123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642 |
- //===---- ScheduleDAG.cpp - Implement the ScheduleDAG class ---------------===//
- //
- // The LLVM Compiler Infrastructure
- //
- // This file is distributed under the University of Illinois Open Source
- // License. See LICENSE.TXT for details.
- //
- //===----------------------------------------------------------------------===//
- //
- // This implements the ScheduleDAG class, which is a base class used by
- // scheduling implementation classes.
- //
- //===----------------------------------------------------------------------===//
- #include "llvm/CodeGen/ScheduleDAG.h"
- #include "llvm/CodeGen/ScheduleHazardRecognizer.h"
- #include "llvm/CodeGen/SelectionDAGNodes.h"
- #include "llvm/Support/CommandLine.h"
- #include "llvm/Support/Debug.h"
- #include "llvm/Support/raw_ostream.h"
- #include "llvm/Target/TargetInstrInfo.h"
- #include "llvm/Target/TargetMachine.h"
- #include "llvm/Target/TargetRegisterInfo.h"
- #include "llvm/Target/TargetSubtargetInfo.h"
- #include <climits>
- using namespace llvm;
- #define DEBUG_TYPE "pre-RA-sched"
- #ifndef NDEBUG
- static cl::opt<bool> StressSchedOpt(
- "stress-sched", cl::Hidden, cl::init(false),
- cl::desc("Stress test instruction scheduling"));
- #endif
- void SchedulingPriorityQueue::anchor() { }
- ScheduleDAG::ScheduleDAG(MachineFunction &mf)
- : TM(mf.getTarget()), TII(mf.getSubtarget().getInstrInfo()),
- TRI(mf.getSubtarget().getRegisterInfo()), MF(mf),
- MRI(mf.getRegInfo()), EntrySU(), ExitSU() {
- #ifndef NDEBUG
- StressSched = StressSchedOpt;
- #endif
- }
- ScheduleDAG::~ScheduleDAG() {}
- /// Clear the DAG state (e.g. between scheduling regions).
- void ScheduleDAG::clearDAG() {
- SUnits.clear();
- EntrySU = SUnit();
- ExitSU = SUnit();
- }
- /// getInstrDesc helper to handle SDNodes.
- const MCInstrDesc *ScheduleDAG::getNodeDesc(const SDNode *Node) const {
- if (!Node || !Node->isMachineOpcode()) return nullptr;
- return &TII->get(Node->getMachineOpcode());
- }
- /// addPred - This adds the specified edge as a pred of the current node if
- /// not already. It also adds the current node as a successor of the
- /// specified node.
- bool SUnit::addPred(const SDep &D, bool Required) {
- // If this node already has this dependence, don't add a redundant one.
- for (SmallVectorImpl<SDep>::iterator I = Preds.begin(), E = Preds.end();
- I != E; ++I) {
- // Zero-latency weak edges may be added purely for heuristic ordering. Don't
- // add them if another kind of edge already exists.
- if (!Required && I->getSUnit() == D.getSUnit())
- return false;
- if (I->overlaps(D)) {
- // Extend the latency if needed. Equivalent to removePred(I) + addPred(D).
- if (I->getLatency() < D.getLatency()) {
- SUnit *PredSU = I->getSUnit();
- // Find the corresponding successor in N.
- SDep ForwardD = *I;
- ForwardD.setSUnit(this);
- for (SmallVectorImpl<SDep>::iterator II = PredSU->Succs.begin(),
- EE = PredSU->Succs.end(); II != EE; ++II) {
- if (*II == ForwardD) {
- II->setLatency(D.getLatency());
- break;
- }
- }
- I->setLatency(D.getLatency());
- }
- return false;
- }
- }
- // Now add a corresponding succ to N.
- SDep P = D;
- P.setSUnit(this);
- SUnit *N = D.getSUnit();
- // Update the bookkeeping.
