123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227 |
- //===-- MachineBlockPlacement.cpp - Basic Block Code Layout optimization --===//
- //
- // The LLVM Compiler Infrastructure
- //
- // This file is distributed under the University of Illinois Open Source
- // License. See LICENSE.TXT for details.
- //
- //===----------------------------------------------------------------------===//
- //
- // This file implements basic block placement transformations using the CFG
- // structure and branch probability estimates.
- //
- // The pass strives to preserve the structure of the CFG (that is, retain
- // a topological ordering of basic blocks) in the absence of a *strong* signal
- // to the contrary from probabilities. However, within the CFG structure, it
- // attempts to choose an ordering which favors placing more likely sequences of
- // blocks adjacent to each other.
- //
- // The algorithm works from the inner-most loop within a function outward, and
- // at each stage walks through the basic blocks, trying to coalesce them into
- // sequential chains where allowed by the CFG (or demanded by heavy
- // probabilities). Finally, it walks the blocks in topological order, and the
- // first time it reaches a chain of basic blocks, it schedules them in the
- // function in-order.
- //
- //===----------------------------------------------------------------------===//
- #include "llvm/CodeGen/Passes.h"
- #include "llvm/ADT/DenseMap.h"
- #include "llvm/ADT/SmallPtrSet.h"
- #include "llvm/ADT/SmallVector.h"
- #include "llvm/ADT/Statistic.h"
- #include "llvm/CodeGen/MachineBasicBlock.h"
- #include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
- #include "llvm/CodeGen/MachineBranchProbabilityInfo.h"
- #include "llvm/CodeGen/MachineDominators.h"
- #include "llvm/CodeGen/MachineFunction.h"
- #include "llvm/CodeGen/MachineFunctionPass.h"
- #include "llvm/CodeGen/MachineLoopInfo.h"
- #include "llvm/CodeGen/MachineModuleInfo.h"
- #include "llvm/Support/Allocator.h"
- #include "llvm/Support/CommandLine.h"
- #include "llvm/Support/Debug.h"
- #include "llvm/Support/raw_ostream.h"
- #include "llvm/Target/TargetInstrInfo.h"
- #include "llvm/Target/TargetLowering.h"
- #include "llvm/Target/TargetSubtargetInfo.h"
- #include <algorithm>
- using namespace llvm;
- #define DEBUG_TYPE "block-placement"
- STATISTIC(NumCondBranches, "Number of conditional branches");
- STATISTIC(NumUncondBranches, "Number of uncondittional branches");
- STATISTIC(CondBranchTakenFreq,
- "Potential frequency of taking conditional branches");
- STATISTIC(UncondBranchTakenFreq,
- "Potential frequency of taking unconditional branches");
- static cl::opt<unsigned> AlignAllBlock("align-all-blocks",
- cl::desc("Force the alignment of all "
- "blocks in the function."),
- cl::init(0), cl::Hidden);
- // FIXME: Find a good default for this flag and remove the flag.
- static cl::opt<unsigned> ExitBlockBias(
- "block-placement-exit-block-bias",
- cl::desc("Block frequency percentage a loop exit block needs "
- "over the original exit to be considered the new exit."),
- cl::init(0), cl::Hidden);
- static cl::opt<bool> OutlineOptionalBranches(
- "outline-optional-branches",
- cl::desc("Put completely optional branches, i.e. branches with a common "
- "post dominator, out of line."),
- cl::init(false), cl::Hidden);
- static cl::opt<unsigned> OutlineOptionalThreshold(
- "outline-optional-threshold",
- cl::desc("Don't outline optional branches that are a single block with an "
- "instruction count below this threshold"),
- cl::init(4), cl::Hidden);
- namespace {
- class BlockChain;
- /// \brief Type for our function-wide basic block -> block chain mapping.
- typedef DenseMap<MachineBasicBlock *, BlockChain *> BlockToChainMapType;
- }
- namespace {
- /// \brief A chain of blocks which will be laid out contiguously.
- ///
- /// This is the datastructure representing a chain of consecutive blocks that
- /// are profitable to layout together in order to maximize fallthrough
- /// probabilities and code locality. We also can use a block chain to represent
- /// a sequence of basic blocks which have some external (correctness)
- /// requirement for sequential layout.
- ///
- /// Chains can be built around a single basic block and can be merged to grow
- /// them. They participate in a block-to-chain mapping, which is updated
- /// automatically as chains are merged together.
- class BlockChain {
- /// \brief The sequence of blocks belonging to this chain.
- ///
- /// This is the sequence of blocks for a particular chain. These will be laid
- /// out in-order within the function.
- SmallVector<MachineBasicBlock *, 4> Blocks;
- /// \brief A handle to the function-wide basic block to block chain mapping.
- ///
- /// This is retained in each block chain to simplify the computation of child
- /// block chains for SCC-formation and iteration. We store the edges to child
- /// basic blocks, and map them back to their associated chains using this
- /// structure.
- BlockToChainMapType &BlockToChain;
- public:
- /// \brief Construct a new BlockChain.
- ///
- /// This builds a new block chain representing a single basic block in the
- /// function. It also registers itself as the chain that block participates
- /// in with the BlockToChain mapping.
- BlockChain(BlockToChainMapType &BlockToChain, MachineBasicBlock *BB)
- : Blocks(1, BB), BlockToChain(BlockToChain), LoopPredecessors(0) {
- assert(BB && "Cannot create a chain with a null basic block");
- BlockToChain[BB] = this;
- }
- /// \brief Iterator over blocks within the chain.
- typedef SmallVectorImpl<MachineBasicBlock *>::iterator iterator;
- /// \brief Beginning of blocks within the chain.
- iterator begin() { return Blocks.begin(); }
- /// \brief End of blocks within the chain.
- iterator end() { return Blocks.end(); }
- /// \brief Merge a block chain into this one.
- ///
- /// This routine merges a block chain into this one. It takes care of forming
- /// a contiguous sequence of basic blocks, updating the edge list, and
- /// updating the block -> chain mapping. It does not free or tear down the
- /// old chain, but the old chain's block list is no longer valid.
- void merge(MachineBasicBlock *BB, BlockChain *Chain) {
- assert(BB);
- assert(!Blocks.empty());
- // Fast path in case we don't have a chain already.
- if (!Chain) {
- assert(!BlockToChain[BB]);
- Blocks.push_back(BB);
- BlockToChain[BB] = this;
- return;
- }
- assert(BB == *Chain->begin());
- assert(Chain->begin() != Chain->end());
- // Update the incoming blocks to point to this chain, and add them to the
- // chain structure.
