123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812 |
- //===-- MachineSink.cpp - Sinking for machine instructions ----------------===//
- //
- // The LLVM Compiler Infrastructure
- //
- // This file is distributed under the University of Illinois Open Source
- // License. See LICENSE.TXT for details.
- //
- //===----------------------------------------------------------------------===//
- //
- // This pass moves instructions into successor blocks when possible, so that
- // they aren't executed on paths where their results aren't needed.
- //
- // This pass is not intended to be a replacement or a complete alternative
- // for an LLVM-IR-level sinking pass. It is only designed to sink simple
- // constructs that are not exposed before lowering and instruction selection.
- //
- //===----------------------------------------------------------------------===//
- #include "llvm/CodeGen/Passes.h"
- #include "llvm/ADT/SetVector.h"
- #include "llvm/ADT/SmallSet.h"
- #include "llvm/ADT/SparseBitVector.h"
- #include "llvm/ADT/Statistic.h"
- #include "llvm/Analysis/AliasAnalysis.h"
- #include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
- #include "llvm/CodeGen/MachineDominators.h"
- #include "llvm/CodeGen/MachineLoopInfo.h"
- #include "llvm/CodeGen/MachinePostDominators.h"
- #include "llvm/CodeGen/MachineRegisterInfo.h"
- #include "llvm/Support/CommandLine.h"
- #include "llvm/Support/Debug.h"
- #include "llvm/Support/raw_ostream.h"
- #include "llvm/Target/TargetInstrInfo.h"
- #include "llvm/Target/TargetRegisterInfo.h"
- #include "llvm/Target/TargetSubtargetInfo.h"
- using namespace llvm;
- #define DEBUG_TYPE "machine-sink"
- static cl::opt<bool>
- SplitEdges("machine-sink-split",
- cl::desc("Split critical edges during machine sinking"),
- cl::init(true), cl::Hidden);
- static cl::opt<bool>
- UseBlockFreqInfo("machine-sink-bfi",
- cl::desc("Use block frequency info to find successors to sink"),
- cl::init(true), cl::Hidden);
- STATISTIC(NumSunk, "Number of machine instructions sunk");
- STATISTIC(NumSplit, "Number of critical edges split");
- STATISTIC(NumCoalesces, "Number of copies coalesced");
- namespace {
- class MachineSinking : public MachineFunctionPass {
- const TargetInstrInfo *TII;
- const TargetRegisterInfo *TRI;
- MachineRegisterInfo *MRI; // Machine register information
- MachineDominatorTree *DT; // Machine dominator tree
- MachinePostDominatorTree *PDT; // Machine post dominator tree
- MachineLoopInfo *LI;
- const MachineBlockFrequencyInfo *MBFI;
- AliasAnalysis *AA;
- // Remember which edges have been considered for breaking.
- SmallSet<std::pair<MachineBasicBlock*,MachineBasicBlock*>, 8>
- CEBCandidates;
- // Remember which edges we are about to split.
- // This is different from CEBCandidates since those edges
- // will be split.
- SetVector<std::pair<MachineBasicBlock*,MachineBasicBlock*> > ToSplit;
- SparseBitVector<> RegsToClearKillFlags;
- typedef std::map<MachineBasicBlock *, SmallVector<MachineBasicBlock *, 4>>
- AllSuccsCache;
- public:
- static char ID; // Pass identification
- MachineSinking() : MachineFunctionPass(ID) {
- initializeMachineSinkingPass(*PassRegistry::getPassRegistry());
- }
- bool runOnMachineFunction(MachineFunction &MF) override;
- void getAnalysisUsage(AnalysisUsage &AU) const override {
- AU.setPreservesCFG();
- MachineFunctionPass::getAnalysisUsage(AU);
- AU.addRequired<AliasAnalysis>();
- AU.addRequired<MachineDominatorTree>();
- AU.addRequired<MachinePostDominatorTree>();
- AU.addRequired<MachineLoopInfo>();
- AU.addPreserved<MachineDominatorTree>();
- AU.addPreserved<MachinePostDominatorTree>();
- AU.addPreserved<MachineLoopInfo>();
- if (UseBlockFreqInfo)
- AU.addRequired<MachineBlockFrequencyInfo>();
- }
- void releaseMemory() override {
- CEBCandidates.clear();
- }
- private:
- bool ProcessBlock(MachineBasicBlock &MBB);
- bool isWorthBreakingCriticalEdge(MachineInstr *MI,
- MachineBasicBlock *From,
- MachineBasicBlock *To);
- /// \brief Postpone the splitting of the given critical
- /// edge (\p From, \p To).