- if (D.getKind() == SDep::Data) {
- assert(NumPreds < UINT_MAX && "NumPreds will overflow!");
- assert(N->NumSuccs < UINT_MAX && "NumSuccs will overflow!");
- ++NumPreds;
- ++N->NumSuccs;
- }
- if (!N->isScheduled) {
- if (D.isWeak()) {
- ++WeakPredsLeft;
- }
- else {
- assert(NumPredsLeft < UINT_MAX && "NumPredsLeft will overflow!");
- ++NumPredsLeft;
- }
- }
- if (!isScheduled) {
- if (D.isWeak()) {
- ++N->WeakSuccsLeft;
- }
- else {
- assert(N->NumSuccsLeft < UINT_MAX && "NumSuccsLeft will overflow!");
- ++N->NumSuccsLeft;
- }
- }
- Preds.push_back(D);
- N->Succs.push_back(P);
- if (P.getLatency() != 0) {
- this->setDepthDirty();
- N->setHeightDirty();
- }
- return true;
- }
- /// removePred - This removes the specified edge as a pred of the current
- /// node if it exists. It also removes the current node as a successor of
- /// the specified node.
- void SUnit::removePred(const SDep &D) {
- // Find the matching predecessor.
- for (SmallVectorImpl<SDep>::iterator I = Preds.begin(), E = Preds.end();
- I != E; ++I)
- if (*I == D) {
- // Find the corresponding successor in N.
- SDep P = D;
- P.setSUnit(this);
- SUnit *N = D.getSUnit();
- SmallVectorImpl<SDep>::iterator Succ = std::find(N->Succs.begin(),
- N->Succs.end(), P);
- assert(Succ != N->Succs.end() && "Mismatching preds / succs lists!");
- N->Succs.erase(Succ);
- Preds.erase(I);
- // Update the bookkeeping.
- if (P.getKind() == SDep::Data) {
- assert(NumPreds > 0 && "NumPreds will underflow!");
- assert(N->NumSuccs > 0 && "NumSuccs will underflow!");
- --NumPreds;
- --N->NumSuccs;
- }
- if (!N->isScheduled) {
- if (D.isWeak())
- --WeakPredsLeft;
- else {
- assert(NumPredsLeft > 0 && "NumPredsLeft will underflow!");
- --NumPredsLeft;
- }
- }
- if (!isScheduled) {
- if (D.isWeak())
- --N->WeakSuccsLeft;
- else {
- assert(N->NumSuccsLeft > 0 && "NumSuccsLeft will underflow!");
- --N->NumSuccsLeft;
- }
- }
- if (P.getLatency() != 0) {
- this->setDepthDirty();
- N->setHeightDirty();
- }
- return;
- }
- }
- void SUnit::setDepthDirty() {
- if (!isDepthCurrent) return;
- SmallVector<SUnit*, 8> WorkList;
- WorkList.push_back(this);
- do {
- SUnit *SU = WorkList.pop_back_val();
- SU->isDepthCurrent = false;
- for (SUnit::const_succ_iterator I = SU->Succs.begin(),
- E = SU->Succs.end(); I != E; ++I) {
- SUnit *SuccSU = I->getSUnit();
- if (SuccSU->isDepthCurrent)
- WorkList.push_back(SuccSU);
- }
- } while (!WorkList.empty());
- }
- void SUnit::setHeightDirty() {
- if (!isHeightCurrent) return;
- SmallVector<SUnit*, 8> WorkList;
- WorkList.push_back(this);
- do {
- SUnit *SU = WorkList.pop_back_val();
- SU->isHeightCurrent = false;
- for (SUnit::const_pred_iterator I = SU->Preds.begin(),
- E = SU->Preds.end(); I != E; ++I) {
- SUnit *PredSU = I->getSUnit();
- if (PredSU->isHeightCurrent)
- WorkList.push_back(PredSU);
- }
- } while (!WorkList.empty());
- }
- /// setDepthToAtLeast - Update this node's successors to reflect the
- /// fact that this node's depth just increased.
- ///
- void SUnit::setDepthToAtLeast(unsigned NewDepth) {
- if (NewDepth <= getDepth())
- return;
- setDepthDirty();
- Depth = NewDepth;
- isDepthCurrent = true;
- }
- /// setHeightToAtLeast - Update this node's predecessors to reflect the
- /// fact that this node's height just increased.
