123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577 |
- //===-- FunctionLoweringInfo.cpp ------------------------------------------===//
- //
- // The LLVM Compiler Infrastructure
- //
- // This file is distributed under the University of Illinois Open Source
- // License. See LICENSE.TXT for details.
- //
- //===----------------------------------------------------------------------===//
- //
- // This implements routines for translating functions from LLVM IR into
- // Machine IR.
- //
- //===----------------------------------------------------------------------===//
- #include "llvm/CodeGen/FunctionLoweringInfo.h"
- #include "llvm/ADT/PostOrderIterator.h"
- #include "llvm/CodeGen/Analysis.h"
- #include "llvm/CodeGen/MachineFrameInfo.h"
- #include "llvm/CodeGen/MachineFunction.h"
- #include "llvm/CodeGen/MachineInstrBuilder.h"
- #include "llvm/CodeGen/MachineModuleInfo.h"
- #include "llvm/CodeGen/MachineRegisterInfo.h"
- #include "llvm/CodeGen/WinEHFuncInfo.h"
- #include "llvm/IR/DataLayout.h"
- #include "llvm/IR/DebugInfo.h"
- #include "llvm/IR/DerivedTypes.h"
- #include "llvm/IR/Function.h"
- #include "llvm/IR/Instructions.h"
- #include "llvm/IR/IntrinsicInst.h"
- #include "llvm/IR/LLVMContext.h"
- #include "llvm/IR/Module.h"
- #include "llvm/Support/Debug.h"
- #include "llvm/Support/ErrorHandling.h"
- #include "llvm/Support/MathExtras.h"
- #include "llvm/Support/raw_ostream.h"
- #include "llvm/Target/TargetFrameLowering.h"
- #include "llvm/Target/TargetInstrInfo.h"
- #include "llvm/Target/TargetLowering.h"
- #include "llvm/Target/TargetOptions.h"
- #include "llvm/Target/TargetRegisterInfo.h"
- #include "llvm/Target/TargetSubtargetInfo.h"
- #include <algorithm>
- using namespace llvm;
- #define DEBUG_TYPE "function-lowering-info"
- /// isUsedOutsideOfDefiningBlock - Return true if this instruction is used by
- /// PHI nodes or outside of the basic block that defines it, or used by a
- /// switch or atomic instruction, which may expand to multiple basic blocks.
- static bool isUsedOutsideOfDefiningBlock(const Instruction *I) {
- if (I->use_empty()) return false;
- if (isa<PHINode>(I)) return true;
- const BasicBlock *BB = I->getParent();
- for (const User *U : I->users())
- if (cast<Instruction>(U)->getParent() != BB || isa<PHINode>(U))
- return true;
- return false;
- }
- static ISD::NodeType getPreferredExtendForValue(const Value *V) {
- // For the users of the source value being used for compare instruction, if
- // the number of signed predicate is greater than unsigned predicate, we
- // prefer to use SIGN_EXTEND.
- //
- // With this optimization, we would be able to reduce some redundant sign or
- // zero extension instruction, and eventually more machine CSE opportunities
- // can be exposed.
- ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
- unsigned NumOfSigned = 0, NumOfUnsigned = 0;
- for (const User *U : V->users()) {
- if (const auto *CI = dyn_cast<CmpInst>(U)) {
- NumOfSigned += CI->isSigned();
- NumOfUnsigned += CI->isUnsigned();
- }
- }
- if (NumOfSigned > NumOfUnsigned)
- ExtendKind = ISD::SIGN_EXTEND;
- return ExtendKind;
- }
- void FunctionLoweringInfo::set(const Function &fn, MachineFunction &mf,
- SelectionDAG *DAG) {
- Fn = &fn;
- MF = &mf;
- TLI = MF->getSubtarget().getTargetLowering();
- RegInfo = &MF->getRegInfo();
- MachineModuleInfo &MMI = MF->getMMI();
- // Check whether the function can return without sret-demotion.
- SmallVector<ISD::OutputArg, 4> Outs;
- GetReturnInfo(Fn->getReturnType(), Fn->getAttributes(), Outs, *TLI,
- mf.getDataLayout());
- CanLowerReturn = TLI->CanLowerReturn(Fn->getCallingConv(), *MF,
- Fn->isVarArg(), Outs, Fn->getContext());
- // Initialize the mapping of values to registers. This is only set up for
- // instruction values that are used outside of the block that defines
- // them.
