1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054705570567057705870597060706170627063706470657066706770687069707070717072707370747075707670777078707970807081708270837084708570867087708870897090709170927093709470957096709770987099710071017102710371047105710671077108710971107111711271137114711571167117711871197120712171227123712471257126712771287129713071317132713371347135713671377138713971407141714271437144714571467147714871497150715171527153715471557156715771587159716071617162716371647165716671677168716971707171717271737174 |
- //===-- SelectionDAG.cpp - Implement the SelectionDAG data structures -----===//
- //
- // The LLVM Compiler Infrastructure
- //
- // This file is distributed under the University of Illinois Open Source
- // License. See LICENSE.TXT for details.
- //
- //===----------------------------------------------------------------------===//
- //
- // This implements the SelectionDAG class.
- //
- //===----------------------------------------------------------------------===//
- #include "llvm/CodeGen/SelectionDAG.h"
- #include "SDNodeDbgValue.h"
- #include "llvm/ADT/SetVector.h"
- #include "llvm/ADT/SmallPtrSet.h"
- #include "llvm/ADT/SmallSet.h"
- #include "llvm/ADT/SmallVector.h"
- #include "llvm/ADT/StringExtras.h"
- #include "llvm/Analysis/ValueTracking.h"
- #include "llvm/CodeGen/MachineBasicBlock.h"
- #include "llvm/CodeGen/MachineConstantPool.h"
- #include "llvm/CodeGen/MachineFrameInfo.h"
- #include "llvm/CodeGen/MachineModuleInfo.h"
- #include "llvm/IR/CallingConv.h"
- #include "llvm/IR/Constants.h"
- #include "llvm/IR/DataLayout.h"
- #include "llvm/IR/DebugInfo.h"
- #include "llvm/IR/DerivedTypes.h"
- #include "llvm/IR/Function.h"
- #include "llvm/IR/GlobalAlias.h"
- #include "llvm/IR/GlobalVariable.h"
- #include "llvm/IR/Intrinsics.h"
- #include "llvm/Support/CommandLine.h"
- #include "llvm/Support/Debug.h"
- #include "llvm/Support/ErrorHandling.h"
- #include "llvm/Support/ManagedStatic.h"
- #include "llvm/Support/MathExtras.h"
- #include "llvm/Support/Mutex.h"
- #include "llvm/Support/raw_ostream.h"
- #include "llvm/Target/TargetInstrInfo.h"
- #include "llvm/Target/TargetIntrinsicInfo.h"
- #include "llvm/Target/TargetLowering.h"
- #include "llvm/Target/TargetMachine.h"
- #include "llvm/Target/TargetOptions.h"
- #include "llvm/Target/TargetRegisterInfo.h"
- #include "llvm/Target/TargetSelectionDAGInfo.h"
- #include "llvm/Target/TargetSubtargetInfo.h"
- #include <algorithm>
- #include <cmath>
- #include <utility>
- using namespace llvm;
- /// makeVTList - Return an instance of the SDVTList struct initialized with the
- /// specified members.
- static SDVTList makeVTList(const EVT *VTs, unsigned NumVTs) {
- SDVTList Res = {VTs, NumVTs};
- return Res;
- }
- // Default null implementations of the callbacks.
- void SelectionDAG::DAGUpdateListener::NodeDeleted(SDNode*, SDNode*) {}
- void SelectionDAG::DAGUpdateListener::NodeUpdated(SDNode*) {}
- //===----------------------------------------------------------------------===//
- // ConstantFPSDNode Class
- //===----------------------------------------------------------------------===//
- /// isExactlyValue - We don't rely on operator== working on double values, as
- /// it returns true for things that are clearly not equal, like -0.0 and 0.0.
- /// As such, this method can be used to do an exact bit-for-bit comparison of
- /// two floating point values.