- ///
- /// We do not split the edges on the fly. Indeed, this invalidates
- /// the dominance information and thus triggers a lot of updates
- /// of that information underneath.
- /// Instead, we postpone all the splits after each iteration of
- /// the main loop. That way, the information is at least valid
- /// for the lifetime of an iteration.
- ///
- /// \return True if the edge is marked as toSplit, false otherwise.
- /// False can be returned if, for instance, this is not profitable.
- bool PostponeSplitCriticalEdge(MachineInstr *MI,
- MachineBasicBlock *From,
- MachineBasicBlock *To,
- bool BreakPHIEdge);
- bool SinkInstruction(MachineInstr *MI, bool &SawStore,
- AllSuccsCache &AllSuccessors);
- bool AllUsesDominatedByBlock(unsigned Reg, MachineBasicBlock *MBB,
- MachineBasicBlock *DefMBB,
- bool &BreakPHIEdge, bool &LocalUse) const;
- MachineBasicBlock *FindSuccToSinkTo(MachineInstr *MI, MachineBasicBlock *MBB,
- bool &BreakPHIEdge, AllSuccsCache &AllSuccessors);
- bool isProfitableToSinkTo(unsigned Reg, MachineInstr *MI,
- MachineBasicBlock *MBB,
- MachineBasicBlock *SuccToSinkTo,
- AllSuccsCache &AllSuccessors);
- bool PerformTrivialForwardCoalescing(MachineInstr *MI,
- MachineBasicBlock *MBB);
- SmallVector<MachineBasicBlock *, 4> &
- GetAllSortedSuccessors(MachineInstr *MI, MachineBasicBlock *MBB,
- AllSuccsCache &AllSuccessors) const;
- };
- } // end anonymous namespace
- char MachineSinking::ID = 0;
- char &llvm::MachineSinkingID = MachineSinking::ID;
- INITIALIZE_PASS_BEGIN(MachineSinking, "machine-sink",
- "Machine code sinking", false, false)
- INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
- INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
- INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
- INITIALIZE_PASS_END(MachineSinking, "machine-sink",
- "Machine code sinking", false, false)
- bool MachineSinking::PerformTrivialForwardCoalescing(MachineInstr *MI,
- MachineBasicBlock *MBB) {
- if (!MI->isCopy())
- return false;
- unsigned SrcReg = MI->getOperand(1).getReg();
- unsigned DstReg = MI->getOperand(0).getReg();
- if (!TargetRegisterInfo::isVirtualRegister(SrcReg) ||
- !TargetRegisterInfo::isVirtualRegister(DstReg) ||
- !MRI->hasOneNonDBGUse(SrcReg))
- return false;
- const TargetRegisterClass *SRC = MRI->getRegClass(SrcReg);
- const TargetRegisterClass *DRC = MRI->getRegClass(DstReg);
- if (SRC != DRC)
- return false;
- MachineInstr *DefMI = MRI->getVRegDef(SrcReg);
- if (DefMI->isCopyLike())
- return false;
- DEBUG(dbgs() << "Coalescing: " << *DefMI);
- DEBUG(dbgs() << "*** to: " << *MI);
- MRI->replaceRegWith(DstReg, SrcReg);
- MI->eraseFromParent();
- // Conservatively, clear any kill flags, since it's possible that they are no
- // longer correct.
