>(AddrInst->getOperand(i))) {
- ConstantOffset += CI->getSExtValue()*TypeSize;
- } else if (TypeSize) { // Scales of zero don't do anything.
- // We only allow one variable index at the moment.
- if (VariableOperand != -1)
- return false;
- // Remember the variable index.
- VariableOperand = i;
- VariableScale = TypeSize;
- }
- }
- }
- // A common case is for the GEP to only do a constant offset. In this case,
- // just add it to the disp field and check validity.
- if (VariableOperand == -1) {
- AddrMode.BaseOffs += ConstantOffset;
- if (ConstantOffset == 0 ||
- TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) {
- // Check to see if we can fold the base pointer in too.
- if (MatchAddr(AddrInst->getOperand(0), Depth+1))
- return true;
- }
- AddrMode.BaseOffs -= ConstantOffset;
- return false;
- }
- // Save the valid addressing mode in case we can't match.
- ExtAddrMode BackupAddrMode = AddrMode;
- unsigned OldSize = AddrModeInsts.size();
- // See if the scale and offset amount is valid for this target.
- AddrMode.BaseOffs += ConstantOffset;
- // Match the base operand of the GEP.
- if (!MatchAddr(AddrInst->getOperand(0), Depth+1)) {
- // If it couldn't be matched, just stuff the value in a register.
- if (AddrMode.HasBaseReg) {
- AddrMode = BackupAddrMode;
- AddrModeInsts.resize(OldSize);
- return false;
- }
- AddrMode.HasBaseReg = true;
- AddrMode.BaseReg = AddrInst->getOperand(0);
- }
- // Match the remaining variable portion of the GEP.
- if (!MatchScaledValue(AddrInst->getOperand(VariableOperand), VariableScale,
- Depth)) {
- // If it couldn't be matched, try stuffing the base into a register
- // instead of matching it, and retrying the match of the scale.
- AddrMode = BackupAddrMode;
- AddrModeInsts.resize(OldSize);
- if (AddrMode.HasBaseReg)
- return false;
- AddrMode.HasBaseReg = true;
- AddrMode.BaseReg = AddrInst->getOperand(0);
- AddrMode.BaseOffs += ConstantOffset;
- if (!MatchScaledValue(AddrInst->getOperand(VariableOperand),
- VariableScale, Depth)) {
- // If even that didn't work, bail.
- AddrMode = BackupAddrMode;
- AddrModeInsts.resize(OldSize);
- return false;
- }
- }
- return true;
- }
- case Instruction::SExt:
- case Instruction::ZExt: {
- Instruction *Ext = dyn_cast<Instruction>(AddrInst);
- if (!Ext)
- return false;
- // Try to move this ext out of the way of the addressing mode.
- // Ask for a method for doing so.
- TypePromotionHelper::Action TPH =
- TypePromotionHelper::getAction(Ext, InsertedInsts, TLI, PromotedInsts);
- if (!TPH)
- return false;
- TypePromotionTransaction::ConstRestorationPt LastKnownGood =
- TPT.getRestorationPoint();
- unsigned CreatedInstsCost = 0;
- unsigned ExtCost = !TLI.isExtFree(Ext);
- Value *PromotedOperand =
- TPH(Ext, TPT, PromotedInsts, CreatedInstsCost, nullptr, nullptr, TLI);
- // SExt has been moved away.
- // Thus either it will be rematched later in the recursive calls or it is
- // gone. Anyway, we must not fold it into the addressing mode at this point.
- // E.g.,
- // op = add opnd, 1
- // idx = ext op
- // addr = gep base, idx
- // is now:
- // promotedOpnd = ext opnd <- no match here
- // op = promoted_add promotedOpnd, 1 <- match (later in recursive calls)
- // addr = gep base, op <- match
- if (MovedAway)
- *MovedAway = true;
- assert(PromotedOperand &&
- "TypePromotionHelper should have filtered out those cases");
- ExtAddrMode BackupAddrMode = AddrMode;
- unsigned OldSize = AddrModeInsts.size();
- if (!MatchAddr(PromotedOperand, Depth) ||
- // The total of the new cost is equals to the cost of the created
- // instructions.
- // The total of the old cost is equals to the cost of the extension plus
- // what we have saved in the addressing mode.
- !IsPromotionProfitable(CreatedInstsCost,
- ExtCost + (AddrModeInsts.size() - OldSize),
- PromotedOperand)) {
- AddrMode = BackupAddrMode;
- AddrModeInsts.resize(OldSize);
- DEBUG(dbgs() << "Sign extension does not pay off: rollback\n");
- TPT.rollback(LastKnownGood);
- return false;
- }
- return true;
- }
- }
- return false;
- }
- /// MatchAddr - If we can, try to add the value of 'Addr' into the current
- /// addressing mode. If Addr can't be added to AddrMode this returns false and
- /// leaves AddrMode unmodified. This assumes that Addr is either a pointer type
- /// or intptr_t for the target.
- ///
- bool AddressingModeMatcher::MatchAddr(Value *Addr, unsigned Depth) {
- // Start a transaction at this point that we will rollback if the matching
- // fails.
- TypePromotionTransaction::ConstRestorationPt LastKnownGood =
- TPT.getRestorationPoint();
- if (ConstantInt *CI = dyn_cast<ConstantInt>(Addr)) {
- // Fold in immediates if legal for the target.
- AddrMode.BaseOffs += CI->getSExtValue();
- if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace))
- return true;
- AddrMode.BaseOffs -= CI->getSExtValue();
- } else if (GlobalValue *GV = dyn_cast<GlobalValue>(Addr)) {
- // If this is a global variable, try to fold it into the addressing mode.
- if (!AddrMode.BaseGV) {
- AddrMode.BaseGV = GV;
- if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace))
- return true;
- AddrMode.BaseGV = nullptr;
- }
- } else if (Instruction *I = dyn_cast<Instruction>(Addr)) {
- ExtAddrMode BackupAddrMode = AddrMode;
- unsigned OldSize = AddrModeInsts.size();
- // Check to see if it is possible to fold this operation.
- bool MovedAway = false;
- if (MatchOperationAddr(I, I->getOpcode(), Depth, &MovedAway)) {
- // This instruction may have been move away. If so, there is nothing
- // to check here.
- if (MovedAway)
- return true;
- // Okay, it's possible to fold this. Check to see if it is actually
- // *profitable* to do so. We use a simple cost model to avoid increasing
- // register pressure too much.
- if (I->hasOneUse() ||
- IsProfitableToFoldIntoAddressingMode(I, BackupAddrMode, AddrMode)) {
- AddrModeInsts.push_back(I);
- return true;
- }
- // It isn't profitable to do this, roll back.
- //cerr << "NOT FOLDING: " << *I;
- AddrMode = BackupAddrMode;
- AddrModeInsts.resize(OldSize);
- TPT.rollback(LastKnownGood);
- }
- } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Addr)) {
- if (MatchOperationAddr(CE, CE->getOpcode(), Depth))
- return true;
- TPT.rollback(LastKnownGood);
- } else if (isa<ConstantPointerNull>(Addr)) {
- // Null pointer gets folded without affecting the addressing mode.
- return true;
- }
- // Worse case, the target should support [reg] addressing modes. :)
- if (!AddrMode.HasBaseReg) {
- AddrMode.HasBaseReg = true;
- AddrMode.BaseReg = Addr;
- // Still check for legality in case the target supports [imm] but not [i+r].
- if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace))
- return true;
- AddrMode.HasBaseReg = false;
- AddrMode.BaseReg = nullptr;
- }
- // If the base register is already taken, see if we can do [r+r].
- if (AddrMode.Scale == 0) {
- AddrMode.Scale = 1;
- AddrMode.ScaledReg = Addr;
- if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace))
- return true;
- AddrMode.Scale = 0;
- AddrMode.ScaledReg = nullptr;
- }
- // Couldn't match.
- TPT.rollback(LastKnownGood);
- return false;
- }
- /// IsOperandAMemoryOperand - Check to see if all uses of OpVal by the specified
- /// inline asm call are due to memory operands. If so, return true, otherwise
- /// return false.
- static bool IsOperandAMemoryOperand(CallInst *CI, InlineAsm *IA, Value *OpVal,
- const TargetMachine &TM) {
- const Function *F = CI->getParent()->getParent();
- const TargetLowering *TLI = TM.getSubtargetImpl(*F)->getTargetLowering();
- const TargetRegisterInfo *TRI = TM.getSubtargetImpl(*F)->getRegisterInfo();
- TargetLowering::AsmOperandInfoVector TargetConstraints =
- TLI->ParseConstraints(F->getParent()->getDataLayout(), TRI,
- ImmutableCallSite(CI));
- for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) {
- TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i];
- // Compute the constraint code and ConstraintType to use.
- TLI->ComputeConstraintToUse(OpInfo, SDValue());
- // If this asm operand is our Value*, and if it isn't an indirect memory
- // operand, we can't fold it!
- if (OpInfo.CallOperandVal == OpVal &&
- (OpInfo.ConstraintType != TargetLowering::C_Memory ||
- !OpInfo.isIndirect))
- return false;
- }
- return true;
- }
- /// FindAllMemoryUses - Recursively walk all the uses of I until we find a
- /// memory use. If we find an obviously non-foldable instruction, return true.
- /// Add the ultimately found memory instructions to MemoryUses.
- static bool FindAllMemoryUses(
- Instruction *I,
- SmallVectorImpl<std::pair<Instruction *, unsigned>> &MemoryUses,
- SmallPtrSetImpl<Instruction *> &ConsideredInsts, const TargetMachine &TM) {
- // If we already considered this instruction, we're done.
- if (!ConsideredInsts.insert(I).second)
- return false;
- // If this is an obviously unfoldable instruction, bail out.
- if (!MightBeFoldableInst(I))
- return true;
- // Loop over all the uses, recursively processing them.
- for (Use &U : I->uses()) {
- Instruction *UserI = cast<Instruction>(U.getUser());
- if (LoadInst *LI = dyn_cast<LoadInst>(UserI)) {
- MemoryUses.push_back(std::make_pair(LI, U.getOperandNo()));
- continue;
- }
- if (StoreInst *SI = dyn_cast<StoreInst>(UserI)) {
- unsigned opNo = U.getOperandNo();
- if (opNo == 0) return true; // Storing addr, not into addr.
