123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577 |
- //===-- RegAllocGreedy.cpp - greedy register allocator --------------------===//
- //
- // The LLVM Compiler Infrastructure
- //
- // This file is distributed under the University of Illinois Open Source
- // License. See LICENSE.TXT for details.
- //
- //===----------------------------------------------------------------------===//
- //
- // This file defines the RAGreedy function pass for register allocation in
- // optimized builds.
- //
- //===----------------------------------------------------------------------===//
- #include "llvm/CodeGen/Passes.h"
- #include "AllocationOrder.h"
- #include "InterferenceCache.h"
- #include "LiveDebugVariables.h"
- #include "RegAllocBase.h"
- #include "SpillPlacement.h"
- #include "Spiller.h"
- #include "SplitKit.h"
- #include "llvm/ADT/Statistic.h"
- #include "llvm/Analysis/AliasAnalysis.h"
- #include "llvm/CodeGen/CalcSpillWeights.h"
- #include "llvm/CodeGen/EdgeBundles.h"
- #include "llvm/CodeGen/LiveIntervalAnalysis.h"
- #include "llvm/CodeGen/LiveRangeEdit.h"
- #include "llvm/CodeGen/LiveRegMatrix.h"
- #include "llvm/CodeGen/LiveStackAnalysis.h"
- #include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
- #include "llvm/CodeGen/MachineDominators.h"
- #include "llvm/CodeGen/MachineFunctionPass.h"
- #include "llvm/CodeGen/MachineLoopInfo.h"
- #include "llvm/CodeGen/MachineRegisterInfo.h"
- #include "llvm/CodeGen/RegAllocRegistry.h"
- #include "llvm/CodeGen/RegisterClassInfo.h"
- #include "llvm/CodeGen/VirtRegMap.h"
- #include "llvm/IR/LLVMContext.h"
- #include "llvm/PassAnalysisSupport.h"
- #include "llvm/Support/BranchProbability.h"
- #include "llvm/Support/CommandLine.h"
- #include "llvm/Support/Debug.h"
- #include "llvm/Support/ErrorHandling.h"
- #include "llvm/Support/Timer.h"
- #include "llvm/Support/raw_ostream.h"
- #include "llvm/Target/TargetSubtargetInfo.h"
- #include <queue>
- using namespace llvm;
- #define DEBUG_TYPE "regalloc"
- STATISTIC(NumGlobalSplits, "Number of split global live ranges");
- STATISTIC(NumLocalSplits, "Number of split local live ranges");
- STATISTIC(NumEvicted, "Number of interferences evicted");
- static cl::opt<SplitEditor::ComplementSpillMode>
- SplitSpillMode("split-spill-mode", cl::Hidden,
- cl::desc("Spill mode for splitting live ranges"),
- cl::values(clEnumValN(SplitEditor::SM_Partition, "default", "Default"),
- clEnumValN(SplitEditor::SM_Size, "size", "Optimize for size"),
- clEnumValN(SplitEditor::SM_Speed, "speed", "Optimize for speed"),
- clEnumValEnd),
- cl::init(SplitEditor::SM_Partition));
- static cl::opt<unsigned>
- LastChanceRecoloringMaxDepth("lcr-max-depth", cl::Hidden,
- cl::desc("Last chance recoloring max depth"),
- cl::init(5));
- static cl::opt<unsigned> LastChanceRecoloringMaxInterference(
- "lcr-max-interf", cl::Hidden,
- cl::desc("Last chance recoloring maximum number of considered"
- " interference at a time"),
- cl::init(8));
- static cl::opt<bool>
- ExhaustiveSearch("exhaustive-register-search", cl::NotHidden,
- cl::desc("Exhaustive Search for registers bypassing the depth "
- "and interference cutoffs of last chance recoloring"));
- static cl::opt<bool> EnableLocalReassignment(
- "enable-local-reassign", cl::Hidden,
- cl::desc("Local reassignment can yield better allocation decisions, but "
- "may be compile time intensive"),
- cl::init(false));
- // FIXME: Find a good default for this flag and remove the flag.
- static cl::opt<unsigned>
- CSRFirstTimeCost("regalloc-csr-first-time-cost",
- cl::desc("Cost for first time use of callee-saved register."),
- cl::init(0), cl::Hidden);
- static RegisterRegAlloc greedyRegAlloc("greedy", "greedy register allocator",
- createGreedyRegisterAllocator);
- namespace {
- class RAGreedy : public MachineFunctionPass,
- public RegAllocBase,
- private LiveRangeEdit::Delegate {
- // Convenient shortcuts.
- typedef std::priority_queue<std::pair<unsigned, unsigned> > PQueue;
- typedef SmallPtrSet<LiveInterval *, 4> SmallLISet;
- typedef SmallSet<unsigned, 16> SmallVirtRegSet;
- // context
- MachineFunction *MF;
- // Shortcuts to some useful interface.
- const TargetInstrInfo *TII;
- const TargetRegisterInfo *TRI;
- RegisterClassInfo RCI;
- // analyses
- SlotIndexes *Indexes;
- MachineBlockFrequencyInfo *MBFI;
- MachineDominatorTree *DomTree;
- MachineLoopInfo *Loops;
- EdgeBundles *Bundles;
- SpillPlacement *SpillPlacer;
- LiveDebugVariables *DebugVars;
- // state
- std::unique_ptr<Spiller> SpillerInstance;
- PQueue Queue;
- unsigned NextCascade;
- // Live ranges pass through a number of stages as we try to allocate them.
- // Some of the stages may also create new live ranges:
- //
- // - Region splitting.
- // - Per-block splitting.
- // - Local splitting.
- // - Spilling.
- //
- // Ranges produced by one of the stages skip the previous stages when they are
- // dequeued. This improves performance because we can skip interference checks
- // that are unlikely to give any results. It also guarantees that the live
- // range splitting algorithm terminates, something that is otherwise hard to
- // ensure.
- enum LiveRangeStage {
- /// Newly created live range that has never been queued.
- RS_New,
- /// Only attempt assignment and eviction. Then requeue as RS_Split.
- RS_Assign,
- /// Attempt live range splitting if assignment is impossible.
- RS_Split,
- /// Attempt more aggressive live range splitting that is guaranteed to make
- /// progress. This is used for split products that may not be making
- /// progress.
- RS_Split2,
- /// Live range will be spilled. No more splitting will be attempted.
- RS_Spill,
- /// There is nothing more we can do to this live range. Abort compilation
- /// if it can't be assigned.
- RS_Done
- };
- // Enum CutOffStage to keep a track whether the register allocation failed
- // because of the cutoffs encountered in last chance recoloring.
- // Note: This is used as bitmask. New value should be next power of 2.
- enum CutOffStage {
- // No cutoffs encountered
- CO_None = 0,
- // lcr-max-depth cutoff encountered
- CO_Depth = 1,
- // lcr-max-interf cutoff encountered
- CO_Interf = 2
- };
- uint8_t CutOffInfo;
- #ifndef NDEBUG
- static const char *const StageName[];
- #endif
- // RegInfo - Keep additional information about each live range.
- struct RegInfo {
- LiveRangeStage Stage;
- // Cascade - Eviction loop prevention. See canEvictInterference().
- unsigned Cascade;
- RegInfo() : Stage(RS_New), Cascade(0) {}
- };
- IndexedMap<RegInfo, VirtReg2IndexFunctor> ExtraRegInfo;
- LiveRangeStage getStage(const LiveInterval &VirtReg) const {
- return ExtraRegInfo[VirtReg.reg].Stage;
- }
- void setStage(const LiveInterval &VirtReg, LiveRangeStage Stage) {
- ExtraRegInfo.resize(MRI->getNumVirtRegs());
- ExtraRegInfo[VirtReg.reg].Stage = Stage;
- }
- template<typename Iterator>
- void setStage(Iterator Begin, Iterator End, LiveRangeStage NewStage) {
- ExtraRegInfo.resize(MRI->getNumVirtRegs());
- for (;Begin != End; ++Begin) {
- unsigned Reg = *Begin;
- if (ExtraRegInfo[Reg].Stage == RS_New)
- ExtraRegInfo[Reg].Stage = NewStage;
- }
- }
- /// Cost of evicting interference.
- struct EvictionCost {
- unsigned BrokenHints; ///< Total number of broken hints.
- float MaxWeight; ///< Maximum spill weight evicted.
- EvictionCost(): BrokenHints(0), MaxWeight(0) {}
- bool isMax() const { return BrokenHints == ~0u; }
- void setMax() { BrokenHints = ~0u; }
- void setBrokenHints(unsigned NHints) { BrokenHints = NHints; }
- bool operator<(const EvictionCost &O) const {
- return std::tie(BrokenHints, MaxWeight) <
- std::tie(O.BrokenHints, O.MaxWeight);
- }
- };
- // splitting state.
- std::unique_ptr<SplitAnalysis> SA;
- std::unique_ptr<SplitEditor> SE;
- /// Cached per-block interference maps
- InterferenceCache IntfCache;
- /// All basic blocks where the current register has uses.
- SmallVector<SpillPlacement::BlockConstraint, 8> SplitConstraints;
- /// Global live range splitting candidate info.
- struct GlobalSplitCandidate {
- // Register intended for assignment, or 0.
- unsigned PhysReg;
- // SplitKit interval index for this candidate.
- unsigned IntvIdx;
- // Interference for PhysReg.
- InterferenceCache::Cursor Intf;
- // Bundles where this candidate should be live.
- BitVector LiveBundles;
- SmallVector<unsigned, 8> ActiveBlocks;
- void reset(InterferenceCache &Cache, unsigned Reg) {
- PhysReg = Reg;
- IntvIdx = 0;
- Intf.setPhysReg(Cache, Reg);
- LiveBundles.clear();
- ActiveBlocks.clear();
- }
- // Set B[i] = C for every live bundle where B[i] was NoCand.
- unsigned getBundles(SmallVectorImpl<unsigned> &B, unsigned C) {
- unsigned Count = 0;
- for (int i = LiveBundles.find_first(); i >= 0;
- i = LiveBundles.find_next(i))
- if (B[i] == NoCand) {
- B[i] = C;
- Count++;
- }
- return Count;
- }
- };
- /// Candidate info for each PhysReg in AllocationOrder.
- /// This vector never shrinks, but grows to the size of the largest register
- /// class.
- SmallVector<GlobalSplitCandidate, 32> GlobalCand;
- enum : unsigned { NoCand = ~0u };
- /// Candidate map. Each edge bundle is assigned to a GlobalCand entry, or to
- /// NoCand which indicates the stack interval.
- SmallVector<unsigned, 32> BundleCand;
- /// Callee-save register cost, calculated once per machine function.
- BlockFrequency CSRCost;
- /// Run or not the local reassignment heuristic. This information is
- /// obtained from the TargetSubtargetInfo.
- bool EnableLocalReassign;
- /// Set of broken hints that may be reconciled later because of eviction.
- SmallSetVector<LiveInterval *, 8> SetOfBrokenHints;
- public:
- RAGreedy();
- /// Return the pass name.
- const char* getPassName() const override {
- return "Greedy Register Allocator";
- }
- /// RAGreedy analysis usage.
- void getAnalysisUsage(AnalysisUsage &AU) const override;
- void releaseMemory() override;
- Spiller &spiller() override { return *SpillerInstance; }
- void enqueue(LiveInterval *LI) override;
- LiveInterval *dequeue() override;
- unsigned selectOrSplit(LiveInterval&, SmallVectorImpl<unsigned>&) override;
- void aboutToRemoveInterval(LiveInterval &) override;
- /// Perform register allocation.
- bool runOnMachineFunction(MachineFunction &mf) override;
- static char ID;
- private:
- unsigned selectOrSplitImpl(LiveInterval &, SmallVectorImpl<unsigned> &,
- SmallVirtRegSet &, unsigned = 0);
- bool LRE_CanEraseVirtReg(unsigned) override;
- void LRE_WillShrinkVirtReg(unsigned) override;
- void LRE_DidCloneVirtReg(unsigned, unsigned) override;
- void enqueue(PQueue &CurQueue, LiveInterval *LI);
- LiveInterval *dequeue(PQueue &CurQueue);
- BlockFrequency calcSpillCost();
- bool addSplitConstraints(InterferenceCache::Cursor, BlockFrequency&);
- void addThroughConstraints(InterferenceCache::Cursor, ArrayRef<unsigned>);
- void growRegion(GlobalSplitCandidate &Cand);
- BlockFrequency calcGlobalSplitCost(GlobalSplitCandidate&);
- bool calcCompactRegion(GlobalSplitCandidate&);
- void splitAroundRegion(LiveRangeEdit&, ArrayRef<unsigned>);
- void calcGapWeights(unsigned, SmallVectorImpl<float>&);
- unsigned canReassign(LiveInterval &VirtReg, unsigned PhysReg);
- bool shouldEvict(LiveInterval &A, bool, LiveInterval &B, bool);
- bool canEvictInterference(LiveInterval&, unsigned, bool, EvictionCost&);
- void evictInterference(LiveInterval&, unsigned,
- SmallVectorImpl<unsigned>&);
- bool mayRecolorAllInterferences(unsigned PhysReg, LiveInterval &VirtReg,
- SmallLISet &RecoloringCandidates,
- const SmallVirtRegSet &FixedRegisters);
- unsigned tryAssign(LiveInterval&, AllocationOrder&,
- SmallVectorImpl<unsigned>&);
- unsigned tryEvict(LiveInterval&, AllocationOrder&,
- SmallVectorImpl<unsigned>&, unsigned = ~0u);
- unsigned tryRegionSplit(LiveInterval&, AllocationOrder&,
- SmallVectorImpl<unsigned>&);
- /// Calculate cost of region splitting.