- ///
- void SUnit::setHeightToAtLeast(unsigned NewHeight) {
- if (NewHeight <= getHeight())
- return;
- setHeightDirty();
- Height = NewHeight;
- isHeightCurrent = true;
- }
- /// ComputeDepth - Calculate the maximal path from the node to the exit.
- ///
- void SUnit::ComputeDepth() {
- SmallVector<SUnit*, 8> WorkList;
- WorkList.push_back(this);
- do {
- SUnit *Cur = WorkList.back();
- bool Done = true;
- unsigned MaxPredDepth = 0;
- for (SUnit::const_pred_iterator I = Cur->Preds.begin(),
- E = Cur->Preds.end(); I != E; ++I) {
- SUnit *PredSU = I->getSUnit();
- if (PredSU->isDepthCurrent)
- MaxPredDepth = std::max(MaxPredDepth,
- PredSU->Depth + I->getLatency());
- else {
- Done = false;
- WorkList.push_back(PredSU);
- }
- }
- if (Done) {
- WorkList.pop_back();
- if (MaxPredDepth != Cur->Depth) {
- Cur->setDepthDirty();
- Cur->Depth = MaxPredDepth;
- }
- Cur->isDepthCurrent = true;
- }
- } while (!WorkList.empty());
- }
- /// ComputeHeight - Calculate the maximal path from the node to the entry.
- ///
- void SUnit::ComputeHeight() {
- SmallVector<SUnit*, 8> WorkList;
- WorkList.push_back(this);
- do {
- SUnit *Cur = WorkList.back();
- bool Done = true;
- unsigned MaxSuccHeight = 0;
- for (SUnit::const_succ_iterator I = Cur->Succs.begin(),
- E = Cur->Succs.end(); I != E; ++I) {
- SUnit *SuccSU = I->getSUnit();
- if (SuccSU->isHeightCurrent)
- MaxSuccHeight = std::max(MaxSuccHeight,
- SuccSU->Height + I->getLatency());
- else {
- Done = false;
- WorkList.push_back(SuccSU);
- }
- }
- if (Done) {
- WorkList.pop_back();
- if (MaxSuccHeight != Cur->Height) {
- Cur->setHeightDirty();
- Cur->Height = MaxSuccHeight;
- }
- Cur->isHeightCurrent = true;
- }
- } while (!WorkList.empty());
- }
- void SUnit::biasCriticalPath() {
- if (NumPreds < 2)
- return;
- SUnit::pred_iterator BestI = Preds.begin();
- unsigned MaxDepth = BestI->getSUnit()->getDepth();
- for (SUnit::pred_iterator I = std::next(BestI), E = Preds.end(); I != E;
- ++I) {
- if (I->getKind() == SDep::Data && I->getSUnit()->getDepth() > MaxDepth)
- BestI = I;
- }
- if (BestI != Preds.begin())
- std::swap(*Preds.begin(), *BestI);
- }
- #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
- /// SUnit - Scheduling unit. It's an wrapper around either a single SDNode or
- /// a group of nodes flagged together.