- MemoryUses.push_back(std::make_pair(SI, opNo));
- continue;
- }
- if (CallInst *CI = dyn_cast<CallInst>(UserI)) {
- InlineAsm *IA = dyn_cast<InlineAsm>(CI->getCalledValue());
- if (!IA) return true;
- // If this is a memory operand, we're cool, otherwise bail out.
- if (!IsOperandAMemoryOperand(CI, IA, I, TM))
- return true;
- continue;
- }
- if (FindAllMemoryUses(UserI, MemoryUses, ConsideredInsts, TM))
- return true;
- }
- return false;
- }
- /// ValueAlreadyLiveAtInst - Retrn true if Val is already known to be live at
- /// the use site that we're folding it into. If so, there is no cost to
- /// include it in the addressing mode. KnownLive1 and KnownLive2 are two values
- /// that we know are live at the instruction already.
- bool AddressingModeMatcher::ValueAlreadyLiveAtInst(Value *Val,Value *KnownLive1,
- Value *KnownLive2) {
- // If Val is either of the known-live values, we know it is live!
- if (Val == nullptr || Val == KnownLive1 || Val == KnownLive2)
- return true;
- // All values other than instructions and arguments (e.g. constants) are live.
- if (!isa<Instruction>(Val) && !isa<Argument>(Val)) return true;
- // If Val is a constant sized alloca in the entry block, it is live, this is
- // true because it is just a reference to the stack/frame pointer, which is
- // live for the whole function.
- if (AllocaInst *AI = dyn_cast<AllocaInst>(Val))
- if (AI->isStaticAlloca())
- return true;
- // Check to see if this value is already used in the memory instruction's
- // block. If so, it's already live into the block at the very least, so we
- // can reasonably fold it.
- return Val->isUsedInBasicBlock(MemoryInst->getParent());
- }
- /// IsProfitableToFoldIntoAddressingMode - It is possible for the addressing
- /// mode of the machine to fold the specified instruction into a load or store
- /// that ultimately uses it. However, the specified instruction has multiple
- /// uses. Given this, it may actually increase register pressure to fold it
- /// into the load. For example, consider this code:
- ///
- /// X = ...
- /// Y = X+1
- /// use(Y) -> nonload/store
- /// Z = Y+1
- /// load Z
- ///
- /// In this case, Y has multiple uses, and can be folded into the load of Z
- /// (yielding load [X+2]). However, doing this will cause both "X" and "X+1" to
- /// be live at the use(Y) line. If we don't fold Y into load Z, we use one
- /// fewer register. Since Y can't be folded into "use(Y)" we don't increase the
- /// number of computations either.
- ///
- /// Note that this (like most of CodeGenPrepare) is just a rough heuristic. If
- /// X was live across 'load Z' for other reasons, we actually *would* want to
- /// fold the addressing mode in the Z case. This would make Y die earlier.
- bool AddressingModeMatcher::
- IsProfitableToFoldIntoAddressingMode(Instruction *I, ExtAddrMode &AMBefore,
- ExtAddrMode &AMAfter) {
- if (IgnoreProfitability) return true;
- // AMBefore is the addressing mode before this instruction was folded into it,
- // and AMAfter is the addressing mode after the instruction was folded. Get
- // the set of registers referenced by AMAfter and subtract out those
- // referenced by AMBefore: this is the set of values which folding in this
- // address extends the lifetime of.
- //
- // Note that there are only two potential values being referenced here,
- // BaseReg and ScaleReg (global addresses are always available, as are any
- // folded immediates).
- Value *BaseReg = AMAfter.BaseReg, *ScaledReg = AMAfter.ScaledReg;
- // If the BaseReg or ScaledReg was referenced by the previous addrmode, their
- // lifetime wasn't extended by adding this instruction.
- if (ValueAlreadyLiveAtInst(BaseReg, AMBefore.BaseReg, AMBefore.ScaledReg))
- BaseReg = nullptr;
- if (ValueAlreadyLiveAtInst(ScaledReg, AMBefore.BaseReg, AMBefore.ScaledReg))
- ScaledReg = nullptr;
- // If folding this instruction (and it's subexprs) didn't extend any live
- // ranges, we're ok with it.
- if (!BaseReg && !ScaledReg)
- return true;
- // If all uses of this instruction are ultimately load/store/inlineasm's,
- // check to see if their addressing modes will include this instruction. If
- // so, we can fold it into all uses, so it doesn't matter if it has multiple
- // uses.
- SmallVector<std::pair<Instruction*,unsigned>, 16> MemoryUses;
- SmallPtrSet<Instruction*, 16> ConsideredInsts;
- if (FindAllMemoryUses(I, MemoryUses, ConsideredInsts, TM))
- return false; // Has a non-memory, non-foldable use!
- // Now that we know that all uses of this instruction are part of a chain of
- // computation involving only operations that could theoretically be folded
- // into a memory use, loop over each of these uses and see if they could
- // *actually* fold the instruction.
- SmallVector<Instruction*, 32> MatchedAddrModeInsts;
- for (unsigned i = 0, e = MemoryUses.size(); i != e; ++i) {
- Instruction *User = MemoryUses[i].first;
- unsigned OpNo = MemoryUses[i].second;
- // Get the access type of this use. If the use isn't a pointer, we don't
- // know what it accesses.
- Value *Address = User->getOperand(OpNo);
- PointerType *AddrTy = dyn_cast<PointerType>(Address->getType());
- if (!AddrTy)
- return false;
- Type *AddressAccessTy = AddrTy->getElementType();
- unsigned AS = AddrTy->getAddressSpace();
- // Do a match against the root of this address, ignoring profitability. This
- // will tell us if the addressing mode for the memory operation will
- // *actually* cover the shared instruction.
- ExtAddrMode Result;
- TypePromotionTransaction::ConstRestorationPt LastKnownGood =
- TPT.getRestorationPoint();
- AddressingModeMatcher Matcher(MatchedAddrModeInsts, TM, AddressAccessTy, AS,
- MemoryInst, Result, InsertedInsts,
- PromotedInsts, TPT);
- Matcher.IgnoreProfitability = true;
- bool Success = Matcher.MatchAddr(Address, 0);
- (void)Success; assert(Success && "Couldn't select *anything*?");
- // The match was to check the profitability, the changes made are not
- // part of the original matcher. Therefore, they should be dropped
- // otherwise the original matcher will not present the right state.
- TPT.rollback(LastKnownGood);
- // If the match didn't cover I, then it won't be shared by it.
- if (std::find(MatchedAddrModeInsts.begin(), MatchedAddrModeInsts.end(),
- I) == MatchedAddrModeInsts.end())
- return false;
- MatchedAddrModeInsts.clear();
- }
- return true;
- }
- } // end anonymous namespace
- /// IsNonLocalValue - Return true if the specified values are defined in a
- /// different basic block than BB.
- static bool IsNonLocalValue(Value *V, BasicBlock *BB) {
- if (Instruction *I = dyn_cast<Instruction>(V))
- return I->getParent() != BB;
- return false;
- }
- /// OptimizeMemoryInst - Load and Store Instructions often have
- /// addressing modes that can do significant amounts of computation. As such,
- /// instruction selection will try to get the load or store to do as much
- /// computation as possible for the program. The problem is that isel can only
- /// see within a single block. As such, we sink as much legal addressing mode
- /// stuff into the block as possible.
- ///
- /// This method is used to optimize both load/store and inline asms with memory
- /// operands.
- bool CodeGenPrepare::OptimizeMemoryInst(Instruction *MemoryInst, Value *Addr,
- Type *AccessTy, unsigned AddrSpace) {
- Value *Repl = Addr;
- // Try to collapse single-value PHI nodes. This is necessary to undo
- // unprofitable PRE transformations.
- SmallVector<Value*, 8> worklist;
- SmallPtrSet<Value*, 16> Visited;
- worklist.push_back(Addr);
- // Use a worklist to iteratively look through PHI nodes, and ensure that
- // the addressing mode obtained from the non-PHI roots of the graph
- // are equivalent.
- Value *Consensus = nullptr;
- unsigned NumUsesConsensus = 0;
- bool IsNumUsesConsensusValid = false;
- SmallVector<Instruction*, 16> AddrModeInsts;
- ExtAddrMode AddrMode;
- TypePromotionTransaction TPT;
- TypePromotionTransaction::ConstRestorationPt LastKnownGood =
- TPT.getRestorationPoint();
- while (!worklist.empty()) {
- Value *V = worklist.back();
- worklist.pop_back();
- // Break use-def graph loops.
- if (!Visited.insert(V).second) {
- Consensus = nullptr;
- break;
- }
- // For a PHI node, push all of its incoming values.
- if (PHINode *P = dyn_cast<PHINode>(V)) {
- for (Value *IncValue : P->incoming_values())
- worklist.push_back(IncValue);
- continue;
- }
- // For non-PHIs, determine the addressing mode being computed.
- SmallVector<Instruction*, 16> NewAddrModeInsts;
- ExtAddrMode NewAddrMode = AddressingModeMatcher::Match(
- V, AccessTy, AddrSpace, MemoryInst, NewAddrModeInsts, *TM,
- InsertedInsts, PromotedInsts, TPT);
- // This check is broken into two cases with very similar code to avoid using
- // getNumUses() as much as possible. Some values have a lot of uses, so
- // calling getNumUses() unconditionally caused a significant compile-time
- // regression.
- if (!Consensus) {
- Consensus = V;
- AddrMode = NewAddrMode;
- AddrModeInsts = NewAddrModeInsts;
- continue;
- } else if (NewAddrMode == AddrMode) {
- if (!IsNumUsesConsensusValid) {
- NumUsesConsensus = Consensus->getNumUses();
- IsNumUsesConsensusValid = true;
- }
- // Ensure that the obtained addressing mode is equivalent to that obtained
- // for all other roots of the PHI traversal. Also, when choosing one
- // such root as representative, select the one with the most uses in order
- // to keep the cost modeling heuristics in AddressingModeMatcher
- // applicable.
- unsigned NumUses = V->getNumUses();
- if (NumUses > NumUsesConsensus) {
- Consensus = V;
- NumUsesConsensus = NumUses;
- AddrModeInsts = NewAddrModeInsts;
- }
- continue;
- }
- Consensus = nullptr;
- break;
- }
- // If the addressing mode couldn't be determined, or if multiple different
- // ones were determined, bail out now.
