123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605 |
- //===---- ScheduleDAGInstrs.cpp - MachineInstr Rescheduling ---------------===//
- //
- // The LLVM Compiler Infrastructure
- //
- // This file is distributed under the University of Illinois Open Source
- // License. See LICENSE.TXT for details.
- //
- //===----------------------------------------------------------------------===//
- //
- // This implements the ScheduleDAGInstrs class, which implements re-scheduling
- // of MachineInstrs.
- //
- //===----------------------------------------------------------------------===//
- #include "llvm/CodeGen/ScheduleDAGInstrs.h"
- #include "llvm/ADT/MapVector.h"
- #include "llvm/ADT/SmallPtrSet.h"
- #include "llvm/ADT/SmallSet.h"
- #include "llvm/Analysis/AliasAnalysis.h"
- #include "llvm/Analysis/ValueTracking.h"
- #include "llvm/CodeGen/LiveIntervalAnalysis.h"
- #include "llvm/CodeGen/MachineFunctionPass.h"
- #include "llvm/CodeGen/MachineFrameInfo.h"
- #include "llvm/CodeGen/MachineInstrBuilder.h"
- #include "llvm/CodeGen/MachineMemOperand.h"
- #include "llvm/CodeGen/MachineRegisterInfo.h"
- #include "llvm/CodeGen/PseudoSourceValue.h"
- #include "llvm/CodeGen/RegisterPressure.h"
- #include "llvm/CodeGen/ScheduleDFS.h"
- #include "llvm/IR/Operator.h"
- #include "llvm/Support/CommandLine.h"
- #include "llvm/Support/Debug.h"
- #include "llvm/Support/Format.h"
- #include "llvm/Support/raw_ostream.h"
- #include "llvm/Target/TargetInstrInfo.h"
- #include "llvm/Target/TargetMachine.h"
- #include "llvm/Target/TargetRegisterInfo.h"
- #include "llvm/Target/TargetSubtargetInfo.h"
- #include <queue>
- using namespace llvm;
- #define DEBUG_TYPE "misched"
- static cl::opt<bool> EnableAASchedMI("enable-aa-sched-mi", cl::Hidden,
- cl::ZeroOrMore, cl::init(false),
- cl::desc("Enable use of AA during MI DAG construction"));
- static cl::opt<bool> UseTBAA("use-tbaa-in-sched-mi", cl::Hidden,
- cl::init(true), cl::desc("Enable use of TBAA during MI DAG construction"));
- ScheduleDAGInstrs::ScheduleDAGInstrs(MachineFunction &mf,
- const MachineLoopInfo *mli,
- bool IsPostRAFlag, bool RemoveKillFlags,
- LiveIntervals *lis)
- : ScheduleDAG(mf), MLI(mli), MFI(mf.getFrameInfo()), LIS(lis),
- IsPostRA(IsPostRAFlag), RemoveKillFlags(RemoveKillFlags),
- CanHandleTerminators(false), FirstDbgValue(nullptr) {
- assert((IsPostRA || LIS) && "PreRA scheduling requires LiveIntervals");
- DbgValues.clear();
- assert(!(IsPostRA && MRI.getNumVirtRegs()) &&
- "Virtual registers must be removed prior to PostRA scheduling");
- const TargetSubtargetInfo &ST = mf.getSubtarget();
- SchedModel.init(ST.getSchedModel(), &ST, TII);
- }
- /// getUnderlyingObjectFromInt - This is the function that does the work of
- /// looking through basic ptrtoint+arithmetic+inttoptr sequences.
- static const Value *getUnderlyingObjectFromInt(const Value *V) {
- do {
- if (const Operator *U = dyn_cast<Operator>(V)) {
- // If we find a ptrtoint, we can transfer control back to the
- // regular getUnderlyingObjectFromInt.
- if (U->getOpcode() == Instruction::PtrToInt)
- return U->getOperand(0);
- // If we find an add of a constant, a multiplied value, or a phi, it's
- // likely that the other operand will lead us to the base
- // object. We don't have to worry about the case where the
- // object address is somehow being computed by the multiply,
- // because our callers only care when the result is an
- // identifiable object.
- if (U->getOpcode() != Instruction::Add ||
- (!isa<ConstantInt>(U->getOperand(1)) &&
- Operator::getOpcode(U->getOperand(1)) != Instruction::Mul &&
- !isa<PHINode>(U->getOperand(1))))
- return V;
- V = U->getOperand(0);
- } else {
- return V;
- }
- assert(V->getType()->isIntegerTy() && "Unexpected operand type!");
- } while (1);
- }
- /// getUnderlyingObjects - This is a wrapper around GetUnderlyingObjects
- /// and adds support for basic ptrtoint+arithmetic+inttoptr sequences.
- static void getUnderlyingObjects(const Value *V,
- SmallVectorImpl<Value *> &Objects,
- const DataLayout &DL) {
- SmallPtrSet<const Value *, 16> Visited;
- SmallVector<const Value *, 4> Working(1, V);
- do {
- V = Working.pop_back_val();
- SmallVector<Value *, 4> Objs;
- GetUnderlyingObjects(const_cast<Value *>(V), Objs, DL);
- for (SmallVectorImpl<Value *>::iterator I = Objs.begin(), IE = Objs.end();
- I != IE; ++I) {
- V = *I;
- if (!Visited.insert(V).second)
- continue;
- if (Operator::getOpcode(V) == Instruction::IntToPtr) {
- const Value *O =
- getUnderlyingObjectFromInt(cast<User>(V)->getOperand(0));
- if (O->getType()->isPointerTy()) {
- Working.push_back(O);
- continue;
- }
- }
- Objects.push_back(const_cast<Value *>(V));
- }
- } while (!Working.empty());
- }
- typedef PointerUnion<const Value *, const PseudoSourceValue *> ValueType;
- typedef SmallVector<PointerIntPair<ValueType, 1, bool>, 4>
- UnderlyingObjectsVector;
- /// getUnderlyingObjectsForInstr - If this machine instr has memory reference
- /// information and it can be tracked to a normal reference to a known
- /// object, return the Value for that object.
- static void getUnderlyingObjectsForInstr(const MachineInstr *MI,
- const MachineFrameInfo *MFI,
- UnderlyingObjectsVector &Objects,
- const DataLayout &DL) {
- if (!MI->hasOneMemOperand() ||
- (!(*MI->memoperands_begin())->getValue() &&
- !(*MI->memoperands_begin())->getPseudoValue()) ||
- (*MI->memoperands_begin())->isVolatile())
- return;
- if (const PseudoSourceValue *PSV =
- (*MI->memoperands_begin())->getPseudoValue()) {
- // Function that contain tail calls don't have unique PseudoSourceValue
- // objects. Two PseudoSourceValues might refer to the same or overlapping
- // locations. The client code calling this function assumes this is not the
- // case. So return a conservative answer of no known object.
- if (MFI->hasTailCall())
- return;
- // For now, ignore PseudoSourceValues which may alias LLVM IR values
- // because the code that uses this function has no way to cope with
- // such aliases.
- if (!PSV->isAliased(MFI)) {
- bool MayAlias = PSV->mayAlias(MFI);
- Objects.push_back(UnderlyingObjectsVector::value_type(PSV, MayAlias));
- }
- return;
- }
- const Value *V = (*MI->memoperands_begin())->getValue();
- if (!V)
- return;
- SmallVector<Value *, 4> Objs;
- getUnderlyingObjects(V, Objs, DL);
- for (Value *V : Objs) {
- if (!isIdentifiedObject(V)) {
- Objects.clear();
- return;
- }
- Objects.push_back(UnderlyingObjectsVector::value_type(V, true));
- }
- }
- void ScheduleDAGInstrs::startBlock(MachineBasicBlock *bb) {
- BB = bb;
- }
- void ScheduleDAGInstrs::finishBlock() {
- // Subclasses should no longer refer to the old block.
- BB = nullptr;
- }
- /// Initialize the DAG and common scheduler state for the current scheduling
- /// region. This does not actually create the DAG, only clears it. The
- /// scheduling driver may call BuildSchedGraph multiple times per scheduling
- /// region.
- void ScheduleDAGInstrs::enterRegion(MachineBasicBlock *bb,
- MachineBasicBlock::iterator begin,
- MachineBasicBlock::iterator end,
- unsigned regioninstrs) {
- assert(bb == BB && "startBlock should set BB");
- RegionBegin = begin;
- RegionEnd = end;
- NumRegionInstrs = regioninstrs;
- }
- /// Close the current scheduling region. Don't clear any state in case the
- /// driver wants to refer to the previous scheduling region.