- void SUnit::dump(const ScheduleDAG *G) const {
- dbgs() << "SU(" << NodeNum << "): ";
- G->dumpNode(this);
- }
- void SUnit::dumpAll(const ScheduleDAG *G) const {
- dump(G);
- dbgs() << " # preds left : " << NumPredsLeft << "\n";
- dbgs() << " # succs left : " << NumSuccsLeft << "\n";
- if (WeakPredsLeft)
- dbgs() << " # weak preds left : " << WeakPredsLeft << "\n";
- if (WeakSuccsLeft)
- dbgs() << " # weak succs left : " << WeakSuccsLeft << "\n";
- dbgs() << " # rdefs left : " << NumRegDefsLeft << "\n";
- dbgs() << " Latency : " << Latency << "\n";
- dbgs() << " Depth : " << getDepth() << "\n";
- dbgs() << " Height : " << getHeight() << "\n";
- if (Preds.size() != 0) {
- dbgs() << " Predecessors:\n";
- for (SUnit::const_succ_iterator I = Preds.begin(), E = Preds.end();
- I != E; ++I) {
- dbgs() << " ";
- switch (I->getKind()) {
- case SDep::Data: dbgs() << "val "; break;
- case SDep::Anti: dbgs() << "anti"; break;
- case SDep::Output: dbgs() << "out "; break;
- case SDep::Order: dbgs() << "ch "; break;
- }
- dbgs() << "SU(" << I->getSUnit()->NodeNum << ")";
- if (I->isArtificial())
- dbgs() << " *";
- dbgs() << ": Latency=" << I->getLatency();
- if (I->isAssignedRegDep())
- dbgs() << " Reg=" << PrintReg(I->getReg(), G->TRI);
- dbgs() << "\n";
- }
- }
- if (Succs.size() != 0) {
- dbgs() << " Successors:\n";
- for (SUnit::const_succ_iterator I = Succs.begin(), E = Succs.end();
- I != E; ++I) {
- dbgs() << " ";
- switch (I->getKind()) {
- case SDep::Data: dbgs() << "val "; break;
- case SDep::Anti: dbgs() << "anti"; break;
- case SDep::Output: dbgs() << "out "; break;
- case SDep::Order: dbgs() << "ch "; break;
- }
- dbgs() << "SU(" << I->getSUnit()->NodeNum << ")";
- if (I->isArtificial())
- dbgs() << " *";
- dbgs() << ": Latency=" << I->getLatency();
- if (I->isAssignedRegDep())
- dbgs() << " Reg=" << PrintReg(I->getReg(), G->TRI);
- dbgs() << "\n";
- }
- }
- dbgs() << "\n";
- }
- #endif
- #ifndef NDEBUG
- /// VerifyScheduledDAG - Verify that all SUnits were scheduled and that
- /// their state is consistent. Return the number of scheduled nodes.
- ///
- unsigned ScheduleDAG::VerifyScheduledDAG(bool isBottomUp) {
- bool AnyNotSched = false;
- unsigned DeadNodes = 0;
- for (unsigned i = 0, e = SUnits.size(); i != e; ++i) {
- if (!SUnits[i].isScheduled) {
- if (SUnits[i].NumPreds == 0 && SUnits[i].NumSuccs == 0) {
- ++DeadNodes;
- continue;
- }
- if (!AnyNotSched)
- dbgs() << "*** Scheduling failed! ***\n";
- SUnits[i].dump(this);
- dbgs() << "has not been scheduled!\n";
- AnyNotSched = true;
- }
- if (SUnits[i].isScheduled &&
- (isBottomUp ? SUnits[i].getHeight() : SUnits[i].getDepth()) >
- unsigned(INT_MAX)) {
- if (!AnyNotSched)
- dbgs() << "*** Scheduling failed! ***\n";
- SUnits[i].dump(this);
- dbgs() << "has an unexpected "
- << (isBottomUp ? "Height" : "Depth") << " value!\n";
- AnyNotSched = true;
- }
- if (isBottomUp) {
- if (SUnits[i].NumSuccsLeft != 0) {
- if (!AnyNotSched)
- dbgs() << "*** Scheduling failed! ***\n";
- SUnits[i].dump(this);
- dbgs() << "has successors left!\n";
- AnyNotSched = true;
- }
- } else {
- if (SUnits[i].NumPredsLeft != 0) {
- if (!AnyNotSched)
- dbgs() << "*** Scheduling failed! ***\n";
- SUnits[i].dump(this);
- dbgs() << "has predecessors left!\n";
- AnyNotSched = true;
- }
- }
- }
- assert(!AnyNotSched);
- return SUnits.size() - DeadNodes;
- }
- #endif
- /// InitDAGTopologicalSorting - create the initial topological
- /// ordering from the DAG to be scheduled.