- unsigned calculateRegionSplitCost(LiveInterval &VirtReg,
- AllocationOrder &Order,
- BlockFrequency &BestCost,
- unsigned &NumCands, bool IgnoreCSR);
- /// Perform region splitting.
- unsigned doRegionSplit(LiveInterval &VirtReg, unsigned BestCand,
- bool HasCompact,
- SmallVectorImpl<unsigned> &NewVRegs);
- /// Check other options before using a callee-saved register for the first
- /// time.
- unsigned tryAssignCSRFirstTime(LiveInterval &VirtReg, AllocationOrder &Order,
- unsigned PhysReg, unsigned &CostPerUseLimit,
- SmallVectorImpl<unsigned> &NewVRegs);
- void initializeCSRCost();
- unsigned tryBlockSplit(LiveInterval&, AllocationOrder&,
- SmallVectorImpl<unsigned>&);
- unsigned tryInstructionSplit(LiveInterval&, AllocationOrder&,
- SmallVectorImpl<unsigned>&);
- unsigned tryLocalSplit(LiveInterval&, AllocationOrder&,
- SmallVectorImpl<unsigned>&);
- unsigned trySplit(LiveInterval&, AllocationOrder&,
- SmallVectorImpl<unsigned>&);
- unsigned tryLastChanceRecoloring(LiveInterval &, AllocationOrder &,
- SmallVectorImpl<unsigned> &,
- SmallVirtRegSet &, unsigned);
- bool tryRecoloringCandidates(PQueue &, SmallVectorImpl<unsigned> &,
- SmallVirtRegSet &, unsigned);
- void tryHintRecoloring(LiveInterval &);
- void tryHintsRecoloring();
- /// Model the information carried by one end of a copy.
- struct HintInfo {
- /// The frequency of the copy.
- BlockFrequency Freq;
- /// The virtual register or physical register.
- unsigned Reg;
- /// Its currently assigned register.
- /// In case of a physical register Reg == PhysReg.
- unsigned PhysReg;
- HintInfo(BlockFrequency Freq, unsigned Reg, unsigned PhysReg)
- : Freq(Freq), Reg(Reg), PhysReg(PhysReg) {}
- };
- typedef SmallVector<HintInfo, 4> HintsInfo;
- BlockFrequency getBrokenHintFreq(const HintsInfo &, unsigned);
- void collectHintInfo(unsigned, HintsInfo &);
- bool isUnusedCalleeSavedReg(unsigned PhysReg) const;
- };
- } // end anonymous namespace
- char RAGreedy::ID = 0;
- #ifndef NDEBUG
- const char *const RAGreedy::StageName[] = {
- "RS_New",
- "RS_Assign",
- "RS_Split",
- "RS_Split2",
- "RS_Spill",
- "RS_Done"
- };
- #endif
- // Hysteresis to use when comparing floats.
- // This helps stabilize decisions based on float comparisons.
- const float Hysteresis = (2007 / 2048.0f); // 0.97998046875
- FunctionPass* llvm::createGreedyRegisterAllocator() {
- return new RAGreedy();
- }
- RAGreedy::RAGreedy(): MachineFunctionPass(ID) {
- initializeLiveDebugVariablesPass(*PassRegistry::getPassRegistry());
- initializeSlotIndexesPass(*PassRegistry::getPassRegistry());
- initializeLiveIntervalsPass(*PassRegistry::getPassRegistry());
- initializeSlotIndexesPass(*PassRegistry::getPassRegistry());
- initializeRegisterCoalescerPass(*PassRegistry::getPassRegistry());
- initializeMachineSchedulerPass(*PassRegistry::getPassRegistry());
- initializeLiveStacksPass(*PassRegistry::getPassRegistry());
- initializeMachineDominatorTreePass(*PassRegistry::getPassRegistry());
- initializeMachineLoopInfoPass(*PassRegistry::getPassRegistry());
- initializeVirtRegMapPass(*PassRegistry::getPassRegistry());
- initializeLiveRegMatrixPass(*PassRegistry::getPassRegistry());
- initializeEdgeBundlesPass(*PassRegistry::getPassRegistry());
- initializeSpillPlacementPass(*PassRegistry::getPassRegistry());
- }
- void RAGreedy::getAnalysisUsage(AnalysisUsage &AU) const {
- AU.setPreservesCFG();
- AU.addRequired<MachineBlockFrequencyInfo>();
- AU.addPreserved<MachineBlockFrequencyInfo>();
- AU.addRequired<AliasAnalysis>();
- AU.addPreserved<AliasAnalysis>();
- AU.addRequired<LiveIntervals>();
- AU.addPreserved<LiveIntervals>();
- AU.addRequired<SlotIndexes>();
- AU.addPreserved<SlotIndexes>();
- AU.addRequired<LiveDebugVariables>();
- AU.addPreserved<LiveDebugVariables>();
- AU.addRequired<LiveStacks>();
- AU.addPreserved<LiveStacks>();
- AU.addRequired<MachineDominatorTree>();
- AU.addPreserved<MachineDominatorTree>();
- AU.addRequired<MachineLoopInfo>();
- AU.addPreserved<MachineLoopInfo>();
- AU.addRequired<VirtRegMap>();
- AU.addPreserved<VirtRegMap>();
- AU.addRequired<LiveRegMatrix>();
- AU.addPreserved<LiveRegMatrix>();
- AU.addRequired<EdgeBundles>();
- AU.addRequired<SpillPlacement>();
- MachineFunctionPass::getAnalysisUsage(AU);
- }
- //===----------------------------------------------------------------------===//
- // LiveRangeEdit delegate methods
- //===----------------------------------------------------------------------===//
- bool RAGreedy::LRE_CanEraseVirtReg(unsigned VirtReg) {
- if (VRM->hasPhys(VirtReg)) {
- LiveInterval &LI = LIS->getInterval(VirtReg);
- Matrix->unassign(LI);
- aboutToRemoveInterval(LI);
- return true;
- }
- // Unassigned virtreg is probably in the priority queue.
- // RegAllocBase will erase it after dequeueing.
- return false;
- }
- void RAGreedy::LRE_WillShrinkVirtReg(unsigned VirtReg) {
- if (!VRM->hasPhys(VirtReg))
- return;
- // Register is assigned, put it back on the queue for reassignment.
- LiveInterval &LI = LIS->getInterval(VirtReg);
- Matrix->unassign(LI);
- enqueue(&LI);
- }
- void RAGreedy::LRE_DidCloneVirtReg(unsigned New, unsigned Old) {
- // Cloning a register we haven't even heard about yet? Just ignore it.
- if (!ExtraRegInfo.inBounds(Old))
- return;
- // LRE may clone a virtual register because dead code elimination causes it to
- // be split into connected components. The new components are much smaller
- // than the original, so they should get a new chance at being assigned.
- // same stage as the parent.
- ExtraRegInfo[Old].Stage = RS_Assign;
- ExtraRegInfo.grow(New);
- ExtraRegInfo[New] = ExtraRegInfo[Old];
- }
- void RAGreedy::releaseMemory() {
- SpillerInstance.reset();
- ExtraRegInfo.clear();
- GlobalCand.clear();
- }
- void RAGreedy::enqueue(LiveInterval *LI) { enqueue(Queue, LI); }
- void RAGreedy::enqueue(PQueue &CurQueue, LiveInterval *LI) {
- // Prioritize live ranges by size, assigning larger ranges first.
- // The queue holds (size, reg) pairs.
- const unsigned Size = LI->getSize();
- const unsigned Reg = LI->reg;
- assert(TargetRegisterInfo::isVirtualRegister(Reg) &&
- "Can only enqueue virtual registers");
- unsigned Prio;
- ExtraRegInfo.grow(Reg);
- if (ExtraRegInfo[Reg].Stage == RS_New)
- ExtraRegInfo[Reg].Stage = RS_Assign;
- if (ExtraRegInfo[Reg].Stage == RS_Split) {
- // Unsplit ranges that couldn't be allocated immediately are deferred until
- // everything else has been allocated.
- Prio = Size;
- } else {
- // Giant live ranges fall back to the global assignment heuristic, which
- // prevents excessive spilling in pathological cases.
- bool ReverseLocal = TRI->reverseLocalAssignment();
- const TargetRegisterClass &RC = *MRI->getRegClass(Reg);
- bool ForceGlobal = !ReverseLocal &&
- (Size / SlotIndex::InstrDist) > (2 * RC.getNumRegs());
- if (ExtraRegInfo[Reg].Stage == RS_Assign && !ForceGlobal && !LI->empty() &&
- LIS->intervalIsInOneMBB(*LI)) {
- // Allocate original local ranges in linear instruction order. Since they
- // are singly defined, this produces optimal coloring in the absence of
- // global interference and other constraints.
- if (!ReverseLocal)
- Prio = LI->beginIndex().getInstrDistance(Indexes->getLastIndex());
- else {
- // Allocating bottom up may allow many short LRGs to be assigned first
- // to one of the cheap registers. This could be much faster for very
- // large blocks on targets with many physical registers.
- Prio = Indexes->getZeroIndex().getInstrDistance(LI->endIndex());
- }
- Prio |= RC.AllocationPriority << 24;
- } else {
- // Allocate global and split ranges in long->short order. Long ranges that
- // don't fit should be spilled (or split) ASAP so they don't create
- // interference. Mark a bit to prioritize global above local ranges.
- Prio = (1u << 29) + Size;
- }
- // Mark a higher bit to prioritize global and local above RS_Split.
- Prio |= (1u << 31);
- // Boost ranges that have a physical register hint.
- if (VRM->hasKnownPreference(Reg))
- Prio |= (1u << 30);
- }
- // The virtual register number is a tie breaker for same-sized ranges.
- // Give lower vreg numbers higher priority to assign them first.
- CurQueue.push(std::make_pair(Prio, ~Reg));
- }
- LiveInterval *RAGreedy::dequeue() { return dequeue(Queue); }
- LiveInterval *RAGreedy::dequeue(PQueue &CurQueue) {
- if (CurQueue.empty())
- return nullptr;
- LiveInterval *LI = &LIS->getInterval(~CurQueue.top().second);
- CurQueue.pop();
- return LI;
- }
- //===----------------------------------------------------------------------===//
- // Direct Assignment
- //===----------------------------------------------------------------------===//
- /// tryAssign - Try to assign VirtReg to an available register.
- unsigned RAGreedy::tryAssign(LiveInterval &VirtReg,
- AllocationOrder &Order,
- SmallVectorImpl<unsigned> &NewVRegs) {
- Order.rewind();
- unsigned PhysReg;
- while ((PhysReg = Order.next()))
- if (!Matrix->checkInterference(VirtReg, PhysReg))
- break;
- if (!PhysReg || Order.isHint())
- return PhysReg;
- // PhysReg is available, but there may be a better choice.
- // If we missed a simple hint, try to cheaply evict interference from the
- // preferred register.
- if (unsigned Hint = MRI->getSimpleHint(VirtReg.reg))
- if (Order.isHint(Hint)) {
- DEBUG(dbgs() << "missed hint " << PrintReg(Hint, TRI) << '\n');
- EvictionCost MaxCost;
- MaxCost.setBrokenHints(1);
- if (canEvictInterference(VirtReg, Hint, true, MaxCost)) {
- evictInterference(VirtReg, Hint, NewVRegs);
- return Hint;
- }
- }
- // Try to evict interference from a cheaper alternative.
- unsigned Cost = TRI->getCostPerUse(PhysReg);
- // Most registers have 0 additional cost.
- if (!Cost)
- return PhysReg;
- DEBUG(dbgs() << PrintReg(PhysReg, TRI) << " is available at cost " << Cost
- << '\n');
- unsigned CheapReg = tryEvict(VirtReg, Order, NewVRegs, Cost);
- return CheapReg ? CheapReg : PhysReg;
- }
- //===----------------------------------------------------------------------===//
- // Interference eviction
- //===----------------------------------------------------------------------===//
- unsigned RAGreedy::canReassign(LiveInterval &VirtReg, unsigned PrevReg) {
- AllocationOrder Order(VirtReg.reg, *VRM, RegClassInfo);
- unsigned PhysReg;
- while ((PhysReg = Order.next())) {
- if (PhysReg == PrevReg)
- continue;
- MCRegUnitIterator Units(PhysReg, TRI);
- for (; Units.isValid(); ++Units) {
- // Instantiate a "subquery", not to be confused with the Queries array.
- LiveIntervalUnion::Query subQ(&VirtReg, &Matrix->getLiveUnions()[*Units]);
- if (subQ.checkInterference())
- break;
- }
- // If no units have interference, break out with the current PhysReg.