- Function::const_iterator BB = Fn->begin(), EB = Fn->end();
- for (; BB != EB; ++BB)
- for (BasicBlock::const_iterator I = BB->begin(), E = BB->end();
- I != E; ++I) {
- if (const AllocaInst *AI = dyn_cast<AllocaInst>(I)) {
- // Static allocas can be folded into the initial stack frame adjustment.
- if (AI->isStaticAlloca()) {
- const ConstantInt *CUI = cast<ConstantInt>(AI->getArraySize());
- Type *Ty = AI->getAllocatedType();
- uint64_t TySize = MF->getDataLayout().getTypeAllocSize(Ty);
- unsigned Align =
- std::max((unsigned)MF->getDataLayout().getPrefTypeAlignment(Ty),
- AI->getAlignment());
- TySize *= CUI->getZExtValue(); // Get total allocated size.
- if (TySize == 0) TySize = 1; // Don't create zero-sized stack objects.
- StaticAllocaMap[AI] =
- MF->getFrameInfo()->CreateStackObject(TySize, Align, false, AI);
- } else {
- unsigned Align =
- std::max((unsigned)MF->getDataLayout().getPrefTypeAlignment(
- AI->getAllocatedType()),
- AI->getAlignment());
- unsigned StackAlign =
- MF->getSubtarget().getFrameLowering()->getStackAlignment();
- if (Align <= StackAlign)
- Align = 0;
- // Inform the Frame Information that we have variable-sized objects.
- MF->getFrameInfo()->CreateVariableSizedObject(Align ? Align : 1, AI);
- }
- }
- // Look for inline asm that clobbers the SP register.
- if (isa<CallInst>(I) || isa<InvokeInst>(I)) {
- ImmutableCallSite CS(I);
- if (isa<InlineAsm>(CS.getCalledValue())) {
- unsigned SP = TLI->getStackPointerRegisterToSaveRestore();
- const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo();
- std::vector<TargetLowering::AsmOperandInfo> Ops =
- TLI->ParseConstraints(Fn->getParent()->getDataLayout(), TRI, CS);
- for (size_t I = 0, E = Ops.size(); I != E; ++I) {
- TargetLowering::AsmOperandInfo &Op = Ops[I];
- if (Op.Type == InlineAsm::isClobber) {
- // Clobbers don't have SDValue operands, hence SDValue().
- TLI->ComputeConstraintToUse(Op, SDValue(), DAG);
- std::pair<unsigned, const TargetRegisterClass *> PhysReg =
- TLI->getRegForInlineAsmConstraint(TRI, Op.ConstraintCode,
- Op.ConstraintVT);
- if (PhysReg.first == SP)
- MF->getFrameInfo()->setHasOpaqueSPAdjustment(true);
- }
- }
- }
- }
- // Look for calls to the @llvm.va_start intrinsic. We can omit some
- // prologue boilerplate for variadic functions that don't examine their
- // arguments.
- if (const auto *II = dyn_cast<IntrinsicInst>(I)) {
- if (II->getIntrinsicID() == Intrinsic::vastart)
- MF->getFrameInfo()->setHasVAStart(true);
- }
- // If we have a musttail call in a variadic funciton, we need to ensure we
- // forward implicit register parameters.
- if (const auto *CI = dyn_cast<CallInst>(I)) {
- if (CI->isMustTailCall() && Fn->isVarArg())
- MF->getFrameInfo()->setHasMustTailInVarArgFunc(true);
- }
- // Mark values used outside their block as exported, by allocating
- // a virtual register for them.
- if (isUsedOutsideOfDefiningBlock(I))
- if (!isa<AllocaInst>(I) ||
- !StaticAllocaMap.count(cast<AllocaInst>(I)))
- InitializeRegForValue(I);
- // Collect llvm.dbg.declare information. This is done now instead of
- // during the initial isel pass through the IR so that it is done
- // in a predictable order.