- void ScheduleDAGInstrs::exitRegion() {
- // Nothing to do.
- }
- /// addSchedBarrierDeps - Add dependencies from instructions in the current
- /// list of instructions being scheduled to scheduling barrier by adding
- /// the exit SU to the register defs and use list. This is because we want to
- /// make sure instructions which define registers that are either used by
- /// the terminator or are live-out are properly scheduled. This is
- /// especially important when the definition latency of the return value(s)
- /// are too high to be hidden by the branch or when the liveout registers
- /// used by instructions in the fallthrough block.
- void ScheduleDAGInstrs::addSchedBarrierDeps() {
- MachineInstr *ExitMI = RegionEnd != BB->end() ? &*RegionEnd : nullptr;
- ExitSU.setInstr(ExitMI);
- bool AllDepKnown = ExitMI &&
- (ExitMI->isCall() || ExitMI->isBarrier());
- if (ExitMI && AllDepKnown) {
- // If it's a call or a barrier, add dependencies on the defs and uses of
- // instruction.
- for (unsigned i = 0, e = ExitMI->getNumOperands(); i != e; ++i) {
- const MachineOperand &MO = ExitMI->getOperand(i);
- if (!MO.isReg() || MO.isDef()) continue;
- unsigned Reg = MO.getReg();
- if (Reg == 0) continue;
- if (TRI->isPhysicalRegister(Reg))
- Uses.insert(PhysRegSUOper(&ExitSU, -1, Reg));
- else {
- assert(!IsPostRA && "Virtual register encountered after regalloc.");
- if (MO.readsReg()) // ignore undef operands
- addVRegUseDeps(&ExitSU, i);
- }
- }
- } else {
- // For others, e.g. fallthrough, conditional branch, assume the exit
- // uses all the registers that are livein to the successor blocks.
- assert(Uses.empty() && "Uses in set before adding deps?");
- for (MachineBasicBlock::succ_iterator SI = BB->succ_begin(),
- SE = BB->succ_end(); SI != SE; ++SI)
- for (MachineBasicBlock::livein_iterator I = (*SI)->livein_begin(),
- E = (*SI)->livein_end(); I != E; ++I) {
- unsigned Reg = *I;
- if (!Uses.contains(Reg))
- Uses.insert(PhysRegSUOper(&ExitSU, -1, Reg));
- }
- }
- }
- /// MO is an operand of SU's instruction that defines a physical register. Add
- /// data dependencies from SU to any uses of the physical register.
- void ScheduleDAGInstrs::addPhysRegDataDeps(SUnit *SU, unsigned OperIdx) {
- const MachineOperand &MO = SU->getInstr()->getOperand(OperIdx);
- assert(MO.isDef() && "expect physreg def");
- // Ask the target if address-backscheduling is desirable, and if so how much.
- const TargetSubtargetInfo &ST = MF.getSubtarget();
- for (MCRegAliasIterator Alias(MO.getReg(), TRI, true);
- Alias.isValid(); ++Alias) {
- if (!Uses.contains(*Alias))
- continue;
- for (Reg2SUnitsMap::iterator I = Uses.find(*Alias); I != Uses.end(); ++I) {
- SUnit *UseSU = I->SU;
- if (UseSU == SU)
- continue;
- // Adjust the dependence latency using operand def/use information,
- // then allow the target to perform its own adjustments.
- int UseOp = I->OpIdx;
- MachineInstr *RegUse = nullptr;
- SDep Dep;
- if (UseOp < 0)
- Dep = SDep(SU, SDep::Artificial);
- else {
- // Set the hasPhysRegDefs only for physreg defs that have a use within
- // the scheduling region.
- SU->hasPhysRegDefs = true;
- Dep = SDep(SU, SDep::Data, *Alias);
- RegUse = UseSU->getInstr();
- }
- Dep.setLatency(
- SchedModel.computeOperandLatency(SU->getInstr(), OperIdx, RegUse,
- UseOp));
- ST.adjustSchedDependency(SU, UseSU, Dep);
- UseSU->addPred(Dep);
- }
- }
- }
- /// addPhysRegDeps - Add register dependencies (data, anti, and output) from
- /// this SUnit to following instructions in the same scheduling region that
- /// depend the physical register referenced at OperIdx.
- void ScheduleDAGInstrs::addPhysRegDeps(SUnit *SU, unsigned OperIdx) {
- MachineInstr *MI = SU->getInstr();
- MachineOperand &MO = MI->getOperand(OperIdx);
- // Optionally add output and anti dependencies. For anti
- // dependencies we use a latency of 0 because for a multi-issue
- // target we want to allow the defining instruction to issue
- // in the same cycle as the using instruction.
- // TODO: Using a latency of 1 here for output dependencies assumes
- // there's no cost for reusing registers.
- SDep::Kind Kind = MO.isUse() ? SDep::Anti : SDep::Output;
- for (MCRegAliasIterator Alias(MO.getReg(), TRI, true);
- Alias.isValid(); ++Alias) {
- if (!Defs.contains(*Alias))
- continue;
- for (Reg2SUnitsMap::iterator I = Defs.find(*Alias); I != Defs.end(); ++I) {
- SUnit *DefSU = I->SU;
- if (DefSU == &ExitSU)
- continue;
- if (DefSU != SU &&
- (Kind != SDep::Output || !MO.isDead() ||
- !DefSU->getInstr()->registerDefIsDead(*Alias))) {
- if (Kind == SDep::Anti)
- DefSU->addPred(SDep(SU, Kind, /*Reg=*/*Alias));
- else {
- SDep Dep(SU, Kind, /*Reg=*/*Alias);
- Dep.setLatency(
- SchedModel.computeOutputLatency(MI, OperIdx, DefSU->getInstr()));
- DefSU->addPred(Dep);
- }
- }
- }
- }
- if (!MO.isDef()) {
- SU->hasPhysRegUses = true;
- // Either insert a new Reg2SUnits entry with an empty SUnits list, or
- // retrieve the existing SUnits list for this register's uses.
- // Push this SUnit on the use list.
- Uses.insert(PhysRegSUOper(SU, OperIdx, MO.getReg()));
- if (RemoveKillFlags)
- MO.setIsKill(false);
- }
- else {
- addPhysRegDataDeps(SU, OperIdx);
- unsigned Reg = MO.getReg();
- // clear this register's use list
- if (Uses.contains(Reg))
- Uses.eraseAll(Reg);
- if (!MO.isDead()) {
- Defs.eraseAll(Reg);
- } else if (SU->isCall) {
- // Calls will not be reordered because of chain dependencies (see
- // below). Since call operands are dead, calls may continue to be added
- // to the DefList making dependence checking quadratic in the size of
- // the block. Instead, we leave only one call at the back of the
- // DefList.
- Reg2SUnitsMap::RangePair P = Defs.equal_range(Reg);
- Reg2SUnitsMap::iterator B = P.first;
- Reg2SUnitsMap::iterator I = P.second;
- for (bool isBegin = I == B; !isBegin; /* empty */) {
- isBegin = (--I) == B;
- if (!I->SU->isCall)
- break;
- I = Defs.erase(I);
- }
- }
- // Defs are pushed in the order they are visited and never reordered.
- Defs.insert(PhysRegSUOper(SU, OperIdx, Reg));
- }
- }
- /// addVRegDefDeps - Add register output and data dependencies from this SUnit
- /// to instructions that occur later in the same scheduling region if they read
- /// from or write to the virtual register defined at OperIdx.
- ///
- /// TODO: Hoist loop induction variable increments. This has to be
- /// reevaluated. Generally, IV scheduling should be done before coalescing.
- void ScheduleDAGInstrs::addVRegDefDeps(SUnit *SU, unsigned OperIdx) {
- const MachineInstr *MI = SU->getInstr();
- unsigned Reg = MI->getOperand(OperIdx).getReg();
- // Singly defined vregs do not have output/anti dependencies.
- // The current operand is a def, so we have at least one.
- // Check here if there are any others...
- if (MRI.hasOneDef(Reg))
- return;
- // Add output dependence to the next nearest def of this vreg.
- //
- // Unless this definition is dead, the output dependence should be
- // transitively redundant with antidependencies from this definition's
- // uses. We're conservative for now until we have a way to guarantee the uses
- // are not eliminated sometime during scheduling. The output dependence edge
- // is also useful if output latency exceeds def-use latency.