- for (MachineBasicBlock *ChainBB : *Chain) {
- Blocks.push_back(ChainBB);
- assert(BlockToChain[ChainBB] == Chain && "Incoming blocks not in chain");
- BlockToChain[ChainBB] = this;
- }
- }
- #ifndef NDEBUG
- /// \brief Dump the blocks in this chain.
- LLVM_DUMP_METHOD void dump() {
- for (MachineBasicBlock *MBB : *this)
- MBB->dump();
- }
- #endif // NDEBUG
- /// \brief Count of predecessors within the loop currently being processed.
- ///
- /// This count is updated at each loop we process to represent the number of
- /// in-loop predecessors of this chain.
- unsigned LoopPredecessors;
- };
- }
- namespace {
- class MachineBlockPlacement : public MachineFunctionPass {
- /// \brief A typedef for a block filter set.
- typedef SmallPtrSet<MachineBasicBlock *, 16> BlockFilterSet;
- /// \brief A handle to the branch probability pass.
- const MachineBranchProbabilityInfo *MBPI;
- /// \brief A handle to the function-wide block frequency pass.
- const MachineBlockFrequencyInfo *MBFI;
- /// \brief A handle to the loop info.
- const MachineLoopInfo *MLI;
- /// \brief A handle to the target's instruction info.
- const TargetInstrInfo *TII;
- /// \brief A handle to the target's lowering info.
- const TargetLoweringBase *TLI;
- /// \brief A handle to the post dominator tree.
- MachineDominatorTree *MDT;
- /// \brief A set of blocks that are unavoidably execute, i.e. they dominate
- /// all terminators of the MachineFunction.
- SmallPtrSet<MachineBasicBlock *, 4> UnavoidableBlocks;
- /// \brief Allocator and owner of BlockChain structures.
- ///
- /// We build BlockChains lazily while processing the loop structure of
- /// a function. To reduce malloc traffic, we allocate them using this
- /// slab-like allocator, and destroy them after the pass completes. An
- /// important guarantee is that this allocator produces stable pointers to
- /// the chains.
- SpecificBumpPtrAllocator<BlockChain> ChainAllocator;
- /// \brief Function wide BasicBlock to BlockChain mapping.
- ///
- /// This mapping allows efficiently moving from any given basic block to the
- /// BlockChain it participates in, if any. We use it to, among other things,
- /// allow implicitly defining edges between chains as the existing edges
- /// between basic blocks.
- DenseMap<MachineBasicBlock *, BlockChain *> BlockToChain;
- void markChainSuccessors(BlockChain &Chain, MachineBasicBlock *LoopHeaderBB,
- SmallVectorImpl<MachineBasicBlock *> &BlockWorkList,
- const BlockFilterSet *BlockFilter = nullptr);
- MachineBasicBlock *selectBestSuccessor(MachineBasicBlock *BB,
- BlockChain &Chain,
- const BlockFilterSet *BlockFilter);
- MachineBasicBlock *
- selectBestCandidateBlock(BlockChain &Chain,
- SmallVectorImpl<MachineBasicBlock *> &WorkList,
- const BlockFilterSet *BlockFilter);
- MachineBasicBlock *
- getFirstUnplacedBlock(MachineFunction &F, const BlockChain &PlacedChain,
- MachineFunction::iterator &PrevUnplacedBlockIt,
- const BlockFilterSet *BlockFilter);
- void buildChain(MachineBasicBlock *BB, BlockChain &Chain,
- SmallVectorImpl<MachineBasicBlock *> &BlockWorkList,
- const BlockFilterSet *BlockFilter = nullptr);
- MachineBasicBlock *findBestLoopTop(MachineLoop &L,
- const BlockFilterSet &LoopBlockSet);
- MachineBasicBlock *findBestLoopExit(MachineFunction &F, MachineLoop &L,
- const BlockFilterSet &LoopBlockSet);
- void buildLoopChains(MachineFunction &F, MachineLoop &L);
- void rotateLoop(BlockChain &LoopChain, MachineBasicBlock *ExitingBB,
- const BlockFilterSet &LoopBlockSet);
- void buildCFGChains(MachineFunction &F);
- public:
- static char ID; // Pass identification, replacement for typeid
- MachineBlockPlacement() : MachineFunctionPass(ID) {
- initializeMachineBlockPlacementPass(*PassRegistry::getPassRegistry());
- }
- bool runOnMachineFunction(MachineFunction &F) override;
- void getAnalysisUsage(AnalysisUsage &AU) const override {
- AU.addRequired<MachineBranchProbabilityInfo>();
- AU.addRequired<MachineBlockFrequencyInfo>();
- AU.addRequired<MachineDominatorTree>();
- AU.addRequired<MachineLoopInfo>();
- MachineFunctionPass::getAnalysisUsage(AU);
- }
- };
- }
- char MachineBlockPlacement::ID = 0;
- char &llvm::MachineBlockPlacementID = MachineBlockPlacement::ID;
- INITIALIZE_PASS_BEGIN(MachineBlockPlacement, "block-placement",
- "Branch Probability Basic Block Placement", false, false)
- INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo)
- INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfo)
- INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
- INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
- INITIALIZE_PASS_END(MachineBlockPlacement, "block-placement",
- "Branch Probability Basic Block Placement", false, false)
- #ifndef NDEBUG
- /// \brief Helper to print the name of a MBB.
- ///
- /// Only used by debug logging.
- static std::string getBlockName(MachineBasicBlock *BB) {
- std::string Result;
- raw_string_ostream OS(Result);
- OS << "BB#" << BB->getNumber();
- OS << " (derived from LLVM BB '" << BB->getName() << "')";
- OS.flush();
- return Result;
- }
- /// \brief Helper to print the number of a MBB.
- ///
- /// Only used by debug logging.
- static std::string getBlockNum(MachineBasicBlock *BB) {
- std::string Result;
- raw_string_ostream OS(Result);
- OS << "BB#" << BB->getNumber();
- OS.flush();
- return Result;
- }
- #endif
- /// \brief Mark a chain's successors as having one fewer preds.
- ///
- /// When a chain is being merged into the "placed" chain, this routine will
- /// quickly walk the successors of each block in the chain and mark them as
- /// having one fewer active predecessor. It also adds any successors of this
- /// chain which reach the zero-predecessor state to the worklist passed in.
- void MachineBlockPlacement::markChainSuccessors(
- BlockChain &Chain, MachineBasicBlock *LoopHeaderBB,
- SmallVectorImpl<MachineBasicBlock *> &BlockWorkList,
- const BlockFilterSet *BlockFilter) {
- // Walk all the blocks in this chain, marking their successors as having
- // a predecessor placed.