- if (!Units.isValid())
- break;
- }
- if (PhysReg)
- DEBUG(dbgs() << "can reassign: " << VirtReg << " from "
- << PrintReg(PrevReg, TRI) << " to " << PrintReg(PhysReg, TRI)
- << '\n');
- return PhysReg;
- }
- /// shouldEvict - determine if A should evict the assigned live range B. The
- /// eviction policy defined by this function together with the allocation order
- /// defined by enqueue() decides which registers ultimately end up being split
- /// and spilled.
- ///
- /// Cascade numbers are used to prevent infinite loops if this function is a
- /// cyclic relation.
- ///
- /// @param A The live range to be assigned.
- /// @param IsHint True when A is about to be assigned to its preferred
- /// register.
- /// @param B The live range to be evicted.
- /// @param BreaksHint True when B is already assigned to its preferred register.
- bool RAGreedy::shouldEvict(LiveInterval &A, bool IsHint,
- LiveInterval &B, bool BreaksHint) {
- bool CanSplit = getStage(B) < RS_Spill;
- // Be fairly aggressive about following hints as long as the evictee can be
- // split.
- if (CanSplit && IsHint && !BreaksHint)
- return true;
- if (A.weight > B.weight) {
- DEBUG(dbgs() << "should evict: " << B << " w= " << B.weight << '\n');
- return true;
- }
- return false;
- }
- /// canEvictInterference - Return true if all interferences between VirtReg and
- /// PhysReg can be evicted.
- ///
- /// @param VirtReg Live range that is about to be assigned.
- /// @param PhysReg Desired register for assignment.
- /// @param IsHint True when PhysReg is VirtReg's preferred register.
- /// @param MaxCost Only look for cheaper candidates and update with new cost
- /// when returning true.
- /// @returns True when interference can be evicted cheaper than MaxCost.
- bool RAGreedy::canEvictInterference(LiveInterval &VirtReg, unsigned PhysReg,
- bool IsHint, EvictionCost &MaxCost) {
- // It is only possible to evict virtual register interference.
- if (Matrix->checkInterference(VirtReg, PhysReg) > LiveRegMatrix::IK_VirtReg)
- return false;
- bool IsLocal = LIS->intervalIsInOneMBB(VirtReg);
- // Find VirtReg's cascade number. This will be unassigned if VirtReg was never
- // involved in an eviction before. If a cascade number was assigned, deny
- // evicting anything with the same or a newer cascade number. This prevents
- // infinite eviction loops.
- //
- // This works out so a register without a cascade number is allowed to evict
- // anything, and it can be evicted by anything.
- unsigned Cascade = ExtraRegInfo[VirtReg.reg].Cascade;
- if (!Cascade)
- Cascade = NextCascade;
- EvictionCost Cost;
- for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) {
- LiveIntervalUnion::Query &Q = Matrix->query(VirtReg, *Units);
- // If there is 10 or more interferences, chances are one is heavier.
- if (Q.collectInterferingVRegs(10) >= 10)
- return false;
- // Check if any interfering live range is heavier than MaxWeight.
- for (unsigned i = Q.interferingVRegs().size(); i; --i) {
- LiveInterval *Intf = Q.interferingVRegs()[i - 1];
- assert(TargetRegisterInfo::isVirtualRegister(Intf->reg) &&
- "Only expecting virtual register interference from query");
- // Never evict spill products. They cannot split or spill.
- if (getStage(*Intf) == RS_Done)
- return false;
- // Once a live range becomes small enough, it is urgent that we find a
- // register for it. This is indicated by an infinite spill weight. These
- // urgent live ranges get to evict almost anything.
- //
- // Also allow urgent evictions of unspillable ranges from a strictly
- // larger allocation order.
- bool Urgent = !VirtReg.isSpillable() &&
- (Intf->isSpillable() ||
- RegClassInfo.getNumAllocatableRegs(MRI->getRegClass(VirtReg.reg)) <
- RegClassInfo.getNumAllocatableRegs(MRI->getRegClass(Intf->reg)));
- // Only evict older cascades or live ranges without a cascade.
- unsigned IntfCascade = ExtraRegInfo[Intf->reg].Cascade;
- if (Cascade <= IntfCascade) {
- if (!Urgent)
- return false;
- // We permit breaking cascades for urgent evictions. It should be the
- // last resort, though, so make it really expensive.
- Cost.BrokenHints += 10;
- }
- // Would this break a satisfied hint?
- bool BreaksHint = VRM->hasPreferredPhys(Intf->reg);
- // Update eviction cost.
- Cost.BrokenHints += BreaksHint;
- Cost.MaxWeight = std::max(Cost.MaxWeight, Intf->weight);
- // Abort if this would be too expensive.
- if (!(Cost < MaxCost))
- return false;
- if (Urgent)
- continue;
- // Apply the eviction policy for non-urgent evictions.
- if (!shouldEvict(VirtReg, IsHint, *Intf, BreaksHint))
- return false;
- // If !MaxCost.isMax(), then we're just looking for a cheap register.
- // Evicting another local live range in this case could lead to suboptimal
- // coloring.
- if (!MaxCost.isMax() && IsLocal && LIS->intervalIsInOneMBB(*Intf) &&
- (!EnableLocalReassign || !canReassign(*Intf, PhysReg))) {
- return false;
- }
- }
- }
- MaxCost = Cost;
- return true;
- }
- /// evictInterference - Evict any interferring registers that prevent VirtReg
- /// from being assigned to Physreg. This assumes that canEvictInterference
- /// returned true.
- void RAGreedy::evictInterference(LiveInterval &VirtReg, unsigned PhysReg,
- SmallVectorImpl<unsigned> &NewVRegs) {
- // Make sure that VirtReg has a cascade number, and assign that cascade
- // number to every evicted register. These live ranges than then only be
- // evicted by a newer cascade, preventing infinite loops.
- unsigned Cascade = ExtraRegInfo[VirtReg.reg].Cascade;
- if (!Cascade)
- Cascade = ExtraRegInfo[VirtReg.reg].Cascade = NextCascade++;
- DEBUG(dbgs() << "evicting " << PrintReg(PhysReg, TRI)
- << " interference: Cascade " << Cascade << '\n');
- // Collect all interfering virtregs first.
- SmallVector<LiveInterval*, 8> Intfs;
- for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) {
- LiveIntervalUnion::Query &Q = Matrix->query(VirtReg, *Units);
- assert(Q.seenAllInterferences() && "Didn't check all interfererences.");
- ArrayRef<LiveInterval*> IVR = Q.interferingVRegs();
- Intfs.append(IVR.begin(), IVR.end());
- }
- // Evict them second. This will invalidate the queries.
- for (unsigned i = 0, e = Intfs.size(); i != e; ++i) {
- LiveInterval *Intf = Intfs[i];
- // The same VirtReg may be present in multiple RegUnits. Skip duplicates.
- if (!VRM->hasPhys(Intf->reg))
- continue;
- Matrix->unassign(*Intf);
- assert((ExtraRegInfo[Intf->reg].Cascade < Cascade ||
- VirtReg.isSpillable() < Intf->isSpillable()) &&
- "Cannot decrease cascade number, illegal eviction");
- ExtraRegInfo[Intf->reg].Cascade = Cascade;
- ++NumEvicted;
- NewVRegs.push_back(Intf->reg);
- }
- }
- /// Returns true if the given \p PhysReg is a callee saved register and has not
- /// been used for allocation yet.
- bool RAGreedy::isUnusedCalleeSavedReg(unsigned PhysReg) const {
- unsigned CSR = RegClassInfo.getLastCalleeSavedAlias(PhysReg);
- if (CSR == 0)
- return false;
- return !Matrix->isPhysRegUsed(PhysReg);
- }
- /// tryEvict - Try to evict all interferences for a physreg.
- /// @param VirtReg Currently unassigned virtual register.
- /// @param Order Physregs to try.
- /// @return Physreg to assign VirtReg, or 0.
- unsigned RAGreedy::tryEvict(LiveInterval &VirtReg,
- AllocationOrder &Order,
- SmallVectorImpl<unsigned> &NewVRegs,
- unsigned CostPerUseLimit) {
- NamedRegionTimer T("Evict", TimerGroupName, TimePassesIsEnabled);
- // Keep track of the cheapest interference seen so far.
- EvictionCost BestCost;
- BestCost.setMax();
- unsigned BestPhys = 0;
- unsigned OrderLimit = Order.getOrder().size();
- // When we are just looking for a reduced cost per use, don't break any
- // hints, and only evict smaller spill weights.
- if (CostPerUseLimit < ~0u) {
- BestCost.BrokenHints = 0;
- BestCost.MaxWeight = VirtReg.weight;
- // Check of any registers in RC are below CostPerUseLimit.
- const TargetRegisterClass *RC = MRI->getRegClass(VirtReg.reg);
- unsigned MinCost = RegClassInfo.getMinCost(RC);
- if (MinCost >= CostPerUseLimit) {
- DEBUG(dbgs() << TRI->getRegClassName(RC) << " minimum cost = " << MinCost
- << ", no cheaper registers to be found.\n");
- return 0;
- }
- // It is normal for register classes to have a long tail of registers with
- // the same cost. We don't need to look at them if they're too expensive.
- if (TRI->getCostPerUse(Order.getOrder().back()) >= CostPerUseLimit) {
- OrderLimit = RegClassInfo.getLastCostChange(RC);
- DEBUG(dbgs() << "Only trying the first " << OrderLimit << " regs.\n");
- }
- }
- Order.rewind();
- while (unsigned PhysReg = Order.next(OrderLimit)) {
- if (TRI->getCostPerUse(PhysReg) >= CostPerUseLimit)
- continue;
- // The first use of a callee-saved register in a function has cost 1.
- // Don't start using a CSR when the CostPerUseLimit is low.
- if (CostPerUseLimit == 1 && isUnusedCalleeSavedReg(PhysReg)) {
- DEBUG(dbgs() << PrintReg(PhysReg, TRI) << " would clobber CSR "
- << PrintReg(RegClassInfo.getLastCalleeSavedAlias(PhysReg), TRI)
- << '\n');
- continue;
- }
- if (!canEvictInterference(VirtReg, PhysReg, false, BestCost))
- continue;
- // Best so far.
- BestPhys = PhysReg;
- // Stop if the hint can be used.
- if (Order.isHint())
- break;
- }
- if (!BestPhys)
- return 0;
- evictInterference(VirtReg, BestPhys, NewVRegs);
- return BestPhys;
- }
- //===----------------------------------------------------------------------===//
- // Region Splitting
- //===----------------------------------------------------------------------===//
- /// addSplitConstraints - Fill out the SplitConstraints vector based on the
- /// interference pattern in Physreg and its aliases. Add the constraints to
- /// SpillPlacement and return the static cost of this split in Cost, assuming
- /// that all preferences in SplitConstraints are met.
- /// Return false if there are no bundles with positive bias.
- bool RAGreedy::addSplitConstraints(InterferenceCache::Cursor Intf,
- BlockFrequency &Cost) {
- ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks();
- // Reset interference dependent info.
- SplitConstraints.resize(UseBlocks.size());
- BlockFrequency StaticCost = 0;
- for (unsigned i = 0; i != UseBlocks.size(); ++i) {
- const SplitAnalysis::BlockInfo &BI = UseBlocks[i];
- SpillPlacement::BlockConstraint &BC = SplitConstraints[i];
- BC.Number = BI.MBB->getNumber();
- Intf.moveToBlock(BC.Number);
- BC.Entry = BI.LiveIn ? SpillPlacement::PrefReg : SpillPlacement::DontCare;
- BC.Exit = BI.LiveOut ? SpillPlacement::PrefReg : SpillPlacement::DontCare;
- BC.ChangesValue = BI.FirstDef.isValid();
- if (!Intf.hasInterference())
- continue;
- // Number of spill code instructions to insert.
- unsigned Ins = 0;
- // Interference for the live-in value.
- if (BI.LiveIn) {
- if (Intf.first() <= Indexes->getMBBStartIdx(BC.Number))
- BC.Entry = SpillPlacement::MustSpill, ++Ins;
- else if (Intf.first() < BI.FirstInstr)
- BC.Entry = SpillPlacement::PrefSpill, ++Ins;
- else if (Intf.first() < BI.LastInstr)
- ++Ins;
- }
- // Interference for the live-out value.
- if (BI.LiveOut) {
- if (Intf.last() >= SA->getLastSplitPoint(BC.Number))
- BC.Exit = SpillPlacement::MustSpill, ++Ins;
- else if (Intf.last() > BI.LastInstr)
- BC.Exit = SpillPlacement::PrefSpill, ++Ins;
- else if (Intf.last() > BI.FirstInstr)
- ++Ins;
- }
- // Accumulate the total frequency of inserted spill code.
- while (Ins--)
- StaticCost += SpillPlacer->getBlockFrequency(BC.Number);
- }
- Cost = StaticCost;
- // Add constraints for use-blocks. Note that these are the only constraints
- // that may add a positive bias, it is downhill from here.
- SpillPlacer->addConstraints(SplitConstraints);
- return SpillPlacer->scanActiveBundles();
- }
- /// addThroughConstraints - Add constraints and links to SpillPlacer from the
- /// live-through blocks in Blocks.