- VReg2SUnitMap::iterator DefI = VRegDefs.find(Reg);
- if (DefI == VRegDefs.end())
- VRegDefs.insert(VReg2SUnit(Reg, SU));
- else {
- SUnit *DefSU = DefI->SU;
- if (DefSU != SU && DefSU != &ExitSU) {
- SDep Dep(SU, SDep::Output, Reg);
- Dep.setLatency(
- SchedModel.computeOutputLatency(MI, OperIdx, DefSU->getInstr()));
- DefSU->addPred(Dep);
- }
- DefI->SU = SU;
- }
- }
- /// addVRegUseDeps - Add a register data dependency if the instruction that
- /// defines the virtual register used at OperIdx is mapped to an SUnit. Add a
- /// register antidependency from this SUnit to instructions that occur later in
- /// the same scheduling region if they write the virtual register.
- ///
- /// TODO: Handle ExitSU "uses" properly.
- void ScheduleDAGInstrs::addVRegUseDeps(SUnit *SU, unsigned OperIdx) {
- MachineInstr *MI = SU->getInstr();
- unsigned Reg = MI->getOperand(OperIdx).getReg();
- // Record this local VReg use.
- VReg2UseMap::iterator UI = VRegUses.find(Reg);
- for (; UI != VRegUses.end(); ++UI) {
- if (UI->SU == SU)
- break;
- }
- if (UI == VRegUses.end())
- VRegUses.insert(VReg2SUnit(Reg, SU));
- // Lookup this operand's reaching definition.
- assert(LIS && "vreg dependencies requires LiveIntervals");
- LiveQueryResult LRQ
- = LIS->getInterval(Reg).Query(LIS->getInstructionIndex(MI));
- VNInfo *VNI = LRQ.valueIn();
- // VNI will be valid because MachineOperand::readsReg() is checked by caller.
- assert(VNI && "No value to read by operand");
- MachineInstr *Def = LIS->getInstructionFromIndex(VNI->def);
- // Phis and other noninstructions (after coalescing) have a NULL Def.
- if (Def) {
- SUnit *DefSU = getSUnit(Def);
- if (DefSU) {
- // The reaching Def lives within this scheduling region.
- // Create a data dependence.
- SDep dep(DefSU, SDep::Data, Reg);
- // Adjust the dependence latency using operand def/use information, then
- // allow the target to perform its own adjustments.
- int DefOp = Def->findRegisterDefOperandIdx(Reg);
- dep.setLatency(SchedModel.computeOperandLatency(Def, DefOp, MI, OperIdx));
- const TargetSubtargetInfo &ST = MF.getSubtarget();
- ST.adjustSchedDependency(DefSU, SU, const_cast<SDep &>(dep));
- SU->addPred(dep);
- }
- }
- // Add antidependence to the following def of the vreg it uses.
- VReg2SUnitMap::iterator DefI = VRegDefs.find(Reg);
- if (DefI != VRegDefs.end() && DefI->SU != SU)
- DefI->SU->addPred(SDep(SU, SDep::Anti, Reg));
- }
- /// Return true if MI is an instruction we are unable to reason about
- /// (like a call or something with unmodeled side effects).
- static inline bool isGlobalMemoryObject(AliasAnalysis *AA, MachineInstr *MI) {
- if (MI->isCall() || MI->hasUnmodeledSideEffects() ||
- (MI->hasOrderedMemoryRef() &&
- (!MI->mayLoad() || !MI->isInvariantLoad(AA))))
- return true;
- return false;
- }
- // This MI might have either incomplete info, or known to be unsafe
- // to deal with (i.e. volatile object).
- static inline bool isUnsafeMemoryObject(MachineInstr *MI,
- const MachineFrameInfo *MFI,
- const DataLayout &DL) {
- if (!MI || MI->memoperands_empty())
- return true;
- // We purposefully do no check for hasOneMemOperand() here
- // in hope to trigger an assert downstream in order to
- // finish implementation.
- if ((*MI->memoperands_begin())->isVolatile() ||
- MI->hasUnmodeledSideEffects())
- return true;
- if ((*MI->memoperands_begin())->getPseudoValue()) {
- // Similarly to getUnderlyingObjectForInstr:
- // For now, ignore PseudoSourceValues which may alias LLVM IR values
- // because the code that uses this function has no way to cope with
- // such aliases.
- return true;
- }
- const Value *V = (*MI->memoperands_begin())->getValue();
- if (!V)
- return true;
- SmallVector<Value *, 4> Objs;
- getUnderlyingObjects(V, Objs, DL);
- for (Value *V : Objs) {
- // Does this pointer refer to a distinct and identifiable object?
- if (!isIdentifiedObject(V))
- return true;
- }
- return false;
- }
- /// This returns true if the two MIs need a chain edge betwee them.
- /// If these are not even memory operations, we still may need
- /// chain deps between them. The question really is - could
- /// these two MIs be reordered during scheduling from memory dependency
- /// point of view.
- static bool MIsNeedChainEdge(AliasAnalysis *AA, const MachineFrameInfo *MFI,
- const DataLayout &DL, MachineInstr *MIa,
- MachineInstr *MIb) {
- const MachineFunction *MF = MIa->getParent()->getParent();
- const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
- // Cover a trivial case - no edge is need to itself.
- if (MIa == MIb)
- return false;
-
- // Let the target decide if memory accesses cannot possibly overlap.
- if ((MIa->mayLoad() || MIa->mayStore()) &&
- (MIb->mayLoad() || MIb->mayStore()))
- if (TII->areMemAccessesTriviallyDisjoint(MIa, MIb, AA))
- return false;
- // FIXME: Need to handle multiple memory operands to support all targets.
- if (!MIa->hasOneMemOperand() || !MIb->hasOneMemOperand())
- return true;
- if (isUnsafeMemoryObject(MIa, MFI, DL) || isUnsafeMemoryObject(MIb, MFI, DL))
- return true;
- // If we are dealing with two "normal" loads, we do not need an edge
- // between them - they could be reordered.
- if (!MIa->mayStore() && !MIb->mayStore())
- return false;
- // To this point analysis is generic. From here on we do need AA.
- if (!AA)
- return true;
- MachineMemOperand *MMOa = *MIa->memoperands_begin();
- MachineMemOperand *MMOb = *MIb->memoperands_begin();
- if (!MMOa->getValue() || !MMOb->getValue())
- return true;
- // The following interface to AA is fashioned after DAGCombiner::isAlias
- // and operates with MachineMemOperand offset with some important
- // assumptions:
- // - LLVM fundamentally assumes flat address spaces.
- // - MachineOperand offset can *only* result from legalization and
- // cannot affect queries other than the trivial case of overlap
- // checking.
- // - These offsets never wrap and never step outside
- // of allocated objects.
- // - There should never be any negative offsets here.
- //
- // FIXME: Modify API to hide this math from "user"
- // FIXME: Even before we go to AA we can reason locally about some
- // memory objects. It can save compile time, and possibly catch some
- // corner cases not currently covered.
- assert ((MMOa->getOffset() >= 0) && "Negative MachineMemOperand offset");
- assert ((MMOb->getOffset() >= 0) && "Negative MachineMemOperand offset");
- int64_t MinOffset = std::min(MMOa->getOffset(), MMOb->getOffset());
- int64_t Overlapa = MMOa->getSize() + MMOa->getOffset() - MinOffset;
- int64_t Overlapb = MMOb->getSize() + MMOb->getOffset() - MinOffset;
- AliasResult AAResult =
- AA->alias(MemoryLocation(MMOa->getValue(), Overlapa,
- UseTBAA ? MMOa->getAAInfo() : AAMDNodes()),
- MemoryLocation(MMOb->getValue(), Overlapb,
- UseTBAA ? MMOb->getAAInfo() : AAMDNodes()));
- return (AAResult != NoAlias);
- }
- /// This recursive function iterates over chain deps of SUb looking for
- /// "latest" node that needs a chain edge to SUa.
- static unsigned iterateChainSucc(AliasAnalysis *AA, const MachineFrameInfo *MFI,
- const DataLayout &DL, SUnit *SUa, SUnit *SUb,
- SUnit *ExitSU, unsigned *Depth,
- SmallPtrSetImpl<const SUnit *> &Visited) {
- if (!SUa || !SUb || SUb == ExitSU)
- return *Depth;
- // Remember visited nodes.