- for (MachineBasicBlock *MBB : Chain) {
- // Add any successors for which this is the only un-placed in-loop
- // predecessor to the worklist as a viable candidate for CFG-neutral
- // placement. No subsequent placement of this block will violate the CFG
- // shape, so we get to use heuristics to choose a favorable placement.
- for (MachineBasicBlock *Succ : MBB->successors()) {
- if (BlockFilter && !BlockFilter->count(Succ))
- continue;
- BlockChain &SuccChain = *BlockToChain[Succ];
- // Disregard edges within a fixed chain, or edges to the loop header.
- if (&Chain == &SuccChain || Succ == LoopHeaderBB)
- continue;
- // This is a cross-chain edge that is within the loop, so decrement the
- // loop predecessor count of the destination chain.
- if (SuccChain.LoopPredecessors > 0 && --SuccChain.LoopPredecessors == 0)
- BlockWorkList.push_back(*SuccChain.begin());
- }
- }
- }
- /// \brief Select the best successor for a block.
- ///
- /// This looks across all successors of a particular block and attempts to
- /// select the "best" one to be the layout successor. It only considers direct
- /// successors which also pass the block filter. It will attempt to avoid
- /// breaking CFG structure, but cave and break such structures in the case of
- /// very hot successor edges.
- ///
- /// \returns The best successor block found, or null if none are viable.
- MachineBasicBlock *
- MachineBlockPlacement::selectBestSuccessor(MachineBasicBlock *BB,
- BlockChain &Chain,
- const BlockFilterSet *BlockFilter) {
- const BranchProbability HotProb(4, 5); // 80%
- MachineBasicBlock *BestSucc = nullptr;
- // FIXME: Due to the performance of the probability and weight routines in
- // the MBPI analysis, we manually compute probabilities using the edge
- // weights. This is suboptimal as it means that the somewhat subtle
- // definition of edge weight semantics is encoded here as well. We should
- // improve the MBPI interface to efficiently support query patterns such as
- // this.
- uint32_t BestWeight = 0;
- uint32_t WeightScale = 0;
- uint32_t SumWeight = MBPI->getSumForBlock(BB, WeightScale);
- DEBUG(dbgs() << "Attempting merge from: " << getBlockName(BB) << "\n");
- for (MachineBasicBlock *Succ : BB->successors()) {
- if (BlockFilter && !BlockFilter->count(Succ))
- continue;
- BlockChain &SuccChain = *BlockToChain[Succ];
- if (&SuccChain == &Chain) {
- DEBUG(dbgs() << " " << getBlockName(Succ) << " -> Already merged!\n");
- continue;
- }
- if (Succ != *SuccChain.begin()) {
- DEBUG(dbgs() << " " << getBlockName(Succ) << " -> Mid chain!\n");
- continue;
- }
- uint32_t SuccWeight = MBPI->getEdgeWeight(BB, Succ);
- BranchProbability SuccProb(SuccWeight / WeightScale, SumWeight);
- // If we outline optional branches, look whether Succ is unavoidable, i.e.
- // dominates all terminators of the MachineFunction. If it does, other
- // successors must be optional. Don't do this for cold branches.
- if (OutlineOptionalBranches && SuccProb > HotProb.getCompl() &&
- UnavoidableBlocks.count(Succ) > 0) {
- auto HasShortOptionalBranch = [&]() {
- for (MachineBasicBlock *Pred : Succ->predecessors()) {
- // Check whether there is an unplaced optional branch.
- if (Pred == Succ || (BlockFilter && !BlockFilter->count(Pred)) ||
- BlockToChain[Pred] == &Chain)
- continue;
- // Check whether the optional branch has exactly one BB.
- if (Pred->pred_size() > 1 || *Pred->pred_begin() != BB)
- continue;
- // Check whether the optional branch is small.
- if (Pred->size() < OutlineOptionalThreshold)
- return true;
- }
- return false;
- };
- if (!HasShortOptionalBranch())
- return Succ;
- }
- // Only consider successors which are either "hot", or wouldn't violate
- // any CFG constraints.
- if (SuccChain.LoopPredecessors != 0) {
- if (SuccProb < HotProb) {
- DEBUG(dbgs() << " " << getBlockName(Succ) << " -> " << SuccProb
- << " (prob) (CFG conflict)\n");
- continue;
- }
- // Make sure that a hot successor doesn't have a globally more
- // important predecessor.
- BlockFrequency CandidateEdgeFreq =
- MBFI->getBlockFreq(BB) * SuccProb * HotProb.getCompl();
- bool BadCFGConflict = false;
- for (MachineBasicBlock *Pred : Succ->predecessors()) {
- if (Pred == Succ || (BlockFilter && !BlockFilter->count(Pred)) ||
- BlockToChain[Pred] == &Chain)
- continue;
- BlockFrequency PredEdgeFreq =
- MBFI->getBlockFreq(Pred) * MBPI->getEdgeProbability(Pred, Succ);
- if (PredEdgeFreq >= CandidateEdgeFreq) {
- BadCFGConflict = true;
- break;
- }
- }
- if (BadCFGConflict) {
- DEBUG(dbgs() << " " << getBlockName(Succ) << " -> " << SuccProb
- << " (prob) (non-cold CFG conflict)\n");
- continue;
- }
- }
- DEBUG(dbgs() << " " << getBlockName(Succ) << " -> " << SuccProb
- << " (prob)"
- << (SuccChain.LoopPredecessors != 0 ? " (CFG break)" : "")
- << "\n");
- if (BestSucc && BestWeight >= SuccWeight)
- continue;
- BestSucc = Succ;
- BestWeight = SuccWeight;
- }
- return BestSucc;
- }
- /// \brief Select the best block from a worklist.
- ///
- /// This looks through the provided worklist as a list of candidate basic
- /// blocks and select the most profitable one to place. The definition of
- /// profitable only really makes sense in the context of a loop. This returns
- /// the most frequently visited block in the worklist, which in the case of
- /// a loop, is the one most desirable to be physically close to the rest of the
- /// loop body in order to improve icache behavior.
- ///
- /// \returns The best block found, or null if none are viable.
- MachineBasicBlock *MachineBlockPlacement::selectBestCandidateBlock(
- BlockChain &Chain, SmallVectorImpl<MachineBasicBlock *> &WorkList,
- const BlockFilterSet *BlockFilter) {
- // Once we need to walk the worklist looking for a candidate, cleanup the
- // worklist of already placed entries.
- // FIXME: If this shows up on profiles, it could be folded (at the cost of
- // some code complexity) into the loop below.