- MRI->clearKillFlags(SrcReg);
- ++NumCoalesces;
- return true;
- }
- /// AllUsesDominatedByBlock - Return true if all uses of the specified register
- /// occur in blocks dominated by the specified block. If any use is in the
- /// definition block, then return false since it is never legal to move def
- /// after uses.
- bool
- MachineSinking::AllUsesDominatedByBlock(unsigned Reg,
- MachineBasicBlock *MBB,
- MachineBasicBlock *DefMBB,
- bool &BreakPHIEdge,
- bool &LocalUse) const {
- assert(TargetRegisterInfo::isVirtualRegister(Reg) &&
- "Only makes sense for vregs");
- // Ignore debug uses because debug info doesn't affect the code.
- if (MRI->use_nodbg_empty(Reg))
- return true;
- // BreakPHIEdge is true if all the uses are in the successor MBB being sunken
- // into and they are all PHI nodes. In this case, machine-sink must break
- // the critical edge first. e.g.
- //
- // BB#1: derived from LLVM BB %bb4.preheader
- // Predecessors according to CFG: BB#0
- // ...
- // %reg16385<def> = DEC64_32r %reg16437, %EFLAGS<imp-def,dead>
- // ...
- // JE_4 <BB#37>, %EFLAGS<imp-use>
- // Successors according to CFG: BB#37 BB#2
- //
- // BB#2: derived from LLVM BB %bb.nph
- // Predecessors according to CFG: BB#0 BB#1
- // %reg16386<def> = PHI %reg16434, <BB#0>, %reg16385, <BB#1>
- BreakPHIEdge = true;
- for (MachineOperand &MO : MRI->use_nodbg_operands(Reg)) {
- MachineInstr *UseInst = MO.getParent();
- unsigned OpNo = &MO - &UseInst->getOperand(0);
- MachineBasicBlock *UseBlock = UseInst->getParent();
- if (!(UseBlock == MBB && UseInst->isPHI() &&
- UseInst->getOperand(OpNo+1).getMBB() == DefMBB)) {
- BreakPHIEdge = false;
- break;
- }
- }
- if (BreakPHIEdge)
- return true;
- for (MachineOperand &MO : MRI->use_nodbg_operands(Reg)) {
- // Determine the block of the use.
- MachineInstr *UseInst = MO.getParent();
- unsigned OpNo = &MO - &UseInst->getOperand(0);
- MachineBasicBlock *UseBlock = UseInst->getParent();
- if (UseInst->isPHI()) {
- // PHI nodes use the operand in the predecessor block, not the block with
- // the PHI.
- UseBlock = UseInst->getOperand(OpNo+1).getMBB();
- } else if (UseBlock == DefMBB) {
- LocalUse = true;
- return false;
- }
- // Check that it dominates.
- if (!DT->dominates(MBB, UseBlock))
- return false;
- }
- return true;
- }
- bool MachineSinking::runOnMachineFunction(MachineFunction &MF) {
- if (skipOptnoneFunction(*MF.getFunction()))
- return false;
- DEBUG(dbgs() << "******** Machine Sinking ********\n");
- TII = MF.getSubtarget().getInstrInfo();
- TRI = MF.getSubtarget().getRegisterInfo();
- MRI = &MF.getRegInfo();
- DT = &getAnalysis<MachineDominatorTree>();
- PDT = &getAnalysis<MachinePostDominatorTree>();
- LI = &getAnalysis<MachineLoopInfo>();
- MBFI = UseBlockFreqInfo ? &getAnalysis<MachineBlockFrequencyInfo>() : nullptr;
- AA = &getAnalysis<AliasAnalysis>();
- bool EverMadeChange = false;
- while (1) {
- bool MadeChange = false;
- // Process all basic blocks.
- CEBCandidates.clear();
- ToSplit.clear();
- for (auto &MBB: MF)
- MadeChange |= ProcessBlock(MBB);
- // If we have anything we marked as toSplit, split it now.