- if (!Visited.insert(SUb).second)
- return *Depth;
- // If there is _some_ dependency already in place, do not
- // descend any further.
- // TODO: Need to make sure that if that dependency got eliminated or ignored
- // for any reason in the future, we would not violate DAG topology.
- // Currently it does not happen, but makes an implicit assumption about
- // future implementation.
- //
- // Independently, if we encounter node that is some sort of global
- // object (like a call) we already have full set of dependencies to it
- // and we can stop descending.
- if (SUa->isSucc(SUb) ||
- isGlobalMemoryObject(AA, SUb->getInstr()))
- return *Depth;
- // If we do need an edge, or we have exceeded depth budget,
- // add that edge to the predecessors chain of SUb,
- // and stop descending.
- if (*Depth > 200 ||
- MIsNeedChainEdge(AA, MFI, DL, SUa->getInstr(), SUb->getInstr())) {
- SUb->addPred(SDep(SUa, SDep::MayAliasMem));
- return *Depth;
- }
- // Track current depth.
- (*Depth)++;
- // Iterate over memory dependencies only.
- for (SUnit::const_succ_iterator I = SUb->Succs.begin(), E = SUb->Succs.end();
- I != E; ++I)
- if (I->isNormalMemoryOrBarrier())
- iterateChainSucc(AA, MFI, DL, SUa, I->getSUnit(), ExitSU, Depth, Visited);
- return *Depth;
- }
- /// This function assumes that "downward" from SU there exist
- /// tail/leaf of already constructed DAG. It iterates downward and
- /// checks whether SU can be aliasing any node dominated
- /// by it.
- static void adjustChainDeps(AliasAnalysis *AA, const MachineFrameInfo *MFI,
- const DataLayout &DL, SUnit *SU, SUnit *ExitSU,
- std::set<SUnit *> &CheckList,
- unsigned LatencyToLoad) {
- if (!SU)
- return;
- SmallPtrSet<const SUnit*, 16> Visited;
- unsigned Depth = 0;
- for (std::set<SUnit *>::iterator I = CheckList.begin(), IE = CheckList.end();
- I != IE; ++I) {
- if (SU == *I)
- continue;
- if (MIsNeedChainEdge(AA, MFI, DL, SU->getInstr(), (*I)->getInstr())) {
- SDep Dep(SU, SDep::MayAliasMem);
- Dep.setLatency(((*I)->getInstr()->mayLoad()) ? LatencyToLoad : 0);
- (*I)->addPred(Dep);
- }
- // Iterate recursively over all previously added memory chain
- // successors. Keep track of visited nodes.
- for (SUnit::const_succ_iterator J = (*I)->Succs.begin(),
- JE = (*I)->Succs.end(); J != JE; ++J)
- if (J->isNormalMemoryOrBarrier())
- iterateChainSucc(AA, MFI, DL, SU, J->getSUnit(), ExitSU, &Depth,
- Visited);
- }
- }
- /// Check whether two objects need a chain edge, if so, add it
- /// otherwise remember the rejected SU.
- static inline void addChainDependency(AliasAnalysis *AA,
- const MachineFrameInfo *MFI,
- const DataLayout &DL, SUnit *SUa,
- SUnit *SUb, std::set<SUnit *> &RejectList,
- unsigned TrueMemOrderLatency = 0,
- bool isNormalMemory = false) {
- // If this is a false dependency,
- // do not add the edge, but rememeber the rejected node.
- if (MIsNeedChainEdge(AA, MFI, DL, SUa->getInstr(), SUb->getInstr())) {
- SDep Dep(SUa, isNormalMemory ? SDep::MayAliasMem : SDep::Barrier);
- Dep.setLatency(TrueMemOrderLatency);
- SUb->addPred(Dep);
- }
- else {
- // Duplicate entries should be ignored.
- RejectList.insert(SUb);
- DEBUG(dbgs() << "\tReject chain dep between SU("
- << SUa->NodeNum << ") and SU("
- << SUb->NodeNum << ")\n");
- }
- }
- /// Create an SUnit for each real instruction, numbered in top-down toplological
- /// order. The instruction order A < B, implies that no edge exists from B to A.
- ///
- /// Map each real instruction to its SUnit.
- ///
- /// After initSUnits, the SUnits vector cannot be resized and the scheduler may
- /// hang onto SUnit pointers. We may relax this in the future by using SUnit IDs
- /// instead of pointers.
- ///
- /// MachineScheduler relies on initSUnits numbering the nodes by their order in
- /// the original instruction list.
- void ScheduleDAGInstrs::initSUnits() {
- // We'll be allocating one SUnit for each real instruction in the region,
- // which is contained within a basic block.
- SUnits.reserve(NumRegionInstrs);
- for (MachineBasicBlock::iterator I = RegionBegin; I != RegionEnd; ++I) {
- MachineInstr *MI = I;
- if (MI->isDebugValue())
- continue;
- SUnit *SU = newSUnit(MI);
- MISUnitMap[MI] = SU;
- SU->isCall = MI->isCall();
- SU->isCommutable = MI->isCommutable();
- // Assign the Latency field of SU using target-provided information.
- SU->Latency = SchedModel.computeInstrLatency(SU->getInstr());
- // If this SUnit uses a reserved or unbuffered resource, mark it as such.
- //
- // Reserved resources block an instruction from issuing and stall the
- // entire pipeline. These are identified by BufferSize=0.
- //
- // Unbuffered resources prevent execution of subsequent instructions that
- // require the same resources. This is used for in-order execution pipelines
- // within an out-of-order core. These are identified by BufferSize=1.
- if (SchedModel.hasInstrSchedModel()) {
- const MCSchedClassDesc *SC = getSchedClass(SU);
- for (TargetSchedModel::ProcResIter
- PI = SchedModel.getWriteProcResBegin(SC),
- PE = SchedModel.getWriteProcResEnd(SC); PI != PE; ++PI) {
- switch (SchedModel.getProcResource(PI->ProcResourceIdx)->BufferSize) {
- case 0:
- SU->hasReservedResource = true;
- break;
- case 1:
- SU->isUnbuffered = true;
- break;
- default:
- break;
- }
- }
- }
- }
- }
- /// If RegPressure is non-null, compute register pressure as a side effect. The
- /// DAG builder is an efficient place to do it because it already visits
- /// operands.
- void ScheduleDAGInstrs::buildSchedGraph(AliasAnalysis *AA,
- RegPressureTracker *RPTracker,
- PressureDiffs *PDiffs) {
- const TargetSubtargetInfo &ST = MF.getSubtarget();
- bool UseAA = EnableAASchedMI.getNumOccurrences() > 0 ? EnableAASchedMI
- : ST.useAA();
- AliasAnalysis *AAForDep = UseAA ? AA : nullptr;
- MISUnitMap.clear();
- ScheduleDAG::clearDAG();
- // Create an SUnit for each real instruction.
- initSUnits();
- if (PDiffs)
- PDiffs->init(SUnits.size());
- // We build scheduling units by walking a block's instruction list from bottom
- // to top.
- // Remember where a generic side-effecting instruction is as we procede.
- SUnit *BarrierChain = nullptr, *AliasChain = nullptr;
- // Memory references to specific known memory locations are tracked
- // so that they can be given more precise dependencies. We track
- // separately the known memory locations that may alias and those
- // that are known not to alias
- MapVector<ValueType, std::vector<SUnit *> > AliasMemDefs, NonAliasMemDefs;
- MapVector<ValueType, std::vector<SUnit *> > AliasMemUses, NonAliasMemUses;
- std::set<SUnit*> RejectMemNodes;
- // Remove any stale debug info; sometimes BuildSchedGraph is called again
- // without emitting the info from the previous call.
- DbgValues.clear();
- FirstDbgValue = nullptr;
- assert(Defs.empty() && Uses.empty() &&
- "Only BuildGraph should update Defs/Uses");
- Defs.setUniverse(TRI->getNumRegs());
- Uses.setUniverse(TRI->getNumRegs());
- assert(VRegDefs.empty() && "Only BuildSchedGraph may access VRegDefs");
- VRegUses.clear();
- VRegDefs.setUniverse(MRI.getNumVirtRegs());
- VRegUses.setUniverse(MRI.getNumVirtRegs());
- // Model data dependencies between instructions being scheduled and the
- // ExitSU.
- addSchedBarrierDeps();
- // Walk the list of instructions, from bottom moving up.