- WorkList.erase(std::remove_if(WorkList.begin(), WorkList.end(),
- [&](MachineBasicBlock *BB) {
- return BlockToChain.lookup(BB) == &Chain;
- }),
- WorkList.end());
- MachineBasicBlock *BestBlock = nullptr;
- BlockFrequency BestFreq;
- for (MachineBasicBlock *MBB : WorkList) {
- BlockChain &SuccChain = *BlockToChain[MBB];
- if (&SuccChain == &Chain) {
- DEBUG(dbgs() << " " << getBlockName(MBB) << " -> Already merged!\n");
- continue;
- }
- assert(SuccChain.LoopPredecessors == 0 && "Found CFG-violating block");
- BlockFrequency CandidateFreq = MBFI->getBlockFreq(MBB);
- DEBUG(dbgs() << " " << getBlockName(MBB) << " -> ";
- MBFI->printBlockFreq(dbgs(), CandidateFreq) << " (freq)\n");
- if (BestBlock && BestFreq >= CandidateFreq)
- continue;
- BestBlock = MBB;
- BestFreq = CandidateFreq;
- }
- return BestBlock;
- }
- /// \brief Retrieve the first unplaced basic block.
- ///
- /// This routine is called when we are unable to use the CFG to walk through
- /// all of the basic blocks and form a chain due to unnatural loops in the CFG.
- /// We walk through the function's blocks in order, starting from the
- /// LastUnplacedBlockIt. We update this iterator on each call to avoid
- /// re-scanning the entire sequence on repeated calls to this routine.
- MachineBasicBlock *MachineBlockPlacement::getFirstUnplacedBlock(
- MachineFunction &F, const BlockChain &PlacedChain,
- MachineFunction::iterator &PrevUnplacedBlockIt,
- const BlockFilterSet *BlockFilter) {
- for (MachineFunction::iterator I = PrevUnplacedBlockIt, E = F.end(); I != E;
- ++I) {
- if (BlockFilter && !BlockFilter->count(I))
- continue;
- if (BlockToChain[I] != &PlacedChain) {
- PrevUnplacedBlockIt = I;
- // Now select the head of the chain to which the unplaced block belongs
- // as the block to place. This will force the entire chain to be placed,
- // and satisfies the requirements of merging chains.
- return *BlockToChain[I]->begin();
- }
- }
- return nullptr;
- }
- void MachineBlockPlacement::buildChain(
- MachineBasicBlock *BB, BlockChain &Chain,
- SmallVectorImpl<MachineBasicBlock *> &BlockWorkList,
- const BlockFilterSet *BlockFilter) {
- assert(BB);
- assert(BlockToChain[BB] == &Chain);
- MachineFunction &F = *BB->getParent();
- MachineFunction::iterator PrevUnplacedBlockIt = F.begin();
- MachineBasicBlock *LoopHeaderBB = BB;
- markChainSuccessors(Chain, LoopHeaderBB, BlockWorkList, BlockFilter);
- BB = *std::prev(Chain.end());
- for (;;) {
- assert(BB);
- assert(BlockToChain[BB] == &Chain);
- assert(*std::prev(Chain.end()) == BB);
- // Look for the best viable successor if there is one to place immediately
- // after this block.
- MachineBasicBlock *BestSucc = selectBestSuccessor(BB, Chain, BlockFilter);
- // If an immediate successor isn't available, look for the best viable
- // block among those we've identified as not violating the loop's CFG at
- // this point. This won't be a fallthrough, but it will increase locality.
- if (!BestSucc)
- BestSucc = selectBestCandidateBlock(Chain, BlockWorkList, BlockFilter);
- if (!BestSucc) {
- BestSucc =
- getFirstUnplacedBlock(F, Chain, PrevUnplacedBlockIt, BlockFilter);
- if (!BestSucc)
- break;
- DEBUG(dbgs() << "Unnatural loop CFG detected, forcibly merging the "
- "layout successor until the CFG reduces\n");
- }
- // Place this block, updating the datastructures to reflect its placement.
- BlockChain &SuccChain = *BlockToChain[BestSucc];
- // Zero out LoopPredecessors for the successor we're about to merge in case
- // we selected a successor that didn't fit naturally into the CFG.
- SuccChain.LoopPredecessors = 0;
- DEBUG(dbgs() << "Merging from " << getBlockNum(BB) << " to "
- << getBlockNum(BestSucc) << "\n");
- markChainSuccessors(SuccChain, LoopHeaderBB, BlockWorkList, BlockFilter);
- Chain.merge(BestSucc, &SuccChain);
- BB = *std::prev(Chain.end());
- }
- DEBUG(dbgs() << "Finished forming chain for header block "
- << getBlockNum(*Chain.begin()) << "\n");
- }
- /// \brief Find the best loop top block for layout.
- ///
- /// Look for a block which is strictly better than the loop header for laying
- /// out at the top of the loop. This looks for one and only one pattern:
- /// a latch block with no conditional exit. This block will cause a conditional
- /// jump around it or will be the bottom of the loop if we lay it out in place,
- /// but if it it doesn't end up at the bottom of the loop for any reason,
- /// rotation alone won't fix it. Because such a block will always result in an
- /// unconditional jump (for the backedge) rotating it in front of the loop
- /// header is always profitable.
- MachineBasicBlock *
- MachineBlockPlacement::findBestLoopTop(MachineLoop &L,
- const BlockFilterSet &LoopBlockSet) {
- // Check that the header hasn't been fused with a preheader block due to
- // crazy branches. If it has, we need to start with the header at the top to
- // prevent pulling the preheader into the loop body.
- BlockChain &HeaderChain = *BlockToChain[L.getHeader()];
- if (!LoopBlockSet.count(*HeaderChain.begin()))
- return L.getHeader();
- DEBUG(dbgs() << "Finding best loop top for: " << getBlockName(L.getHeader())
- << "\n");
- BlockFrequency BestPredFreq;
- MachineBasicBlock *BestPred = nullptr;
- for (MachineBasicBlock *Pred : L.getHeader()->predecessors()) {
- if (!LoopBlockSet.count(Pred))
- continue;
- DEBUG(dbgs() << " header pred: " << getBlockName(Pred) << ", "
- << Pred->succ_size() << " successors, ";
- MBFI->printBlockFreq(dbgs(), Pred) << " freq\n");
- if (Pred->succ_size() > 1)
- continue;
- BlockFrequency PredFreq = MBFI->getBlockFreq(Pred);
- if (!BestPred || PredFreq > BestPredFreq ||
- (!(PredFreq < BestPredFreq) &&
- Pred->isLayoutSuccessor(L.getHeader()))) {
- BestPred = Pred;
- BestPredFreq = PredFreq;
- }
- }
- // If no direct predecessor is fine, just use the loop header.