- bool ConstantFPSDNode::isExactlyValue(const APFloat& V) const {
- return getValueAPF().bitwiseIsEqual(V);
- }
- bool ConstantFPSDNode::isValueValidForType(EVT VT,
- const APFloat& Val) {
- assert(VT.isFloatingPoint() && "Can only convert between FP types");
- // convert modifies in place, so make a copy.
- APFloat Val2 = APFloat(Val);
- bool losesInfo;
- (void) Val2.convert(SelectionDAG::EVTToAPFloatSemantics(VT),
- APFloat::rmNearestTiesToEven,
- &losesInfo);
- return !losesInfo;
- }
- //===----------------------------------------------------------------------===//
- // ISD Namespace
- //===----------------------------------------------------------------------===//
- /// isBuildVectorAllOnes - Return true if the specified node is a
- /// BUILD_VECTOR where all of the elements are ~0 or undef.
- bool ISD::isBuildVectorAllOnes(const SDNode *N) {
- // Look through a bit convert.
- while (N->getOpcode() == ISD::BITCAST)
- N = N->getOperand(0).getNode();
- if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
- unsigned i = 0, e = N->getNumOperands();
- // Skip over all of the undef values.
- while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
- ++i;
- // Do not accept an all-undef vector.
- if (i == e) return false;
- // Do not accept build_vectors that aren't all constants or which have non-~0
- // elements. We have to be a bit careful here, as the type of the constant
- // may not be the same as the type of the vector elements due to type
- // legalization (the elements are promoted to a legal type for the target and
- // a vector of a type may be legal when the base element type is not).
- // We only want to check enough bits to cover the vector elements, because
- // we care if the resultant vector is all ones, not whether the individual
- // constants are.
- SDValue NotZero = N->getOperand(i);
- unsigned EltSize = N->getValueType(0).getVectorElementType().getSizeInBits();
- if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(NotZero)) {
- if (CN->getAPIntValue().countTrailingOnes() < EltSize)
- return false;
- } else if (ConstantFPSDNode *CFPN = dyn_cast<ConstantFPSDNode>(NotZero)) {
- if (CFPN->getValueAPF().bitcastToAPInt().countTrailingOnes() < EltSize)
- return false;
- } else
- return false;
- // Okay, we have at least one ~0 value, check to see if the rest match or are
- // undefs. Even with the above element type twiddling, this should be OK, as
- // the same type legalization should have applied to all the elements.
- for (++i; i != e; ++i)
- if (N->getOperand(i) != NotZero &&
- N->getOperand(i).getOpcode() != ISD::UNDEF)
- return false;
- return true;
- }
- /// isBuildVectorAllZeros - Return true if the specified node is a
- /// BUILD_VECTOR where all of the elements are 0 or undef.
- bool ISD::isBuildVectorAllZeros(const SDNode *N) {
- // Look through a bit convert.
- while (N->getOpcode() == ISD::BITCAST)
- N = N->getOperand(0).getNode();
- if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
- bool IsAllUndef = true;
- for (const SDValue &Op : N->op_values()) {
- if (Op.getOpcode() == ISD::UNDEF)
- continue;
- IsAllUndef = false;
- // Do not accept build_vectors that aren't all constants or which have non-0
- // elements. We have to be a bit careful here, as the type of the constant
- // may not be the same as the type of the vector elements due to type
- // legalization (the elements are promoted to a legal type for the target
- // and a vector of a type may be legal when the base element type is not).
- // We only want to check enough bits to cover the vector elements, because
- // we care if the resultant vector is all zeros, not whether the individual
- // constants are.
- unsigned EltSize = N->getValueType(0).getVectorElementType().getSizeInBits();
- if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Op)) {
- if (CN->getAPIntValue().countTrailingZeros() < EltSize)
- return false;
- } else if (ConstantFPSDNode *CFPN = dyn_cast<ConstantFPSDNode>(Op)) {
- if (CFPN->getValueAPF().bitcastToAPInt().countTrailingZeros() < EltSize)
- return false;
- } else
- return false;
- }
- // Do not accept an all-undef vector.