- MachineInstr *DbgMI = nullptr;
- for (MachineBasicBlock::iterator MII = RegionEnd, MIE = RegionBegin;
- MII != MIE; --MII) {
- MachineInstr *MI = std::prev(MII);
- if (MI && DbgMI) {
- DbgValues.push_back(std::make_pair(DbgMI, MI));
- DbgMI = nullptr;
- }
- if (MI->isDebugValue()) {
- DbgMI = MI;
- continue;
- }
- SUnit *SU = MISUnitMap[MI];
- assert(SU && "No SUnit mapped to this MI");
- if (RPTracker) {
- PressureDiff *PDiff = PDiffs ? &(*PDiffs)[SU->NodeNum] : nullptr;
- RPTracker->recede(/*LiveUses=*/nullptr, PDiff);
- assert(RPTracker->getPos() == std::prev(MII) &&
- "RPTracker can't find MI");
- }
- assert(
- (CanHandleTerminators || (!MI->isTerminator() && !MI->isPosition())) &&
- "Cannot schedule terminators or labels!");
- // Add register-based dependencies (data, anti, and output).
- bool HasVRegDef = false;
- for (unsigned j = 0, n = MI->getNumOperands(); j != n; ++j) {
- const MachineOperand &MO = MI->getOperand(j);
- if (!MO.isReg()) continue;
- unsigned Reg = MO.getReg();
- if (Reg == 0) continue;
- if (TRI->isPhysicalRegister(Reg))
- addPhysRegDeps(SU, j);
- else {
- assert(!IsPostRA && "Virtual register encountered!");
- if (MO.isDef()) {
- HasVRegDef = true;
- addVRegDefDeps(SU, j);
- }
- else if (MO.readsReg()) // ignore undef operands
- addVRegUseDeps(SU, j);
- }
- }
- // If we haven't seen any uses in this scheduling region, create a
- // dependence edge to ExitSU to model the live-out latency. This is required
- // for vreg defs with no in-region use, and prefetches with no vreg def.
- //
- // FIXME: NumDataSuccs would be more precise than NumSuccs here. This
- // check currently relies on being called before adding chain deps.
- if (SU->NumSuccs == 0 && SU->Latency > 1
- && (HasVRegDef || MI->mayLoad())) {
- SDep Dep(SU, SDep::Artificial);
- Dep.setLatency(SU->Latency - 1);
- ExitSU.addPred(Dep);
- }
- // Add chain dependencies.
- // Chain dependencies used to enforce memory order should have
- // latency of 0 (except for true dependency of Store followed by
- // aliased Load... we estimate that with a single cycle of latency
- // assuming the hardware will bypass)
- // Note that isStoreToStackSlot and isLoadFromStackSLot are not usable
- // after stack slots are lowered to actual addresses.
- // TODO: Use an AliasAnalysis and do real alias-analysis queries, and
- // produce more precise dependence information.
- unsigned TrueMemOrderLatency = MI->mayStore() ? 1 : 0;
- if (isGlobalMemoryObject(AA, MI)) {
- // Be conservative with these and add dependencies on all memory
- // references, even those that are known to not alias.
- for (MapVector<ValueType, std::vector<SUnit *> >::iterator I =
- NonAliasMemDefs.begin(), E = NonAliasMemDefs.end(); I != E; ++I) {
- for (unsigned i = 0, e = I->second.size(); i != e; ++i) {
- I->second[i]->addPred(SDep(SU, SDep::Barrier));
- }
- }
- for (MapVector<ValueType, std::vector<SUnit *> >::iterator I =
- NonAliasMemUses.begin(), E = NonAliasMemUses.end(); I != E; ++I) {
- for (unsigned i = 0, e = I->second.size(); i != e; ++i) {
- SDep Dep(SU, SDep::Barrier);
- Dep.setLatency(TrueMemOrderLatency);
- I->second[i]->addPred(Dep);
- }
- }
- // Add SU to the barrier chain.
- if (BarrierChain)
- BarrierChain->addPred(SDep(SU, SDep::Barrier));
- BarrierChain = SU;
- // This is a barrier event that acts as a pivotal node in the DAG,
- // so it is safe to clear list of exposed nodes.
- adjustChainDeps(AA, MFI, *TM.getDataLayout(), SU, &ExitSU, RejectMemNodes,
- TrueMemOrderLatency);
- RejectMemNodes.clear();
- NonAliasMemDefs.clear();
- NonAliasMemUses.clear();
- // fall-through
- new_alias_chain:
- // Chain all possibly aliasing memory references through SU.
- if (AliasChain) {
- unsigned ChainLatency = 0;
- if (AliasChain->getInstr()->mayLoad())
- ChainLatency = TrueMemOrderLatency;
- addChainDependency(AAForDep, MFI, *TM.getDataLayout(), SU, AliasChain,
- RejectMemNodes, ChainLatency);
- }
- AliasChain = SU;
- for (unsigned k = 0, m = PendingLoads.size(); k != m; ++k)
- addChainDependency(AAForDep, MFI, *TM.getDataLayout(), SU,
- PendingLoads[k], RejectMemNodes,
- TrueMemOrderLatency);
- for (MapVector<ValueType, std::vector<SUnit *> >::iterator I =
- AliasMemDefs.begin(), E = AliasMemDefs.end(); I != E; ++I) {
- for (unsigned i = 0, e = I->second.size(); i != e; ++i)
- addChainDependency(AAForDep, MFI, *TM.getDataLayout(), SU,
- I->second[i], RejectMemNodes);
- }
- for (MapVector<ValueType, std::vector<SUnit *> >::iterator I =
- AliasMemUses.begin(), E = AliasMemUses.end(); I != E; ++I) {
- for (unsigned i = 0, e = I->second.size(); i != e; ++i)
- addChainDependency(AAForDep, MFI, *TM.getDataLayout(), SU,
- I->second[i], RejectMemNodes, TrueMemOrderLatency);
- }
- adjustChainDeps(AA, MFI, *TM.getDataLayout(), SU, &ExitSU, RejectMemNodes,
- TrueMemOrderLatency);
- PendingLoads.clear();
- AliasMemDefs.clear();
- AliasMemUses.clear();
- } else if (MI->mayStore()) {
- // Add dependence on barrier chain, if needed.
- // There is no point to check aliasing on barrier event. Even if
- // SU and barrier _could_ be reordered, they should not. In addition,
- // we have lost all RejectMemNodes below barrier.
- if (BarrierChain)
- BarrierChain->addPred(SDep(SU, SDep::Barrier));
- UnderlyingObjectsVector Objs;
- getUnderlyingObjectsForInstr(MI, MFI, Objs, *TM.getDataLayout());
- if (Objs.empty()) {
- // Treat all other stores conservatively.
- goto new_alias_chain;
- }
- bool MayAlias = false;
- for (UnderlyingObjectsVector::iterator K = Objs.begin(), KE = Objs.end();
- K != KE; ++K) {
- ValueType V = K->getPointer();
- bool ThisMayAlias = K->getInt();
- if (ThisMayAlias)
- MayAlias = true;
- // A store to a specific PseudoSourceValue. Add precise dependencies.
- // Record the def in MemDefs, first adding a dep if there is
- // an existing def.
- MapVector<ValueType, std::vector<SUnit *> >::iterator I =
- ((ThisMayAlias) ? AliasMemDefs.find(V) : NonAliasMemDefs.find(V));
- MapVector<ValueType, std::vector<SUnit *> >::iterator IE =
- ((ThisMayAlias) ? AliasMemDefs.end() : NonAliasMemDefs.end());
- if (I != IE) {
- for (unsigned i = 0, e = I->second.size(); i != e; ++i)
- addChainDependency(AAForDep, MFI, *TM.getDataLayout(), SU,
- I->second[i], RejectMemNodes, 0, true);
- // If we're not using AA, then we only need one store per object.
- if (!AAForDep)
- I->second.clear();
- I->second.push_back(SU);
- } else {
- if (ThisMayAlias) {
- if (!AAForDep)
- AliasMemDefs[V].clear();
- AliasMemDefs[V].push_back(SU);
- } else {
- if (!AAForDep)
- NonAliasMemDefs[V].clear();
- NonAliasMemDefs[V].push_back(SU);
- }
- }
- // Handle the uses in MemUses, if there are any.