- if (!BestPred)
- return L.getHeader();
- // Walk backwards through any straight line of predecessors.
- while (BestPred->pred_size() == 1 &&
- (*BestPred->pred_begin())->succ_size() == 1 &&
- *BestPred->pred_begin() != L.getHeader())
- BestPred = *BestPred->pred_begin();
- DEBUG(dbgs() << " final top: " << getBlockName(BestPred) << "\n");
- return BestPred;
- }
- /// \brief Find the best loop exiting block for layout.
- ///
- /// This routine implements the logic to analyze the loop looking for the best
- /// block to layout at the top of the loop. Typically this is done to maximize
- /// fallthrough opportunities.
- MachineBasicBlock *
- MachineBlockPlacement::findBestLoopExit(MachineFunction &F, MachineLoop &L,
- const BlockFilterSet &LoopBlockSet) {
- // We don't want to layout the loop linearly in all cases. If the loop header
- // is just a normal basic block in the loop, we want to look for what block
- // within the loop is the best one to layout at the top. However, if the loop
- // header has be pre-merged into a chain due to predecessors not having
- // analyzable branches, *and* the predecessor it is merged with is *not* part
- // of the loop, rotating the header into the middle of the loop will create
- // a non-contiguous range of blocks which is Very Bad. So start with the
- // header and only rotate if safe.
- BlockChain &HeaderChain = *BlockToChain[L.getHeader()];
- if (!LoopBlockSet.count(*HeaderChain.begin()))
- return nullptr;
- BlockFrequency BestExitEdgeFreq;
- unsigned BestExitLoopDepth = 0;
- MachineBasicBlock *ExitingBB = nullptr;
- // If there are exits to outer loops, loop rotation can severely limit
- // fallthrough opportunites unless it selects such an exit. Keep a set of
- // blocks where rotating to exit with that block will reach an outer loop.
- SmallPtrSet<MachineBasicBlock *, 4> BlocksExitingToOuterLoop;
- DEBUG(dbgs() << "Finding best loop exit for: " << getBlockName(L.getHeader())
- << "\n");
- for (MachineBasicBlock *MBB : L.getBlocks()) {
- BlockChain &Chain = *BlockToChain[MBB];
- // Ensure that this block is at the end of a chain; otherwise it could be
- // mid-way through an inner loop or a successor of an unanalyzable branch.
- if (MBB != *std::prev(Chain.end()))
- continue;
- // Now walk the successors. We need to establish whether this has a viable
- // exiting successor and whether it has a viable non-exiting successor.
- // We store the old exiting state and restore it if a viable looping
- // successor isn't found.
- MachineBasicBlock *OldExitingBB = ExitingBB;
- BlockFrequency OldBestExitEdgeFreq = BestExitEdgeFreq;
- bool HasLoopingSucc = false;
- // FIXME: Due to the performance of the probability and weight routines in
- // the MBPI analysis, we use the internal weights and manually compute the
- // probabilities to avoid quadratic behavior.
- uint32_t WeightScale = 0;
- uint32_t SumWeight = MBPI->getSumForBlock(MBB, WeightScale);
- for (MachineBasicBlock *Succ : MBB->successors()) {
- if (Succ->isLandingPad())
- continue;
- if (Succ == MBB)
- continue;
- BlockChain &SuccChain = *BlockToChain[Succ];
- // Don't split chains, either this chain or the successor's chain.
- if (&Chain == &SuccChain) {
- DEBUG(dbgs() << " exiting: " << getBlockName(MBB) << " -> "
- << getBlockName(Succ) << " (chain conflict)\n");
- continue;
- }
- uint32_t SuccWeight = MBPI->getEdgeWeight(MBB, Succ);
- if (LoopBlockSet.count(Succ)) {
- DEBUG(dbgs() << " looping: " << getBlockName(MBB) << " -> "
- << getBlockName(Succ) << " (" << SuccWeight << ")\n");
- HasLoopingSucc = true;
- continue;
- }
- unsigned SuccLoopDepth = 0;
- if (MachineLoop *ExitLoop = MLI->getLoopFor(Succ)) {
- SuccLoopDepth = ExitLoop->getLoopDepth();
- if (ExitLoop->contains(&L))
- BlocksExitingToOuterLoop.insert(MBB);
- }
- BranchProbability SuccProb(SuccWeight / WeightScale, SumWeight);
- BlockFrequency ExitEdgeFreq = MBFI->getBlockFreq(MBB) * SuccProb;
- DEBUG(dbgs() << " exiting: " << getBlockName(MBB) << " -> "
- << getBlockName(Succ) << " [L:" << SuccLoopDepth << "] (";
- MBFI->printBlockFreq(dbgs(), ExitEdgeFreq) << ")\n");
- // Note that we bias this toward an existing layout successor to retain
- // incoming order in the absence of better information. The exit must have
- // a frequency higher than the current exit before we consider breaking
- // the layout.
- BranchProbability Bias(100 - ExitBlockBias, 100);
- if (!ExitingBB || SuccLoopDepth > BestExitLoopDepth ||
- ExitEdgeFreq > BestExitEdgeFreq ||
- (MBB->isLayoutSuccessor(Succ) &&
- !(ExitEdgeFreq < BestExitEdgeFreq * Bias))) {
- BestExitEdgeFreq = ExitEdgeFreq;
- ExitingBB = MBB;
- }
- }
- if (!HasLoopingSucc) {
- // Restore the old exiting state, no viable looping successor was found.
- ExitingBB = OldExitingBB;
- BestExitEdgeFreq = OldBestExitEdgeFreq;
- continue;
- }
- }
- // Without a candidate exiting block or with only a single block in the
- // loop, just use the loop header to layout the loop.
- if (!ExitingBB || L.getNumBlocks() == 1)
- return nullptr;
- // Also, if we have exit blocks which lead to outer loops but didn't select
- // one of them as the exiting block we are rotating toward, disable loop
- // rotation altogether.
- if (!BlocksExitingToOuterLoop.empty() &&
- !BlocksExitingToOuterLoop.count(ExitingBB))
- return nullptr;
- DEBUG(dbgs() << " Best exiting block: " << getBlockName(ExitingBB) << "\n");
- return ExitingBB;
- }
- /// \brief Attempt to rotate an exiting block to the bottom of the loop.
- ///
- /// Once we have built a chain, try to rotate it to line up the hot exit block
- /// with fallthrough out of the loop if doing so doesn't introduce unnecessary
- /// branches. For example, if the loop has fallthrough into its header and out
- /// of its bottom already, don't rotate it.