- if (!Consensus) {
- TPT.rollback(LastKnownGood);
- return false;
- }
- TPT.commit();
- // Check to see if any of the instructions supersumed by this addr mode are
- // non-local to I's BB.
- bool AnyNonLocal = false;
- for (unsigned i = 0, e = AddrModeInsts.size(); i != e; ++i) {
- if (IsNonLocalValue(AddrModeInsts[i], MemoryInst->getParent())) {
- AnyNonLocal = true;
- break;
- }
- }
- // If all the instructions matched are already in this BB, don't do anything.
- if (!AnyNonLocal) {
- DEBUG(dbgs() << "CGP: Found local addrmode: " << AddrMode << "\n");
- return false;
- }
- // Insert this computation right after this user. Since our caller is
- // scanning from the top of the BB to the bottom, reuse of the expr are
- // guaranteed to happen later.
- IRBuilder<> Builder(MemoryInst);
- // Now that we determined the addressing expression we want to use and know
- // that we have to sink it into this block. Check to see if we have already
- // done this for some other load/store instr in this block. If so, reuse the
- // computation.
- Value *&SunkAddr = SunkAddrs[Addr];
- if (SunkAddr) {
- DEBUG(dbgs() << "CGP: Reusing nonlocal addrmode: " << AddrMode << " for "
- << *MemoryInst << "\n");
- if (SunkAddr->getType() != Addr->getType())
- SunkAddr = Builder.CreateBitCast(SunkAddr, Addr->getType());
- } else if (AddrSinkUsingGEPs ||
- (!AddrSinkUsingGEPs.getNumOccurrences() && TM &&
- TM->getSubtargetImpl(*MemoryInst->getParent()->getParent())
- ->useAA())) {
- // By default, we use the GEP-based method when AA is used later. This
- // prevents new inttoptr/ptrtoint pairs from degrading AA capabilities.
- DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode << " for "
- << *MemoryInst << "\n");
- Type *IntPtrTy = DL->getIntPtrType(Addr->getType());
- Value *ResultPtr = nullptr, *ResultIndex = nullptr;
- // First, find the pointer.
- if (AddrMode.BaseReg && AddrMode.BaseReg->getType()->isPointerTy()) {
- ResultPtr = AddrMode.BaseReg;
- AddrMode.BaseReg = nullptr;
- }
- if (AddrMode.Scale && AddrMode.ScaledReg->getType()->isPointerTy()) {
- // We can't add more than one pointer together, nor can we scale a
- // pointer (both of which seem meaningless).
- if (ResultPtr || AddrMode.Scale != 1)
- return false;
- ResultPtr = AddrMode.ScaledReg;
- AddrMode.Scale = 0;
- }
- if (AddrMode.BaseGV) {
- if (ResultPtr)
- return false;
- ResultPtr = AddrMode.BaseGV;
- }
- // If the real base value actually came from an inttoptr, then the matcher
- // will look through it and provide only the integer value. In that case,
- // use it here.
- if (!ResultPtr && AddrMode.BaseReg) {
- ResultPtr =
- Builder.CreateIntToPtr(AddrMode.BaseReg, Addr->getType(), "sunkaddr");
- AddrMode.BaseReg = nullptr;
- } else if (!ResultPtr && AddrMode.Scale == 1) {
- ResultPtr =
- Builder.CreateIntToPtr(AddrMode.ScaledReg, Addr->getType(), "sunkaddr");
- AddrMode.Scale = 0;
- }
- if (!ResultPtr &&
- !AddrMode.BaseReg && !AddrMode.Scale && !AddrMode.BaseOffs) {
- SunkAddr = Constant::getNullValue(Addr->getType());
- } else if (!ResultPtr) {
- return false;
- } else {
- Type *I8PtrTy =
- Builder.getInt8PtrTy(Addr->getType()->getPointerAddressSpace());
- Type *I8Ty = Builder.getInt8Ty();
- // Start with the base register. Do this first so that subsequent address
- // matching finds it last, which will prevent it from trying to match it
- // as the scaled value in case it happens to be a mul. That would be
- // problematic if we've sunk a different mul for the scale, because then
- // we'd end up sinking both muls.
- if (AddrMode.BaseReg) {
- Value *V = AddrMode.BaseReg;
- if (V->getType() != IntPtrTy)
- V = Builder.CreateIntCast(V, IntPtrTy, /*isSigned=*/true, "sunkaddr");
- ResultIndex = V;
- }
- // Add the scale value.
- if (AddrMode.Scale) {
- Value *V = AddrMode.ScaledReg;
- if (V->getType() == IntPtrTy) {
- // done.
- } else if (cast<IntegerType>(IntPtrTy)->getBitWidth() <
- cast<IntegerType>(V->getType())->getBitWidth()) {
- V = Builder.CreateTrunc(V, IntPtrTy, "sunkaddr");
- } else {
- // It is only safe to sign extend the BaseReg if we know that the math
- // required to create it did not overflow before we extend it. Since
- // the original IR value was tossed in favor of a constant back when
- // the AddrMode was created we need to bail out gracefully if widths
- // do not match instead of extending it.
- Instruction *I = dyn_cast_or_null<Instruction>(ResultIndex);
- if (I && (ResultIndex != AddrMode.BaseReg))
- I->eraseFromParent();
- return false;
- }
- if (AddrMode.Scale != 1)
- V = Builder.CreateMul(V, ConstantInt::get(IntPtrTy, AddrMode.Scale),
- "sunkaddr");
- if (ResultIndex)
- ResultIndex = Builder.CreateAdd(ResultIndex, V, "sunkaddr");
- else
- ResultIndex = V;
- }
- // Add in the Base Offset if present.
- if (AddrMode.BaseOffs) {
- Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs);
- if (ResultIndex) {
- // We need to add this separately from the scale above to help with
- // SDAG consecutive load/store merging.
- if (ResultPtr->getType() != I8PtrTy)
- ResultPtr = Builder.CreateBitCast(ResultPtr, I8PtrTy);
- ResultPtr = Builder.CreateGEP(I8Ty, ResultPtr, ResultIndex, "sunkaddr");
- }
- ResultIndex = V;
- }
- if (!ResultIndex) {
- SunkAddr = ResultPtr;
- } else {
- if (ResultPtr->getType() != I8PtrTy)
- ResultPtr = Builder.CreateBitCast(ResultPtr, I8PtrTy);
- SunkAddr = Builder.CreateGEP(I8Ty, ResultPtr, ResultIndex, "sunkaddr");
- }
- if (SunkAddr->getType() != Addr->getType())
- SunkAddr = Builder.CreateBitCast(SunkAddr, Addr->getType());
- }
- } else {
- DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode << " for "
- << *MemoryInst << "\n");
- Type *IntPtrTy = DL->getIntPtrType(Addr->getType());
- Value *Result = nullptr;
- // Start with the base register. Do this first so that subsequent address
- // matching finds it last, which will prevent it from trying to match it
- // as the scaled value in case it happens to be a mul. That would be
- // problematic if we've sunk a different mul for the scale, because then
- // we'd end up sinking both muls.
- if (AddrMode.BaseReg) {
- Value *V = AddrMode.BaseReg;
- if (V->getType()->isPointerTy())
- V = Builder.CreatePtrToInt(V, IntPtrTy, "sunkaddr");
- if (V->getType() != IntPtrTy)
- V = Builder.CreateIntCast(V, IntPtrTy, /*isSigned=*/true, "sunkaddr");
- Result = V;
- }
- // Add the scale value.
- if (AddrMode.Scale) {
- Value *V = AddrMode.ScaledReg;
- if (V->getType() == IntPtrTy) {
- // done.
- } else if (V->getType()->isPointerTy()) {
- V = Builder.CreatePtrToInt(V, IntPtrTy, "sunkaddr");
- } else if (cast<IntegerType>(IntPtrTy)->getBitWidth() <
- cast<IntegerType>(V->getType())->getBitWidth()) {
- V = Builder.CreateTrunc(V, IntPtrTy, "sunkaddr");
- } else {
- // It is only safe to sign extend the BaseReg if we know that the math
- // required to create it did not overflow before we extend it. Since
- // the original IR value was tossed in favor of a constant back when
- // the AddrMode was created we need to bail out gracefully if widths
- // do not match instead of extending it.
- Instruction *I = dyn_cast_or_null<Instruction>(Result);
- if (I && (Result != AddrMode.BaseReg))
- I->eraseFromParent();
- return false;
- }
- if (AddrMode.Scale != 1)
- V = Builder.CreateMul(V, ConstantInt::get(IntPtrTy, AddrMode.Scale),
- "sunkaddr");
- if (Result)
- Result = Builder.CreateAdd(Result, V, "sunkaddr");
- else
- Result = V;
- }
- // Add in the BaseGV if present.
- if (AddrMode.BaseGV) {
- Value *V = Builder.CreatePtrToInt(AddrMode.BaseGV, IntPtrTy, "sunkaddr");
- if (Result)
- Result = Builder.CreateAdd(Result, V, "sunkaddr");
- else
- Result = V;
- }
- // Add in the Base Offset if present.
- if (AddrMode.BaseOffs) {
- Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs);
- if (Result)
- Result = Builder.CreateAdd(Result, V, "sunkaddr");
- else
- Result = V;
- }
- if (!Result)
- SunkAddr = Constant::getNullValue(Addr->getType());
- else
- SunkAddr = Builder.CreateIntToPtr(Result, Addr->getType(), "sunkaddr");
- }
- MemoryInst->replaceUsesOfWith(Repl, SunkAddr);
- // If we have no uses, recursively delete the value and all dead instructions
- // using it.
- if (Repl->use_empty()) {
- // This can cause recursive deletion, which can invalidate our iterator.
- // Use a WeakVH to hold onto it in case this happens.
- WeakVH IterHandle(CurInstIterator);
- BasicBlock *BB = CurInstIterator->getParent();
- RecursivelyDeleteTriviallyDeadInstructions(Repl, TLInfo);
- if (IterHandle != CurInstIterator) {
- // If the iterator instruction was recursively deleted, start over at the
- // start of the block.