- void RAGreedy::addThroughConstraints(InterferenceCache::Cursor Intf,
- ArrayRef<unsigned> Blocks) {
- const unsigned GroupSize = 8;
- SpillPlacement::BlockConstraint BCS[GroupSize];
- unsigned TBS[GroupSize];
- unsigned B = 0, T = 0;
- for (unsigned i = 0; i != Blocks.size(); ++i) {
- unsigned Number = Blocks[i];
- Intf.moveToBlock(Number);
- if (!Intf.hasInterference()) {
- assert(T < GroupSize && "Array overflow");
- _Analysis_assume_(T < GroupSize); // This is reset to zero when it reaches GroupSize
- TBS[T] = Number;
- if (++T == GroupSize) {
- SpillPlacer->addLinks(makeArrayRef(TBS, T));
- T = 0;
- }
- continue;
- }
- assert(B < GroupSize && "Array overflow");
- _Analysis_assume_(B < GroupSize); // This is reset to zero when it reaches GroupSize
- BCS[B].Number = Number;
- // Interference for the live-in value.
- if (Intf.first() <= Indexes->getMBBStartIdx(Number))
- BCS[B].Entry = SpillPlacement::MustSpill;
- else
- BCS[B].Entry = SpillPlacement::PrefSpill;
- // Interference for the live-out value.
- if (Intf.last() >= SA->getLastSplitPoint(Number))
- BCS[B].Exit = SpillPlacement::MustSpill;
- else
- BCS[B].Exit = SpillPlacement::PrefSpill;
- if (++B == GroupSize) {
- SpillPlacer->addConstraints(makeArrayRef(BCS, B));
- B = 0;
- }
- }
- SpillPlacer->addConstraints(makeArrayRef(BCS, B));
- SpillPlacer->addLinks(makeArrayRef(TBS, T));
- }
- void RAGreedy::growRegion(GlobalSplitCandidate &Cand) {
- // Keep track of through blocks that have not been added to SpillPlacer.
- BitVector Todo = SA->getThroughBlocks();
- SmallVectorImpl<unsigned> &ActiveBlocks = Cand.ActiveBlocks;
- unsigned AddedTo = 0;
- #ifndef NDEBUG
- unsigned Visited = 0;
- #endif
- for (;;) {
- ArrayRef<unsigned> NewBundles = SpillPlacer->getRecentPositive();
- // Find new through blocks in the periphery of PrefRegBundles.
- for (int i = 0, e = NewBundles.size(); i != e; ++i) {
- unsigned Bundle = NewBundles[i];
- // Look at all blocks connected to Bundle in the full graph.
- ArrayRef<unsigned> Blocks = Bundles->getBlocks(Bundle);
- for (ArrayRef<unsigned>::iterator I = Blocks.begin(), E = Blocks.end();
- I != E; ++I) {
- unsigned Block = *I;
- if (!Todo.test(Block))
- continue;
- Todo.reset(Block);
- // This is a new through block. Add it to SpillPlacer later.
- ActiveBlocks.push_back(Block);
- #ifndef NDEBUG
- ++Visited;
- #endif
- }
- }
- // Any new blocks to add?
- if (ActiveBlocks.size() == AddedTo)
- break;
- // Compute through constraints from the interference, or assume that all
- // through blocks prefer spilling when forming compact regions.
- auto NewBlocks = makeArrayRef(ActiveBlocks).slice(AddedTo);
- if (Cand.PhysReg)
- addThroughConstraints(Cand.Intf, NewBlocks);
- else
- // Provide a strong negative bias on through blocks to prevent unwanted
- // liveness on loop backedges.
- SpillPlacer->addPrefSpill(NewBlocks, /* Strong= */ true);
- AddedTo = ActiveBlocks.size();
- // Perhaps iterating can enable more bundles?
- SpillPlacer->iterate();
- }
- DEBUG(dbgs() << ", v=" << Visited);
- }
- /// calcCompactRegion - Compute the set of edge bundles that should be live
- /// when splitting the current live range into compact regions. Compact
- /// regions can be computed without looking at interference. They are the
- /// regions formed by removing all the live-through blocks from the live range.
- ///
- /// Returns false if the current live range is already compact, or if the
- /// compact regions would form single block regions anyway.
- bool RAGreedy::calcCompactRegion(GlobalSplitCandidate &Cand) {
- // Without any through blocks, the live range is already compact.
- if (!SA->getNumThroughBlocks())
- return false;
- // Compact regions don't correspond to any physreg.
- Cand.reset(IntfCache, 0);
- DEBUG(dbgs() << "Compact region bundles");
- // Use the spill placer to determine the live bundles. GrowRegion pretends
- // that all the through blocks have interference when PhysReg is unset.
- SpillPlacer->prepare(Cand.LiveBundles);
- // The static split cost will be zero since Cand.Intf reports no interference.
- BlockFrequency Cost;
- if (!addSplitConstraints(Cand.Intf, Cost)) {
- DEBUG(dbgs() << ", none.\n");
- return false;
- }
- growRegion(Cand);
- SpillPlacer->finish();
- if (!Cand.LiveBundles.any()) {
- DEBUG(dbgs() << ", none.\n");
- return false;
- }
- DEBUG({
- for (int i = Cand.LiveBundles.find_first(); i>=0;
- i = Cand.LiveBundles.find_next(i))
- dbgs() << " EB#" << i;
- dbgs() << ".\n";
- });
- return true;
- }
- /// calcSpillCost - Compute how expensive it would be to split the live range in
- /// SA around all use blocks instead of forming bundle regions.
- BlockFrequency RAGreedy::calcSpillCost() {
- BlockFrequency Cost = 0;
- ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks();
- for (unsigned i = 0; i != UseBlocks.size(); ++i) {
- const SplitAnalysis::BlockInfo &BI = UseBlocks[i];
- unsigned Number = BI.MBB->getNumber();
- // We normally only need one spill instruction - a load or a store.
- Cost += SpillPlacer->getBlockFrequency(Number);
- // Unless the value is redefined in the block.
- if (BI.LiveIn && BI.LiveOut && BI.FirstDef)
- Cost += SpillPlacer->getBlockFrequency(Number);
- }
- return Cost;
- }
- /// calcGlobalSplitCost - Return the global split cost of following the split
- /// pattern in LiveBundles. This cost should be added to the local cost of the
- /// interference pattern in SplitConstraints.
- ///
- BlockFrequency RAGreedy::calcGlobalSplitCost(GlobalSplitCandidate &Cand) {
- BlockFrequency GlobalCost = 0;
- const BitVector &LiveBundles = Cand.LiveBundles;
- ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks();
- for (unsigned i = 0; i != UseBlocks.size(); ++i) {
- const SplitAnalysis::BlockInfo &BI = UseBlocks[i];
- SpillPlacement::BlockConstraint &BC = SplitConstraints[i];
- bool RegIn = LiveBundles[Bundles->getBundle(BC.Number, 0)];
- bool RegOut = LiveBundles[Bundles->getBundle(BC.Number, 1)];
- unsigned Ins = 0;
- if (BI.LiveIn)
- Ins += RegIn != (BC.Entry == SpillPlacement::PrefReg);
- if (BI.LiveOut)
- Ins += RegOut != (BC.Exit == SpillPlacement::PrefReg);
- while (Ins--)
- GlobalCost += SpillPlacer->getBlockFrequency(BC.Number);
- }
- for (unsigned i = 0, e = Cand.ActiveBlocks.size(); i != e; ++i) {
- unsigned Number = Cand.ActiveBlocks[i];
- bool RegIn = LiveBundles[Bundles->getBundle(Number, 0)];
- bool RegOut = LiveBundles[Bundles->getBundle(Number, 1)];
- if (!RegIn && !RegOut)
- continue;
- if (RegIn && RegOut) {
- // We need double spill code if this block has interference.
- Cand.Intf.moveToBlock(Number);
- if (Cand.Intf.hasInterference()) {
- GlobalCost += SpillPlacer->getBlockFrequency(Number);
- GlobalCost += SpillPlacer->getBlockFrequency(Number);
- }
- continue;
- }
- // live-in / stack-out or stack-in live-out.
- GlobalCost += SpillPlacer->getBlockFrequency(Number);
- }
- return GlobalCost;
- }
- /// splitAroundRegion - Split the current live range around the regions
- /// determined by BundleCand and GlobalCand.
- ///
- /// Before calling this function, GlobalCand and BundleCand must be initialized
- /// so each bundle is assigned to a valid candidate, or NoCand for the
- /// stack-bound bundles. The shared SA/SE SplitAnalysis and SplitEditor
- /// objects must be initialized for the current live range, and intervals
- /// created for the used candidates.
- ///
- /// @param LREdit The LiveRangeEdit object handling the current split.
- /// @param UsedCands List of used GlobalCand entries. Every BundleCand value
- /// must appear in this list.
- void RAGreedy::splitAroundRegion(LiveRangeEdit &LREdit,
- ArrayRef<unsigned> UsedCands) {
- // These are the intervals created for new global ranges. We may create more
- // intervals for local ranges.
- const unsigned NumGlobalIntvs = LREdit.size();
- DEBUG(dbgs() << "splitAroundRegion with " << NumGlobalIntvs << " globals.\n");
- assert(NumGlobalIntvs && "No global intervals configured");
- // Isolate even single instructions when dealing with a proper sub-class.
- // That guarantees register class inflation for the stack interval because it
- // is all copies.
- unsigned Reg = SA->getParent().reg;
- bool SingleInstrs = RegClassInfo.isProperSubClass(MRI->getRegClass(Reg));
- // First handle all the blocks with uses.
- ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks();
- for (unsigned i = 0; i != UseBlocks.size(); ++i) {
- const SplitAnalysis::BlockInfo &BI = UseBlocks[i];
- unsigned Number = BI.MBB->getNumber();
- unsigned IntvIn = 0, IntvOut = 0;
- SlotIndex IntfIn, IntfOut;
- if (BI.LiveIn) {
- unsigned CandIn = BundleCand[Bundles->getBundle(Number, 0)];
- if (CandIn != NoCand) {
- GlobalSplitCandidate &Cand = GlobalCand[CandIn];
- IntvIn = Cand.IntvIdx;
- Cand.Intf.moveToBlock(Number);
- IntfIn = Cand.Intf.first();
- }
- }
- if (BI.LiveOut) {
- unsigned CandOut = BundleCand[Bundles->getBundle(Number, 1)];
- if (CandOut != NoCand) {
- GlobalSplitCandidate &Cand = GlobalCand[CandOut];
- IntvOut = Cand.IntvIdx;
- Cand.Intf.moveToBlock(Number);
- IntfOut = Cand.Intf.last();
- }
- }
- // Create separate intervals for isolated blocks with multiple uses.
- if (!IntvIn && !IntvOut) {
- DEBUG(dbgs() << "BB#" << BI.MBB->getNumber() << " isolated.\n");
- if (SA->shouldSplitSingleBlock(BI, SingleInstrs))
- SE->splitSingleBlock(BI);
- continue;
- }
- if (IntvIn && IntvOut)
- SE->splitLiveThroughBlock(Number, IntvIn, IntfIn, IntvOut, IntfOut);
- else if (IntvIn)
- SE->splitRegInBlock(BI, IntvIn, IntfIn);
- else
- SE->splitRegOutBlock(BI, IntvOut, IntfOut);
- }
- // Handle live-through blocks. The relevant live-through blocks are stored in
- // the ActiveBlocks list with each candidate. We need to filter out
- // duplicates.
- BitVector Todo = SA->getThroughBlocks();
- for (unsigned c = 0; c != UsedCands.size(); ++c) {
- ArrayRef<unsigned> Blocks = GlobalCand[UsedCands[c]].ActiveBlocks;
- for (unsigned i = 0, e = Blocks.size(); i != e; ++i) {
- unsigned Number = Blocks[i];
- if (!Todo.test(Number))
- continue;
- Todo.reset(Number);
- unsigned IntvIn = 0, IntvOut = 0;
- SlotIndex IntfIn, IntfOut;
- unsigned CandIn = BundleCand[Bundles->getBundle(Number, 0)];
- if (CandIn != NoCand) {
- GlobalSplitCandidate &Cand = GlobalCand[CandIn];
- IntvIn = Cand.IntvIdx;
- Cand.Intf.moveToBlock(Number);
- IntfIn = Cand.Intf.first();
- }
- unsigned CandOut = BundleCand[Bundles->getBundle(Number, 1)];
- if (CandOut != NoCand) {
- GlobalSplitCandidate &Cand = GlobalCand[CandOut];
- IntvOut = Cand.IntvIdx;
- Cand.Intf.moveToBlock(Number);
- IntfOut = Cand.Intf.last();
- }
- if (!IntvIn && !IntvOut)
- continue;
- SE->splitLiveThroughBlock(Number, IntvIn, IntfIn, IntvOut, IntfOut);
- }
- }
- ++NumGlobalSplits;
- SmallVector<unsigned, 8> IntvMap;
- SE->finish(&IntvMap);
- DebugVars->splitRegister(Reg, LREdit.regs(), *LIS);
- ExtraRegInfo.resize(MRI->getNumVirtRegs());
- unsigned OrigBlocks = SA->getNumLiveBlocks();
- // Sort out the new intervals created by splitting. We get four kinds:
- // - Remainder intervals should not be split again.
- // - Candidate intervals can be assigned to Cand.PhysReg.
- // - Block-local splits are candidates for local splitting.
- // - DCE leftovers should go back on the queue.
- for (unsigned i = 0, e = LREdit.size(); i != e; ++i) {
- LiveInterval &Reg = LIS->getInterval(LREdit.get(i));
- // Ignore old intervals from DCE.