- void MachineBlockPlacement::rotateLoop(BlockChain &LoopChain,
- MachineBasicBlock *ExitingBB,
- const BlockFilterSet &LoopBlockSet) {
- if (!ExitingBB)
- return;
- MachineBasicBlock *Top = *LoopChain.begin();
- bool ViableTopFallthrough = false;
- for (MachineBasicBlock *Pred : Top->predecessors()) {
- BlockChain *PredChain = BlockToChain[Pred];
- if (!LoopBlockSet.count(Pred) &&
- (!PredChain || Pred == *std::prev(PredChain->end()))) {
- ViableTopFallthrough = true;
- break;
- }
- }
- // If the header has viable fallthrough, check whether the current loop
- // bottom is a viable exiting block. If so, bail out as rotating will
- // introduce an unnecessary branch.
- if (ViableTopFallthrough) {
- MachineBasicBlock *Bottom = *std::prev(LoopChain.end());
- for (MachineBasicBlock *Succ : Bottom->successors()) {
- BlockChain *SuccChain = BlockToChain[Succ];
- if (!LoopBlockSet.count(Succ) &&
- (!SuccChain || Succ == *SuccChain->begin()))
- return;
- }
- }
- BlockChain::iterator ExitIt =
- std::find(LoopChain.begin(), LoopChain.end(), ExitingBB);
- if (ExitIt == LoopChain.end())
- return;
- std::rotate(LoopChain.begin(), std::next(ExitIt), LoopChain.end());
- }
- /// \brief Forms basic block chains from the natural loop structures.
- ///
- /// These chains are designed to preserve the existing *structure* of the code
- /// as much as possible. We can then stitch the chains together in a way which
- /// both preserves the topological structure and minimizes taken conditional
- /// branches.
- void MachineBlockPlacement::buildLoopChains(MachineFunction &F,
- MachineLoop &L) {
- // First recurse through any nested loops, building chains for those inner
- // loops.
- for (MachineLoop *InnerLoop : L)
- buildLoopChains(F, *InnerLoop);
- SmallVector<MachineBasicBlock *, 16> BlockWorkList;
- BlockFilterSet LoopBlockSet(L.block_begin(), L.block_end());
- // First check to see if there is an obviously preferable top block for the
- // loop. This will default to the header, but may end up as one of the
- // predecessors to the header if there is one which will result in strictly
- // fewer branches in the loop body.
- MachineBasicBlock *LoopTop = findBestLoopTop(L, LoopBlockSet);
- // If we selected just the header for the loop top, look for a potentially
- // profitable exit block in the event that rotating the loop can eliminate
- // branches by placing an exit edge at the bottom.
- MachineBasicBlock *ExitingBB = nullptr;
- if (LoopTop == L.getHeader())
- ExitingBB = findBestLoopExit(F, L, LoopBlockSet);
- BlockChain &LoopChain = *BlockToChain[LoopTop];
- // FIXME: This is a really lame way of walking the chains in the loop: we
- // walk the blocks, and use a set to prevent visiting a particular chain
- // twice.
- SmallPtrSet<BlockChain *, 4> UpdatedPreds;
- assert(LoopChain.LoopPredecessors == 0);
- UpdatedPreds.insert(&LoopChain);
- for (MachineBasicBlock *LoopBB : L.getBlocks()) {
- BlockChain &Chain = *BlockToChain[LoopBB];
- if (!UpdatedPreds.insert(&Chain).second)
- continue;
- assert(Chain.LoopPredecessors == 0);
- for (MachineBasicBlock *ChainBB : Chain) {
- assert(BlockToChain[ChainBB] == &Chain);
- for (MachineBasicBlock *Pred : ChainBB->predecessors()) {
- if (BlockToChain[Pred] == &Chain || !LoopBlockSet.count(Pred))
- continue;
- ++Chain.LoopPredecessors;
- }
- }
- if (Chain.LoopPredecessors == 0)
- BlockWorkList.push_back(*Chain.begin());
- }
- buildChain(LoopTop, LoopChain, BlockWorkList, &LoopBlockSet);
- rotateLoop(LoopChain, ExitingBB, LoopBlockSet);
- DEBUG({
- // Crash at the end so we get all of the debugging output first.
- bool BadLoop = false;
- if (LoopChain.LoopPredecessors) {
- BadLoop = true;
- dbgs() << "Loop chain contains a block without its preds placed!\n"
- << " Loop header: " << getBlockName(*L.block_begin()) << "\n"
- << " Chain header: " << getBlockName(*LoopChain.begin()) << "\n";
- }
- for (MachineBasicBlock *ChainBB : LoopChain) {
- dbgs() << " ... " << getBlockName(ChainBB) << "\n";
- if (!LoopBlockSet.erase(ChainBB)) {
- // We don't mark the loop as bad here because there are real situations
- // where this can occur. For example, with an unanalyzable fallthrough
- // from a loop block to a non-loop block or vice versa.
- dbgs() << "Loop chain contains a block not contained by the loop!\n"
- << " Loop header: " << getBlockName(*L.block_begin()) << "\n"
- << " Chain header: " << getBlockName(*LoopChain.begin()) << "\n"
- << " Bad block: " << getBlockName(ChainBB) << "\n";
- }
- }
- if (!LoopBlockSet.empty()) {
- BadLoop = true;
- for (MachineBasicBlock *LoopBB : LoopBlockSet)
- dbgs() << "Loop contains blocks never placed into a chain!\n"
- << " Loop header: " << getBlockName(*L.block_begin()) << "\n"
- << " Chain header: " << getBlockName(*LoopChain.begin()) << "\n"
- << " Bad block: " << getBlockName(LoopBB) << "\n";
- }
- assert(!BadLoop && "Detected problems with the placement of this loop.");
- });
- }
- void MachineBlockPlacement::buildCFGChains(MachineFunction &F) {
- // Ensure that every BB in the function has an associated chain to simplify
- // the assumptions of the remaining algorithm.
- SmallVector<MachineOperand, 4> Cond; // For AnalyzeBranch.
- for (MachineFunction::iterator FI = F.begin(), FE = F.end(); FI != FE; ++FI) {
- MachineBasicBlock *BB = FI;
- BlockChain *Chain =
- new (ChainAllocator.Allocate()) BlockChain(BlockToChain, BB);
- // Also, merge any blocks which we cannot reason about and must preserve
- // the exact fallthrough behavior for.
- for (;;) {
- Cond.clear();
- MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For AnalyzeBranch.