- for (auto &Pair : ToSplit) {
- auto NewSucc = Pair.first->SplitCriticalEdge(Pair.second, this);
- if (NewSucc != nullptr) {
- DEBUG(dbgs() << " *** Splitting critical edge:"
- " BB#" << Pair.first->getNumber()
- << " -- BB#" << NewSucc->getNumber()
- << " -- BB#" << Pair.second->getNumber() << '\n');
- MadeChange = true;
- ++NumSplit;
- } else
- DEBUG(dbgs() << " *** Not legal to break critical edge\n");
- }
- // If this iteration over the code changed anything, keep iterating.
- if (!MadeChange) break;
- EverMadeChange = true;
- }
- // Now clear any kill flags for recorded registers.
- for (auto I : RegsToClearKillFlags)
- MRI->clearKillFlags(I);
- RegsToClearKillFlags.clear();
- return EverMadeChange;
- }
- bool MachineSinking::ProcessBlock(MachineBasicBlock &MBB) {
- // Can't sink anything out of a block that has less than two successors.
- if (MBB.succ_size() <= 1 || MBB.empty()) return false;
- // Don't bother sinking code out of unreachable blocks. In addition to being
- // unprofitable, it can also lead to infinite looping, because in an
- // unreachable loop there may be nowhere to stop.
- if (!DT->isReachableFromEntry(&MBB)) return false;
- bool MadeChange = false;
- // Cache all successors, sorted by frequency info and loop depth.
- AllSuccsCache AllSuccessors;
- // Walk the basic block bottom-up. Remember if we saw a store.
- MachineBasicBlock::iterator I = MBB.end();
- --I;
- bool ProcessedBegin, SawStore = false;
- do {
- MachineInstr *MI = I; // The instruction to sink.
- // Predecrement I (if it's not begin) so that it isn't invalidated by
- // sinking.
- ProcessedBegin = I == MBB.begin();
- if (!ProcessedBegin)
- --I;
- if (MI->isDebugValue())
- continue;
- bool Joined = PerformTrivialForwardCoalescing(MI, &MBB);
- if (Joined) {
- MadeChange = true;
- continue;
- }
- if (SinkInstruction(MI, SawStore, AllSuccessors))
- ++NumSunk, MadeChange = true;
- // If we just processed the first instruction in the block, we're done.
- } while (!ProcessedBegin);
- return MadeChange;
- }
- bool MachineSinking::isWorthBreakingCriticalEdge(MachineInstr *MI,
- MachineBasicBlock *From,
- MachineBasicBlock *To) {
- // FIXME: Need much better heuristics.
- // If the pass has already considered breaking this edge (during this pass
- // through the function), then let's go ahead and break it. This means
- // sinking multiple "cheap" instructions into the same block.
- if (!CEBCandidates.insert(std::make_pair(From, To)).second)
- return true;
- if (!MI->isCopy() && !TII->isAsCheapAsAMove(MI))
- return true;
- // MI is cheap, we probably don't want to break the critical edge for it.
- // However, if this would allow some definitions of its source operands
- // to be sunk then it's probably worth it.
- for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
- const MachineOperand &MO = MI->getOperand(i);
- if (!MO.isReg() || !MO.isUse())
- continue;
- unsigned Reg = MO.getReg();
- if (Reg == 0)
- continue;
- // We don't move live definitions of physical registers,
- // so sinking their uses won't enable any opportunities.
- if (TargetRegisterInfo::isPhysicalRegister(Reg))
- continue;
- // If this instruction is the only user of a virtual register,
- // check if breaking the edge will enable sinking
- // both this instruction and the defining instruction.
- if (MRI->hasOneNonDBGUse(Reg)) {
- // If the definition resides in same MBB,
- // claim it's likely we can sink these together.
- // If definition resides elsewhere, we aren't
- // blocking it from being sunk so don't break the edge.
- MachineInstr *DefMI = MRI->getVRegDef(Reg);
- if (DefMI->getParent() == MI->getParent())
- return true;
- }
- }
- return false;
- }
- bool MachineSinking::PostponeSplitCriticalEdge(MachineInstr *MI,
- MachineBasicBlock *FromBB,
- MachineBasicBlock *ToBB,
- bool BreakPHIEdge) {
- if (!isWorthBreakingCriticalEdge(MI, FromBB, ToBB))
- return false;
- // Avoid breaking back edge. From == To means backedge for single BB loop.