- if (getStage(Reg) != RS_New)
- continue;
- // Remainder interval. Don't try splitting again, spill if it doesn't
- // allocate.
- if (IntvMap[i] == 0) {
- setStage(Reg, RS_Spill);
- continue;
- }
- // Global intervals. Allow repeated splitting as long as the number of live
- // blocks is strictly decreasing.
- if (IntvMap[i] < NumGlobalIntvs) {
- if (SA->countLiveBlocks(&Reg) >= OrigBlocks) {
- DEBUG(dbgs() << "Main interval covers the same " << OrigBlocks
- << " blocks as original.\n");
- // Don't allow repeated splitting as a safe guard against looping.
- setStage(Reg, RS_Split2);
- }
- continue;
- }
- // Other intervals are treated as new. This includes local intervals created
- // for blocks with multiple uses, and anything created by DCE.
- }
- if (VerifyEnabled)
- MF->verify(this, "After splitting live range around region");
- }
- unsigned RAGreedy::tryRegionSplit(LiveInterval &VirtReg, AllocationOrder &Order,
- SmallVectorImpl<unsigned> &NewVRegs) {
- unsigned NumCands = 0;
- BlockFrequency BestCost;
- // Check if we can split this live range around a compact region.
- bool HasCompact = calcCompactRegion(GlobalCand.front());
- if (HasCompact) {
- // Yes, keep GlobalCand[0] as the compact region candidate.
- NumCands = 1;
- BestCost = BlockFrequency::getMaxFrequency();
- } else {
- // No benefit from the compact region, our fallback will be per-block
- // splitting. Make sure we find a solution that is cheaper than spilling.
- BestCost = calcSpillCost();
- DEBUG(dbgs() << "Cost of isolating all blocks = ";
- MBFI->printBlockFreq(dbgs(), BestCost) << '\n');
- }
- unsigned BestCand =
- calculateRegionSplitCost(VirtReg, Order, BestCost, NumCands,
- false/*IgnoreCSR*/);
- // No solutions found, fall back to single block splitting.
- if (!HasCompact && BestCand == NoCand)
- return 0;
- return doRegionSplit(VirtReg, BestCand, HasCompact, NewVRegs);
- }
- unsigned RAGreedy::calculateRegionSplitCost(LiveInterval &VirtReg,
- AllocationOrder &Order,
- BlockFrequency &BestCost,
- unsigned &NumCands,
- bool IgnoreCSR) {
- unsigned BestCand = NoCand;
- Order.rewind();
- while (unsigned PhysReg = Order.next()) {
- if (IgnoreCSR && isUnusedCalleeSavedReg(PhysReg))
- continue;
- // Discard bad candidates before we run out of interference cache cursors.
- // This will only affect register classes with a lot of registers (>32).
- if (NumCands == IntfCache.getMaxCursors()) {
- unsigned WorstCount = ~0u;
- unsigned Worst = 0;
- for (unsigned i = 0; i != NumCands; ++i) {
- if (i == BestCand || !GlobalCand[i].PhysReg)
- continue;
- unsigned Count = GlobalCand[i].LiveBundles.count();
- if (Count < WorstCount)
- Worst = i, WorstCount = Count;
- }
- --NumCands;
- GlobalCand[Worst] = GlobalCand[NumCands];
- if (BestCand == NumCands)
- BestCand = Worst;
- }
- if (GlobalCand.size() <= NumCands)
- GlobalCand.resize(NumCands+1);
- GlobalSplitCandidate &Cand = GlobalCand[NumCands];
- Cand.reset(IntfCache, PhysReg);
- SpillPlacer->prepare(Cand.LiveBundles);
- BlockFrequency Cost;
- if (!addSplitConstraints(Cand.Intf, Cost)) {
- DEBUG(dbgs() << PrintReg(PhysReg, TRI) << "\tno positive bundles\n");
- continue;
- }
- DEBUG(dbgs() << PrintReg(PhysReg, TRI) << "\tstatic = ";
- MBFI->printBlockFreq(dbgs(), Cost));
- if (Cost >= BestCost) {
- DEBUG({
- if (BestCand == NoCand)
- dbgs() << " worse than no bundles\n";
- else
- dbgs() << " worse than "
- << PrintReg(GlobalCand[BestCand].PhysReg, TRI) << '\n';
- });
- continue;
- }
- growRegion(Cand);
- SpillPlacer->finish();
- // No live bundles, defer to splitSingleBlocks().
- if (!Cand.LiveBundles.any()) {
- DEBUG(dbgs() << " no bundles.\n");
- continue;
- }
- Cost += calcGlobalSplitCost(Cand);
- DEBUG({
- dbgs() << ", total = "; MBFI->printBlockFreq(dbgs(), Cost)
- << " with bundles";
- for (int i = Cand.LiveBundles.find_first(); i>=0;
- i = Cand.LiveBundles.find_next(i))
- dbgs() << " EB#" << i;
- dbgs() << ".\n";
- });
- if (Cost < BestCost) {
- BestCand = NumCands;
- BestCost = Cost;
- }
- ++NumCands;
- }
- return BestCand;
- }
- unsigned RAGreedy::doRegionSplit(LiveInterval &VirtReg, unsigned BestCand,
- bool HasCompact,
- SmallVectorImpl<unsigned> &NewVRegs) {
- SmallVector<unsigned, 8> UsedCands;
- // Prepare split editor.
- LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this);
- SE->reset(LREdit, SplitSpillMode);
- // Assign all edge bundles to the preferred candidate, or NoCand.
- BundleCand.assign(Bundles->getNumBundles(), NoCand);
- // Assign bundles for the best candidate region.
- if (BestCand != NoCand) {
- GlobalSplitCandidate &Cand = GlobalCand[BestCand];
- if (unsigned B = Cand.getBundles(BundleCand, BestCand)) {
- UsedCands.push_back(BestCand);
- Cand.IntvIdx = SE->openIntv();
- DEBUG(dbgs() << "Split for " << PrintReg(Cand.PhysReg, TRI) << " in "
- << B << " bundles, intv " << Cand.IntvIdx << ".\n");
- (void)B;
- }
- }
- // Assign bundles for the compact region.
- if (HasCompact) {
- GlobalSplitCandidate &Cand = GlobalCand.front();
- assert(!Cand.PhysReg && "Compact region has no physreg");
- if (unsigned B = Cand.getBundles(BundleCand, 0)) {
- UsedCands.push_back(0);
- Cand.IntvIdx = SE->openIntv();
- DEBUG(dbgs() << "Split for compact region in " << B << " bundles, intv "
- << Cand.IntvIdx << ".\n");
- (void)B;
- }
- }
- splitAroundRegion(LREdit, UsedCands);
- return 0;
- }
- //===----------------------------------------------------------------------===//
- // Per-Block Splitting
- //===----------------------------------------------------------------------===//
- /// tryBlockSplit - Split a global live range around every block with uses. This
- /// creates a lot of local live ranges, that will be split by tryLocalSplit if
- /// they don't allocate.
- unsigned RAGreedy::tryBlockSplit(LiveInterval &VirtReg, AllocationOrder &Order,
- SmallVectorImpl<unsigned> &NewVRegs) {
- assert(&SA->getParent() == &VirtReg && "Live range wasn't analyzed");
- unsigned Reg = VirtReg.reg;
- bool SingleInstrs = RegClassInfo.isProperSubClass(MRI->getRegClass(Reg));
- LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this);
- SE->reset(LREdit, SplitSpillMode);
- ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks();
- for (unsigned i = 0; i != UseBlocks.size(); ++i) {
- const SplitAnalysis::BlockInfo &BI = UseBlocks[i];
- if (SA->shouldSplitSingleBlock(BI, SingleInstrs))
- SE->splitSingleBlock(BI);
- }
- // No blocks were split.
- if (LREdit.empty())
- return 0;
- // We did split for some blocks.
- SmallVector<unsigned, 8> IntvMap;
- SE->finish(&IntvMap);
- // Tell LiveDebugVariables about the new ranges.
- DebugVars->splitRegister(Reg, LREdit.regs(), *LIS);
- ExtraRegInfo.resize(MRI->getNumVirtRegs());
- // Sort out the new intervals created by splitting. The remainder interval
- // goes straight to spilling, the new local ranges get to stay RS_New.
- for (unsigned i = 0, e = LREdit.size(); i != e; ++i) {
- LiveInterval &LI = LIS->getInterval(LREdit.get(i));
- if (getStage(LI) == RS_New && IntvMap[i] == 0)
- setStage(LI, RS_Spill);
- }
- if (VerifyEnabled)
- MF->verify(this, "After splitting live range around basic blocks");
- return 0;
- }
- //===----------------------------------------------------------------------===//
- // Per-Instruction Splitting
- //===----------------------------------------------------------------------===//
- /// Get the number of allocatable registers that match the constraints of \p Reg
- /// on \p MI and that are also in \p SuperRC.
- static unsigned getNumAllocatableRegsForConstraints(
- const MachineInstr *MI, unsigned Reg, const TargetRegisterClass *SuperRC,
- const TargetInstrInfo *TII, const TargetRegisterInfo *TRI,
- const RegisterClassInfo &RCI) {
- assert(SuperRC && "Invalid register class");
- const TargetRegisterClass *ConstrainedRC =
- MI->getRegClassConstraintEffectForVReg(Reg, SuperRC, TII, TRI,
- /* ExploreBundle */ true);
- if (!ConstrainedRC)
- return 0;
- return RCI.getNumAllocatableRegs(ConstrainedRC);
- }
- /// tryInstructionSplit - Split a live range around individual instructions.
- /// This is normally not worthwhile since the spiller is doing essentially the
- /// same thing. However, when the live range is in a constrained register
- /// class, it may help to insert copies such that parts of the live range can
- /// be moved to a larger register class.
- ///
- /// This is similar to spilling to a larger register class.
- unsigned
- RAGreedy::tryInstructionSplit(LiveInterval &VirtReg, AllocationOrder &Order,
- SmallVectorImpl<unsigned> &NewVRegs) {
- const TargetRegisterClass *CurRC = MRI->getRegClass(VirtReg.reg);
- // There is no point to this if there are no larger sub-classes.
- if (!RegClassInfo.isProperSubClass(CurRC))
- return 0;
- // Always enable split spill mode, since we're effectively spilling to a
- // register.
- LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this);
- SE->reset(LREdit, SplitEditor::SM_Size);
- ArrayRef<SlotIndex> Uses = SA->getUseSlots();
- if (Uses.size() <= 1)
- return 0;
- DEBUG(dbgs() << "Split around " << Uses.size() << " individual instrs.\n");
- const TargetRegisterClass *SuperRC =
- TRI->getLargestLegalSuperClass(CurRC, *MF);
- unsigned SuperRCNumAllocatableRegs = RCI.getNumAllocatableRegs(SuperRC);
- // Split around every non-copy instruction if this split will relax
- // the constraints on the virtual register.
- // Otherwise, splitting just inserts uncoalescable copies that do not help
- // the allocation.
- for (unsigned i = 0; i != Uses.size(); ++i) {
- if (const MachineInstr *MI = Indexes->getInstructionFromIndex(Uses[i]))
- if (MI->isFullCopy() ||
- SuperRCNumAllocatableRegs ==
- getNumAllocatableRegsForConstraints(MI, VirtReg.reg, SuperRC, TII,
- TRI, RCI)) {
- DEBUG(dbgs() << " skip:\t" << Uses[i] << '\t' << *MI);
- continue;
- }
- SE->openIntv();
- SlotIndex SegStart = SE->enterIntvBefore(Uses[i]);
- SlotIndex SegStop = SE->leaveIntvAfter(Uses[i]);
- SE->useIntv(SegStart, SegStop);
- }
- if (LREdit.empty()) {
- DEBUG(dbgs() << "All uses were copies.\n");
- return 0;
- }
- SmallVector<unsigned, 8> IntvMap;
- SE->finish(&IntvMap);
- DebugVars->splitRegister(VirtReg.reg, LREdit.regs(), *LIS);
- ExtraRegInfo.resize(MRI->getNumVirtRegs());
- // Assign all new registers to RS_Spill. This was the last chance.
- setStage(LREdit.begin(), LREdit.end(), RS_Spill);
- return 0;
- }
- //===----------------------------------------------------------------------===//
- // Local Splitting
- //===----------------------------------------------------------------------===//
- /// calcGapWeights - Compute the maximum spill weight that needs to be evicted
- /// in order to use PhysReg between two entries in SA->UseSlots.
- ///
- /// GapWeight[i] represents the gap between UseSlots[i] and UseSlots[i+1].
- ///
- void RAGreedy::calcGapWeights(unsigned PhysReg,
- SmallVectorImpl<float> &GapWeight) {
- assert(SA->getUseBlocks().size() == 1 && "Not a local interval");
- const SplitAnalysis::BlockInfo &BI = SA->getUseBlocks().front();
- ArrayRef<SlotIndex> Uses = SA->getUseSlots();
- const unsigned NumGaps = Uses.size()-1;
- // Start and end points for the interference check.