- if (!TII->AnalyzeBranch(*BB, TBB, FBB, Cond) || !FI->canFallThrough())
- break;
- MachineFunction::iterator NextFI(std::next(FI));
- MachineBasicBlock *NextBB = NextFI;
- // Ensure that the layout successor is a viable block, as we know that
- // fallthrough is a possibility.
- assert(NextFI != FE && "Can't fallthrough past the last block.");
- DEBUG(dbgs() << "Pre-merging due to unanalyzable fallthrough: "
- << getBlockName(BB) << " -> " << getBlockName(NextBB)
- << "\n");
- Chain->merge(NextBB, nullptr);
- FI = NextFI;
- BB = NextBB;
- }
- }
- if (OutlineOptionalBranches) {
- // Find the nearest common dominator of all of F's terminators.
- MachineBasicBlock *Terminator = nullptr;
- for (MachineBasicBlock &MBB : F) {
- if (MBB.succ_size() == 0) {
- if (Terminator == nullptr)
- Terminator = &MBB;
- else
- Terminator = MDT->findNearestCommonDominator(Terminator, &MBB);
- }
- }
- // MBBs dominating this common dominator are unavoidable.
- UnavoidableBlocks.clear();
- for (MachineBasicBlock &MBB : F) {
- if (MDT->dominates(&MBB, Terminator)) {
- UnavoidableBlocks.insert(&MBB);
- }
- }
- }
- // Build any loop-based chains.
- for (MachineLoop *L : *MLI)
- buildLoopChains(F, *L);
- SmallVector<MachineBasicBlock *, 16> BlockWorkList;
- SmallPtrSet<BlockChain *, 4> UpdatedPreds;
- for (MachineBasicBlock &MBB : F) {
- BlockChain &Chain = *BlockToChain[&MBB];
- if (!UpdatedPreds.insert(&Chain).second)
- continue;
- assert(Chain.LoopPredecessors == 0);
- for (MachineBasicBlock *ChainBB : Chain) {
- assert(BlockToChain[ChainBB] == &Chain);
- for (MachineBasicBlock *Pred : ChainBB->predecessors()) {
- if (BlockToChain[Pred] == &Chain)
- continue;
- ++Chain.LoopPredecessors;
- }
- }
- if (Chain.LoopPredecessors == 0)
- BlockWorkList.push_back(*Chain.begin());
- }
- BlockChain &FunctionChain = *BlockToChain[&F.front()];
- buildChain(&F.front(), FunctionChain, BlockWorkList);
- #ifndef NDEBUG
- typedef SmallPtrSet<MachineBasicBlock *, 16> FunctionBlockSetType;
- #endif
- DEBUG({
- // Crash at the end so we get all of the debugging output first.
- bool BadFunc = false;
- FunctionBlockSetType FunctionBlockSet;
- for (MachineBasicBlock &MBB : F)
- FunctionBlockSet.insert(&MBB);
- for (MachineBasicBlock *ChainBB : FunctionChain)
- if (!FunctionBlockSet.erase(ChainBB)) {
- BadFunc = true;
- dbgs() << "Function chain contains a block not in the function!\n"
- << " Bad block: " << getBlockName(ChainBB) << "\n";
- }
- if (!FunctionBlockSet.empty()) {
- BadFunc = true;
- for (MachineBasicBlock *RemainingBB : FunctionBlockSet)
- dbgs() << "Function contains blocks never placed into a chain!\n"
- << " Bad block: " << getBlockName(RemainingBB) << "\n";
- }
- assert(!BadFunc && "Detected problems with the block placement.");
- });
- // Splice the blocks into place.
- MachineFunction::iterator InsertPos = F.begin();
- for (MachineBasicBlock *ChainBB : FunctionChain) {
- DEBUG(dbgs() << (ChainBB == *FunctionChain.begin() ? "Placing chain "
- : " ... ")
- << getBlockName(ChainBB) << "\n");
- if (InsertPos != MachineFunction::iterator(ChainBB))
- F.splice(InsertPos, ChainBB);
- else
- ++InsertPos;
- // Update the terminator of the previous block.
- if (ChainBB == *FunctionChain.begin())
- continue;
- MachineBasicBlock *PrevBB = std::prev(MachineFunction::iterator(ChainBB));
- // FIXME: It would be awesome of updateTerminator would just return rather
- // than assert when the branch cannot be analyzed in order to remove this
- // boiler plate.
- Cond.clear();
- MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For AnalyzeBranch.
- if (!TII->AnalyzeBranch(*PrevBB, TBB, FBB, Cond)) {
- // The "PrevBB" is not yet updated to reflect current code layout, so,
- // o. it may fall-through to a block without explict "goto" instruction
- // before layout, and no longer fall-through it after layout; or
- // o. just opposite.
- //
- // AnalyzeBranch() may return erroneous value for FBB when these two
- // situations take place. For the first scenario FBB is mistakenly set
- // NULL; for the 2nd scenario, the FBB, which is expected to be NULL,
- // is mistakenly pointing to "*BI".
- //
- bool needUpdateBr = true;
- if (!Cond.empty() && (!FBB || FBB == ChainBB)) {
- PrevBB->updateTerminator();
- needUpdateBr = false;
- Cond.clear();
- TBB = FBB = nullptr;
- if (TII->AnalyzeBranch(*PrevBB, TBB, FBB, Cond)) {
- // FIXME: This should never take place.
- TBB = FBB = nullptr;
- }
- }
- // If PrevBB has a two-way branch, try to re-order the branches
- // such that we branch to the successor with higher weight first.
- if (TBB && !Cond.empty() && FBB &&
- MBPI->getEdgeWeight(PrevBB, FBB) > MBPI->getEdgeWeight(PrevBB, TBB) &&
- !TII->ReverseBranchCondition(Cond)) {
- DEBUG(dbgs() << "Reverse order of the two branches: "
- << getBlockName(PrevBB) << "\n");
- DEBUG(dbgs() << " Edge weight: " << MBPI->getEdgeWeight(PrevBB, FBB)
- << " vs " << MBPI->getEdgeWeight(PrevBB, TBB) << "\n");
- DebugLoc dl; // FIXME: this is nowhere
- TII->RemoveBranch(*PrevBB);
- TII->InsertBranch(*PrevBB, FBB, TBB, Cond, dl);
- needUpdateBr = true;
- }
- if (needUpdateBr)
- PrevBB->updateTerminator();
- }
- }
- // Fixup the last block.
- Cond.clear();
- MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For AnalyzeBranch.
- if (!TII->AnalyzeBranch(F.back(), TBB, FBB, Cond))
- F.back().updateTerminator();
- // Walk through the backedges of the function now that we have fully laid out
- // the basic blocks and align the destination of each backedge. We don't rely
- // exclusively on the loop info here so that we can align backedges in
- // unnatural CFGs and backedges that were introduced purely because of the
- // loop rotations done during this layout pass.
