123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286 |
- //=----------------------- InterleavedAccessPass.cpp -----------------------==//
- //
- // The LLVM Compiler Infrastructure
- //
- // This file is distributed under the University of Illinois Open Source
- // License. See LICENSE.TXT for details.
- //
- //===----------------------------------------------------------------------===//
- //
- // This file implements the Interleaved Access pass, which identifies
- // interleaved memory accesses and transforms into target specific intrinsics.
- //
- // An interleaved load reads data from memory into several vectors, with
- // DE-interleaving the data on a factor. An interleaved store writes several
- // vectors to memory with RE-interleaving the data on a factor.
- //
- // As interleaved accesses are hard to be identified in CodeGen (mainly because
- // the VECTOR_SHUFFLE DAG node is quite different from the shufflevector IR),
- // we identify and transform them to intrinsics in this pass. So the intrinsics
- // can be easily matched into target specific instructions later in CodeGen.
- //
- // E.g. An interleaved load (Factor = 2):
- // %wide.vec = load <8 x i32>, <8 x i32>* %ptr
- // %v0 = shuffle <8 x i32> %wide.vec, <8 x i32> undef, <0, 2, 4, 6>
- // %v1 = shuffle <8 x i32> %wide.vec, <8 x i32> undef, <1, 3, 5, 7>
- //
- // It could be transformed into a ld2 intrinsic in AArch64 backend or a vld2
- // intrinsic in ARM backend.
- //
- // E.g. An interleaved store (Factor = 3):
- // %i.vec = shuffle <8 x i32> %v0, <8 x i32> %v1,
- // <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11>
- // store <12 x i32> %i.vec, <12 x i32>* %ptr
- //
- // It could be transformed into a st3 intrinsic in AArch64 backend or a vst3
- // intrinsic in ARM backend.
- //
- //===----------------------------------------------------------------------===//
- #include "llvm/CodeGen/Passes.h"
- #include "llvm/IR/InstIterator.h"
- #include "llvm/Support/Debug.h"
- #include "llvm/Support/MathExtras.h"
- #include "llvm/Support/raw_ostream.h"
- #include "llvm/Target/TargetLowering.h"
- #include "llvm/Target/TargetSubtargetInfo.h"
- using namespace llvm;
- #define DEBUG_TYPE "interleaved-access"
- static cl::opt<bool> LowerInterleavedAccesses(
- "lower-interleaved-accesses",
- cl::desc("Enable lowering interleaved accesses to intrinsics"),
- cl::init(false), cl::Hidden);
- static unsigned MaxFactor; // The maximum supported interleave factor.
- namespace llvm {
- static void initializeInterleavedAccessPass(PassRegistry &);
- }
- namespace {
- class InterleavedAccess : public FunctionPass {
- public:
- static char ID;
- InterleavedAccess(const TargetMachine *TM = nullptr)
- : FunctionPass(ID), TM(TM), TLI(nullptr) {
- initializeInterleavedAccessPass(*PassRegistry::getPassRegistry());
- }
- const char *getPassName() const override { return "Interleaved Access Pass"; }
- bool runOnFunction(Function &F) override;
- private:
- const TargetMachine *TM;
- const TargetLowering *TLI;
- /// \brief Transform an interleaved load into target specific intrinsics.
- bool lowerInterleavedLoad(LoadInst *LI,
- SmallVector<Instruction *, 32> &DeadInsts);
- /// \brief Transform an interleaved store into target specific intrinsics.
- bool lowerInterleavedStore(StoreInst *SI,
- SmallVector<Instruction *, 32> &DeadInsts);
- };
- } // end anonymous namespace.
- char InterleavedAccess::ID = 0;
- INITIALIZE_TM_PASS(InterleavedAccess, "interleaved-access",
- "Lower interleaved memory accesses to target specific intrinsics",
- false, false)
- FunctionPass *llvm::createInterleavedAccessPass(const TargetMachine *TM) {
- return new InterleavedAccess(TM);
- }
- /// \brief Check if the mask is a DE-interleave mask of the given factor
- /// \p Factor like:
- /// <Index, Index+Factor, ..., Index+(NumElts-1)*Factor>
- static bool isDeInterleaveMaskOfFactor(ArrayRef<int> Mask, unsigned Factor,
- unsigned &Index) {
- // Check all potential start indices from 0 to (Factor - 1).
- for (Index = 0; Index < Factor; Index++) {
- unsigned i = 0;
- // Check that elements are in ascending order by Factor. Ignore undef
- // elements.
- for (; i < Mask.size(); i++)
- if (Mask[i] >= 0 && static_cast<unsigned>(Mask[i]) != Index + i * Factor)
- break;
- if (i == Mask.size())
- return true;
- }
- return false;
- }
- /// \brief Check if the mask is a DE-interleave mask for an interleaved load.
- ///
- /// E.g. DE-interleave masks (Factor = 2) could be:
- /// <0, 2, 4, 6> (mask of index 0 to extract even elements)
- /// <1, 3, 5, 7> (mask of index 1 to extract odd elements)
- static bool isDeInterleaveMask(ArrayRef<int> Mask, unsigned &Factor,
- unsigned &Index) {
- if (Mask.size() < 2)
- return false;
- // Check potential Factors.