- if (IsAllUndef)
- return false;
- return true;
- }
- /// \brief Return true if the specified node is a BUILD_VECTOR node of
- /// all ConstantSDNode or undef.
- bool ISD::isBuildVectorOfConstantSDNodes(const SDNode *N) {
- if (N->getOpcode() != ISD::BUILD_VECTOR)
- return false;
- for (const SDValue &Op : N->op_values()) {
- if (Op.getOpcode() == ISD::UNDEF)
- continue;
- if (!isa<ConstantSDNode>(Op))
- return false;
- }
- return true;
- }
- /// \brief Return true if the specified node is a BUILD_VECTOR node of
- /// all ConstantFPSDNode or undef.
- bool ISD::isBuildVectorOfConstantFPSDNodes(const SDNode *N) {
- if (N->getOpcode() != ISD::BUILD_VECTOR)
- return false;
- for (const SDValue &Op : N->op_values()) {
- if (Op.getOpcode() == ISD::UNDEF)
- continue;
- if (!isa<ConstantFPSDNode>(Op))
- return false;
- }
- return true;
- }
- /// isScalarToVector - Return true if the specified node is a
- /// ISD::SCALAR_TO_VECTOR node or a BUILD_VECTOR node where only the low
- /// element is not an undef.
- bool ISD::isScalarToVector(const SDNode *N) {
- if (N->getOpcode() == ISD::SCALAR_TO_VECTOR)
- return true;
- if (N->getOpcode() != ISD::BUILD_VECTOR)
- return false;
- if (N->getOperand(0).getOpcode() == ISD::UNDEF)
- return false;
- unsigned NumElems = N->getNumOperands();
- if (NumElems == 1)
- return false;
- for (unsigned i = 1; i < NumElems; ++i) {
- SDValue V = N->getOperand(i);
- if (V.getOpcode() != ISD::UNDEF)
- return false;
- }
- return true;
- }
- /// allOperandsUndef - Return true if the node has at least one operand
- /// and all operands of the specified node are ISD::UNDEF.
- bool ISD::allOperandsUndef(const SDNode *N) {
- // Return false if the node has no operands.
- // This is "logically inconsistent" with the definition of "all" but
- // is probably the desired behavior.
- if (N->getNumOperands() == 0)
- return false;
- for (const SDValue &Op : N->op_values())
- if (Op.getOpcode() != ISD::UNDEF)
- return false;
- return true;
- }
- ISD::NodeType ISD::getExtForLoadExtType(bool IsFP, ISD::LoadExtType ExtType) {
- switch (ExtType) {
- case ISD::EXTLOAD:
- return IsFP ? ISD::FP_EXTEND : ISD::ANY_EXTEND;
- case ISD::SEXTLOAD:
- return ISD::SIGN_EXTEND;
- case ISD::ZEXTLOAD:
- return ISD::ZERO_EXTEND;
- default:
- break;
- }
- llvm_unreachable("Invalid LoadExtType");
- }
- /// getSetCCSwappedOperands - Return the operation corresponding to (Y op X)
- /// when given the operation for (X op Y).
- ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) {
- // To perform this operation, we just need to swap the L and G bits of the
- // operation.
- unsigned OldL = (Operation >> 2) & 1;
- unsigned OldG = (Operation >> 1) & 1;
- return ISD::CondCode((Operation & ~6) | // Keep the N, U, E bits
- (OldL << 1) | // New G bit
- (OldG << 2)); // New L bit.
- }
- /// getSetCCInverse - Return the operation corresponding to !(X op Y), where
- /// 'op' is a valid SetCC operation.
- ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, bool isInteger) {
- unsigned Operation = Op;
- if (isInteger)
- Operation ^= 7; // Flip L, G, E bits, but not U.
- else
- Operation ^= 15; // Flip all of the condition bits.
- if (Operation > ISD::SETTRUE2)
- Operation &= ~8; // Don't let N and U bits get set.