- MapVector<ValueType, std::vector<SUnit *> >::iterator J =
- ((ThisMayAlias) ? AliasMemUses.find(V) : NonAliasMemUses.find(V));
- MapVector<ValueType, std::vector<SUnit *> >::iterator JE =
- ((ThisMayAlias) ? AliasMemUses.end() : NonAliasMemUses.end());
- if (J != JE) {
- for (unsigned i = 0, e = J->second.size(); i != e; ++i)
- addChainDependency(AAForDep, MFI, *TM.getDataLayout(), SU,
- J->second[i], RejectMemNodes,
- TrueMemOrderLatency, true);
- J->second.clear();
- }
- }
- if (MayAlias) {
- // Add dependencies from all the PendingLoads, i.e. loads
- // with no underlying object.
- for (unsigned k = 0, m = PendingLoads.size(); k != m; ++k)
- addChainDependency(AAForDep, MFI, *TM.getDataLayout(), SU,
- PendingLoads[k], RejectMemNodes,
- TrueMemOrderLatency);
- // Add dependence on alias chain, if needed.
- if (AliasChain)
- addChainDependency(AAForDep, MFI, *TM.getDataLayout(), SU, AliasChain,
- RejectMemNodes);
- }
- adjustChainDeps(AA, MFI, *TM.getDataLayout(), SU, &ExitSU, RejectMemNodes,
- TrueMemOrderLatency);
- } else if (MI->mayLoad()) {
- bool MayAlias = true;
- if (MI->isInvariantLoad(AA)) {
- // Invariant load, no chain dependencies needed!
- } else {
- UnderlyingObjectsVector Objs;
- getUnderlyingObjectsForInstr(MI, MFI, Objs, *TM.getDataLayout());
- if (Objs.empty()) {
- // A load with no underlying object. Depend on all
- // potentially aliasing stores.
- for (MapVector<ValueType, std::vector<SUnit *> >::iterator I =
- AliasMemDefs.begin(), E = AliasMemDefs.end(); I != E; ++I)
- for (unsigned i = 0, e = I->second.size(); i != e; ++i)
- addChainDependency(AAForDep, MFI, *TM.getDataLayout(), SU,
- I->second[i], RejectMemNodes);
- PendingLoads.push_back(SU);
- MayAlias = true;
- } else {
- MayAlias = false;
- }
- for (UnderlyingObjectsVector::iterator
- J = Objs.begin(), JE = Objs.end(); J != JE; ++J) {
- ValueType V = J->getPointer();
- bool ThisMayAlias = J->getInt();
- if (ThisMayAlias)
- MayAlias = true;
- // A load from a specific PseudoSourceValue. Add precise dependencies.
- MapVector<ValueType, std::vector<SUnit *> >::iterator I =
- ((ThisMayAlias) ? AliasMemDefs.find(V) : NonAliasMemDefs.find(V));
- MapVector<ValueType, std::vector<SUnit *> >::iterator IE =
- ((ThisMayAlias) ? AliasMemDefs.end() : NonAliasMemDefs.end());
- if (I != IE)
- for (unsigned i = 0, e = I->second.size(); i != e; ++i)
- addChainDependency(AAForDep, MFI, *TM.getDataLayout(), SU,
- I->second[i], RejectMemNodes, 0, true);
- if (ThisMayAlias)
- AliasMemUses[V].push_back(SU);
- else
- NonAliasMemUses[V].push_back(SU);
- }
- if (MayAlias)
- adjustChainDeps(AA, MFI, *TM.getDataLayout(), SU, &ExitSU,
- RejectMemNodes, /*Latency=*/0);
- // Add dependencies on alias and barrier chains, if needed.
- if (MayAlias && AliasChain)
- addChainDependency(AAForDep, MFI, *TM.getDataLayout(), SU, AliasChain,
- RejectMemNodes);
- if (BarrierChain)
- BarrierChain->addPred(SDep(SU, SDep::Barrier));
- }
- }
- }
- if (DbgMI)
- FirstDbgValue = DbgMI;
- Defs.clear();
- Uses.clear();
- VRegDefs.clear();
- PendingLoads.clear();
- }
- /// \brief Initialize register live-range state for updating kills.
- void ScheduleDAGInstrs::startBlockForKills(MachineBasicBlock *BB) {
- // Start with no live registers.
- LiveRegs.reset();
- // Examine the live-in regs of all successors.
- for (MachineBasicBlock::succ_iterator SI = BB->succ_begin(),
- SE = BB->succ_end(); SI != SE; ++SI) {
- for (MachineBasicBlock::livein_iterator I = (*SI)->livein_begin(),
- E = (*SI)->livein_end(); I != E; ++I) {
- unsigned Reg = *I;
- // Repeat, for reg and all subregs.
- for (MCSubRegIterator SubRegs(Reg, TRI, /*IncludeSelf=*/true);
- SubRegs.isValid(); ++SubRegs)
- LiveRegs.set(*SubRegs);
- }
- }
- }
- /// \brief If we change a kill flag on the bundle instruction implicit register
- /// operands, then we also need to propagate that to any instructions inside
- /// the bundle which had the same kill state.
- static void toggleBundleKillFlag(MachineInstr *MI, unsigned Reg,
- bool NewKillState) {
- if (MI->getOpcode() != TargetOpcode::BUNDLE)
- return;
- // Walk backwards from the last instruction in the bundle to the first.
- // Once we set a kill flag on an instruction, we bail out, as otherwise we
- // might set it on too many operands. We will clear as many flags as we
- // can though.
- MachineBasicBlock::instr_iterator Begin = MI;
- MachineBasicBlock::instr_iterator End = getBundleEnd(MI);
- while (Begin != End) {
- for (MachineOperand &MO : (--End)->operands()) {
- if (!MO.isReg() || MO.isDef() || Reg != MO.getReg())
- continue;
- // DEBUG_VALUE nodes do not contribute to code generation and should
- // always be ignored. Failure to do so may result in trying to modify
- // KILL flags on DEBUG_VALUE nodes, which is distressing.
- if (MO.isDebug())
- continue;
- // If the register has the internal flag then it could be killing an
- // internal def of the register. In this case, just skip. We only want
- // to toggle the flag on operands visible outside the bundle.
- if (MO.isInternalRead())
- continue;
- if (MO.isKill() == NewKillState)
- continue;
- MO.setIsKill(NewKillState);
- if (NewKillState)
- return;
- }
- }
- }
- bool ScheduleDAGInstrs::toggleKillFlag(MachineInstr *MI, MachineOperand &MO) {
- // Setting kill flag...
- if (!MO.isKill()) {
- MO.setIsKill(true);
- toggleBundleKillFlag(MI, MO.getReg(), true);
- return false;
- }
- // If MO itself is live, clear the kill flag...
- if (LiveRegs.test(MO.getReg())) {
- MO.setIsKill(false);
- toggleBundleKillFlag(MI, MO.getReg(), false);
- return false;
- }
- // If any subreg of MO is live, then create an imp-def for that
- // subreg and keep MO marked as killed.
- MO.setIsKill(false);
- toggleBundleKillFlag(MI, MO.getReg(), false);
- bool AllDead = true;
- const unsigned SuperReg = MO.getReg();
- MachineInstrBuilder MIB(MF, MI);
- for (MCSubRegIterator SubRegs(SuperReg, TRI); SubRegs.isValid(); ++SubRegs) {
- if (LiveRegs.test(*SubRegs)) {
- MIB.addReg(*SubRegs, RegState::ImplicitDefine);
- AllDead = false;
- }
- }
- if(AllDead) {
- MO.setIsKill(true);
- toggleBundleKillFlag(MI, MO.getReg(), true);
- }
- return false;
- }
- // FIXME: Reuse the LivePhysRegs utility for this.
- void ScheduleDAGInstrs::fixupKills(MachineBasicBlock *MBB) {
- DEBUG(dbgs() << "Fixup kills for BB#" << MBB->getNumber() << '\n');
- LiveRegs.resize(TRI->getNumRegs());
- BitVector killedRegs(TRI->getNumRegs());
- startBlockForKills(MBB);
- // Examine block from end to start...
- unsigned Count = MBB->size();
- for (MachineBasicBlock::iterator I = MBB->end(), E = MBB->begin();
- I != E; --Count) {
- MachineInstr *MI = --I;
- if (MI->isDebugValue())
- continue;
- // Update liveness. Registers that are defed but not used in this
- // instruction are now dead. Mark register and all subregs as they
- // are completely defined.