- if (const DbgDeclareInst *DI = dyn_cast<DbgDeclareInst>(I)) {
- assert(DI->getVariable() && "Missing variable");
- assert(DI->getDebugLoc() && "Missing location");
- if (MMI.hasDebugInfo()) {
- // Don't handle byval struct arguments or VLAs, for example.
- // Non-byval arguments are handled here (they refer to the stack
- // temporary alloca at this point).
- const Value *Address = DI->getAddress();
- if (Address) {
- if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address))
- Address = BCI->getOperand(0);
- if (const AllocaInst *AI = dyn_cast<AllocaInst>(Address)) {
- DenseMap<const AllocaInst *, int>::iterator SI =
- StaticAllocaMap.find(AI);
- if (SI != StaticAllocaMap.end()) { // Check for VLAs.
- int FI = SI->second;
- MMI.setVariableDbgInfo(DI->getVariable(), DI->getExpression(),
- FI, DI->getDebugLoc());
- }
- }
- }
- }
- }
- // Decide the preferred extend type for a value.
- PreferredExtendType[I] = getPreferredExtendForValue(I);
- }
- // Create an initial MachineBasicBlock for each LLVM BasicBlock in F. This
- // also creates the initial PHI MachineInstrs, though none of the input
- // operands are populated.
- for (BB = Fn->begin(); BB != EB; ++BB) {
- MachineBasicBlock *MBB = mf.CreateMachineBasicBlock(BB);
- MBBMap[BB] = MBB;
- MF->push_back(MBB);
- // Transfer the address-taken flag. This is necessary because there could
- // be multiple MachineBasicBlocks corresponding to one BasicBlock, and only
- // the first one should be marked.
- if (BB->hasAddressTaken())
- MBB->setHasAddressTaken();
- // Create Machine PHI nodes for LLVM PHI nodes, lowering them as
- // appropriate.
- for (BasicBlock::const_iterator I = BB->begin();
- const PHINode *PN = dyn_cast<PHINode>(I); ++I) {
- if (PN->use_empty()) continue;
- // Skip empty types
- if (PN->getType()->isEmptyTy())
- continue;
- DebugLoc DL = PN->getDebugLoc();
- unsigned PHIReg = ValueMap[PN];
- assert(PHIReg && "PHI node does not have an assigned virtual register!");
- SmallVector<EVT, 4> ValueVTs;
- ComputeValueVTs(*TLI, MF->getDataLayout(), PN->getType(), ValueVTs);
- for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) {
- EVT VT = ValueVTs[vti];
- unsigned NumRegisters = TLI->getNumRegisters(Fn->getContext(), VT);
- const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
- for (unsigned i = 0; i != NumRegisters; ++i)
- BuildMI(MBB, DL, TII->get(TargetOpcode::PHI), PHIReg + i);
- PHIReg += NumRegisters;
- }
- }
- }
- // Mark landing pad blocks.
- SmallVector<const LandingPadInst *, 4> LPads;
- for (BB = Fn->begin(); BB != EB; ++BB) {
- if (const auto *Invoke = dyn_cast<InvokeInst>(BB->getTerminator()))
- MBBMap[Invoke->getSuccessor(1)]->setIsLandingPad();
- if (BB->isLandingPad())
- LPads.push_back(BB->getLandingPadInst());
- }
- // If this is an MSVC EH personality, we need to do a bit more work.
- EHPersonality Personality = EHPersonality::Unknown;
- if (Fn->hasPersonalityFn())
- Personality = classifyEHPersonality(Fn->getPersonalityFn());
- if (!isMSVCEHPersonality(Personality))
- return;
- if (Personality == EHPersonality::MSVC_Win64SEH ||
- Personality == EHPersonality::MSVC_X86SEH) {
- addSEHHandlersForLPads(LPads);
- }
- WinEHFuncInfo &EHInfo = MMI.getWinEHFuncInfo(&fn);
- if (Personality == EHPersonality::MSVC_CXX) {
- const Function *WinEHParentFn = MMI.getWinEHParent(&fn);
- calculateWinCXXEHStateNumbers(WinEHParentFn, EHInfo);
- }
- // Copy the state numbers to LandingPadInfo for the current function, which
- // could be a handler or the parent. This should happen for 32-bit SEH and
- // C++ EH.