- return ISD::CondCode(Operation);
- }
- /// isSignedOp - For an integer comparison, return 1 if the comparison is a
- /// signed operation and 2 if the result is an unsigned comparison. Return zero
- /// if the operation does not depend on the sign of the input (setne and seteq).
- static int isSignedOp(ISD::CondCode Opcode) {
- switch (Opcode) {
- default: llvm_unreachable("Illegal integer setcc operation!");
- case ISD::SETEQ:
- case ISD::SETNE: return 0;
- case ISD::SETLT:
- case ISD::SETLE:
- case ISD::SETGT:
- case ISD::SETGE: return 1;
- case ISD::SETULT:
- case ISD::SETULE:
- case ISD::SETUGT:
- case ISD::SETUGE: return 2;
- }
- }
- /// getSetCCOrOperation - Return the result of a logical OR between different
- /// comparisons of identical values: ((X op1 Y) | (X op2 Y)). This function
- /// returns SETCC_INVALID if it is not possible to represent the resultant
- /// comparison.
- ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2,
- bool isInteger) {
- if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
- // Cannot fold a signed integer setcc with an unsigned integer setcc.
- return ISD::SETCC_INVALID;
- unsigned Op = Op1 | Op2; // Combine all of the condition bits.
- // If the N and U bits get set then the resultant comparison DOES suddenly
- // care about orderedness, and is true when ordered.
- if (Op > ISD::SETTRUE2)
- Op &= ~16; // Clear the U bit if the N bit is set.
- // Canonicalize illegal integer setcc's.
- if (isInteger && Op == ISD::SETUNE) // e.g. SETUGT | SETULT
- Op = ISD::SETNE;
- return ISD::CondCode(Op);
- }
- /// getSetCCAndOperation - Return the result of a logical AND between different
- /// comparisons of identical values: ((X op1 Y) & (X op2 Y)). This
- /// function returns zero if it is not possible to represent the resultant
- /// comparison.
- ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2,
- bool isInteger) {
- if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
- // Cannot fold a signed setcc with an unsigned setcc.
- return ISD::SETCC_INVALID;
- // Combine all of the condition bits.
- ISD::CondCode Result = ISD::CondCode(Op1 & Op2);
- // Canonicalize illegal integer setcc's.
- if (isInteger) {
- switch (Result) {
- default: break;
- case ISD::SETUO : Result = ISD::SETFALSE; break; // SETUGT & SETULT
- case ISD::SETOEQ: // SETEQ & SETU[LG]E
- case ISD::SETUEQ: Result = ISD::SETEQ ; break; // SETUGE & SETULE
- case ISD::SETOLT: Result = ISD::SETULT ; break; // SETULT & SETNE
- case ISD::SETOGT: Result = ISD::SETUGT ; break; // SETUGT & SETNE
- }
- }
- return Result;
- }
- //===----------------------------------------------------------------------===//
- // SDNode Profile Support
- //===----------------------------------------------------------------------===//
- /// AddNodeIDOpcode - Add the node opcode to the NodeID data.
- ///
- static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC) {
- ID.AddInteger(OpC);
- }
- /// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them
- /// solely with their pointer.
- static void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList) {
- ID.AddPointer(VTList.VTs);
- }
- /// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
- ///
- static void AddNodeIDOperands(FoldingSetNodeID &ID,
- ArrayRef<SDValue> Ops) {
- for (auto& Op : Ops) {
- ID.AddPointer(Op.getNode());
- ID.AddInteger(Op.getResNo());
- }
- }
- /// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
- ///
- static void AddNodeIDOperands(FoldingSetNodeID &ID,
- ArrayRef<SDUse> Ops) {
- for (auto& Op : Ops) {
- ID.AddPointer(Op.getNode());
- ID.AddInteger(Op.getResNo());
- }
- }
- /// Add logical or fast math flag values to FoldingSetNodeID value.