- CurInstIterator = BB->begin();
- SunkAddrs.clear();
- }
- }
- ++NumMemoryInsts;
- return true;
- }
- /// OptimizeInlineAsmInst - If there are any memory operands, use
- /// OptimizeMemoryInst to sink their address computing into the block when
- /// possible / profitable.
- bool CodeGenPrepare::OptimizeInlineAsmInst(CallInst *CS) {
- bool MadeChange = false;
- const TargetRegisterInfo *TRI =
- TM->getSubtargetImpl(*CS->getParent()->getParent())->getRegisterInfo();
- TargetLowering::AsmOperandInfoVector TargetConstraints =
- TLI->ParseConstraints(*DL, TRI, CS);
- unsigned ArgNo = 0;
- for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) {
- TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i];
- // Compute the constraint code and ConstraintType to use.
- TLI->ComputeConstraintToUse(OpInfo, SDValue());
- if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
- OpInfo.isIndirect) {
- Value *OpVal = CS->getArgOperand(ArgNo++);
- MadeChange |= OptimizeMemoryInst(CS, OpVal, OpVal->getType(), ~0u);
- } else if (OpInfo.Type == InlineAsm::isInput)
- ArgNo++;
- }
- return MadeChange;
- }
- /// \brief Check if all the uses of \p Inst are equivalent (or free) zero or
- /// sign extensions.
- static bool hasSameExtUse(Instruction *Inst, const TargetLowering &TLI) {
- assert(!Inst->use_empty() && "Input must have at least one use");
- const Instruction *FirstUser = cast<Instruction>(*Inst->user_begin());
- bool IsSExt = isa<SExtInst>(FirstUser);
- Type *ExtTy = FirstUser->getType();
- for (const User *U : Inst->users()) {
- const Instruction *UI = cast<Instruction>(U);
- if ((IsSExt && !isa<SExtInst>(UI)) || (!IsSExt && !isa<ZExtInst>(UI)))
- return false;
- Type *CurTy = UI->getType();
- // Same input and output types: Same instruction after CSE.
- if (CurTy == ExtTy)
- continue;
- // If IsSExt is true, we are in this situation:
- // a = Inst
- // b = sext ty1 a to ty2
- // c = sext ty1 a to ty3
- // Assuming ty2 is shorter than ty3, this could be turned into:
- // a = Inst
- // b = sext ty1 a to ty2
- // c = sext ty2 b to ty3
- // However, the last sext is not free.
- if (IsSExt)
- return false;
- // This is a ZExt, maybe this is free to extend from one type to another.
- // In that case, we would not account for a different use.
- Type *NarrowTy;
- Type *LargeTy;
- if (ExtTy->getScalarType()->getIntegerBitWidth() >
- CurTy->getScalarType()->getIntegerBitWidth()) {
- NarrowTy = CurTy;
- LargeTy = ExtTy;
- } else {
- NarrowTy = ExtTy;
- LargeTy = CurTy;
- }
- if (!TLI.isZExtFree(NarrowTy, LargeTy))
- return false;
- }
- // All uses are the same or can be derived from one another for free.
- return true;
- }
- /// \brief Try to form ExtLd by promoting \p Exts until they reach a
- /// load instruction.
- /// If an ext(load) can be formed, it is returned via \p LI for the load
- /// and \p Inst for the extension.
- /// Otherwise LI == nullptr and Inst == nullptr.
- /// When some promotion happened, \p TPT contains the proper state to
- /// revert them.
- ///
- /// \return true when promoting was necessary to expose the ext(load)
- /// opportunity, false otherwise.
- ///
- /// Example:
- /// \code
- /// %ld = load i32* %addr
- /// %add = add nuw i32 %ld, 4
- /// %zext = zext i32 %add to i64
- /// \endcode
- /// =>
- /// \code
- /// %ld = load i32* %addr
- /// %zext = zext i32 %ld to i64
- /// %add = add nuw i64 %zext, 4
- /// \encode
- /// Thanks to the promotion, we can match zext(load i32*) to i64.
- bool CodeGenPrepare::ExtLdPromotion(TypePromotionTransaction &TPT,
- LoadInst *&LI, Instruction *&Inst,
- const SmallVectorImpl<Instruction *> &Exts,
- unsigned CreatedInstsCost = 0) {
- // Iterate over all the extensions to see if one form an ext(load).
- for (auto I : Exts) {
- // Check if we directly have ext(load).
- if ((LI = dyn_cast<LoadInst>(I->getOperand(0)))) {
- Inst = I;
- // No promotion happened here.
- return false;
- }
- // Check whether or not we want to do any promotion.
- if (!TLI || !TLI->enableExtLdPromotion() || DisableExtLdPromotion)
- continue;
- // Get the action to perform the promotion.
- TypePromotionHelper::Action TPH = TypePromotionHelper::getAction(
- I, InsertedInsts, *TLI, PromotedInsts);
- // Check if we can promote.
- if (!TPH)
- continue;
- // Save the current state.
- TypePromotionTransaction::ConstRestorationPt LastKnownGood =
- TPT.getRestorationPoint();
- SmallVector<Instruction *, 4> NewExts;
- unsigned NewCreatedInstsCost = 0;
- unsigned ExtCost = !TLI->isExtFree(I);
- // Promote.
- Value *PromotedVal = TPH(I, TPT, PromotedInsts, NewCreatedInstsCost,
- &NewExts, nullptr, *TLI);
- assert(PromotedVal &&
- "TypePromotionHelper should have filtered out those cases");
- // We would be able to merge only one extension in a load.
- // Therefore, if we have more than 1 new extension we heuristically
- // cut this search path, because it means we degrade the code quality.
- // With exactly 2, the transformation is neutral, because we will merge
- // one extension but leave one. However, we optimistically keep going,
- // because the new extension may be removed too.
- long long TotalCreatedInstsCost = CreatedInstsCost + NewCreatedInstsCost;
- TotalCreatedInstsCost -= ExtCost;
- if (!StressExtLdPromotion &&
- (TotalCreatedInstsCost > 1 ||
- !isPromotedInstructionLegal(*TLI, *DL, PromotedVal))) {
- // The promotion is not profitable, rollback to the previous state.
- TPT.rollback(LastKnownGood);
- continue;
- }
- // The promotion is profitable.
- // Check if it exposes an ext(load).
- (void)ExtLdPromotion(TPT, LI, Inst, NewExts, TotalCreatedInstsCost);
- if (LI && (StressExtLdPromotion || NewCreatedInstsCost <= ExtCost ||
- // If we have created a new extension, i.e., now we have two
- // extensions. We must make sure one of them is merged with
- // the load, otherwise we may degrade the code quality.
- (LI->hasOneUse() || hasSameExtUse(LI, *TLI))))
- // Promotion happened.
- return true;
- // If this does not help to expose an ext(load) then, rollback.
- TPT.rollback(LastKnownGood);
- }
- // None of the extension can form an ext(load).
- LI = nullptr;
- Inst = nullptr;
- return false;
- }
- /// MoveExtToFormExtLoad - Move a zext or sext fed by a load into the same
- /// basic block as the load, unless conditions are unfavorable. This allows
- /// SelectionDAG to fold the extend into the load.
- /// \p I[in/out] the extension may be modified during the process if some
- /// promotions apply.
- ///
- bool CodeGenPrepare::MoveExtToFormExtLoad(Instruction *&I) {
- // Try to promote a chain of computation if it allows to form
- // an extended load.
- TypePromotionTransaction TPT;
- TypePromotionTransaction::ConstRestorationPt LastKnownGood =
- TPT.getRestorationPoint();
- SmallVector<Instruction *, 1> Exts;
- Exts.push_back(I);
- // Look for a load being extended.
- LoadInst *LI = nullptr;
- Instruction *OldExt = I;
- bool HasPromoted = ExtLdPromotion(TPT, LI, I, Exts);
- if (!LI || !I) {
- assert(!HasPromoted && !LI && "If we did not match any load instruction "
- "the code must remain the same");
- I = OldExt;
- return false;
- }
- // If they're already in the same block, there's nothing to do.
- // Make the cheap checks first if we did not promote.
- // If we promoted, we need to check if it is indeed profitable.
- if (!HasPromoted && LI->getParent() == I->getParent())
- return false;
- EVT VT = TLI->getValueType(*DL, I->getType());
- EVT LoadVT = TLI->getValueType(*DL, LI->getType());
- // If the load has other users and the truncate is not free, this probably
- // isn't worthwhile.
- if (!LI->hasOneUse() && TLI &&
- (TLI->isTypeLegal(LoadVT) || !TLI->isTypeLegal(VT)) &&
- !TLI->isTruncateFree(I->getType(), LI->getType())) {
- I = OldExt;
- TPT.rollback(LastKnownGood);
- return false;
- }
- // Check whether the target supports casts folded into loads.
- unsigned LType;
- if (isa<ZExtInst>(I))
- LType = ISD::ZEXTLOAD;
- else {
- assert(isa<SExtInst>(I) && "Unexpected ext type!");
- LType = ISD::SEXTLOAD;
- }
- if (TLI && !TLI->isLoadExtLegal(LType, VT, LoadVT)) {
- I = OldExt;
- TPT.rollback(LastKnownGood);
- return false;
- }
- // Move the extend into the same block as the load, so that SelectionDAG
- // can fold it.
- TPT.commit();
- I->removeFromParent();
- I->insertAfter(LI);
- ++NumExtsMoved;
- return true;
- }
- bool CodeGenPrepare::OptimizeExtUses(Instruction *I) {
- BasicBlock *DefBB = I->getParent();
- // If the result of a {s|z}ext and its source are both live out, rewrite all
- // other uses of the source with result of extension.
- Value *Src = I->getOperand(0);
- if (Src->hasOneUse())
- return false;
- // Only do this xform if truncating is free.
- if (TLI && !TLI->isTruncateFree(I->getType(), Src->getType()))
- return false;
- // Only safe to perform the optimization if the source is also defined in
- // this block.
- if (!isa<Instruction>(Src) || DefBB != cast<Instruction>(Src)->getParent())
- return false;
- bool DefIsLiveOut = false;
- for (User *U : I->users()) {
- Instruction *UI = cast<Instruction>(U);
- // Figure out which BB this ext is used in.