- ///
- /// The idea of the algorithm is taken from
- /// "Online algorithms for managing the topological order of
- /// a directed acyclic graph" by David J. Pearce and Paul H.J. Kelly
- /// This is the MNR algorithm, which was first introduced by
- /// A. Marchetti-Spaccamela, U. Nanni and H. Rohnert in
- /// "Maintaining a topological order under edge insertions".
- ///
- /// Short description of the algorithm:
- ///
- /// Topological ordering, ord, of a DAG maps each node to a topological
- /// index so that for all edges X->Y it is the case that ord(X) < ord(Y).
- ///
- /// This means that if there is a path from the node X to the node Z,
- /// then ord(X) < ord(Z).
- ///
- /// This property can be used to check for reachability of nodes:
- /// if Z is reachable from X, then an insertion of the edge Z->X would
- /// create a cycle.
- ///
- /// The algorithm first computes a topological ordering for the DAG by
- /// initializing the Index2Node and Node2Index arrays and then tries to keep
- /// the ordering up-to-date after edge insertions by reordering the DAG.
- ///
- /// On insertion of the edge X->Y, the algorithm first marks by calling DFS
- /// the nodes reachable from Y, and then shifts them using Shift to lie
- /// immediately after X in Index2Node.
- void ScheduleDAGTopologicalSort::InitDAGTopologicalSorting() {
- unsigned DAGSize = SUnits.size();
- std::vector<SUnit*> WorkList;
- WorkList.reserve(DAGSize);
- Index2Node.resize(DAGSize);
- Node2Index.resize(DAGSize);
- // Initialize the data structures.
- if (ExitSU)
- WorkList.push_back(ExitSU);
- for (unsigned i = 0, e = DAGSize; i != e; ++i) {
- SUnit *SU = &SUnits[i];
- int NodeNum = SU->NodeNum;
- unsigned Degree = SU->Succs.size();
- // Temporarily use the Node2Index array as scratch space for degree counts.
- Node2Index[NodeNum] = Degree;
- // Is it a node without dependencies?
- if (Degree == 0) {
- assert(SU->Succs.empty() && "SUnit should have no successors");
- // Collect leaf nodes.
- WorkList.push_back(SU);
- }
- }
- int Id = DAGSize;
- while (!WorkList.empty()) {
- SUnit *SU = WorkList.back();
- WorkList.pop_back();
- if (SU->NodeNum < DAGSize)
- Allocate(SU->NodeNum, --Id);
- for (SUnit::const_pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
- I != E; ++I) {
- SUnit *SU = I->getSUnit();
- if (SU->NodeNum < DAGSize && !--Node2Index[SU->NodeNum])
- // If all dependencies of the node are processed already,
- // then the node can be computed now.
- WorkList.push_back(SU);
- }
- }
- Visited.resize(DAGSize);
- #ifndef NDEBUG
- // Check correctness of the ordering
- for (unsigned i = 0, e = DAGSize; i != e; ++i) {
- SUnit *SU = &SUnits[i];
- for (SUnit::const_pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
- I != E; ++I) {
- assert(Node2Index[SU->NodeNum] > Node2Index[I->getSUnit()->NodeNum] &&
- "Wrong topological sorting");
- }
- }
- #endif
- }
- /// AddPred - Updates the topological ordering to accommodate an edge
- /// to be added from SUnit X to SUnit Y.
- void ScheduleDAGTopologicalSort::AddPred(SUnit *Y, SUnit *X) {
- int UpperBound, LowerBound;
- LowerBound = Node2Index[Y->NodeNum];
- UpperBound = Node2Index[X->NodeNum];
- bool HasLoop = false;
- // Is Ord(X) < Ord(Y) ?
- if (LowerBound < UpperBound) {
- // Update the topological order.
- Visited.reset();
- DFS(Y, UpperBound, HasLoop);
- assert(!HasLoop && "Inserted edge creates a loop!");
- // Recompute topological indexes.
- Shift(Visited, LowerBound, UpperBound);
- }
- }
- /// RemovePred - Updates the topological ordering to accommodate an
- /// an edge to be removed from the specified node N from the predecessors
- /// of the current node M.