- SlotIndex StartIdx =
- BI.LiveIn ? BI.FirstInstr.getBaseIndex() : BI.FirstInstr;
- SlotIndex StopIdx =
- BI.LiveOut ? BI.LastInstr.getBoundaryIndex() : BI.LastInstr;
- GapWeight.assign(NumGaps, 0.0f);
- // Add interference from each overlapping register.
- for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) {
- if (!Matrix->query(const_cast<LiveInterval&>(SA->getParent()), *Units)
- .checkInterference())
- continue;
- // We know that VirtReg is a continuous interval from FirstInstr to
- // LastInstr, so we don't need InterferenceQuery.
- //
- // Interference that overlaps an instruction is counted in both gaps
- // surrounding the instruction. The exception is interference before
- // StartIdx and after StopIdx.
- //
- LiveIntervalUnion::SegmentIter IntI =
- Matrix->getLiveUnions()[*Units] .find(StartIdx);
- for (unsigned Gap = 0; IntI.valid() && IntI.start() < StopIdx; ++IntI) {
- // Skip the gaps before IntI.
- while (Uses[Gap+1].getBoundaryIndex() < IntI.start())
- if (++Gap == NumGaps)
- break;
- if (Gap == NumGaps)
- break;
- // Update the gaps covered by IntI.
- const float weight = IntI.value()->weight;
- for (; Gap != NumGaps; ++Gap) {
- GapWeight[Gap] = std::max(GapWeight[Gap], weight);
- if (Uses[Gap+1].getBaseIndex() >= IntI.stop())
- break;
- }
- if (Gap == NumGaps)
- break;
- }
- }
- // Add fixed interference.
- for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) {
- const LiveRange &LR = LIS->getRegUnit(*Units);
- LiveRange::const_iterator I = LR.find(StartIdx);
- LiveRange::const_iterator E = LR.end();
- // Same loop as above. Mark any overlapped gaps as HUGE_VALF.
- for (unsigned Gap = 0; I != E && I->start < StopIdx; ++I) {
- while (Uses[Gap+1].getBoundaryIndex() < I->start)
- if (++Gap == NumGaps)
- break;
- if (Gap == NumGaps)
- break;
- for (; Gap != NumGaps; ++Gap) {
- GapWeight[Gap] = llvm::huge_valf;
- if (Uses[Gap+1].getBaseIndex() >= I->end)
- break;
- }
- if (Gap == NumGaps)
- break;
- }
- }
- }
- /// tryLocalSplit - Try to split VirtReg into smaller intervals inside its only
- /// basic block.
- ///
- unsigned RAGreedy::tryLocalSplit(LiveInterval &VirtReg, AllocationOrder &Order,
- SmallVectorImpl<unsigned> &NewVRegs) {
- assert(SA->getUseBlocks().size() == 1 && "Not a local interval");
- const SplitAnalysis::BlockInfo &BI = SA->getUseBlocks().front();
- // Note that it is possible to have an interval that is live-in or live-out
- // while only covering a single block - A phi-def can use undef values from
- // predecessors, and the block could be a single-block loop.
- // We don't bother doing anything clever about such a case, we simply assume
- // that the interval is continuous from FirstInstr to LastInstr. We should
- // make sure that we don't do anything illegal to such an interval, though.
- ArrayRef<SlotIndex> Uses = SA->getUseSlots();
- if (Uses.size() <= 2)
- return 0;
- const unsigned NumGaps = Uses.size()-1;
- DEBUG({
- dbgs() << "tryLocalSplit: ";
- for (unsigned i = 0, e = Uses.size(); i != e; ++i)
- dbgs() << ' ' << Uses[i];
- dbgs() << '\n';
- });
- // If VirtReg is live across any register mask operands, compute a list of
- // gaps with register masks.
- SmallVector<unsigned, 8> RegMaskGaps;
- if (Matrix->checkRegMaskInterference(VirtReg)) {
- // Get regmask slots for the whole block.
- ArrayRef<SlotIndex> RMS = LIS->getRegMaskSlotsInBlock(BI.MBB->getNumber());
- DEBUG(dbgs() << RMS.size() << " regmasks in block:");
- // Constrain to VirtReg's live range.
- unsigned ri = std::lower_bound(RMS.begin(), RMS.end(),
- Uses.front().getRegSlot()) - RMS.begin();
- unsigned re = RMS.size();
- for (unsigned i = 0; i != NumGaps && ri != re; ++i) {
- // Look for Uses[i] <= RMS <= Uses[i+1].
- assert(!SlotIndex::isEarlierInstr(RMS[ri], Uses[i]));
- if (SlotIndex::isEarlierInstr(Uses[i+1], RMS[ri]))
- continue;
- // Skip a regmask on the same instruction as the last use. It doesn't
- // overlap the live range.
- if (SlotIndex::isSameInstr(Uses[i+1], RMS[ri]) && i+1 == NumGaps)
- break;
- DEBUG(dbgs() << ' ' << RMS[ri] << ':' << Uses[i] << '-' << Uses[i+1]);
- RegMaskGaps.push_back(i);
- // Advance ri to the next gap. A regmask on one of the uses counts in
- // both gaps.
- while (ri != re && SlotIndex::isEarlierInstr(RMS[ri], Uses[i+1]))
- ++ri;
- }
- DEBUG(dbgs() << '\n');
- }
- // Since we allow local split results to be split again, there is a risk of
- // creating infinite loops. It is tempting to require that the new live
- // ranges have less instructions than the original. That would guarantee
- // convergence, but it is too strict. A live range with 3 instructions can be
- // split 2+3 (including the COPY), and we want to allow that.
- //
- // Instead we use these rules:
- //
- // 1. Allow any split for ranges with getStage() < RS_Split2. (Except for the
- // noop split, of course).
- // 2. Require progress be made for ranges with getStage() == RS_Split2. All
- // the new ranges must have fewer instructions than before the split.
- // 3. New ranges with the same number of instructions are marked RS_Split2,
- // smaller ranges are marked RS_New.
- //
- // These rules allow a 3 -> 2+3 split once, which we need. They also prevent
- // excessive splitting and infinite loops.
- //
- bool ProgressRequired = getStage(VirtReg) >= RS_Split2;
- // Best split candidate.
- unsigned BestBefore = NumGaps;
- unsigned BestAfter = 0;
- float BestDiff = 0;
- const float blockFreq =
- SpillPlacer->getBlockFrequency(BI.MBB->getNumber()).getFrequency() *
- (1.0f / MBFI->getEntryFreq());
- SmallVector<float, 8> GapWeight;
- Order.rewind();
- while (unsigned PhysReg = Order.next()) {
- // Keep track of the largest spill weight that would need to be evicted in
- // order to make use of PhysReg between UseSlots[i] and UseSlots[i+1].
- calcGapWeights(PhysReg, GapWeight);
- // Remove any gaps with regmask clobbers.
- if (Matrix->checkRegMaskInterference(VirtReg, PhysReg))
- for (unsigned i = 0, e = RegMaskGaps.size(); i != e; ++i)
- GapWeight[RegMaskGaps[i]] = llvm::huge_valf;
- // Try to find the best sequence of gaps to close.
- // The new spill weight must be larger than any gap interference.
- // We will split before Uses[SplitBefore] and after Uses[SplitAfter].
- unsigned SplitBefore = 0, SplitAfter = 1;
- // MaxGap should always be max(GapWeight[SplitBefore..SplitAfter-1]).
- // It is the spill weight that needs to be evicted.
- float MaxGap = GapWeight[0];
- for (;;) {
- // Live before/after split?
- const bool LiveBefore = SplitBefore != 0 || BI.LiveIn;
- const bool LiveAfter = SplitAfter != NumGaps || BI.LiveOut;
- DEBUG(dbgs() << PrintReg(PhysReg, TRI) << ' '
- << Uses[SplitBefore] << '-' << Uses[SplitAfter]
- << " i=" << MaxGap);
- // Stop before the interval gets so big we wouldn't be making progress.
- if (!LiveBefore && !LiveAfter) {
- DEBUG(dbgs() << " all\n");
- break;
- }
- // Should the interval be extended or shrunk?
- bool Shrink = true;
- // How many gaps would the new range have?
- unsigned NewGaps = LiveBefore + SplitAfter - SplitBefore + LiveAfter;
- // Legally, without causing looping?
- bool Legal = !ProgressRequired || NewGaps < NumGaps;
- if (Legal && MaxGap < llvm::huge_valf) {
- // Estimate the new spill weight. Each instruction reads or writes the
- // register. Conservatively assume there are no read-modify-write
- // instructions.
- //
- // Try to guess the size of the new interval.
- const float EstWeight = normalizeSpillWeight(
- blockFreq * (NewGaps + 1),
- Uses[SplitBefore].distance(Uses[SplitAfter]) +
- (LiveBefore + LiveAfter) * SlotIndex::InstrDist,
- 1);
- // Would this split be possible to allocate?
- // Never allocate all gaps, we wouldn't be making progress.
- DEBUG(dbgs() << " w=" << EstWeight);
- if (EstWeight * Hysteresis >= MaxGap) {
- Shrink = false;
- float Diff = EstWeight - MaxGap;
- if (Diff > BestDiff) {
- DEBUG(dbgs() << " (best)");
- BestDiff = Hysteresis * Diff;
- BestBefore = SplitBefore;
- BestAfter = SplitAfter;
- }
- }
- }
- // Try to shrink.
- if (Shrink) {
- if (++SplitBefore < SplitAfter) {
- DEBUG(dbgs() << " shrink\n");
- // Recompute the max when necessary.
- if (GapWeight[SplitBefore - 1] >= MaxGap) {
- MaxGap = GapWeight[SplitBefore];
- for (unsigned i = SplitBefore + 1; i != SplitAfter; ++i)
- MaxGap = std::max(MaxGap, GapWeight[i]);
- }
- continue;
- }
- MaxGap = 0;
- }
- // Try to extend the interval.
- if (SplitAfter >= NumGaps) {
- DEBUG(dbgs() << " end\n");
- break;
- }
- DEBUG(dbgs() << " extend\n");
- MaxGap = std::max(MaxGap, GapWeight[SplitAfter++]);
- }
- }
- // Didn't find any candidates?
- if (BestBefore == NumGaps)
- return 0;
- DEBUG(dbgs() << "Best local split range: " << Uses[BestBefore]
- << '-' << Uses[BestAfter] << ", " << BestDiff
- << ", " << (BestAfter - BestBefore + 1) << " instrs\n");
- LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this);
- SE->reset(LREdit);
- SE->openIntv();
- SlotIndex SegStart = SE->enterIntvBefore(Uses[BestBefore]);
- SlotIndex SegStop = SE->leaveIntvAfter(Uses[BestAfter]);
- SE->useIntv(SegStart, SegStop);
- SmallVector<unsigned, 8> IntvMap;
- SE->finish(&IntvMap);
- DebugVars->splitRegister(VirtReg.reg, LREdit.regs(), *LIS);
- // If the new range has the same number of instructions as before, mark it as
- // RS_Split2 so the next split will be forced to make progress. Otherwise,
- // leave the new intervals as RS_New so they can compete.
- bool LiveBefore = BestBefore != 0 || BI.LiveIn;
- bool LiveAfter = BestAfter != NumGaps || BI.LiveOut;
- unsigned NewGaps = LiveBefore + BestAfter - BestBefore + LiveAfter;
- if (NewGaps >= NumGaps) {
- DEBUG(dbgs() << "Tagging non-progress ranges: ");
- assert(!ProgressRequired && "Didn't make progress when it was required.");
- for (unsigned i = 0, e = IntvMap.size(); i != e; ++i)
- if (IntvMap[i] == 1) {
- setStage(LIS->getInterval(LREdit.get(i)), RS_Split2);
- DEBUG(dbgs() << PrintReg(LREdit.get(i)));
- }
- DEBUG(dbgs() << '\n');
- }
- ++NumLocalSplits;
- return 0;
- }
- //===----------------------------------------------------------------------===//
- // Live Range Splitting
- //===----------------------------------------------------------------------===//
- /// trySplit - Try to split VirtReg or one of its interferences, making it
- /// assignable.
- /// @return Physreg when VirtReg may be assigned and/or new NewVRegs.
- unsigned RAGreedy::trySplit(LiveInterval &VirtReg, AllocationOrder &Order,
- SmallVectorImpl<unsigned>&NewVRegs) {
- // Ranges must be Split2 or less.
- if (getStage(VirtReg) >= RS_Spill)
- return 0;
- // Local intervals are handled separately.
- if (LIS->intervalIsInOneMBB(VirtReg)) {
- NamedRegionTimer T("Local Splitting", TimerGroupName, TimePassesIsEnabled);
- SA->analyze(&VirtReg);
- unsigned PhysReg = tryLocalSplit(VirtReg, Order, NewVRegs);
- if (PhysReg || !NewVRegs.empty())
- return PhysReg;
- return tryInstructionSplit(VirtReg, Order, NewVRegs);
- }
- NamedRegionTimer T("Global Splitting", TimerGroupName, TimePassesIsEnabled);
- SA->analyze(&VirtReg);
- // FIXME: SplitAnalysis may repair broken live ranges coming from the
- // coalescer. That may cause the range to become allocatable which means that
- // tryRegionSplit won't be making progress. This check should be replaced with
- // an assertion when the coalescer is fixed.
- if (SA->didRepairRange()) {
- // VirtReg has changed, so all cached queries are invalid.