- BasicBlock *UserBB = UI->getParent();
- if (UserBB == DefBB) continue;
- DefIsLiveOut = true;
- break;
- }
- if (!DefIsLiveOut)
- return false;
- // Make sure none of the uses are PHI nodes.
- for (User *U : Src->users()) {
- Instruction *UI = cast<Instruction>(U);
- BasicBlock *UserBB = UI->getParent();
- if (UserBB == DefBB) continue;
- // Be conservative. We don't want this xform to end up introducing
- // reloads just before load / store instructions.
- if (isa<PHINode>(UI) || isa<LoadInst>(UI) || isa<StoreInst>(UI))
- return false;
- }
- // InsertedTruncs - Only insert one trunc in each block once.
- DenseMap<BasicBlock*, Instruction*> InsertedTruncs;
- bool MadeChange = false;
- for (Use &U : Src->uses()) {
- Instruction *User = cast<Instruction>(U.getUser());
- // Figure out which BB this ext is used in.
- BasicBlock *UserBB = User->getParent();
- if (UserBB == DefBB) continue;
- // Both src and def are live in this block. Rewrite the use.
- Instruction *&InsertedTrunc = InsertedTruncs[UserBB];
- if (!InsertedTrunc) {
- BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt();
- InsertedTrunc = new TruncInst(I, Src->getType(), "", InsertPt);
- InsertedInsts.insert(InsertedTrunc);
- }
- // Replace a use of the {s|z}ext source with a use of the result.
- U = InsertedTrunc;
- ++NumExtUses;
- MadeChange = true;
- }
- return MadeChange;
- }
- /// isFormingBranchFromSelectProfitable - Returns true if a SelectInst should be
- /// turned into an explicit branch.
- static bool isFormingBranchFromSelectProfitable(SelectInst *SI) {
- // FIXME: This should use the same heuristics as IfConversion to determine
- // whether a select is better represented as a branch. This requires that
- // branch probability metadata is preserved for the select, which is not the
- // case currently.
- CmpInst *Cmp = dyn_cast<CmpInst>(SI->getCondition());
- // If the branch is predicted right, an out of order CPU can avoid blocking on
- // the compare. Emit cmovs on compares with a memory operand as branches to
- // avoid stalls on the load from memory. If the compare has more than one use
- // there's probably another cmov or setcc around so it's not worth emitting a
- // branch.
- if (!Cmp)
- return false;
- Value *CmpOp0 = Cmp->getOperand(0);
- Value *CmpOp1 = Cmp->getOperand(1);
- // We check that the memory operand has one use to avoid uses of the loaded
- // value directly after the compare, making branches unprofitable.
- return Cmp->hasOneUse() &&
- ((isa<LoadInst>(CmpOp0) && CmpOp0->hasOneUse()) ||
- (isa<LoadInst>(CmpOp1) && CmpOp1->hasOneUse()));
- }
- /// If we have a SelectInst that will likely profit from branch prediction,
- /// turn it into a branch.
- bool CodeGenPrepare::OptimizeSelectInst(SelectInst *SI) {
- bool VectorCond = !SI->getCondition()->getType()->isIntegerTy(1);
- // Can we convert the 'select' to CF ?
- if (DisableSelectToBranch || OptSize || !TLI || VectorCond)
- return false;
- TargetLowering::SelectSupportKind SelectKind;
- if (VectorCond)
- SelectKind = TargetLowering::VectorMaskSelect;
- else if (SI->getType()->isVectorTy())
- SelectKind = TargetLowering::ScalarCondVectorVal;
- else
- SelectKind = TargetLowering::ScalarValSelect;
- // Do we have efficient codegen support for this kind of 'selects' ?
- if (TLI->isSelectSupported(SelectKind)) {
- // We have efficient codegen support for the select instruction.
- // Check if it is profitable to keep this 'select'.
- if (!TLI->isPredictableSelectExpensive() ||
- !isFormingBranchFromSelectProfitable(SI))
- return false;
- }
- ModifiedDT = true;
- // First, we split the block containing the select into 2 blocks.
- BasicBlock *StartBlock = SI->getParent();
- BasicBlock::iterator SplitPt = ++(BasicBlock::iterator(SI));
- BasicBlock *NextBlock = StartBlock->splitBasicBlock(SplitPt, "select.end");
- // Create a new block serving as the landing pad for the branch.
- BasicBlock *SmallBlock = BasicBlock::Create(SI->getContext(), "select.mid",
- NextBlock->getParent(), NextBlock);
- // Move the unconditional branch from the block with the select in it into our
- // landing pad block.
- StartBlock->getTerminator()->eraseFromParent();
- BranchInst::Create(NextBlock, SmallBlock);
- // Insert the real conditional branch based on the original condition.
- BranchInst::Create(NextBlock, SmallBlock, SI->getCondition(), SI);
- // The select itself is replaced with a PHI Node.
- PHINode *PN = PHINode::Create(SI->getType(), 2, "", NextBlock->begin());
- PN->takeName(SI);
- PN->addIncoming(SI->getTrueValue(), StartBlock);
- PN->addIncoming(SI->getFalseValue(), SmallBlock);
- SI->replaceAllUsesWith(PN);
- SI->eraseFromParent();
- // Instruct OptimizeBlock to skip to the next block.
- CurInstIterator = StartBlock->end();
- ++NumSelectsExpanded;
- return true;
- }
- static bool isBroadcastShuffle(ShuffleVectorInst *SVI) {
- SmallVector<int, 16> Mask(SVI->getShuffleMask());
- int SplatElem = -1;
- for (unsigned i = 0; i < Mask.size(); ++i) {
- if (SplatElem != -1 && Mask[i] != -1 && Mask[i] != SplatElem)
- return false;
- SplatElem = Mask[i];
- }
- return true;
- }
- /// Some targets have expensive vector shifts if the lanes aren't all the same
- /// (e.g. x86 only introduced "vpsllvd" and friends with AVX2). In these cases
- /// it's often worth sinking a shufflevector splat down to its use so that
- /// codegen can spot all lanes are identical.
- bool CodeGenPrepare::OptimizeShuffleVectorInst(ShuffleVectorInst *SVI) {
- BasicBlock *DefBB = SVI->getParent();
- // Only do this xform if variable vector shifts are particularly expensive.
- if (!TLI || !TLI->isVectorShiftByScalarCheap(SVI->getType()))
- return false;
- // We only expect better codegen by sinking a shuffle if we can recognise a
- // constant splat.
- if (!isBroadcastShuffle(SVI))
- return false;
- // InsertedShuffles - Only insert a shuffle in each block once.
- DenseMap<BasicBlock*, Instruction*> InsertedShuffles;
- bool MadeChange = false;
- for (User *U : SVI->users()) {
- Instruction *UI = cast<Instruction>(U);
- // Figure out which BB this ext is used in.
- BasicBlock *UserBB = UI->getParent();
- if (UserBB == DefBB) continue;
- // For now only apply this when the splat is used by a shift instruction.
- if (!UI->isShift()) continue;
- // Everything checks out, sink the shuffle if the user's block doesn't
- // already have a copy.
- Instruction *&InsertedShuffle = InsertedShuffles[UserBB];
- if (!InsertedShuffle) {
- BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt();
- InsertedShuffle = new ShuffleVectorInst(SVI->getOperand(0),
- SVI->getOperand(1),
- SVI->getOperand(2), "", InsertPt);
- }
- UI->replaceUsesOfWith(SVI, InsertedShuffle);
- MadeChange = true;
- }
- // If we removed all uses, nuke the shuffle.
- if (SVI->use_empty()) {
- SVI->eraseFromParent();
- MadeChange = true;
- }
- return MadeChange;
- }
- namespace {
- /// \brief Helper class to promote a scalar operation to a vector one.
- /// This class is used to move downward extractelement transition.
- /// E.g.,
- /// a = vector_op <2 x i32>
- /// b = extractelement <2 x i32> a, i32 0
- /// c = scalar_op b
- /// store c
- ///
- /// =>
- /// a = vector_op <2 x i32>
- /// c = vector_op a (equivalent to scalar_op on the related lane)
- /// * d = extractelement <2 x i32> c, i32 0
- /// * store d
- /// Assuming both extractelement and store can be combine, we get rid of the
- /// transition.
- class VectorPromoteHelper {
- /// DataLayout associated with the current module.
- const DataLayout &DL;
- /// Used to perform some checks on the legality of vector operations.
- const TargetLowering &TLI;
- /// Used to estimated the cost of the promoted chain.
- const TargetTransformInfo &TTI;
- /// The transition being moved downwards.
- Instruction *Transition;
- /// The sequence of instructions to be promoted.
- SmallVector<Instruction *, 4> InstsToBePromoted;
- /// Cost of combining a store and an extract.
- unsigned StoreExtractCombineCost;
- /// Instruction that will be combined with the transition.
- Instruction *CombineInst;
- /// \brief The instruction that represents the current end of the transition.
- /// Since we are faking the promotion until we reach the end of the chain
- /// of computation, we need a way to get the current end of the transition.
- Instruction *getEndOfTransition() const {
- if (InstsToBePromoted.empty())
- return Transition;
- return InstsToBePromoted.back();
- }
- /// \brief Return the index of the original value in the transition.
- /// E.g., for "extractelement <2 x i32> c, i32 1" the original value,
- /// c, is at index 0.
- unsigned getTransitionOriginalValueIdx() const {
- assert(isa<ExtractElementInst>(Transition) &&
- "Other kind of transitions are not supported yet");
- return 0;
- }
- /// \brief Return the index of the index in the transition.
- /// E.g., for "extractelement <2 x i32> c, i32 0" the index
- /// is at index 1.
- unsigned getTransitionIdx() const {
- assert(isa<ExtractElementInst>(Transition) &&
- "Other kind of transitions are not supported yet");
- return 1;
- }
- /// \brief Get the type of the transition.
- /// This is the type of the original value.
- /// E.g., for "extractelement <2 x i32> c, i32 1" the type of the
- /// transition is <2 x i32>.
- Type *getTransitionType() const {
- return Transition->getOperand(getTransitionOriginalValueIdx())->getType();
- }
- /// \brief Promote \p ToBePromoted by moving \p Def downward through.
- /// I.e., we have the following sequence:
- /// Def = Transition <ty1> a to <ty2>
- /// b = ToBePromoted <ty2> Def, ...