- if (!SplitEdges || FromBB == ToBB)
- return false;
- // Check for backedges of more "complex" loops.
- if (LI->getLoopFor(FromBB) == LI->getLoopFor(ToBB) &&
- LI->isLoopHeader(ToBB))
- return false;
- // It's not always legal to break critical edges and sink the computation
- // to the edge.
- //
- // BB#1:
- // v1024
- // Beq BB#3
- // <fallthrough>
- // BB#2:
- // ... no uses of v1024
- // <fallthrough>
- // BB#3:
- // ...
- // = v1024
- //
- // If BB#1 -> BB#3 edge is broken and computation of v1024 is inserted:
- //
- // BB#1:
- // ...
- // Bne BB#2
- // BB#4:
- // v1024 =
- // B BB#3
- // BB#2:
- // ... no uses of v1024
- // <fallthrough>
- // BB#3:
- // ...
- // = v1024
- //
- // This is incorrect since v1024 is not computed along the BB#1->BB#2->BB#3
- // flow. We need to ensure the new basic block where the computation is
- // sunk to dominates all the uses.
- // It's only legal to break critical edge and sink the computation to the
- // new block if all the predecessors of "To", except for "From", are
- // not dominated by "From". Given SSA property, this means these
- // predecessors are dominated by "To".
- //
- // There is no need to do this check if all the uses are PHI nodes. PHI
- // sources are only defined on the specific predecessor edges.
- if (!BreakPHIEdge) {
- for (MachineBasicBlock::pred_iterator PI = ToBB->pred_begin(),
- E = ToBB->pred_end(); PI != E; ++PI) {
- if (*PI == FromBB)
- continue;
- if (!DT->dominates(ToBB, *PI))
- return false;
- }
- }
- ToSplit.insert(std::make_pair(FromBB, ToBB));
-
- return true;
- }
- static bool AvoidsSinking(MachineInstr *MI, MachineRegisterInfo *MRI) {
- return MI->isInsertSubreg() || MI->isSubregToReg() || MI->isRegSequence();
- }
- /// collectDebgValues - Scan instructions following MI and collect any
- /// matching DBG_VALUEs.
- static void collectDebugValues(MachineInstr *MI,
- SmallVectorImpl<MachineInstr *> &DbgValues) {
- DbgValues.clear();
- if (!MI->getOperand(0).isReg())
- return;
- MachineBasicBlock::iterator DI = MI; ++DI;
- for (MachineBasicBlock::iterator DE = MI->getParent()->end();
- DI != DE; ++DI) {
- if (!DI->isDebugValue())
- return;
- if (DI->getOperand(0).isReg() &&
- DI->getOperand(0).getReg() == MI->getOperand(0).getReg())
- DbgValues.push_back(DI);
- }
- }
- /// isProfitableToSinkTo - Return true if it is profitable to sink MI.
- bool MachineSinking::isProfitableToSinkTo(unsigned Reg, MachineInstr *MI,
- MachineBasicBlock *MBB,
- MachineBasicBlock *SuccToSinkTo,
- AllSuccsCache &AllSuccessors) {
- assert (MI && "Invalid MachineInstr!");
- assert (SuccToSinkTo && "Invalid SinkTo Candidate BB");
- if (MBB == SuccToSinkTo)
- return false;
- // It is profitable if SuccToSinkTo does not post dominate current block.
- if (!PDT->dominates(SuccToSinkTo, MBB))
- return true;
- // It is profitable to sink an instruction from a deeper loop to a shallower
- // loop, even if the latter post-dominates the former (PR21115).
- if (LI->getLoopDepth(MBB) > LI->getLoopDepth(SuccToSinkTo))
- return true;
- // Check if only use in post dominated block is PHI instruction.