- Matrix->invalidateVirtRegs();
- if (unsigned PhysReg = tryAssign(VirtReg, Order, NewVRegs))
- return PhysReg;
- }
- // First try to split around a region spanning multiple blocks. RS_Split2
- // ranges already made dubious progress with region splitting, so they go
- // straight to single block splitting.
- if (getStage(VirtReg) < RS_Split2) {
- unsigned PhysReg = tryRegionSplit(VirtReg, Order, NewVRegs);
- if (PhysReg || !NewVRegs.empty())
- return PhysReg;
- }
- // Then isolate blocks.
- return tryBlockSplit(VirtReg, Order, NewVRegs);
- }
- //===----------------------------------------------------------------------===//
- // Last Chance Recoloring
- //===----------------------------------------------------------------------===//
- /// mayRecolorAllInterferences - Check if the virtual registers that
- /// interfere with \p VirtReg on \p PhysReg (or one of its aliases) may be
- /// recolored to free \p PhysReg.
- /// When true is returned, \p RecoloringCandidates has been augmented with all
- /// the live intervals that need to be recolored in order to free \p PhysReg
- /// for \p VirtReg.
- /// \p FixedRegisters contains all the virtual registers that cannot be
- /// recolored.
- bool
- RAGreedy::mayRecolorAllInterferences(unsigned PhysReg, LiveInterval &VirtReg,
- SmallLISet &RecoloringCandidates,
- const SmallVirtRegSet &FixedRegisters) {
- const TargetRegisterClass *CurRC = MRI->getRegClass(VirtReg.reg);
- for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) {
- LiveIntervalUnion::Query &Q = Matrix->query(VirtReg, *Units);
- // If there is LastChanceRecoloringMaxInterference or more interferences,
- // chances are one would not be recolorable.
- if (Q.collectInterferingVRegs(LastChanceRecoloringMaxInterference) >=
- LastChanceRecoloringMaxInterference && !ExhaustiveSearch) {
- DEBUG(dbgs() << "Early abort: too many interferences.\n");
- CutOffInfo |= CO_Interf;
- return false;
- }
- for (unsigned i = Q.interferingVRegs().size(); i; --i) {
- LiveInterval *Intf = Q.interferingVRegs()[i - 1];
- // If Intf is done and sit on the same register class as VirtReg,
- // it would not be recolorable as it is in the same state as VirtReg.
- if ((getStage(*Intf) == RS_Done &&
- MRI->getRegClass(Intf->reg) == CurRC) ||
- FixedRegisters.count(Intf->reg)) {
- DEBUG(dbgs() << "Early abort: the inteference is not recolorable.\n");
- return false;
- }
- RecoloringCandidates.insert(Intf);
- }
- }
- return true;
- }
- /// tryLastChanceRecoloring - Try to assign a color to \p VirtReg by recoloring
- /// its interferences.
- /// Last chance recoloring chooses a color for \p VirtReg and recolors every
- /// virtual register that was using it. The recoloring process may recursively
- /// use the last chance recoloring. Therefore, when a virtual register has been
- /// assigned a color by this mechanism, it is marked as Fixed, i.e., it cannot
- /// be last-chance-recolored again during this recoloring "session".
- /// E.g.,
- /// Let
- /// vA can use {R1, R2 }
- /// vB can use { R2, R3}
- /// vC can use {R1 }
- /// Where vA, vB, and vC cannot be split anymore (they are reloads for
- /// instance) and they all interfere.
- ///
- /// vA is assigned R1
- /// vB is assigned R2
- /// vC tries to evict vA but vA is already done.
- /// Regular register allocation fails.
- ///
- /// Last chance recoloring kicks in:
- /// vC does as if vA was evicted => vC uses R1.
- /// vC is marked as fixed.
- /// vA needs to find a color.
- /// None are available.
- /// vA cannot evict vC: vC is a fixed virtual register now.
- /// vA does as if vB was evicted => vA uses R2.
- /// vB needs to find a color.
- /// R3 is available.
- /// Recoloring => vC = R1, vA = R2, vB = R3
- ///
- /// \p Order defines the preferred allocation order for \p VirtReg.
- /// \p NewRegs will contain any new virtual register that have been created
- /// (split, spill) during the process and that must be assigned.
- /// \p FixedRegisters contains all the virtual registers that cannot be
- /// recolored.
- /// \p Depth gives the current depth of the last chance recoloring.
- /// \return a physical register that can be used for VirtReg or ~0u if none
- /// exists.
- unsigned RAGreedy::tryLastChanceRecoloring(LiveInterval &VirtReg,
- AllocationOrder &Order,
- SmallVectorImpl<unsigned> &NewVRegs,
- SmallVirtRegSet &FixedRegisters,
- unsigned Depth) {
- DEBUG(dbgs() << "Try last chance recoloring for " << VirtReg << '\n');
- // Ranges must be Done.
- assert((getStage(VirtReg) >= RS_Done || !VirtReg.isSpillable()) &&
- "Last chance recoloring should really be last chance");
- // Set the max depth to LastChanceRecoloringMaxDepth.
- // We may want to reconsider that if we end up with a too large search space
- // for target with hundreds of registers.
- // Indeed, in that case we may want to cut the search space earlier.
- if (Depth >= LastChanceRecoloringMaxDepth && !ExhaustiveSearch) {
- DEBUG(dbgs() << "Abort because max depth has been reached.\n");
- CutOffInfo |= CO_Depth;
- return ~0u;
- }
- // Set of Live intervals that will need to be recolored.
- SmallLISet RecoloringCandidates;
- // Record the original mapping virtual register to physical register in case
- // the recoloring fails.
- DenseMap<unsigned, unsigned> VirtRegToPhysReg;
- // Mark VirtReg as fixed, i.e., it will not be recolored pass this point in
- // this recoloring "session".
- FixedRegisters.insert(VirtReg.reg);
- Order.rewind();
- while (unsigned PhysReg = Order.next()) {
- DEBUG(dbgs() << "Try to assign: " << VirtReg << " to "
- << PrintReg(PhysReg, TRI) << '\n');
- RecoloringCandidates.clear();
- VirtRegToPhysReg.clear();
- // It is only possible to recolor virtual register interference.
- if (Matrix->checkInterference(VirtReg, PhysReg) >
- LiveRegMatrix::IK_VirtReg) {
- DEBUG(dbgs() << "Some inteferences are not with virtual registers.\n");
- continue;
- }
- // Early give up on this PhysReg if it is obvious we cannot recolor all
- // the interferences.
- if (!mayRecolorAllInterferences(PhysReg, VirtReg, RecoloringCandidates,
- FixedRegisters)) {
- DEBUG(dbgs() << "Some inteferences cannot be recolored.\n");
- continue;
- }
- // RecoloringCandidates contains all the virtual registers that interfer
- // with VirtReg on PhysReg (or one of its aliases).
- // Enqueue them for recoloring and perform the actual recoloring.
- PQueue RecoloringQueue;
- for (SmallLISet::iterator It = RecoloringCandidates.begin(),
- EndIt = RecoloringCandidates.end();
- It != EndIt; ++It) {
- unsigned ItVirtReg = (*It)->reg;
- enqueue(RecoloringQueue, *It);
- assert(VRM->hasPhys(ItVirtReg) &&
- "Interferences are supposed to be with allocated vairables");
- // Record the current allocation.
- VirtRegToPhysReg[ItVirtReg] = VRM->getPhys(ItVirtReg);
- // unset the related struct.
- Matrix->unassign(**It);
- }
- // Do as if VirtReg was assigned to PhysReg so that the underlying
- // recoloring has the right information about the interferes and
- // available colors.
- Matrix->assign(VirtReg, PhysReg);
- // Save the current recoloring state.
- // If we cannot recolor all the interferences, we will have to start again
- // at this point for the next physical register.
- SmallVirtRegSet SaveFixedRegisters(FixedRegisters);
- if (tryRecoloringCandidates(RecoloringQueue, NewVRegs, FixedRegisters,
- Depth)) {
- // Do not mess up with the global assignment process.
- // I.e., VirtReg must be unassigned.
- Matrix->unassign(VirtReg);
- return PhysReg;
- }
- DEBUG(dbgs() << "Fail to assign: " << VirtReg << " to "
- << PrintReg(PhysReg, TRI) << '\n');
- // The recoloring attempt failed, undo the changes.
- FixedRegisters = SaveFixedRegisters;
- Matrix->unassign(VirtReg);
- for (SmallLISet::iterator It = RecoloringCandidates.begin(),
- EndIt = RecoloringCandidates.end();
- It != EndIt; ++It) {
- unsigned ItVirtReg = (*It)->reg;
- if (VRM->hasPhys(ItVirtReg))
- Matrix->unassign(**It);
- unsigned ItPhysReg = VirtRegToPhysReg[ItVirtReg];
- Matrix->assign(**It, ItPhysReg);
- }
- }
- // Last chance recoloring did not worked either, give up.
- return ~0u;
- }
- /// tryRecoloringCandidates - Try to assign a new color to every register
- /// in \RecoloringQueue.
- /// \p NewRegs will contain any new virtual register created during the
- /// recoloring process.
- /// \p FixedRegisters[in/out] contains all the registers that have been
- /// recolored.
- /// \return true if all virtual registers in RecoloringQueue were successfully
- /// recolored, false otherwise.
- bool RAGreedy::tryRecoloringCandidates(PQueue &RecoloringQueue,
- SmallVectorImpl<unsigned> &NewVRegs,
- SmallVirtRegSet &FixedRegisters,
- unsigned Depth) {
- while (!RecoloringQueue.empty()) {
- LiveInterval *LI = dequeue(RecoloringQueue);
- DEBUG(dbgs() << "Try to recolor: " << *LI << '\n');
- unsigned PhysReg;
- PhysReg = selectOrSplitImpl(*LI, NewVRegs, FixedRegisters, Depth + 1);
- if (PhysReg == ~0u || !PhysReg)
- return false;
- DEBUG(dbgs() << "Recoloring of " << *LI
- << " succeeded with: " << PrintReg(PhysReg, TRI) << '\n');
- Matrix->assign(*LI, PhysReg);
- FixedRegisters.insert(LI->reg);
- }
- return true;
- }
- //===----------------------------------------------------------------------===//
- // Main Entry Point
- //===----------------------------------------------------------------------===//
- unsigned RAGreedy::selectOrSplit(LiveInterval &VirtReg,
- SmallVectorImpl<unsigned> &NewVRegs) {
- CutOffInfo = CO_None;
- LLVMContext &Ctx = MF->getFunction()->getContext();
- SmallVirtRegSet FixedRegisters;
- unsigned Reg = selectOrSplitImpl(VirtReg, NewVRegs, FixedRegisters);
- if (Reg == ~0U && (CutOffInfo != CO_None)) {
- uint8_t CutOffEncountered = CutOffInfo & (CO_Depth | CO_Interf);
- if (CutOffEncountered == CO_Depth)
- Ctx.emitError("register allocation failed: maximum depth for recoloring "
- "reached. Use -fexhaustive-register-search to skip "
- "cutoffs");
- else if (CutOffEncountered == CO_Interf)
- Ctx.emitError("register allocation failed: maximum interference for "
- "recoloring reached. Use -fexhaustive-register-search "
- "to skip cutoffs");
- else if (CutOffEncountered == (CO_Depth | CO_Interf))
- Ctx.emitError("register allocation failed: maximum interference and "
- "depth for recoloring reached. Use "
- "-fexhaustive-register-search to skip cutoffs");
- }
- return Reg;
- }
- /// Using a CSR for the first time has a cost because it causes push|pop
- /// to be added to prologue|epilogue. Splitting a cold section of the live
- /// range can have lower cost than using the CSR for the first time;
- /// Spilling a live range in the cold path can have lower cost than using
- /// the CSR for the first time. Returns the physical register if we decide
- /// to use the CSR; otherwise return 0.
- unsigned RAGreedy::tryAssignCSRFirstTime(LiveInterval &VirtReg,
- AllocationOrder &Order,
- unsigned PhysReg,
- unsigned &CostPerUseLimit,
- SmallVectorImpl<unsigned> &NewVRegs) {
- if (getStage(VirtReg) == RS_Spill && VirtReg.isSpillable()) {
- // We choose spill over using the CSR for the first time if the spill cost
- // is lower than CSRCost.
- SA->analyze(&VirtReg);
- if (calcSpillCost() >= CSRCost)
- return PhysReg;
- // We are going to spill, set CostPerUseLimit to 1 to make sure that
- // we will not use a callee-saved register in tryEvict.
- CostPerUseLimit = 1;
- return 0;
- }
- if (getStage(VirtReg) < RS_Split) {
- // We choose pre-splitting over using the CSR for the first time if
- // the cost of splitting is lower than CSRCost.
- SA->analyze(&VirtReg);
- unsigned NumCands = 0;
- BlockFrequency BestCost = CSRCost; // Don't modify CSRCost.
- unsigned BestCand = calculateRegionSplitCost(VirtReg, Order, BestCost,
- NumCands, true /*IgnoreCSR*/);
- if (BestCand == NoCand)
- // Use the CSR if we can't find a region split below CSRCost.
- return PhysReg;
- // Perform the actual pre-splitting.