- static void AddNodeIDFlags(FoldingSetNodeID &ID, unsigned Opcode,
- const SDNodeFlags *Flags) {
- if (!Flags || !isBinOpWithFlags(Opcode))
- return;
- unsigned RawFlags = Flags->getRawFlags();
- // If no flags are set, do not alter the ID. We must match the ID of nodes
- // that were created without explicitly specifying flags. This also saves time
- // and allows a gradual increase in API usage of the optional optimization
- // flags.
- if (RawFlags != 0)
- ID.AddInteger(RawFlags);
- }
- static void AddNodeIDFlags(FoldingSetNodeID &ID, const SDNode *N) {
- if (auto *Node = dyn_cast<BinaryWithFlagsSDNode>(N))
- AddNodeIDFlags(ID, Node->getOpcode(), &Node->Flags);
- }
- static void AddNodeIDNode(FoldingSetNodeID &ID, unsigned short OpC,
- SDVTList VTList, ArrayRef<SDValue> OpList) {
- AddNodeIDOpcode(ID, OpC);
- AddNodeIDValueTypes(ID, VTList);
- AddNodeIDOperands(ID, OpList);
- }
- /// If this is an SDNode with special info, add this info to the NodeID data.
- static void AddNodeIDCustom(FoldingSetNodeID &ID, const SDNode *N) {
- switch (N->getOpcode()) {
- case ISD::TargetExternalSymbol:
- case ISD::ExternalSymbol:
- case ISD::MCSymbol:
- llvm_unreachable("Should only be used on nodes with operands");
- default: break; // Normal nodes don't need extra info.
- case ISD::TargetConstant:
- case ISD::Constant: {
- const ConstantSDNode *C = cast<ConstantSDNode>(N);
- ID.AddPointer(C->getConstantIntValue());
- ID.AddBoolean(C->isOpaque());
- break;
- }
- case ISD::TargetConstantFP:
- case ISD::ConstantFP: {
- ID.AddPointer(cast<ConstantFPSDNode>(N)->getConstantFPValue());
- break;
- }
- case ISD::TargetGlobalAddress:
- case ISD::GlobalAddress:
- case ISD::TargetGlobalTLSAddress:
- case ISD::GlobalTLSAddress: {
- const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N);
- ID.AddPointer(GA->getGlobal());
- ID.AddInteger(GA->getOffset());
- ID.AddInteger(GA->getTargetFlags());
- ID.AddInteger(GA->getAddressSpace());
- break;
- }
- case ISD::BasicBlock:
- ID.AddPointer(cast<BasicBlockSDNode>(N)->getBasicBlock());
- break;
- case ISD::Register:
- ID.AddInteger(cast<RegisterSDNode>(N)->getReg());
- break;
- case ISD::RegisterMask:
- ID.AddPointer(cast<RegisterMaskSDNode>(N)->getRegMask());
- break;
- case ISD::SRCVALUE:
- ID.AddPointer(cast<SrcValueSDNode>(N)->getValue());
- break;
- case ISD::FrameIndex:
- case ISD::TargetFrameIndex:
- ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex());
- break;
- case ISD::JumpTable:
- case ISD::TargetJumpTable:
- ID.AddInteger(cast<JumpTableSDNode>(N)->getIndex());
- ID.AddInteger(cast<JumpTableSDNode>(N)->getTargetFlags());
- break;
- case ISD::ConstantPool:
- case ISD::TargetConstantPool: {
- const ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(N);
- ID.AddInteger(CP->getAlignment());
- ID.AddInteger(CP->getOffset());
- if (CP->isMachineConstantPoolEntry())
- CP->getMachineCPVal()->addSelectionDAGCSEId(ID);
- else
- ID.AddPointer(CP->getConstVal());
- ID.AddInteger(CP->getTargetFlags());
- break;
- }
- case ISD::TargetIndex: {
- const TargetIndexSDNode *TI = cast<TargetIndexSDNode>(N);
- ID.AddInteger(TI->getIndex());
- ID.AddInteger(TI->getOffset());
- ID.AddInteger(TI->getTargetFlags());
- break;
- }
- case ISD::LOAD: {