- if (Personality == EHPersonality::MSVC_CXX ||
- Personality == EHPersonality::MSVC_X86SEH) {
- for (const LandingPadInst *LP : LPads) {
- MachineBasicBlock *LPadMBB = MBBMap[LP->getParent()];
- MMI.addWinEHState(LPadMBB, EHInfo.LandingPadStateMap[LP]);
- }
- }
- }
- void FunctionLoweringInfo::addSEHHandlersForLPads(
- ArrayRef<const LandingPadInst *> LPads) {
- MachineModuleInfo &MMI = MF->getMMI();
- // Iterate over all landing pads with llvm.eh.actions calls.
- for (const LandingPadInst *LP : LPads) {
- const IntrinsicInst *ActionsCall =
- dyn_cast<IntrinsicInst>(LP->getNextNode());
- if (!ActionsCall ||
- ActionsCall->getIntrinsicID() != Intrinsic::eh_actions)
- continue;
- // Parse the llvm.eh.actions call we found.
- MachineBasicBlock *LPadMBB = MBBMap[LP->getParent()];
- SmallVector<std::unique_ptr<ActionHandler>, 4> Actions;
- parseEHActions(ActionsCall, Actions);
- // Iterate EH actions from most to least precedence, which means
- // iterating in reverse.
- for (auto I = Actions.rbegin(), E = Actions.rend(); I != E; ++I) {
- ActionHandler *Action = I->get();
- if (auto *CH = dyn_cast<CatchHandler>(Action)) {
- const auto *Filter =
- dyn_cast<Function>(CH->getSelector()->stripPointerCasts());
- assert((Filter || CH->getSelector()->isNullValue()) &&
- "expected function or catch-all");
- const auto *RecoverBA =
- cast<BlockAddress>(CH->getHandlerBlockOrFunc());
- MMI.addSEHCatchHandler(LPadMBB, Filter, RecoverBA);
- } else {
- assert(isa<CleanupHandler>(Action));
- const auto *Fini = cast<Function>(Action->getHandlerBlockOrFunc());
- MMI.addSEHCleanupHandler(LPadMBB, Fini);
- }
- }
- }
- }
- /// clear - Clear out all the function-specific state. This returns this
- /// FunctionLoweringInfo to an empty state, ready to be used for a
- /// different function.
- void FunctionLoweringInfo::clear() {
- assert(CatchInfoFound.size() == CatchInfoLost.size() &&
- "Not all catch info was assigned to a landing pad!");
- MBBMap.clear();
- ValueMap.clear();
- StaticAllocaMap.clear();
- #ifndef NDEBUG
- CatchInfoLost.clear();
- CatchInfoFound.clear();
- #endif
- LiveOutRegInfo.clear();
- VisitedBBs.clear();
- ArgDbgValues.clear();
- ByValArgFrameIndexMap.clear();
- RegFixups.clear();
- StatepointStackSlots.clear();
- StatepointRelocatedValues.clear();
- PreferredExtendType.clear();
- }
- /// CreateReg - Allocate a single virtual register for the given type.
- unsigned FunctionLoweringInfo::CreateReg(MVT VT) {
- return RegInfo->createVirtualRegister(
- MF->getSubtarget().getTargetLowering()->getRegClassFor(VT));
- }
- /// CreateRegs - Allocate the appropriate number of virtual registers of
- /// the correctly promoted or expanded types. Assign these registers
- /// consecutive vreg numbers and return the first assigned number.
- ///
- /// In the case that the given value has struct or array type, this function
- /// will assign registers for each member or element.
- ///
- unsigned FunctionLoweringInfo::CreateRegs(Type *Ty) {
- const TargetLowering *TLI = MF->getSubtarget().getTargetLowering();
- SmallVector<EVT, 4> ValueVTs;
- ComputeValueVTs(*TLI, MF->getDataLayout(), Ty, ValueVTs);
- unsigned FirstReg = 0;
- for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) {
- EVT ValueVT = ValueVTs[Value];
- MVT RegisterVT = TLI->getRegisterType(Ty->getContext(), ValueVT);
- unsigned NumRegs = TLI->getNumRegisters(Ty->getContext(), ValueVT);
- for (unsigned i = 0; i != NumRegs; ++i) {
- unsigned R = CreateReg(RegisterVT);
- if (!FirstReg) FirstReg = R;
- }
- }
- return FirstReg;
- }
- /// GetLiveOutRegInfo - Gets LiveOutInfo for a register, returning NULL if the
- /// register is a PHI destination and the PHI's LiveOutInfo is not valid. If
- /// the register's LiveOutInfo is for a smaller bit width, it is extended to
- /// the larger bit width by zero extension. The bit width must be no smaller
- /// than the LiveOutInfo's existing bit width.