- if (F.getFunction()->hasFnAttribute(Attribute::OptimizeForSize))
- return;
- if (FunctionChain.begin() == FunctionChain.end())
- return; // Empty chain.
- const BranchProbability ColdProb(1, 5); // 20%
- BlockFrequency EntryFreq = MBFI->getBlockFreq(F.begin());
- BlockFrequency WeightedEntryFreq = EntryFreq * ColdProb;
- for (MachineBasicBlock *ChainBB : FunctionChain) {
- if (ChainBB == *FunctionChain.begin())
- continue;
- // Don't align non-looping basic blocks. These are unlikely to execute
- // enough times to matter in practice. Note that we'll still handle
- // unnatural CFGs inside of a natural outer loop (the common case) and
- // rotated loops.
- MachineLoop *L = MLI->getLoopFor(ChainBB);
- if (!L)
- continue;
- unsigned Align = TLI->getPrefLoopAlignment(L);
- if (!Align)
- continue; // Don't care about loop alignment.
- // If the block is cold relative to the function entry don't waste space
- // aligning it.
- BlockFrequency Freq = MBFI->getBlockFreq(ChainBB);
- if (Freq < WeightedEntryFreq)
- continue;
- // If the block is cold relative to its loop header, don't align it
- // regardless of what edges into the block exist.
- MachineBasicBlock *LoopHeader = L->getHeader();
- BlockFrequency LoopHeaderFreq = MBFI->getBlockFreq(LoopHeader);
- if (Freq < (LoopHeaderFreq * ColdProb))
- continue;
- // Check for the existence of a non-layout predecessor which would benefit
- // from aligning this block.
- MachineBasicBlock *LayoutPred =
- &*std::prev(MachineFunction::iterator(ChainBB));
- // Force alignment if all the predecessors are jumps. We already checked
- // that the block isn't cold above.
- if (!LayoutPred->isSuccessor(ChainBB)) {
- ChainBB->setAlignment(Align);
- continue;
- }
- // Align this block if the layout predecessor's edge into this block is
- // cold relative to the block. When this is true, other predecessors make up
- // all of the hot entries into the block and thus alignment is likely to be
- // important.
- BranchProbability LayoutProb =
- MBPI->getEdgeProbability(LayoutPred, ChainBB);
- BlockFrequency LayoutEdgeFreq = MBFI->getBlockFreq(LayoutPred) * LayoutProb;
- if (LayoutEdgeFreq <= (Freq * ColdProb))
- ChainBB->setAlignment(Align);
- }
- }
- bool MachineBlockPlacement::runOnMachineFunction(MachineFunction &F) {
- // Check for single-block functions and skip them.
- if (std::next(F.begin()) == F.end())
- return false;
- if (skipOptnoneFunction(*F.getFunction()))
- return false;
- MBPI = &getAnalysis<MachineBranchProbabilityInfo>();
- MBFI = &getAnalysis<MachineBlockFrequencyInfo>();
- MLI = &getAnalysis<MachineLoopInfo>();
- TII = F.getSubtarget().getInstrInfo();
- TLI = F.getSubtarget().getTargetLowering();
- MDT = &getAnalysis<MachineDominatorTree>();
- assert(BlockToChain.empty());
- buildCFGChains(F);
- BlockToChain.clear();
- ChainAllocator.DestroyAll();
- if (AlignAllBlock)
- // Align all of the blocks in the function to a specific alignment.
- for (MachineBasicBlock &MBB : F)
- MBB.setAlignment(AlignAllBlock);
- // We always return true as we have no way to track whether the final order
- // differs from the original order.
- return true;
- }
- namespace {
- /// \brief A pass to compute block placement statistics.
- ///
- /// A separate pass to compute interesting statistics for evaluating block
- /// placement. This is separate from the actual placement pass so that they can
- /// be computed in the absence of any placement transformations or when using
- /// alternative placement strategies.
- class MachineBlockPlacementStats : public MachineFunctionPass {
- /// \brief A handle to the branch probability pass.
- const MachineBranchProbabilityInfo *MBPI;
- /// \brief A handle to the function-wide block frequency pass.
- const MachineBlockFrequencyInfo *MBFI;
- public:
- static char ID; // Pass identification, replacement for typeid
- MachineBlockPlacementStats() : MachineFunctionPass(ID) {
- initializeMachineBlockPlacementStatsPass(*PassRegistry::getPassRegistry());
- }
- bool runOnMachineFunction(MachineFunction &F) override;
- void getAnalysisUsage(AnalysisUsage &AU) const override {
- AU.addRequired<MachineBranchProbabilityInfo>();
- AU.addRequired<MachineBlockFrequencyInfo>();
- AU.setPreservesAll();
- MachineFunctionPass::getAnalysisUsage(AU);
- }
- };
- }
- char MachineBlockPlacementStats::ID = 0;
- char &llvm::MachineBlockPlacementStatsID = MachineBlockPlacementStats::ID;
- INITIALIZE_PASS_BEGIN(MachineBlockPlacementStats, "block-placement-stats",
- "Basic Block Placement Stats", false, false)
- INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo)
- INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfo)
- INITIALIZE_PASS_END(MachineBlockPlacementStats, "block-placement-stats",
- "Basic Block Placement Stats", false, false)
- bool MachineBlockPlacementStats::runOnMachineFunction(MachineFunction &F) {
- // Check for single-block functions and skip them.
- if (std::next(F.begin()) == F.end())
- return false;
- MBPI = &getAnalysis<MachineBranchProbabilityInfo>();
- MBFI = &getAnalysis<MachineBlockFrequencyInfo>();
- for (MachineBasicBlock &MBB : F) {
- BlockFrequency BlockFreq = MBFI->getBlockFreq(&MBB);
- Statistic &NumBranches =
- (MBB.succ_size() > 1) ? NumCondBranches : NumUncondBranches;
- Statistic &BranchTakenFreq =
- (MBB.succ_size() > 1) ? CondBranchTakenFreq : UncondBranchTakenFreq;
- for (MachineBasicBlock *Succ : MBB.successors()) {
- // Skip if this successor is a fallthrough.
- if (MBB.isLayoutSuccessor(Succ))
- continue;
- BlockFrequency EdgeFreq =
- BlockFreq * MBPI->getEdgeProbability(&MBB, Succ);
- ++NumBranches;
- BranchTakenFreq += EdgeFreq.getFrequency();
- }
- }
- return false;
- }
|