- const LoadSDNode *LD = cast<LoadSDNode>(N);
- ID.AddInteger(LD->getMemoryVT().getRawBits());
- ID.AddInteger(LD->getRawSubclassData());
- ID.AddInteger(LD->getPointerInfo().getAddrSpace());
- break;
- }
- case ISD::STORE: {
- const StoreSDNode *ST = cast<StoreSDNode>(N);
- ID.AddInteger(ST->getMemoryVT().getRawBits());
- ID.AddInteger(ST->getRawSubclassData());
- ID.AddInteger(ST->getPointerInfo().getAddrSpace());
- break;
- }
- case ISD::ATOMIC_CMP_SWAP:
- case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS:
- case ISD::ATOMIC_SWAP:
- case ISD::ATOMIC_LOAD_ADD:
- case ISD::ATOMIC_LOAD_SUB:
- case ISD::ATOMIC_LOAD_AND:
- case ISD::ATOMIC_LOAD_OR:
- case ISD::ATOMIC_LOAD_XOR:
- case ISD::ATOMIC_LOAD_NAND:
- case ISD::ATOMIC_LOAD_MIN:
- case ISD::ATOMIC_LOAD_MAX:
- case ISD::ATOMIC_LOAD_UMIN:
- case ISD::ATOMIC_LOAD_UMAX:
- case ISD::ATOMIC_LOAD:
- case ISD::ATOMIC_STORE: {
- const AtomicSDNode *AT = cast<AtomicSDNode>(N);
- ID.AddInteger(AT->getMemoryVT().getRawBits());
- ID.AddInteger(AT->getRawSubclassData());
- ID.AddInteger(AT->getPointerInfo().getAddrSpace());
- break;
- }
- case ISD::PREFETCH: {
- const MemSDNode *PF = cast<MemSDNode>(N);
- ID.AddInteger(PF->getPointerInfo().getAddrSpace());
- break;
- }
- case ISD::VECTOR_SHUFFLE: {
- const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
- for (unsigned i = 0, e = N->getValueType(0).getVectorNumElements();
- i != e; ++i)
- ID.AddInteger(SVN->getMaskElt(i));
- break;
- }
- case ISD::TargetBlockAddress:
- case ISD::BlockAddress: {
- const BlockAddressSDNode *BA = cast<BlockAddressSDNode>(N);
- ID.AddPointer(BA->getBlockAddress());
- ID.AddInteger(BA->getOffset());
- ID.AddInteger(BA->getTargetFlags());
- break;
- }
- } // end switch (N->getOpcode())
- AddNodeIDFlags(ID, N);
- // Target specific memory nodes could also have address spaces to check.
- if (N->isTargetMemoryOpcode())
- ID.AddInteger(cast<MemSDNode>(N)->getPointerInfo().getAddrSpace());
- }
- /// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID
- /// data.
- static void AddNodeIDNode(FoldingSetNodeID &ID, const SDNode *N) {
- AddNodeIDOpcode(ID, N->getOpcode());
- // Add the return value info.
- AddNodeIDValueTypes(ID, N->getVTList());
- // Add the operand info.
- AddNodeIDOperands(ID, N->ops());
- // Handle SDNode leafs with special info.
- AddNodeIDCustom(ID, N);
- }
- /// encodeMemSDNodeFlags - Generic routine for computing a value for use in
- /// the CSE map that carries volatility, temporalness, indexing mode, and
- /// extension/truncation information.
- ///
- static inline unsigned
- encodeMemSDNodeFlags(int ConvType, ISD::MemIndexedMode AM, bool isVolatile,
- bool isNonTemporal, bool isInvariant) {
- assert((ConvType & 3) == ConvType &&
- "ConvType may not require more than 2 bits!");
- assert((AM & 7) == AM &&
- "AM may not require more than 3 bits!");
- return ConvType |
- (AM << 2) |
- (isVolatile << 5) |
- (isNonTemporal << 6) |
- (isInvariant << 7);
- }
- //===----------------------------------------------------------------------===//
- // SelectionDAG Class
- //===----------------------------------------------------------------------===//
- /// doNotCSE - Return true if CSE should not be performed for this node.