- const FunctionLoweringInfo::LiveOutInfo *
- FunctionLoweringInfo::GetLiveOutRegInfo(unsigned Reg, unsigned BitWidth) {
- if (!LiveOutRegInfo.inBounds(Reg))
- return nullptr;
- LiveOutInfo *LOI = &LiveOutRegInfo[Reg];
- if (!LOI->IsValid)
- return nullptr;
- if (BitWidth > LOI->KnownZero.getBitWidth()) {
- LOI->NumSignBits = 1;
- LOI->KnownZero = LOI->KnownZero.zextOrTrunc(BitWidth);
- LOI->KnownOne = LOI->KnownOne.zextOrTrunc(BitWidth);
- }
- return LOI;
- }
- /// ComputePHILiveOutRegInfo - Compute LiveOutInfo for a PHI's destination
- /// register based on the LiveOutInfo of its operands.
- void FunctionLoweringInfo::ComputePHILiveOutRegInfo(const PHINode *PN) {
- Type *Ty = PN->getType();
- if (!Ty->isIntegerTy() || Ty->isVectorTy())
- return;
- SmallVector<EVT, 1> ValueVTs;
- ComputeValueVTs(*TLI, MF->getDataLayout(), Ty, ValueVTs);
- assert(ValueVTs.size() == 1 &&
- "PHIs with non-vector integer types should have a single VT.");
- EVT IntVT = ValueVTs[0];
- if (TLI->getNumRegisters(PN->getContext(), IntVT) != 1)
- return;
- IntVT = TLI->getTypeToTransformTo(PN->getContext(), IntVT);
- unsigned BitWidth = IntVT.getSizeInBits();
- unsigned DestReg = ValueMap[PN];
- if (!TargetRegisterInfo::isVirtualRegister(DestReg))
- return;
- LiveOutRegInfo.grow(DestReg);
- LiveOutInfo &DestLOI = LiveOutRegInfo[DestReg];
- Value *V = PN->getIncomingValue(0);
- if (isa<UndefValue>(V) || isa<ConstantExpr>(V)) {
- DestLOI.NumSignBits = 1;
- APInt Zero(BitWidth, 0);
- DestLOI.KnownZero = Zero;
- DestLOI.KnownOne = Zero;
- return;
- }
- if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
- APInt Val = CI->getValue().zextOrTrunc(BitWidth);
- DestLOI.NumSignBits = Val.getNumSignBits();
- DestLOI.KnownZero = ~Val;
- DestLOI.KnownOne = Val;
- } else {
- assert(ValueMap.count(V) && "V should have been placed in ValueMap when its"
- "CopyToReg node was created.");
- unsigned SrcReg = ValueMap[V];
- if (!TargetRegisterInfo::isVirtualRegister(SrcReg)) {
- DestLOI.IsValid = false;
- return;
- }
- const LiveOutInfo *SrcLOI = GetLiveOutRegInfo(SrcReg, BitWidth);
- if (!SrcLOI) {
- DestLOI.IsValid = false;
- return;
- }
- DestLOI = *SrcLOI;
- }
- assert(DestLOI.KnownZero.getBitWidth() == BitWidth &&
- DestLOI.KnownOne.getBitWidth() == BitWidth &&
- "Masks should have the same bit width as the type.");
- for (unsigned i = 1, e = PN->getNumIncomingValues(); i != e; ++i) {
- Value *V = PN->getIncomingValue(i);
- if (isa<UndefValue>(V) || isa<ConstantExpr>(V)) {
- DestLOI.NumSignBits = 1;
- APInt Zero(BitWidth, 0);
- DestLOI.KnownZero = Zero;
- DestLOI.KnownOne = Zero;
- return;
- }
- if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
- APInt Val = CI->getValue().zextOrTrunc(BitWidth);
- DestLOI.NumSignBits = std::min(DestLOI.NumSignBits, Val.getNumSignBits());
- DestLOI.KnownZero &= ~Val;
- DestLOI.KnownOne &= Val;
- continue;
- }
- assert(ValueMap.count(V) && "V should have been placed in ValueMap when "
- "its CopyToReg node was created.");
- unsigned SrcReg = ValueMap[V];
- if (!TargetRegisterInfo::isVirtualRegister(SrcReg)) {
- DestLOI.IsValid = false;
- return;
- }
- const LiveOutInfo *SrcLOI = GetLiveOutRegInfo(SrcReg, BitWidth);
- if (!SrcLOI) {
- DestLOI.IsValid = false;
- return;
- }
- DestLOI.NumSignBits = std::min(DestLOI.NumSignBits, SrcLOI->NumSignBits);
- DestLOI.KnownZero &= SrcLOI->KnownZero;
- DestLOI.KnownOne &= SrcLOI->KnownOne;
- }
- }
- /// setArgumentFrameIndex - Record frame index for the byval
- /// argument. This overrides previous frame index entry for this argument,
- /// if any.