- bool NonPHIUse = false;
- for (MachineInstr &UseInst : MRI->use_nodbg_instructions(Reg)) {
- MachineBasicBlock *UseBlock = UseInst.getParent();
- if (UseBlock == SuccToSinkTo && !UseInst.isPHI())
- NonPHIUse = true;
- }
- if (!NonPHIUse)
- return true;
- // If SuccToSinkTo post dominates then also it may be profitable if MI
- // can further profitably sinked into another block in next round.
- bool BreakPHIEdge = false;
- // FIXME - If finding successor is compile time expensive then cache results.
- if (MachineBasicBlock *MBB2 =
- FindSuccToSinkTo(MI, SuccToSinkTo, BreakPHIEdge, AllSuccessors))
- return isProfitableToSinkTo(Reg, MI, SuccToSinkTo, MBB2, AllSuccessors);
- // If SuccToSinkTo is final destination and it is a post dominator of current
- // block then it is not profitable to sink MI into SuccToSinkTo block.
- return false;
- }
- /// Get the sorted sequence of successors for this MachineBasicBlock, possibly
- /// computing it if it was not already cached.
- SmallVector<MachineBasicBlock *, 4> &
- MachineSinking::GetAllSortedSuccessors(MachineInstr *MI, MachineBasicBlock *MBB,
- AllSuccsCache &AllSuccessors) const {
- // Do we have the sorted successors in cache ?
- auto Succs = AllSuccessors.find(MBB);
- if (Succs != AllSuccessors.end())
- return Succs->second;
- SmallVector<MachineBasicBlock *, 4> AllSuccs(MBB->succ_begin(),
- MBB->succ_end());
- // Handle cases where sinking can happen but where the sink point isn't a
- // successor. For example:
- //
- // x = computation
- // if () {} else {}
- // use x
- //
- const std::vector<MachineDomTreeNode *> &Children =
- DT->getNode(MBB)->getChildren();
- for (const auto &DTChild : Children)
- // DomTree children of MBB that have MBB as immediate dominator are added.
- if (DTChild->getIDom()->getBlock() == MI->getParent() &&
- // Skip MBBs already added to the AllSuccs vector above.
- !MBB->isSuccessor(DTChild->getBlock()))
- AllSuccs.push_back(DTChild->getBlock());
- // Sort Successors according to their loop depth or block frequency info.
- std::stable_sort(
- AllSuccs.begin(), AllSuccs.end(),
- [this](const MachineBasicBlock *L, const MachineBasicBlock *R) {
- uint64_t LHSFreq = MBFI ? MBFI->getBlockFreq(L).getFrequency() : 0;
- uint64_t RHSFreq = MBFI ? MBFI->getBlockFreq(R).getFrequency() : 0;
- bool HasBlockFreq = LHSFreq != 0 && RHSFreq != 0;
- return HasBlockFreq ? LHSFreq < RHSFreq
- : LI->getLoopDepth(L) < LI->getLoopDepth(R);
- });
- auto it = AllSuccessors.insert(std::make_pair(MBB, AllSuccs));
- return it.first->second;
- }
- /// FindSuccToSinkTo - Find a successor to sink this instruction to.
- MachineBasicBlock *MachineSinking::FindSuccToSinkTo(MachineInstr *MI,
- MachineBasicBlock *MBB,
- bool &BreakPHIEdge,
- AllSuccsCache &AllSuccessors) {
- assert (MI && "Invalid MachineInstr!");
- assert (MBB && "Invalid MachineBasicBlock!");
- // Loop over all the operands of the specified instruction. If there is
- // anything we can't handle, bail out.
- // SuccToSinkTo - This is the successor to sink this instruction to, once we
- // decide.
- MachineBasicBlock *SuccToSinkTo = nullptr;
- for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
- const MachineOperand &MO = MI->getOperand(i);
- if (!MO.isReg()) continue; // Ignore non-register operands.
- unsigned Reg = MO.getReg();
- if (Reg == 0) continue;
- if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
- if (MO.isUse()) {
- // If the physreg has no defs anywhere, it's just an ambient register
- // and we can freely move its uses. Alternatively, if it's allocatable,
- // it could get allocated to something with a def during allocation.