- static bool doNotCSE(SDNode *N) {
- if (N->getValueType(0) == MVT::Glue)
- return true; // Never CSE anything that produces a flag.
- switch (N->getOpcode()) {
- default: break;
- case ISD::HANDLENODE:
- case ISD::EH_LABEL:
- return true; // Never CSE these nodes.
- }
- // Check that remaining values produced are not flags.
- for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
- if (N->getValueType(i) == MVT::Glue)
- return true; // Never CSE anything that produces a flag.
- return false;
- }
- /// RemoveDeadNodes - This method deletes all unreachable nodes in the
- /// SelectionDAG.
- void SelectionDAG::RemoveDeadNodes() {
- // Create a dummy node (which is not added to allnodes), that adds a reference
- // to the root node, preventing it from being deleted.
- HandleSDNode Dummy(getRoot());
- SmallVector<SDNode*, 128> DeadNodes;
- // Add all obviously-dead nodes to the DeadNodes worklist.
- for (allnodes_iterator I = allnodes_begin(), E = allnodes_end(); I != E; ++I)
- if (I->use_empty())
- DeadNodes.push_back(I);
- RemoveDeadNodes(DeadNodes);
- // If the root changed (e.g. it was a dead load, update the root).
- setRoot(Dummy.getValue());
- }
- /// RemoveDeadNodes - This method deletes the unreachable nodes in the
- /// given list, and any nodes that become unreachable as a result.
- void SelectionDAG::RemoveDeadNodes(SmallVectorImpl<SDNode *> &DeadNodes) {
- // Process the worklist, deleting the nodes and adding their uses to the
- // worklist.
- while (!DeadNodes.empty()) {
- SDNode *N = DeadNodes.pop_back_val();
- for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
- DUL->NodeDeleted(N, nullptr);
- // Take the node out of the appropriate CSE map.
- RemoveNodeFromCSEMaps(N);
- // Next, brutally remove the operand list. This is safe to do, as there are
- // no cycles in the graph.
- for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
- SDUse &Use = *I++;
- SDNode *Operand = Use.getNode();
- Use.set(SDValue());
- // Now that we removed this operand, see if there are no uses of it left.
- if (Operand->use_empty())
- DeadNodes.push_back(Operand);
- }
- DeallocateNode(N);
- }
- }
- void SelectionDAG::RemoveDeadNode(SDNode *N){
- SmallVector<SDNode*, 16> DeadNodes(1, N);
- // Create a dummy node that adds a reference to the root node, preventing
- // it from being deleted. (This matters if the root is an operand of the
- // dead node.)
- HandleSDNode Dummy(getRoot());
- RemoveDeadNodes(DeadNodes);
- }
- void SelectionDAG::DeleteNode(SDNode *N) {
- // First take this out of the appropriate CSE map.
- RemoveNodeFromCSEMaps(N);
- // Finally, remove uses due to operands of this node, remove from the
- // AllNodes list, and delete the node.
- DeleteNodeNotInCSEMaps(N);
- }
- void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) {
- assert(N != AllNodes.begin() && "Cannot delete the entry node!");
- assert(N->use_empty() && "Cannot delete a node that is not dead!");
- // Drop all of the operands and decrement used node's use counts.
- N->DropOperands();
- DeallocateNode(N);
- }
- void SDDbgInfo::erase(const SDNode *Node) {
- DbgValMapType::iterator I = DbgValMap.find(Node);
- if (I == DbgValMap.end())
- return;
- for (auto &Val: I->second)
- Val->setIsInvalidated();
- DbgValMap.erase(I);
- }
- void SelectionDAG::DeallocateNode(SDNode *N) {
- if (N->OperandsNeedDelete)
- delete[] N->OperandList;
- // Set the opcode to DELETED_NODE to help catch bugs when node
- // memory is reallocated.