- void ScheduleDAGTopologicalSort::RemovePred(SUnit *M, SUnit *N) {
- // InitDAGTopologicalSorting();
- }
- /// DFS - Make a DFS traversal to mark all nodes reachable from SU and mark
- /// all nodes affected by the edge insertion. These nodes will later get new
- /// topological indexes by means of the Shift method.
- void ScheduleDAGTopologicalSort::DFS(const SUnit *SU, int UpperBound,
- bool &HasLoop) {
- std::vector<const SUnit*> WorkList;
- WorkList.reserve(SUnits.size());
- WorkList.push_back(SU);
- do {
- SU = WorkList.back();
- WorkList.pop_back();
- Visited.set(SU->NodeNum);
- for (int I = SU->Succs.size()-1; I >= 0; --I) {
- unsigned s = SU->Succs[I].getSUnit()->NodeNum;
- // Edges to non-SUnits are allowed but ignored (e.g. ExitSU).
- if (s >= Node2Index.size())
- continue;
- if (Node2Index[s] == UpperBound) {
- HasLoop = true;
- return;
- }
- // Visit successors if not already and in affected region.
- if (!Visited.test(s) && Node2Index[s] < UpperBound) {
- WorkList.push_back(SU->Succs[I].getSUnit());
- }
- }
- } while (!WorkList.empty());
- }
- /// Shift - Renumber the nodes so that the topological ordering is
- /// preserved.
- void ScheduleDAGTopologicalSort::Shift(BitVector& Visited, int LowerBound,
- int UpperBound) {
- std::vector<int> L;
- int shift = 0;
- int i;
- for (i = LowerBound; i <= UpperBound; ++i) {
- // w is node at topological index i.
- int w = Index2Node[i];
- if (Visited.test(w)) {
- // Unmark.
- Visited.reset(w);
- L.push_back(w);
- shift = shift + 1;
- } else {
- Allocate(w, i - shift);
- }
- }
- for (unsigned j = 0; j < L.size(); ++j) {
- Allocate(L[j], i - shift);
- i = i + 1;
- }
- }
- /// WillCreateCycle - Returns true if adding an edge to TargetSU from SU will
- /// create a cycle. If so, it is not safe to call AddPred(TargetSU, SU).
- bool ScheduleDAGTopologicalSort::WillCreateCycle(SUnit *TargetSU, SUnit *SU) {
- // Is SU reachable from TargetSU via successor edges?
- if (IsReachable(SU, TargetSU))
- return true;
- for (SUnit::pred_iterator
- I = TargetSU->Preds.begin(), E = TargetSU->Preds.end(); I != E; ++I)
- if (I->isAssignedRegDep() &&
- IsReachable(SU, I->getSUnit()))
- return true;
- return false;
- }
- /// IsReachable - Checks if SU is reachable from TargetSU.
- bool ScheduleDAGTopologicalSort::IsReachable(const SUnit *SU,
- const SUnit *TargetSU) {
- // If insertion of the edge SU->TargetSU would create a cycle
- // then there is a path from TargetSU to SU.
- int UpperBound, LowerBound;
- LowerBound = Node2Index[TargetSU->NodeNum];
- UpperBound = Node2Index[SU->NodeNum];
- bool HasLoop = false;
- // Is Ord(TargetSU) < Ord(SU) ?
- if (LowerBound < UpperBound) {
- Visited.reset();
- // There may be a path from TargetSU to SU. Check for it.
- DFS(TargetSU, UpperBound, HasLoop);
- }
- return HasLoop;
- }
- /// Allocate - assign the topological index to the node n.
- void ScheduleDAGTopologicalSort::Allocate(int n, int index) {
- Node2Index[n] = index;
- Index2Node[index] = n;
- }
- ScheduleDAGTopologicalSort::
- ScheduleDAGTopologicalSort(std::vector<SUnit> &sunits, SUnit *exitsu)
- : SUnits(sunits), ExitSU(exitsu) {}
- ScheduleHazardRecognizer::~ScheduleHazardRecognizer() {}
|