- if (!MRI->isConstantPhysReg(Reg, *MBB->getParent()))
- return nullptr;
- } else if (!MO.isDead()) {
- // A def that isn't dead. We can't move it.
- return nullptr;
- }
- } else {
- // Virtual register uses are always safe to sink.
- if (MO.isUse()) continue;
- // If it's not safe to move defs of the register class, then abort.
- if (!TII->isSafeToMoveRegClassDefs(MRI->getRegClass(Reg)))
- return nullptr;
- // Virtual register defs can only be sunk if all their uses are in blocks
- // dominated by one of the successors.
- if (SuccToSinkTo) {
- // If a previous operand picked a block to sink to, then this operand
- // must be sinkable to the same block.
- bool LocalUse = false;
- if (!AllUsesDominatedByBlock(Reg, SuccToSinkTo, MBB,
- BreakPHIEdge, LocalUse))
- return nullptr;
- continue;
- }
- // Otherwise, we should look at all the successors and decide which one
- // we should sink to. If we have reliable block frequency information
- // (frequency != 0) available, give successors with smaller frequencies
- // higher priority, otherwise prioritize smaller loop depths.
- for (MachineBasicBlock *SuccBlock :
- GetAllSortedSuccessors(MI, MBB, AllSuccessors)) {
- bool LocalUse = false;
- if (AllUsesDominatedByBlock(Reg, SuccBlock, MBB,
- BreakPHIEdge, LocalUse)) {
- SuccToSinkTo = SuccBlock;
- break;
- }
- if (LocalUse)
- // Def is used locally, it's never safe to move this def.
- return nullptr;
- }
- // If we couldn't find a block to sink to, ignore this instruction.
- if (!SuccToSinkTo)
- return nullptr;
- if (!isProfitableToSinkTo(Reg, MI, MBB, SuccToSinkTo, AllSuccessors))
- return nullptr;
- }
- }
- // It is not possible to sink an instruction into its own block. This can
- // happen with loops.
- if (MBB == SuccToSinkTo)
- return nullptr;
- // It's not safe to sink instructions to EH landing pad. Control flow into
- // landing pad is implicitly defined.
- if (SuccToSinkTo && SuccToSinkTo->isLandingPad())
- return nullptr;
- return SuccToSinkTo;
- }
- /// SinkInstruction - Determine whether it is safe to sink the specified machine
- /// instruction out of its current block into a successor.
- bool MachineSinking::SinkInstruction(MachineInstr *MI, bool &SawStore,
- AllSuccsCache &AllSuccessors) {
- // Don't sink insert_subreg, subreg_to_reg, reg_sequence. These are meant to
- // be close to the source to make it easier to coalesce.
- if (AvoidsSinking(MI, MRI))
- return false;
- // Check if it's safe to move the instruction.
- if (!MI->isSafeToMove(AA, SawStore))
- return false;
- // Convergent operations may only be moved to control equivalent locations.
- if (MI->isConvergent())
- return false;
- // FIXME: This should include support for sinking instructions within the
- // block they are currently in to shorten the live ranges. We often get
- // instructions sunk into the top of a large block, but it would be better to
- // also sink them down before their first use in the block. This xform has to
- // be careful not to *increase* register pressure though, e.g. sinking
- // "x = y + z" down if it kills y and z would increase the live ranges of y
- // and z and only shrink the live range of x.
- bool BreakPHIEdge = false;
- MachineBasicBlock *ParentBlock = MI->getParent();
- MachineBasicBlock *SuccToSinkTo =
- FindSuccToSinkTo(MI, ParentBlock, BreakPHIEdge, AllSuccessors);
- // If there are no outputs, it must have side-effects.