- void FunctionLoweringInfo::setArgumentFrameIndex(const Argument *A,
- int FI) {
- ByValArgFrameIndexMap[A] = FI;
- }
- /// getArgumentFrameIndex - Get frame index for the byval argument.
- /// If the argument does not have any assigned frame index then 0 is
- /// returned.
- int FunctionLoweringInfo::getArgumentFrameIndex(const Argument *A) {
- DenseMap<const Argument *, int>::iterator I =
- ByValArgFrameIndexMap.find(A);
- if (I != ByValArgFrameIndexMap.end())
- return I->second;
- DEBUG(dbgs() << "Argument does not have assigned frame index!\n");
- return 0;
- }
- /// ComputeUsesVAFloatArgument - Determine if any floating-point values are
- /// being passed to this variadic function, and set the MachineModuleInfo's
- /// usesVAFloatArgument flag if so. This flag is used to emit an undefined
- /// reference to _fltused on Windows, which will link in MSVCRT's
- /// floating-point support.
- void llvm::ComputeUsesVAFloatArgument(const CallInst &I,
- MachineModuleInfo *MMI)
- {
- FunctionType *FT = cast<FunctionType>(
- I.getCalledValue()->getType()->getContainedType(0));
- if (FT->isVarArg() && !MMI->usesVAFloatArgument()) {
- for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) {
- Type* T = I.getArgOperand(i)->getType();
- for (auto i : post_order(T)) {
- if (i->isFloatingPointTy()) {
- MMI->setUsesVAFloatArgument(true);
- return;
- }
- }
- }
- }
- }
- /// AddLandingPadInfo - Extract the exception handling information from the
- /// landingpad instruction and add them to the specified machine module info.
- void llvm::AddLandingPadInfo(const LandingPadInst &I, MachineModuleInfo &MMI,
- MachineBasicBlock *MBB) {
- MMI.addPersonality(
- MBB,
- cast<Function>(
- I.getParent()->getParent()->getPersonalityFn()->stripPointerCasts()));
- if (I.isCleanup())
- MMI.addCleanup(MBB);
- // FIXME: New EH - Add the clauses in reverse order. This isn't 100% correct,
- // but we need to do it this way because of how the DWARF EH emitter
- // processes the clauses.
- for (unsigned i = I.getNumClauses(); i != 0; --i) {
- Value *Val = I.getClause(i - 1);
- if (I.isCatch(i - 1)) {
- MMI.addCatchTypeInfo(MBB,
- dyn_cast<GlobalValue>(Val->stripPointerCasts()));
- } else {
- // Add filters in a list.
- Constant *CVal = cast<Constant>(Val);
- SmallVector<const GlobalValue*, 4> FilterList;
- for (User::op_iterator
- II = CVal->op_begin(), IE = CVal->op_end(); II != IE; ++II)
- FilterList.push_back(cast<GlobalValue>((*II)->stripPointerCasts()));
- MMI.addFilterTypeInfo(MBB, FilterList);
- }
- }
- }
|