- /// =>
- /// b = ToBePromoted <ty1> a, ...
- /// Def = Transition <ty1> ToBePromoted to <ty2>
- void promoteImpl(Instruction *ToBePromoted);
- /// \brief Check whether or not it is profitable to promote all the
- /// instructions enqueued to be promoted.
- bool isProfitableToPromote() {
- Value *ValIdx = Transition->getOperand(getTransitionOriginalValueIdx());
- unsigned Index = isa<ConstantInt>(ValIdx)
- ? cast<ConstantInt>(ValIdx)->getZExtValue()
- : -1;
- Type *PromotedType = getTransitionType();
- StoreInst *ST = cast<StoreInst>(CombineInst);
- unsigned AS = ST->getPointerAddressSpace();
- unsigned Align = ST->getAlignment();
- // Check if this store is supported.
- if (!TLI.allowsMisalignedMemoryAccesses(
- TLI.getValueType(DL, ST->getValueOperand()->getType()), AS,
- Align)) {
- // If this is not supported, there is no way we can combine
- // the extract with the store.
- return false;
- }
- // The scalar chain of computation has to pay for the transition
- // scalar to vector.
- // The vector chain has to account for the combining cost.
- uint64_t ScalarCost =
- TTI.getVectorInstrCost(Transition->getOpcode(), PromotedType, Index);
- uint64_t VectorCost = StoreExtractCombineCost;
- for (const auto &Inst : InstsToBePromoted) {
- // Compute the cost.
- // By construction, all instructions being promoted are arithmetic ones.
- // Moreover, one argument is a constant that can be viewed as a splat
- // constant.
- Value *Arg0 = Inst->getOperand(0);
- bool IsArg0Constant = isa<UndefValue>(Arg0) || isa<ConstantInt>(Arg0) ||
- isa<ConstantFP>(Arg0);
- TargetTransformInfo::OperandValueKind Arg0OVK =
- IsArg0Constant ? TargetTransformInfo::OK_UniformConstantValue
- : TargetTransformInfo::OK_AnyValue;
- TargetTransformInfo::OperandValueKind Arg1OVK =
- !IsArg0Constant ? TargetTransformInfo::OK_UniformConstantValue
- : TargetTransformInfo::OK_AnyValue;
- ScalarCost += TTI.getArithmeticInstrCost(
- Inst->getOpcode(), Inst->getType(), Arg0OVK, Arg1OVK);
- VectorCost += TTI.getArithmeticInstrCost(Inst->getOpcode(), PromotedType,
- Arg0OVK, Arg1OVK);
- }
- DEBUG(dbgs() << "Estimated cost of computation to be promoted:\nScalar: "
- << ScalarCost << "\nVector: " << VectorCost << '\n');
- return ScalarCost > VectorCost;
- }
- /// \brief Generate a constant vector with \p Val with the same
- /// number of elements as the transition.
- /// \p UseSplat defines whether or not \p Val should be replicated
- /// accross the whole vector.
- /// In other words, if UseSplat == true, we generate <Val, Val, ..., Val>,
- /// otherwise we generate a vector with as many undef as possible:
- /// <undef, ..., undef, Val, undef, ..., undef> where \p Val is only
- /// used at the index of the extract.
- Value *getConstantVector(Constant *Val, bool UseSplat) const {
- unsigned ExtractIdx = UINT_MAX;
- if (!UseSplat) {
- // If we cannot determine where the constant must be, we have to
- // use a splat constant.
- Value *ValExtractIdx = Transition->getOperand(getTransitionIdx());
- if (ConstantInt *CstVal = dyn_cast<ConstantInt>(ValExtractIdx))
- ExtractIdx = CstVal->getSExtValue();
- else
- UseSplat = true;
- }
- unsigned End = getTransitionType()->getVectorNumElements();
- if (UseSplat)
- return ConstantVector::getSplat(End, Val);
- SmallVector<Constant *, 4> ConstVec;
- UndefValue *UndefVal = UndefValue::get(Val->getType());
- for (unsigned Idx = 0; Idx != End; ++Idx) {
- if (Idx == ExtractIdx)
- ConstVec.push_back(Val);
- else
- ConstVec.push_back(UndefVal);
- }
- return ConstantVector::get(ConstVec);
- }
- /// \brief Check if promoting to a vector type an operand at \p OperandIdx
- /// in \p Use can trigger undefined behavior.
- static bool canCauseUndefinedBehavior(const Instruction *Use,
- unsigned OperandIdx) {
- // This is not safe to introduce undef when the operand is on
- // the right hand side of a division-like instruction.
- if (OperandIdx != 1)
- return false;
- switch (Use->getOpcode()) {
- default:
- return false;
- case Instruction::SDiv:
- case Instruction::UDiv:
- case Instruction::SRem:
- case Instruction::URem:
- return true;
- case Instruction::FDiv:
- case Instruction::FRem:
- return !Use->hasNoNaNs();
- }
- llvm_unreachable(nullptr);
- }
- public:
- VectorPromoteHelper(const DataLayout &DL, const TargetLowering &TLI,
- const TargetTransformInfo &TTI, Instruction *Transition,
- unsigned CombineCost)
- : DL(DL), TLI(TLI), TTI(TTI), Transition(Transition),
- StoreExtractCombineCost(CombineCost), CombineInst(nullptr) {
- assert(Transition && "Do not know how to promote null");
- }
- /// \brief Check if we can promote \p ToBePromoted to \p Type.
- bool canPromote(const Instruction *ToBePromoted) const {
- // We could support CastInst too.
- return isa<BinaryOperator>(ToBePromoted);
- }
- /// \brief Check if it is profitable to promote \p ToBePromoted
- /// by moving downward the transition through.
- bool shouldPromote(const Instruction *ToBePromoted) const {
- // Promote only if all the operands can be statically expanded.
- // Indeed, we do not want to introduce any new kind of transitions.
- for (const Use &U : ToBePromoted->operands()) {
- const Value *Val = U.get();
- if (Val == getEndOfTransition()) {
- // If the use is a division and the transition is on the rhs,
- // we cannot promote the operation, otherwise we may create a
- // division by zero.
- if (canCauseUndefinedBehavior(ToBePromoted, U.getOperandNo()))
- return false;
- continue;
- }
- if (!isa<ConstantInt>(Val) && !isa<UndefValue>(Val) &&
- !isa<ConstantFP>(Val))
- return false;
- }
- // Check that the resulting operation is legal.
- int ISDOpcode = TLI.InstructionOpcodeToISD(ToBePromoted->getOpcode());
- if (!ISDOpcode)
- return false;
- return StressStoreExtract ||
- TLI.isOperationLegalOrCustom(
- ISDOpcode, TLI.getValueType(DL, getTransitionType(), true));
- }
- /// \brief Check whether or not \p Use can be combined
- /// with the transition.
- /// I.e., is it possible to do Use(Transition) => AnotherUse?
- bool canCombine(const Instruction *Use) { return isa<StoreInst>(Use); }
- /// \brief Record \p ToBePromoted as part of the chain to be promoted.
- void enqueueForPromotion(Instruction *ToBePromoted) {
- InstsToBePromoted.push_back(ToBePromoted);
- }
- /// \brief Set the instruction that will be combined with the transition.
- void recordCombineInstruction(Instruction *ToBeCombined) {
- assert(canCombine(ToBeCombined) && "Unsupported instruction to combine");
- CombineInst = ToBeCombined;
- }
- /// \brief Promote all the instructions enqueued for promotion if it is
- /// is profitable.
- /// \return True if the promotion happened, false otherwise.
- bool promote() {
- // Check if there is something to promote.
- // Right now, if we do not have anything to combine with,
- // we assume the promotion is not profitable.
- if (InstsToBePromoted.empty() || !CombineInst)
- return false;
- // Check cost.
- if (!StressStoreExtract && !isProfitableToPromote())
- return false;
- // Promote.
- for (auto &ToBePromoted : InstsToBePromoted)
- promoteImpl(ToBePromoted);
- InstsToBePromoted.clear();
- return true;
- }
- };
- } // End of anonymous namespace.
- void VectorPromoteHelper::promoteImpl(Instruction *ToBePromoted) {
- // At this point, we know that all the operands of ToBePromoted but Def
- // can be statically promoted.
- // For Def, we need to use its parameter in ToBePromoted:
- // b = ToBePromoted ty1 a
- // Def = Transition ty1 b to ty2
- // Move the transition down.
- // 1. Replace all uses of the promoted operation by the transition.
- // = ... b => = ... Def.
- assert(ToBePromoted->getType() == Transition->getType() &&
- "The type of the result of the transition does not match "
- "the final type");
- ToBePromoted->replaceAllUsesWith(Transition);
- // 2. Update the type of the uses.
- // b = ToBePromoted ty2 Def => b = ToBePromoted ty1 Def.
- Type *TransitionTy = getTransitionType();
- ToBePromoted->mutateType(TransitionTy);
- // 3. Update all the operands of the promoted operation with promoted
- // operands.
- // b = ToBePromoted ty1 Def => b = ToBePromoted ty1 a.
- for (Use &U : ToBePromoted->operands()) {
- Value *Val = U.get();
- Value *NewVal = nullptr;
- if (Val == Transition)
- NewVal = Transition->getOperand(getTransitionOriginalValueIdx());
- else if (isa<UndefValue>(Val) || isa<ConstantInt>(Val) ||
- isa<ConstantFP>(Val)) {
- // Use a splat constant if it is not safe to use undef.
- NewVal = getConstantVector(
- cast<Constant>(Val),
- isa<UndefValue>(Val) ||
- canCauseUndefinedBehavior(ToBePromoted, U.getOperandNo()));
- } else
- llvm_unreachable("Did you modified shouldPromote and forgot to update "
- "this?");
- ToBePromoted->setOperand(U.getOperandNo(), NewVal);
- }
- Transition->removeFromParent();
- Transition->insertAfter(ToBePromoted);
- Transition->setOperand(getTransitionOriginalValueIdx(), ToBePromoted);
- }
- /// Some targets can do store(extractelement) with one instruction.
- /// Try to push the extractelement towards the stores when the target
- /// has this feature and this is profitable.