- for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
- MachineOperand &MO = MI->getOperand(i);
- if (MO.isRegMask())
- LiveRegs.clearBitsNotInMask(MO.getRegMask());
- if (!MO.isReg()) continue;
- unsigned Reg = MO.getReg();
- if (Reg == 0) continue;
- if (!MO.isDef()) continue;
- // Ignore two-addr defs.
- if (MI->isRegTiedToUseOperand(i)) continue;
- // Repeat for reg and all subregs.
- for (MCSubRegIterator SubRegs(Reg, TRI, /*IncludeSelf=*/true);
- SubRegs.isValid(); ++SubRegs)
- LiveRegs.reset(*SubRegs);
- }
- // Examine all used registers and set/clear kill flag. When a
- // register is used multiple times we only set the kill flag on
- // the first use. Don't set kill flags on undef operands.
- killedRegs.reset();
- for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
- MachineOperand &MO = MI->getOperand(i);
- if (!MO.isReg() || !MO.isUse() || MO.isUndef()) continue;
- unsigned Reg = MO.getReg();
- if ((Reg == 0) || MRI.isReserved(Reg)) continue;
- bool kill = false;
- if (!killedRegs.test(Reg)) {
- kill = true;
- // A register is not killed if any subregs are live...
- for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid(); ++SubRegs) {
- if (LiveRegs.test(*SubRegs)) {
- kill = false;
- break;
- }
- }
- // If subreg is not live, then register is killed if it became
- // live in this instruction
- if (kill)
- kill = !LiveRegs.test(Reg);
- }
- if (MO.isKill() != kill) {
- DEBUG(dbgs() << "Fixing " << MO << " in ");
- // Warning: toggleKillFlag may invalidate MO.
- toggleKillFlag(MI, MO);
- DEBUG(MI->dump());
- DEBUG(if (MI->getOpcode() == TargetOpcode::BUNDLE) {
- MachineBasicBlock::instr_iterator Begin = MI;
- MachineBasicBlock::instr_iterator End = getBundleEnd(MI);
- while (++Begin != End)
- DEBUG(Begin->dump());
- });
- }
- killedRegs.set(Reg);
- }
- // Mark any used register (that is not using undef) and subregs as
- // now live...
- for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
- MachineOperand &MO = MI->getOperand(i);
- if (!MO.isReg() || !MO.isUse() || MO.isUndef()) continue;
- unsigned Reg = MO.getReg();
- if ((Reg == 0) || MRI.isReserved(Reg)) continue;
- for (MCSubRegIterator SubRegs(Reg, TRI, /*IncludeSelf=*/true);
- SubRegs.isValid(); ++SubRegs)
- LiveRegs.set(*SubRegs);
- }
- }
- }
- void ScheduleDAGInstrs::dumpNode(const SUnit *SU) const {
- #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
- SU->getInstr()->dump();
- #endif
- }
- std::string ScheduleDAGInstrs::getGraphNodeLabel(const SUnit *SU) const {
- std::string s;
- raw_string_ostream oss(s);
- if (SU == &EntrySU)
- oss << "<entry>";
- else if (SU == &ExitSU)
- oss << "<exit>";
- else
- SU->getInstr()->print(oss, /*SkipOpers=*/true);
- return oss.str();
- }
- /// Return the basic block label. It is not necessarilly unique because a block
- /// contains multiple scheduling regions. But it is fine for visualization.
- std::string ScheduleDAGInstrs::getDAGName() const {
- return "dag." + BB->getFullName();
- }
- //===----------------------------------------------------------------------===//
- // SchedDFSResult Implementation
- //===----------------------------------------------------------------------===//
- namespace llvm {
- /// \brief Internal state used to compute SchedDFSResult.
- class SchedDFSImpl {
- SchedDFSResult &R;
- /// Join DAG nodes into equivalence classes by their subtree.
- IntEqClasses SubtreeClasses;
- /// List PredSU, SuccSU pairs that represent data edges between subtrees.
- std::vector<std::pair<const SUnit*, const SUnit*> > ConnectionPairs;
- struct RootData {
- unsigned NodeID;
- unsigned ParentNodeID; // Parent node (member of the parent subtree).
- unsigned SubInstrCount; // Instr count in this tree only, not children.
- RootData(unsigned id): NodeID(id),
- ParentNodeID(SchedDFSResult::InvalidSubtreeID),
- SubInstrCount(0) {}
- unsigned getSparseSetIndex() const { return NodeID; }
- };
- SparseSet<RootData> RootSet;
- public:
- SchedDFSImpl(SchedDFSResult &r): R(r), SubtreeClasses(R.DFSNodeData.size()) {
- RootSet.setUniverse(R.DFSNodeData.size());
- }
- /// Return true if this node been visited by the DFS traversal.
- ///
- /// During visitPostorderNode the Node's SubtreeID is assigned to the Node
- /// ID. Later, SubtreeID is updated but remains valid.
- bool isVisited(const SUnit *SU) const {
- return R.DFSNodeData[SU->NodeNum].SubtreeID
- != SchedDFSResult::InvalidSubtreeID;
- }
- /// Initialize this node's instruction count. We don't need to flag the node
- /// visited until visitPostorder because the DAG cannot have cycles.
- void visitPreorder(const SUnit *SU) {
- R.DFSNodeData[SU->NodeNum].InstrCount =
- SU->getInstr()->isTransient() ? 0 : 1;
- }
- /// Called once for each node after all predecessors are visited. Revisit this
- /// node's predecessors and potentially join them now that we know the ILP of
- /// the other predecessors.
- void visitPostorderNode(const SUnit *SU) {
- // Mark this node as the root of a subtree. It may be joined with its
- // successors later.
- R.DFSNodeData[SU->NodeNum].SubtreeID = SU->NodeNum;
- RootData RData(SU->NodeNum);
- RData.SubInstrCount = SU->getInstr()->isTransient() ? 0 : 1;
- // If any predecessors are still in their own subtree, they either cannot be
- // joined or are large enough to remain separate. If this parent node's
- // total instruction count is not greater than a child subtree by at least
- // the subtree limit, then try to join it now since splitting subtrees is
- // only useful if multiple high-pressure paths are possible.
- unsigned InstrCount = R.DFSNodeData[SU->NodeNum].InstrCount;
- for (SUnit::const_pred_iterator
- PI = SU->Preds.begin(), PE = SU->Preds.end(); PI != PE; ++PI) {
- if (PI->getKind() != SDep::Data)
- continue;
- unsigned PredNum = PI->getSUnit()->NodeNum;
- if ((InstrCount - R.DFSNodeData[PredNum].InstrCount) < R.SubtreeLimit)
- joinPredSubtree(*PI, SU, /*CheckLimit=*/false);
- // Either link or merge the TreeData entry from the child to the parent.
- if (R.DFSNodeData[PredNum].SubtreeID == PredNum) {
- // If the predecessor's parent is invalid, this is a tree edge and the
- // current node is the parent.
- if (RootSet[PredNum].ParentNodeID == SchedDFSResult::InvalidSubtreeID)
- RootSet[PredNum].ParentNodeID = SU->NodeNum;
- }
- else if (RootSet.count(PredNum)) {
- // The predecessor is not a root, but is still in the root set. This
- // must be the new parent that it was just joined to. Note that
- // RootSet[PredNum].ParentNodeID may either be invalid or may still be
- // set to the original parent.
- RData.SubInstrCount += RootSet[PredNum].SubInstrCount;
- RootSet.erase(PredNum);
- }
- }
- RootSet[SU->NodeNum] = RData;
- }
- /// Called once for each tree edge after calling visitPostOrderNode on the
- /// predecessor. Increment the parent node's instruction count and
- /// preemptively join this subtree to its parent's if it is small enough.
- void visitPostorderEdge(const SDep &PredDep, const SUnit *Succ) {
- R.DFSNodeData[Succ->NodeNum].InstrCount
- += R.DFSNodeData[PredDep.getSUnit()->NodeNum].InstrCount;
- joinPredSubtree(PredDep, Succ);
- }
- /// Add a connection for cross edges.
- void visitCrossEdge(const SDep &PredDep, const SUnit *Succ) {
- ConnectionPairs.push_back(std::make_pair(PredDep.getSUnit(), Succ));
- }
- /// Set each node's subtree ID to the representative ID and record connections
- /// between trees.