- if (!SuccToSinkTo)
- return false;
- // If the instruction to move defines a dead physical register which is live
- // when leaving the basic block, don't move it because it could turn into a
- // "zombie" define of that preg. E.g., EFLAGS. (<rdar://problem/8030636>)
- for (unsigned I = 0, E = MI->getNumOperands(); I != E; ++I) {
- const MachineOperand &MO = MI->getOperand(I);
- if (!MO.isReg()) continue;
- unsigned Reg = MO.getReg();
- if (Reg == 0 || !TargetRegisterInfo::isPhysicalRegister(Reg)) continue;
- if (SuccToSinkTo->isLiveIn(Reg))
- return false;
- }
- DEBUG(dbgs() << "Sink instr " << *MI << "\tinto block " << *SuccToSinkTo);
- // If the block has multiple predecessors, this is a critical edge.
- // Decide if we can sink along it or need to break the edge.
- if (SuccToSinkTo->pred_size() > 1) {
- // We cannot sink a load across a critical edge - there may be stores in
- // other code paths.
- bool TryBreak = false;
- bool store = true;
- if (!MI->isSafeToMove(AA, store)) {
- DEBUG(dbgs() << " *** NOTE: Won't sink load along critical edge.\n");
- TryBreak = true;
- }
- // We don't want to sink across a critical edge if we don't dominate the
- // successor. We could be introducing calculations to new code paths.
- if (!TryBreak && !DT->dominates(ParentBlock, SuccToSinkTo)) {
- DEBUG(dbgs() << " *** NOTE: Critical edge found\n");
- TryBreak = true;
- }
- // Don't sink instructions into a loop.
- if (!TryBreak && LI->isLoopHeader(SuccToSinkTo)) {
- DEBUG(dbgs() << " *** NOTE: Loop header found\n");
- TryBreak = true;
- }
- // Otherwise we are OK with sinking along a critical edge.
- if (!TryBreak)
- DEBUG(dbgs() << "Sinking along critical edge.\n");
- else {
- // Mark this edge as to be split.
- // If the edge can actually be split, the next iteration of the main loop
- // will sink MI in the newly created block.
- bool Status =
- PostponeSplitCriticalEdge(MI, ParentBlock, SuccToSinkTo, BreakPHIEdge);
- if (!Status)
- DEBUG(dbgs() << " *** PUNTING: Not legal or profitable to "
- "break critical edge\n");
- // The instruction will not be sunk this time.
- return false;
- }
- }
- if (BreakPHIEdge) {
- // BreakPHIEdge is true if all the uses are in the successor MBB being
- // sunken into and they are all PHI nodes. In this case, machine-sink must
- // break the critical edge first.
- bool Status = PostponeSplitCriticalEdge(MI, ParentBlock,
- SuccToSinkTo, BreakPHIEdge);
- if (!Status)
- DEBUG(dbgs() << " *** PUNTING: Not legal or profitable to "
- "break critical edge\n");
- // The instruction will not be sunk this time.
- return false;
- }
- // Determine where to insert into. Skip phi nodes.
- MachineBasicBlock::iterator InsertPos = SuccToSinkTo->begin();
- while (InsertPos != SuccToSinkTo->end() && InsertPos->isPHI())
- ++InsertPos;
- // collect matching debug values.
- SmallVector<MachineInstr *, 2> DbgValuesToSink;
- collectDebugValues(MI, DbgValuesToSink);
- // Move the instruction.
- SuccToSinkTo->splice(InsertPos, ParentBlock, MI,
- ++MachineBasicBlock::iterator(MI));
- // Move debug values.
- for (SmallVectorImpl<MachineInstr *>::iterator DBI = DbgValuesToSink.begin(),
- DBE = DbgValuesToSink.end(); DBI != DBE; ++DBI) {
- MachineInstr *DbgMI = *DBI;
- SuccToSinkTo->splice(InsertPos, ParentBlock, DbgMI,
- ++MachineBasicBlock::iterator(DbgMI));
- }
- // Conservatively, clear any kill flags, since it's possible that they are no
- // longer correct.
- // Note that we have to clear the kill flags for any register this instruction
- // uses as we may sink over another instruction which currently kills the
- // used registers.
- for (MachineOperand &MO : MI->operands()) {
- if (MO.isReg() && MO.isUse())
- RegsToClearKillFlags.set(MO.getReg()); // Remember to clear kill flags.
- }
- return true;
- }
|