- doRegionSplit(VirtReg, BestCand, false/*HasCompact*/, NewVRegs);
- return 0;
- }
- return PhysReg;
- }
- void RAGreedy::aboutToRemoveInterval(LiveInterval &LI) {
- // Do not keep invalid information around.
- SetOfBrokenHints.remove(&LI);
- }
- void RAGreedy::initializeCSRCost() {
- // We use the larger one out of the command-line option and the value report
- // by TRI.
- CSRCost = BlockFrequency(
- std::max((unsigned)CSRFirstTimeCost, TRI->getCSRFirstUseCost()));
- if (!CSRCost.getFrequency())
- return;
- // Raw cost is relative to Entry == 2^14; scale it appropriately.
- uint64_t ActualEntry = MBFI->getEntryFreq();
- if (!ActualEntry) {
- CSRCost = 0;
- return;
- }
- uint64_t FixedEntry = 1 << 14;
- if (ActualEntry < FixedEntry)
- CSRCost *= BranchProbability(ActualEntry, FixedEntry);
- else if (ActualEntry <= UINT32_MAX)
- // Invert the fraction and divide.
- CSRCost /= BranchProbability(FixedEntry, ActualEntry);
- else
- // Can't use BranchProbability in general, since it takes 32-bit numbers.
- CSRCost = CSRCost.getFrequency() * (ActualEntry / FixedEntry);
- }
- /// \brief Collect the hint info for \p Reg.
- /// The results are stored into \p Out.
- /// \p Out is not cleared before being populated.
- void RAGreedy::collectHintInfo(unsigned Reg, HintsInfo &Out) {
- for (const MachineInstr &Instr : MRI->reg_nodbg_instructions(Reg)) {
- if (!Instr.isFullCopy())
- continue;
- // Look for the other end of the copy.
- unsigned OtherReg = Instr.getOperand(0).getReg();
- if (OtherReg == Reg) {
- OtherReg = Instr.getOperand(1).getReg();
- if (OtherReg == Reg)
- continue;
- }
- // Get the current assignment.
- unsigned OtherPhysReg = TargetRegisterInfo::isPhysicalRegister(OtherReg)
- ? OtherReg
- : VRM->getPhys(OtherReg);
- // Push the collected information.
- Out.push_back(HintInfo(MBFI->getBlockFreq(Instr.getParent()), OtherReg,
- OtherPhysReg));
- }
- }
- /// \brief Using the given \p List, compute the cost of the broken hints if
- /// \p PhysReg was used.
- /// \return The cost of \p List for \p PhysReg.
- BlockFrequency RAGreedy::getBrokenHintFreq(const HintsInfo &List,
- unsigned PhysReg) {
- BlockFrequency Cost = 0;
- for (const HintInfo &Info : List) {
- if (Info.PhysReg != PhysReg)
- Cost += Info.Freq;
- }
- return Cost;
- }
- /// \brief Using the register assigned to \p VirtReg, try to recolor
- /// all the live ranges that are copy-related with \p VirtReg.
- /// The recoloring is then propagated to all the live-ranges that have
- /// been recolored and so on, until no more copies can be coalesced or
- /// it is not profitable.
- /// For a given live range, profitability is determined by the sum of the
- /// frequencies of the non-identity copies it would introduce with the old
- /// and new register.
- void RAGreedy::tryHintRecoloring(LiveInterval &VirtReg) {
- // We have a broken hint, check if it is possible to fix it by
- // reusing PhysReg for the copy-related live-ranges. Indeed, we evicted
- // some register and PhysReg may be available for the other live-ranges.
- SmallSet<unsigned, 4> Visited;
- SmallVector<unsigned, 2> RecoloringCandidates;
- HintsInfo Info;
- unsigned Reg = VirtReg.reg;
- unsigned PhysReg = VRM->getPhys(Reg);
- // Start the recoloring algorithm from the input live-interval, then
- // it will propagate to the ones that are copy-related with it.
- Visited.insert(Reg);
- RecoloringCandidates.push_back(Reg);
- DEBUG(dbgs() << "Trying to reconcile hints for: " << PrintReg(Reg, TRI) << '('
- << PrintReg(PhysReg, TRI) << ")\n");
- do {
- Reg = RecoloringCandidates.pop_back_val();
- // We cannot recolor physcal register.
- if (TargetRegisterInfo::isPhysicalRegister(Reg))
- continue;
- assert(VRM->hasPhys(Reg) && "We have unallocated variable!!");
- // Get the live interval mapped with this virtual register to be able
- // to check for the interference with the new color.
- LiveInterval &LI = LIS->getInterval(Reg);
- unsigned CurrPhys = VRM->getPhys(Reg);
- // Check that the new color matches the register class constraints and
- // that it is free for this live range.
- if (CurrPhys != PhysReg && (!MRI->getRegClass(Reg)->contains(PhysReg) ||
- Matrix->checkInterference(LI, PhysReg)))
- continue;
- DEBUG(dbgs() << PrintReg(Reg, TRI) << '(' << PrintReg(CurrPhys, TRI)
- << ") is recolorable.\n");
- // Gather the hint info.
- Info.clear();
- collectHintInfo(Reg, Info);
- // Check if recoloring the live-range will increase the cost of the
- // non-identity copies.
- if (CurrPhys != PhysReg) {
- DEBUG(dbgs() << "Checking profitability:\n");
- BlockFrequency OldCopiesCost = getBrokenHintFreq(Info, CurrPhys);
- BlockFrequency NewCopiesCost = getBrokenHintFreq(Info, PhysReg);
- DEBUG(dbgs() << "Old Cost: " << OldCopiesCost.getFrequency()
- << "\nNew Cost: " << NewCopiesCost.getFrequency() << '\n');
- if (OldCopiesCost < NewCopiesCost) {
- DEBUG(dbgs() << "=> Not profitable.\n");
- continue;
- }
- // At this point, the cost is either cheaper or equal. If it is
- // equal, we consider this is profitable because it may expose
- // more recoloring opportunities.
- DEBUG(dbgs() << "=> Profitable.\n");
- // Recolor the live-range.
- Matrix->unassign(LI);
- Matrix->assign(LI, PhysReg);
- }
- // Push all copy-related live-ranges to keep reconciling the broken
- // hints.
- for (const HintInfo &HI : Info) {
- if (Visited.insert(HI.Reg).second)
- RecoloringCandidates.push_back(HI.Reg);
- }
- } while (!RecoloringCandidates.empty());
- }
- /// \brief Try to recolor broken hints.
- /// Broken hints may be repaired by recoloring when an evicted variable
- /// freed up a register for a larger live-range.
- /// Consider the following example:
- /// BB1:
- /// a =
- /// b =
- /// BB2:
- /// ...
- /// = b
- /// = a
- /// Let us assume b gets split:
- /// BB1:
- /// a =
- /// b =
- /// BB2:
- /// c = b
- /// ...
- /// d = c
- /// = d
- /// = a
- /// Because of how the allocation work, b, c, and d may be assigned different
- /// colors. Now, if a gets evicted later:
- /// BB1:
- /// a =
- /// st a, SpillSlot
- /// b =
- /// BB2:
- /// c = b
- /// ...
- /// d = c
- /// = d
- /// e = ld SpillSlot
- /// = e
- /// This is likely that we can assign the same register for b, c, and d,
- /// getting rid of 2 copies.
- void RAGreedy::tryHintsRecoloring() {
- for (LiveInterval *LI : SetOfBrokenHints) {
- assert(TargetRegisterInfo::isVirtualRegister(LI->reg) &&
- "Recoloring is possible only for virtual registers");
- // Some dead defs may be around (e.g., because of debug uses).
- // Ignore those.
- if (!VRM->hasPhys(LI->reg))
- continue;
- tryHintRecoloring(*LI);
- }
- }
- unsigned RAGreedy::selectOrSplitImpl(LiveInterval &VirtReg,
- SmallVectorImpl<unsigned> &NewVRegs,
- SmallVirtRegSet &FixedRegisters,
- unsigned Depth) {
- unsigned CostPerUseLimit = ~0u;
- // First try assigning a free register.
- AllocationOrder Order(VirtReg.reg, *VRM, RegClassInfo);
- if (unsigned PhysReg = tryAssign(VirtReg, Order, NewVRegs)) {
- // When NewVRegs is not empty, we may have made decisions such as evicting
- // a virtual register, go with the earlier decisions and use the physical
- // register.
- if (CSRCost.getFrequency() && isUnusedCalleeSavedReg(PhysReg) &&
- NewVRegs.empty()) {
- unsigned CSRReg = tryAssignCSRFirstTime(VirtReg, Order, PhysReg,
- CostPerUseLimit, NewVRegs);
- if (CSRReg || !NewVRegs.empty())
- // Return now if we decide to use a CSR or create new vregs due to
- // pre-splitting.
- return CSRReg;
- } else
- return PhysReg;
- }
- LiveRangeStage Stage = getStage(VirtReg);
- DEBUG(dbgs() << StageName[Stage]
- << " Cascade " << ExtraRegInfo[VirtReg.reg].Cascade << '\n');
- // Try to evict a less worthy live range, but only for ranges from the primary
- // queue. The RS_Split ranges already failed to do this, and they should not
- // get a second chance until they have been split.
- if (Stage != RS_Split)
- if (unsigned PhysReg =
- tryEvict(VirtReg, Order, NewVRegs, CostPerUseLimit)) {
- unsigned Hint = MRI->getSimpleHint(VirtReg.reg);
- // If VirtReg has a hint and that hint is broken record this
- // virtual register as a recoloring candidate for broken hint.
- // Indeed, since we evicted a variable in its neighborhood it is
- // likely we can at least partially recolor some of the
- // copy-related live-ranges.
- if (Hint && Hint != PhysReg)
- SetOfBrokenHints.insert(&VirtReg);
- return PhysReg;
- }
- assert(NewVRegs.empty() && "Cannot append to existing NewVRegs");
- // The first time we see a live range, don't try to split or spill.
- // Wait until the second time, when all smaller ranges have been allocated.
- // This gives a better picture of the interference to split around.
- if (Stage < RS_Split) {
- setStage(VirtReg, RS_Split);
- DEBUG(dbgs() << "wait for second round\n");
- NewVRegs.push_back(VirtReg.reg);
- return 0;
- }
- // If we couldn't allocate a register from spilling, there is probably some
- // invalid inline assembly. The base class wil report it.
- if (Stage >= RS_Done || !VirtReg.isSpillable())
- return tryLastChanceRecoloring(VirtReg, Order, NewVRegs, FixedRegisters,
- Depth);
- // Try splitting VirtReg or interferences.
- unsigned PhysReg = trySplit(VirtReg, Order, NewVRegs);
- if (PhysReg || !NewVRegs.empty())
- return PhysReg;
- // Finally spill VirtReg itself.
- NamedRegionTimer T("Spiller", TimerGroupName, TimePassesIsEnabled);
- LiveRangeEdit LRE(&VirtReg, NewVRegs, *MF, *LIS, VRM, this);
- spiller().spill(LRE);
- setStage(NewVRegs.begin(), NewVRegs.end(), RS_Done);
- if (VerifyEnabled)
- MF->verify(this, "After spilling");
- // The live virtual register requesting allocation was spilled, so tell
- // the caller not to allocate anything during this round.
- return 0;
- }
- bool RAGreedy::runOnMachineFunction(MachineFunction &mf) {
- DEBUG(dbgs() << "********** GREEDY REGISTER ALLOCATION **********\n"
- << "********** Function: " << mf.getName() << '\n');
- MF = &mf;
- TRI = MF->getSubtarget().getRegisterInfo();
- TII = MF->getSubtarget().getInstrInfo();
- RCI.runOnMachineFunction(mf);
- EnableLocalReassign = EnableLocalReassignment ||
- MF->getSubtarget().enableRALocalReassignment(
- MF->getTarget().getOptLevel());
- if (VerifyEnabled)
- MF->verify(this, "Before greedy register allocator");
- RegAllocBase::init(getAnalysis<VirtRegMap>(),
- getAnalysis<LiveIntervals>(),
- getAnalysis<LiveRegMatrix>());
- Indexes = &getAnalysis<SlotIndexes>();
- MBFI = &getAnalysis<MachineBlockFrequencyInfo>();
- DomTree = &getAnalysis<MachineDominatorTree>();
- SpillerInstance.reset(createInlineSpiller(*this, *MF, *VRM));
- Loops = &getAnalysis<MachineLoopInfo>();
- Bundles = &getAnalysis<EdgeBundles>();
- SpillPlacer = &getAnalysis<SpillPlacement>();
- DebugVars = &getAnalysis<LiveDebugVariables>();
- initializeCSRCost();
- calculateSpillWeightsAndHints(*LIS, mf, *Loops, *MBFI);
- DEBUG(LIS->dump());
- SA.reset(new SplitAnalysis(*VRM, *LIS, *Loops));
- SE.reset(new SplitEditor(*SA, *LIS, *VRM, *DomTree, *MBFI));
- ExtraRegInfo.clear();
- ExtraRegInfo.resize(MRI->getNumVirtRegs());
- NextCascade = 1;
- IntfCache.init(MF, Matrix->getLiveUnions(), Indexes, LIS, TRI);
- GlobalCand.resize(32); // This will grow as needed.
- SetOfBrokenHints.clear();
- allocatePhysRegs();
- tryHintsRecoloring();
- releaseMemory();
- return true;
- }
|