- void finalize() {
- SubtreeClasses.compress();
- R.DFSTreeData.resize(SubtreeClasses.getNumClasses());
- assert(SubtreeClasses.getNumClasses() == RootSet.size()
- && "number of roots should match trees");
- for (SparseSet<RootData>::const_iterator
- RI = RootSet.begin(), RE = RootSet.end(); RI != RE; ++RI) {
- unsigned TreeID = SubtreeClasses[RI->NodeID];
- if (RI->ParentNodeID != SchedDFSResult::InvalidSubtreeID)
- R.DFSTreeData[TreeID].ParentTreeID = SubtreeClasses[RI->ParentNodeID];
- R.DFSTreeData[TreeID].SubInstrCount = RI->SubInstrCount;
- // Note that SubInstrCount may be greater than InstrCount if we joined
- // subtrees across a cross edge. InstrCount will be attributed to the
- // original parent, while SubInstrCount will be attributed to the joined
- // parent.
- }
- R.SubtreeConnections.resize(SubtreeClasses.getNumClasses());
- R.SubtreeConnectLevels.resize(SubtreeClasses.getNumClasses());
- DEBUG(dbgs() << R.getNumSubtrees() << " subtrees:\n");
- for (unsigned Idx = 0, End = R.DFSNodeData.size(); Idx != End; ++Idx) {
- R.DFSNodeData[Idx].SubtreeID = SubtreeClasses[Idx];
- DEBUG(dbgs() << " SU(" << Idx << ") in tree "
- << R.DFSNodeData[Idx].SubtreeID << '\n');
- }
- for (std::vector<std::pair<const SUnit*, const SUnit*> >::const_iterator
- I = ConnectionPairs.begin(), E = ConnectionPairs.end();
- I != E; ++I) {
- unsigned PredTree = SubtreeClasses[I->first->NodeNum];
- unsigned SuccTree = SubtreeClasses[I->second->NodeNum];
- if (PredTree == SuccTree)
- continue;
- unsigned Depth = I->first->getDepth();
- addConnection(PredTree, SuccTree, Depth);
- addConnection(SuccTree, PredTree, Depth);
- }
- }
- protected:
- /// Join the predecessor subtree with the successor that is its DFS
- /// parent. Apply some heuristics before joining.
- bool joinPredSubtree(const SDep &PredDep, const SUnit *Succ,
- bool CheckLimit = true) {
- assert(PredDep.getKind() == SDep::Data && "Subtrees are for data edges");
- // Check if the predecessor is already joined.
- const SUnit *PredSU = PredDep.getSUnit();
- unsigned PredNum = PredSU->NodeNum;
- if (R.DFSNodeData[PredNum].SubtreeID != PredNum)
- return false;
- // Four is the magic number of successors before a node is considered a
- // pinch point.
- unsigned NumDataSucs = 0;
- for (SUnit::const_succ_iterator SI = PredSU->Succs.begin(),
- SE = PredSU->Succs.end(); SI != SE; ++SI) {
- if (SI->getKind() == SDep::Data) {
- if (++NumDataSucs >= 4)
- return false;
- }
- }
- if (CheckLimit && R.DFSNodeData[PredNum].InstrCount > R.SubtreeLimit)
- return false;
- R.DFSNodeData[PredNum].SubtreeID = Succ->NodeNum;
- SubtreeClasses.join(Succ->NodeNum, PredNum);
- return true;
- }
- /// Called by finalize() to record a connection between trees.
- void addConnection(unsigned FromTree, unsigned ToTree, unsigned Depth) {
- if (!Depth)
- return;
- do {
- SmallVectorImpl<SchedDFSResult::Connection> &Connections =
- R.SubtreeConnections[FromTree];
- for (SmallVectorImpl<SchedDFSResult::Connection>::iterator
- I = Connections.begin(), E = Connections.end(); I != E; ++I) {
- if (I->TreeID == ToTree) {
- I->Level = std::max(I->Level, Depth);
- return;
- }
- }
- Connections.push_back(SchedDFSResult::Connection(ToTree, Depth));
- FromTree = R.DFSTreeData[FromTree].ParentTreeID;
- } while (FromTree != SchedDFSResult::InvalidSubtreeID);
- }
- };
- } // namespace llvm
- namespace {
- /// \brief Manage the stack used by a reverse depth-first search over the DAG.
- class SchedDAGReverseDFS {
- std::vector<std::pair<const SUnit*, SUnit::const_pred_iterator> > DFSStack;
- public:
- bool isComplete() const { return DFSStack.empty(); }
- void follow(const SUnit *SU) {
- DFSStack.push_back(std::make_pair(SU, SU->Preds.begin()));
- }
- void advance() { ++DFSStack.back().second; }
- const SDep *backtrack() {
- DFSStack.pop_back();
- return DFSStack.empty() ? nullptr : std::prev(DFSStack.back().second);
- }
- const SUnit *getCurr() const { return DFSStack.back().first; }
- SUnit::const_pred_iterator getPred() const { return DFSStack.back().second; }
- SUnit::const_pred_iterator getPredEnd() const {
- return getCurr()->Preds.end();
- }
- };
- } // anonymous
- static bool hasDataSucc(const SUnit *SU) {
- for (SUnit::const_succ_iterator
- SI = SU->Succs.begin(), SE = SU->Succs.end(); SI != SE; ++SI) {
- if (SI->getKind() == SDep::Data && !SI->getSUnit()->isBoundaryNode())
- return true;
- }
- return false;
- }
- /// Compute an ILP metric for all nodes in the subDAG reachable via depth-first
- /// search from this root.
- void SchedDFSResult::compute(ArrayRef<SUnit> SUnits) {
- if (!IsBottomUp)
- llvm_unreachable("Top-down ILP metric is unimplemnted");
- SchedDFSImpl Impl(*this);
- for (ArrayRef<SUnit>::const_iterator
- SI = SUnits.begin(), SE = SUnits.end(); SI != SE; ++SI) {
- const SUnit *SU = &*SI;
- if (Impl.isVisited(SU) || hasDataSucc(SU))
- continue;
- SchedDAGReverseDFS DFS;
- Impl.visitPreorder(SU);
- DFS.follow(SU);
- for (;;) {
- // Traverse the leftmost path as far as possible.
- while (DFS.getPred() != DFS.getPredEnd()) {
- const SDep &PredDep = *DFS.getPred();
- DFS.advance();
- // Ignore non-data edges.
- if (PredDep.getKind() != SDep::Data
- || PredDep.getSUnit()->isBoundaryNode()) {
- continue;
- }
- // An already visited edge is a cross edge, assuming an acyclic DAG.
- if (Impl.isVisited(PredDep.getSUnit())) {
- Impl.visitCrossEdge(PredDep, DFS.getCurr());
- continue;
- }
- Impl.visitPreorder(PredDep.getSUnit());
- DFS.follow(PredDep.getSUnit());
- }
- // Visit the top of the stack in postorder and backtrack.
- const SUnit *Child = DFS.getCurr();
- const SDep *PredDep = DFS.backtrack();
- Impl.visitPostorderNode(Child);
- if (PredDep)
- Impl.visitPostorderEdge(*PredDep, DFS.getCurr());
- if (DFS.isComplete())
- break;
- }
- }
- Impl.finalize();
- }
- /// The root of the given SubtreeID was just scheduled. For all subtrees
- /// connected to this tree, record the depth of the connection so that the
- /// nearest connected subtrees can be prioritized.
- void SchedDFSResult::scheduleTree(unsigned SubtreeID) {
- for (SmallVectorImpl<Connection>::const_iterator
- I = SubtreeConnections[SubtreeID].begin(),
- E = SubtreeConnections[SubtreeID].end(); I != E; ++I) {
- SubtreeConnectLevels[I->TreeID] =
- std::max(SubtreeConnectLevels[I->TreeID], I->Level);
- DEBUG(dbgs() << " Tree: " << I->TreeID
- << " @" << SubtreeConnectLevels[I->TreeID] << '\n');
- }
- }
- LLVM_DUMP_METHOD
- void ILPValue::print(raw_ostream &OS) const {
- OS << InstrCount << " / " << Length << " = ";
- if (!Length)
- OS << "BADILP";
- else
- OS << format("%g", ((double)InstrCount / Length));
- }
- LLVM_DUMP_METHOD
- void ILPValue::dump() const {
- dbgs() << *this << '\n';
- }
- namespace llvm {
- LLVM_DUMP_METHOD
- raw_ostream &operator<<(raw_ostream &OS, const ILPValue &Val) {
- Val.print(OS);
- return OS;
- }
- } // namespace llvm
|