- for (Factor = 2; Factor <= MaxFactor; Factor++)
- if (isDeInterleaveMaskOfFactor(Mask, Factor, Index))
- return true;
- return false;
- }
- /// \brief Check if the mask is RE-interleave mask for an interleaved store.
- ///
- /// I.e. <0, NumSubElts, ... , NumSubElts*(Factor - 1), 1, NumSubElts + 1, ...>
- ///
- /// E.g. The RE-interleave mask (Factor = 2) could be:
- /// <0, 4, 1, 5, 2, 6, 3, 7>
- static bool isReInterleaveMask(ArrayRef<int> Mask, unsigned &Factor) {
- unsigned NumElts = Mask.size();
- if (NumElts < 4)
- return false;
- // Check potential Factors.
- for (Factor = 2; Factor <= MaxFactor; Factor++) {
- if (NumElts % Factor)
- continue;
- unsigned NumSubElts = NumElts / Factor;
- if (!isPowerOf2_32(NumSubElts))
- continue;
- // Check whether each element matchs the RE-interleaved rule. Ignore undef
- // elements.
- unsigned i = 0;
- for (; i < NumElts; i++)
- if (Mask[i] >= 0 &&
- static_cast<unsigned>(Mask[i]) !=
- (i % Factor) * NumSubElts + i / Factor)
- break;
- // Find a RE-interleaved mask of current factor.
- if (i == NumElts)
- return true;
- }
- return false;
- }
- bool InterleavedAccess::lowerInterleavedLoad(
- LoadInst *LI, SmallVector<Instruction *, 32> &DeadInsts) {
- if (!LI->isSimple())
- return false;
- SmallVector<ShuffleVectorInst *, 4> Shuffles;
- // Check if all users of this load are shufflevectors.
- for (auto UI = LI->user_begin(), E = LI->user_end(); UI != E; UI++) {
- ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(*UI);
- if (!SVI || !isa<UndefValue>(SVI->getOperand(1)))
- return false;
- Shuffles.push_back(SVI);
- }
- if (Shuffles.empty())
- return false;
- unsigned Factor, Index;
- // Check if the first shufflevector is DE-interleave shuffle.
- if (!isDeInterleaveMask(Shuffles[0]->getShuffleMask(), Factor, Index))
- return false;
- // Holds the corresponding index for each DE-interleave shuffle.
- SmallVector<unsigned, 4> Indices;
- Indices.push_back(Index);
- Type *VecTy = Shuffles[0]->getType();
- // Check if other shufflevectors are also DE-interleaved of the same type
- // and factor as the first shufflevector.
- for (unsigned i = 1; i < Shuffles.size(); i++) {
- if (Shuffles[i]->getType() != VecTy)
- return false;
- if (!isDeInterleaveMaskOfFactor(Shuffles[i]->getShuffleMask(), Factor,
- Index))
- return false;
- Indices.push_back(Index);
- }
- DEBUG(dbgs() << "IA: Found an interleaved load: " << *LI << "\n");
- // Try to create target specific intrinsics to replace the load and shuffles.
- if (!TLI->lowerInterleavedLoad(LI, Shuffles, Indices, Factor))
- return false;
- for (auto SVI : Shuffles)
- DeadInsts.push_back(SVI);
- DeadInsts.push_back(LI);
- return true;
- }
- bool InterleavedAccess::lowerInterleavedStore(
- StoreInst *SI, SmallVector<Instruction *, 32> &DeadInsts) {
- if (!SI->isSimple())
- return false;
- ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(SI->getValueOperand());
- if (!SVI || !SVI->hasOneUse())
- return false;
- // Check if the shufflevector is RE-interleave shuffle.
- unsigned Factor;
- if (!isReInterleaveMask(SVI->getShuffleMask(), Factor))
- return false;
- DEBUG(dbgs() << "IA: Found an interleaved store: " << *SI << "\n");
- // Try to create target specific intrinsics to replace the store and shuffle.
- if (!TLI->lowerInterleavedStore(SI, SVI, Factor))
- return false;
- // Already have a new target specific interleaved store. Erase the old store.
- DeadInsts.push_back(SI);
- DeadInsts.push_back(SVI);
- return true;
- }
- bool InterleavedAccess::runOnFunction(Function &F) {
- if (!TM || !LowerInterleavedAccesses)
- return false;
- DEBUG(dbgs() << "*** " << getPassName() << ": " << F.getName() << "\n");
- TLI = TM->getSubtargetImpl(F)->getTargetLowering();
- MaxFactor = TLI->getMaxSupportedInterleaveFactor();
- // Holds dead instructions that will be erased later.
- SmallVector<Instruction *, 32> DeadInsts;
- bool Changed = false;
- for (auto &I : inst_range(F)) {
- if (LoadInst *LI = dyn_cast<LoadInst>(&I))
- Changed |= lowerInterleavedLoad(LI, DeadInsts);
- if (StoreInst *SI = dyn_cast<StoreInst>(&I))
- Changed |= lowerInterleavedStore(SI, DeadInsts);
- }
- for (auto I : DeadInsts)
- I->eraseFromParent();
- return Changed;
- }
|