- bool CodeGenPrepare::OptimizeExtractElementInst(Instruction *Inst) {
- unsigned CombineCost = UINT_MAX;
- if (DisableStoreExtract || !TLI ||
- (!StressStoreExtract &&
- !TLI->canCombineStoreAndExtract(Inst->getOperand(0)->getType(),
- Inst->getOperand(1), CombineCost)))
- return false;
- // At this point we know that Inst is a vector to scalar transition.
- // Try to move it down the def-use chain, until:
- // - We can combine the transition with its single use
- // => we got rid of the transition.
- // - We escape the current basic block
- // => we would need to check that we are moving it at a cheaper place and
- // we do not do that for now.
- BasicBlock *Parent = Inst->getParent();
- DEBUG(dbgs() << "Found an interesting transition: " << *Inst << '\n');
- VectorPromoteHelper VPH(*DL, *TLI, *TTI, Inst, CombineCost);
- // If the transition has more than one use, assume this is not going to be
- // beneficial.
- while (Inst->hasOneUse()) {
- Instruction *ToBePromoted = cast<Instruction>(*Inst->user_begin());
- DEBUG(dbgs() << "Use: " << *ToBePromoted << '\n');
- if (ToBePromoted->getParent() != Parent) {
- DEBUG(dbgs() << "Instruction to promote is in a different block ("
- << ToBePromoted->getParent()->getName()
- << ") than the transition (" << Parent->getName() << ").\n");
- return false;
- }
- if (VPH.canCombine(ToBePromoted)) {
- DEBUG(dbgs() << "Assume " << *Inst << '\n'
- << "will be combined with: " << *ToBePromoted << '\n');
- VPH.recordCombineInstruction(ToBePromoted);
- bool Changed = VPH.promote();
- NumStoreExtractExposed += Changed;
- return Changed;
- }
- DEBUG(dbgs() << "Try promoting.\n");
- if (!VPH.canPromote(ToBePromoted) || !VPH.shouldPromote(ToBePromoted))
- return false;
- DEBUG(dbgs() << "Promoting is possible... Enqueue for promotion!\n");
- VPH.enqueueForPromotion(ToBePromoted);
- Inst = ToBePromoted;
- }
- return false;
- }
- bool CodeGenPrepare::OptimizeInst(Instruction *I, bool& ModifiedDT) {
- // Bail out if we inserted the instruction to prevent optimizations from
- // stepping on each other's toes.
- if (InsertedInsts.count(I))
- return false;
- if (PHINode *P = dyn_cast<PHINode>(I)) {
- // It is possible for very late stage optimizations (such as SimplifyCFG)
- // to introduce PHI nodes too late to be cleaned up. If we detect such a
- // trivial PHI, go ahead and zap it here.
- if (Value *V = SimplifyInstruction(P, *DL, TLInfo, nullptr)) {
- P->replaceAllUsesWith(V);
- P->eraseFromParent();
- ++NumPHIsElim;
- return true;
- }
- return false;
- }
- if (CastInst *CI = dyn_cast<CastInst>(I)) {
- // If the source of the cast is a constant, then this should have
- // already been constant folded. The only reason NOT to constant fold
- // it is if something (e.g. LSR) was careful to place the constant
- // evaluation in a block other than then one that uses it (e.g. to hoist
- // the address of globals out of a loop). If this is the case, we don't
- // want to forward-subst the cast.
- if (isa<Constant>(CI->getOperand(0)))
- return false;
- if (TLI && OptimizeNoopCopyExpression(CI, *TLI, *DL))
- return true;
- if (isa<ZExtInst>(I) || isa<SExtInst>(I)) {
- /// Sink a zext or sext into its user blocks if the target type doesn't
- /// fit in one register
- if (TLI &&
- TLI->getTypeAction(CI->getContext(),
- TLI->getValueType(*DL, CI->getType())) ==
- TargetLowering::TypeExpandInteger) {
- return SinkCast(CI);
- } else {
- bool MadeChange = MoveExtToFormExtLoad(I);
- return MadeChange | OptimizeExtUses(I);
- }
- }
- return false;
- }
- if (CmpInst *CI = dyn_cast<CmpInst>(I))
- if (!TLI || !TLI->hasMultipleConditionRegisters())
- return OptimizeCmpExpression(CI);
- if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
- if (TLI) {
- unsigned AS = LI->getPointerAddressSpace();
- return OptimizeMemoryInst(I, I->getOperand(0), LI->getType(), AS);
- }
- return false;
- }
- if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
- if (TLI) {
- unsigned AS = SI->getPointerAddressSpace();
- return OptimizeMemoryInst(I, SI->getOperand(1),
- SI->getOperand(0)->getType(), AS);
- }
- return false;
- }
- BinaryOperator *BinOp = dyn_cast<BinaryOperator>(I);
- if (BinOp && (BinOp->getOpcode() == Instruction::AShr ||
- BinOp->getOpcode() == Instruction::LShr)) {
- ConstantInt *CI = dyn_cast<ConstantInt>(BinOp->getOperand(1));
- if (TLI && CI && TLI->hasExtractBitsInsn())
- return OptimizeExtractBits(BinOp, CI, *TLI, *DL);
- return false;
- }
- if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I)) {
- if (GEPI->hasAllZeroIndices()) {
- /// The GEP operand must be a pointer, so must its result -> BitCast
- Instruction *NC = new BitCastInst(GEPI->getOperand(0), GEPI->getType(),
- GEPI->getName(), GEPI);
- GEPI->replaceAllUsesWith(NC);
- GEPI->eraseFromParent();
- ++NumGEPsElim;
- OptimizeInst(NC, ModifiedDT);
- return true;
- }
- return false;
- }
- if (CallInst *CI = dyn_cast<CallInst>(I))
- return OptimizeCallInst(CI, ModifiedDT);
- if (SelectInst *SI = dyn_cast<SelectInst>(I))
- return OptimizeSelectInst(SI);
- if (ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(I))
- return OptimizeShuffleVectorInst(SVI);
- if (isa<ExtractElementInst>(I))
- return OptimizeExtractElementInst(I);
- return false;
- }
- // In this pass we look for GEP and cast instructions that are used
- // across basic blocks and rewrite them to improve basic-block-at-a-time
- // selection.
- bool CodeGenPrepare::OptimizeBlock(BasicBlock &BB, bool& ModifiedDT) {
- SunkAddrs.clear();
- bool MadeChange = false;
- CurInstIterator = BB.begin();
- while (CurInstIterator != BB.end()) {
- MadeChange |= OptimizeInst(CurInstIterator++, ModifiedDT);
- if (ModifiedDT)
- return true;
- }
- MadeChange |= DupRetToEnableTailCallOpts(&BB);
- return MadeChange;
- }
- // llvm.dbg.value is far away from the value then iSel may not be able
- // handle it properly. iSel will drop llvm.dbg.value if it can not
- // find a node corresponding to the value.
- bool CodeGenPrepare::PlaceDbgValues(Function &F) {
- bool MadeChange = false;
- for (BasicBlock &BB : F) {
- Instruction *PrevNonDbgInst = nullptr;
- for (BasicBlock::iterator BI = BB.begin(), BE = BB.end(); BI != BE;) {
- Instruction *Insn = BI++;
- DbgValueInst *DVI = dyn_cast<DbgValueInst>(Insn);
- // Leave dbg.values that refer to an alloca alone. These
- // instrinsics describe the address of a variable (= the alloca)
- // being taken. They should not be moved next to the alloca
- // (and to the beginning of the scope), but rather stay close to
- // where said address is used.
- if (!DVI || (DVI->getValue() && isa<AllocaInst>(DVI->getValue()))) {
- PrevNonDbgInst = Insn;
- continue;
- }
- Instruction *VI = dyn_cast_or_null<Instruction>(DVI->getValue());
- if (VI && VI != PrevNonDbgInst && !VI->isTerminator()) {
- DEBUG(dbgs() << "Moving Debug Value before :\n" << *DVI << ' ' << *VI);
- DVI->removeFromParent();
- if (isa<PHINode>(VI))
- DVI->insertBefore(VI->getParent()->getFirstInsertionPt());
- else
- DVI->insertAfter(VI);
- MadeChange = true;
- ++NumDbgValueMoved;
- }
- }
- }
- return MadeChange;
- }
- // If there is a sequence that branches based on comparing a single bit
- // against zero that can be combined into a single instruction, and the
- // target supports folding these into a single instruction, sink the
- // mask and compare into the branch uses. Do this before OptimizeBlock ->
- // OptimizeInst -> OptimizeCmpExpression, which perturbs the pattern being
- // searched for.
- bool CodeGenPrepare::sinkAndCmp(Function &F) {
- if (!EnableAndCmpSinking)
- return false;
- if (!TLI || !TLI->isMaskAndBranchFoldingLegal())
- return false;
- bool MadeChange = false;
- for (Function::iterator I = F.begin(), E = F.end(); I != E; ) {
- BasicBlock *BB = I++;
- // Does this BB end with the following?
- // %andVal = and %val, #single-bit-set
- // %icmpVal = icmp %andResult, 0
- // br i1 %cmpVal label %dest1, label %dest2"
- BranchInst *Brcc = dyn_cast<BranchInst>(BB->getTerminator());
- if (!Brcc || !Brcc->isConditional())
- continue;
- ICmpInst *Cmp = dyn_cast<ICmpInst>(Brcc->getOperand(0));
- if (!Cmp || Cmp->getParent() != BB)
- continue;
- ConstantInt *Zero = dyn_cast<ConstantInt>(Cmp->getOperand(1));
- if (!Zero || !Zero->isZero())
- continue;
- Instruction *And = dyn_cast<Instruction>(Cmp->getOperand(0));
- if (!And || And->getOpcode() != Instruction::And || And->getParent() != BB)
- continue;
- ConstantInt* Mask = dyn_cast<ConstantInt>(And->getOperand(1));
- if (!Mask || !Mask->getUniqueInteger().isPowerOf2())
- continue;
- DEBUG(dbgs() << "found and; icmp ?,0; brcc\n"); DEBUG(BB->dump());
- // Push the "and; icmp" for any users that are conditional branches.
- // Since there can only be one branch use per BB, we don't need to keep
- // track of which BBs we insert into.
- for (Value::use_iterator UI = Cmp->use_begin(), E = Cmp->use_end();
- UI != E; ) {
- Use &TheUse = *UI;
- // Find brcc use.
- BranchInst *BrccUser = dyn_cast<BranchInst>(*UI);
- ++UI;
- if (!BrccUser || !BrccUser->isConditional())
- continue;
- BasicBlock *UserBB = BrccUser->getParent();
- if (UserBB == BB) continue;
- DEBUG(dbgs() << "found Brcc use\n");
- // Sink the "and; icmp" to use.
- MadeChange = true;
- BinaryOperator *NewAnd =
- BinaryOperator::CreateAnd(And->getOperand(0), And->getOperand(1), "",
- BrccUser);
- CmpInst *NewCmp =
- CmpInst::Create(Cmp->getOpcode(), Cmp->getPredicate(), NewAnd, Zero,
- "", BrccUser);
- TheUse = NewCmp;
- ++NumAndCmpsMoved;
- DEBUG(BrccUser->getParent()->dump());
- }
- }
- return MadeChange;
- }
- /// \brief Retrieve the probabilities of a conditional branch. Returns true on
- /// success, or returns false if no or invalid metadata was found.
- static bool extractBranchMetadata(BranchInst *BI,
- uint64_t &ProbTrue, uint64_t &ProbFalse) {
- assert(BI->isConditional() &&
- "Looking for probabilities on unconditional branch?");
- auto *ProfileData = BI->getMetadata(LLVMContext::MD_prof);
- if (!ProfileData || ProfileData->getNumOperands() != 3)
- return false;
- const auto *CITrue =
- mdconst::dyn_extract<ConstantInt>(ProfileData->getOperand(1));
- const auto *CIFalse =
- mdconst::dyn_extract<ConstantInt>(ProfileData->getOperand(2));
- if (!CITrue || !CIFalse)
- return false;
- ProbTrue = CITrue->getValue().getZExtValue();
- ProbFalse = CIFalse->getValue().getZExtValue();
- return true;
- }
- /// \brief Scale down both weights to fit into uint32_t.
- static void scaleWeights(uint64_t &NewTrue, uint64_t &NewFalse) {
- uint64_t NewMax = (NewTrue > NewFalse) ? NewTrue : NewFalse;
- uint32_t Scale = (NewMax / UINT32_MAX) + 1;
- NewTrue = NewTrue / Scale;
- NewFalse = NewFalse / Scale;
- }
- /// \brief Some targets prefer to split a conditional branch like:
- /// \code
- /// %0 = icmp ne i32 %a, 0
- /// %1 = icmp ne i32 %b, 0
- /// %or.cond = or i1 %0, %1
- /// br i1 %or.cond, label %TrueBB, label %FalseBB
- /// \endcode
- /// into multiple branch instructions like:
- /// \code
- /// bb1:
- /// %0 = icmp ne i32 %a, 0
- /// br i1 %0, label %TrueBB, label %bb2
- /// bb2:
- /// %1 = icmp ne i32 %b, 0
- /// br i1 %1, label %TrueBB, label %FalseBB
- /// \endcode
- /// This usually allows instruction selection to do even further optimizations
- /// and combine the compare with the branch instruction. Currently this is
- /// applied for targets which have "cheap" jump instructions.
- ///
- /// FIXME: Remove the (equivalent?) implementation in SelectionDAG.
- ///
- bool CodeGenPrepare::splitBranchCondition(Function &F) {
- if (!TM || !TM->Options.EnableFastISel || !TLI || TLI->isJumpExpensive())
- return false;
- bool MadeChange = false;
- for (auto &BB : F) {
- // Does this BB end with the following?
- // %cond1 = icmp|fcmp|binary instruction ...
- // %cond2 = icmp|fcmp|binary instruction ...
- // %cond.or = or|and i1 %cond1, cond2
- // br i1 %cond.or label %dest1, label %dest2"
- BinaryOperator *LogicOp;
- BasicBlock *TBB, *FBB;
- if (!match(BB.getTerminator(), m_Br(m_OneUse(m_BinOp(LogicOp)), TBB, FBB)))
- continue;
- unsigned Opc;
- Value *Cond1, *Cond2;
- if (match(LogicOp, m_And(m_OneUse(m_Value(Cond1)),
- m_OneUse(m_Value(Cond2)))))
- Opc = Instruction::And;
- else if (match(LogicOp, m_Or(m_OneUse(m_Value(Cond1)),
- m_OneUse(m_Value(Cond2)))))
- Opc = Instruction::Or;
- else
- continue;
- if (!match(Cond1, m_CombineOr(m_Cmp(), m_BinOp())) ||
- !match(Cond2, m_CombineOr(m_Cmp(), m_BinOp())) )
- continue;
- DEBUG(dbgs() << "Before branch condition splitting\n"; BB.dump());
- // Create a new BB.
- auto *InsertBefore = std::next(Function::iterator(BB))
- .getNodePtrUnchecked();
- auto TmpBB = BasicBlock::Create(BB.getContext(),
- BB.getName() + ".cond.split",
- BB.getParent(), InsertBefore);
- // Update original basic block by using the first condition directly by the
- // branch instruction and removing the no longer needed and/or instruction.
- auto *Br1 = cast<BranchInst>(BB.getTerminator());
- Br1->setCondition(Cond1);
- LogicOp->eraseFromParent();
- // Depending on the conditon we have to either replace the true or the false
- // successor of the original branch instruction.
- if (Opc == Instruction::And)
- Br1->setSuccessor(0, TmpBB);
- else
- Br1->setSuccessor(1, TmpBB);
- // Fill in the new basic block.
- auto *Br2 = IRBuilder<>(TmpBB).CreateCondBr(Cond2, TBB, FBB);
- if (auto *I = dyn_cast<Instruction>(Cond2)) {
- I->removeFromParent();
- I->insertBefore(Br2);
- }
- // Update PHI nodes in both successors. The original BB needs to be
- // replaced in one succesor's PHI nodes, because the branch comes now from
- // the newly generated BB (NewBB). In the other successor we need to add one
- // incoming edge to the PHI nodes, because both branch instructions target
- // now the same successor. Depending on the original branch condition
- // (and/or) we have to swap the successors (TrueDest, FalseDest), so that
- // we perfrom the correct update for the PHI nodes.
- // This doesn't change the successor order of the just created branch
- // instruction (or any other instruction).
- if (Opc == Instruction::Or)
- std::swap(TBB, FBB);
- // Replace the old BB with the new BB.
- for (auto &I : *TBB) {
- PHINode *PN = dyn_cast<PHINode>(&I);
- if (!PN)
- break;
- int i;
- while ((i = PN->getBasicBlockIndex(&BB)) >= 0)
- PN->setIncomingBlock(i, TmpBB);
- }
- // Add another incoming edge form the new BB.
- for (auto &I : *FBB) {
- PHINode *PN = dyn_cast<PHINode>(&I);
- if (!PN)
- break;
- auto *Val = PN->getIncomingValueForBlock(&BB);
- PN->addIncoming(Val, TmpBB);
- }
- // Update the branch weights (from SelectionDAGBuilder::
- // FindMergedConditions).
- if (Opc == Instruction::Or) {
- // Codegen X | Y as:
- // BB1:
- // jmp_if_X TBB
- // jmp TmpBB
- // TmpBB:
- // jmp_if_Y TBB
- // jmp FBB
- //
- // We have flexibility in setting Prob for BB1 and Prob for NewBB.
- // The requirement is that
- // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB)
- // = TrueProb for orignal BB.
- // Assuming the orignal weights are A and B, one choice is to set BB1's
- // weights to A and A+2B, and set TmpBB's weights to A and 2B. This choice
- // assumes that
- // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB.
- // Another choice is to assume TrueProb for BB1 equals to TrueProb for
- // TmpBB, but the math is more complicated.
- uint64_t TrueWeight, FalseWeight;
- if (extractBranchMetadata(Br1, TrueWeight, FalseWeight)) {
- uint64_t NewTrueWeight = TrueWeight;
- uint64_t NewFalseWeight = TrueWeight + 2 * FalseWeight;
- scaleWeights(NewTrueWeight, NewFalseWeight);
- Br1->setMetadata(LLVMContext::MD_prof, MDBuilder(Br1->getContext())
- .createBranchWeights(TrueWeight, FalseWeight));
- NewTrueWeight = TrueWeight;
- NewFalseWeight = 2 * FalseWeight;
- scaleWeights(NewTrueWeight, NewFalseWeight);
- Br2->setMetadata(LLVMContext::MD_prof, MDBuilder(Br2->getContext())
- .createBranchWeights(TrueWeight, FalseWeight));
- }
- } else {
- // Codegen X & Y as:
- // BB1:
- // jmp_if_X TmpBB
- // jmp FBB
- // TmpBB:
- // jmp_if_Y TBB
- // jmp FBB
- //
- // This requires creation of TmpBB after CurBB.
- // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
- // The requirement is that
- // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB)
- // = FalseProb for orignal BB.
- // Assuming the orignal weights are A and B, one choice is to set BB1's
- // weights to 2A+B and B, and set TmpBB's weights to 2A and B. This choice
- // assumes that
- // FalseProb for BB1 == TrueProb for BB1 * FalseProb for TmpBB.
- uint64_t TrueWeight, FalseWeight;
- if (extractBranchMetadata(Br1, TrueWeight, FalseWeight)) {
- uint64_t NewTrueWeight = 2 * TrueWeight + FalseWeight;
- uint64_t NewFalseWeight = FalseWeight;
- scaleWeights(NewTrueWeight, NewFalseWeight);
- Br1->setMetadata(LLVMContext::MD_prof, MDBuilder(Br1->getContext())
- .createBranchWeights(TrueWeight, FalseWeight));
- NewTrueWeight = 2 * TrueWeight;
- NewFalseWeight = FalseWeight;
- scaleWeights(NewTrueWeight, NewFalseWeight);
- Br2->setMetadata(LLVMContext::MD_prof, MDBuilder(Br2->getContext())
- .createBranchWeights(TrueWeight, FalseWeight));
- }
- }
- // Note: No point in getting fancy here, since the DT info is never
- // available to CodeGenPrepare.
- ModifiedDT = true;
- MadeChange = true;
- DEBUG(dbgs() << "After branch condition splitting\n"; BB.dump();
- TmpBB->dump());
- }
- return MadeChange;
- }
|