- N->NodeType = ISD::DELETED_NODE;
- NodeAllocator.Deallocate(AllNodes.remove(N));
- // If any of the SDDbgValue nodes refer to this SDNode, invalidate
- // them and forget about that node.
- DbgInfo->erase(N);
- }
- #ifndef NDEBUG
- /// VerifySDNode - Sanity check the given SDNode. Aborts if it is invalid.
- static void VerifySDNode(SDNode *N) {
- switch (N->getOpcode()) {
- default:
- break;
- case ISD::BUILD_PAIR: {
- EVT VT = N->getValueType(0);
- assert(N->getNumValues() == 1 && "Too many results!");
- assert(!VT.isVector() && (VT.isInteger() || VT.isFloatingPoint()) &&
- "Wrong return type!");
- assert(N->getNumOperands() == 2 && "Wrong number of operands!");
- assert(N->getOperand(0).getValueType() == N->getOperand(1).getValueType() &&
- "Mismatched operand types!");
- assert(N->getOperand(0).getValueType().isInteger() == VT.isInteger() &&
- "Wrong operand type!");
- assert(VT.getSizeInBits() == 2 * N->getOperand(0).getValueSizeInBits() &&
- "Wrong return type size");
- break;
- }
- case ISD::BUILD_VECTOR: {
- assert(N->getNumValues() == 1 && "Too many results!");
- assert(N->getValueType(0).isVector() && "Wrong return type!");
- assert(N->getNumOperands() == N->getValueType(0).getVectorNumElements() &&
- "Wrong number of operands!");
- EVT EltVT = N->getValueType(0).getVectorElementType();
- for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) {
- assert((I->getValueType() == EltVT ||
- (EltVT.isInteger() && I->getValueType().isInteger() &&
- EltVT.bitsLE(I->getValueType()))) &&
- "Wrong operand type!");
- assert(I->getValueType() == N->getOperand(0).getValueType() &&
- "Operands must all have the same type");
- }
- break;
- }
- }
- }
- #endif // NDEBUG
- /// \brief Insert a newly allocated node into the DAG.
- ///
- /// Handles insertion into the all nodes list and CSE map, as well as
- /// verification and other common operations when a new node is allocated.
- void SelectionDAG::InsertNode(SDNode *N) {
- AllNodes.push_back(N);
- #ifndef NDEBUG
- VerifySDNode(N);
- #endif
- }
- /// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that
- /// correspond to it. This is useful when we're about to delete or repurpose
- /// the node. We don't want future request for structurally identical nodes
- /// to return N anymore.
- bool SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) {
- bool Erased = false;
- switch (N->getOpcode()) {
- case ISD::HANDLENODE: return false; // noop.
- case ISD::CONDCODE:
- assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] &&
- "Cond code doesn't exist!");
- Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != nullptr;
- CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = nullptr;
- break;
- case ISD::ExternalSymbol:
- Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
- break;
- case ISD::TargetExternalSymbol: {
- ExternalSymbolSDNode *ESN = cast<ExternalSymbolSDNode>(N);
- Erased = TargetExternalSymbols.erase(
- std::pair<std::string,unsigned char>(ESN->getSymbol(),
- ESN->getTargetFlags()));
- break;
- }
- case ISD::MCSymbol: {
- auto *MCSN = cast<MCSymbolSDNode>(N);
- Erased = MCSymbols.erase(MCSN->getMCSymbol());
- break;
- }
- case ISD::VALUETYPE: {
- EVT VT = cast<VTSDNode>(N)->getVT();
- if (VT.isExtended()) {
- Erased = ExtendedValueTypeNodes.erase(VT);
- } else {
- Erased = ValueTypeNodes[VT.getSimpleVT().SimpleTy] != nullptr;
- ValueTypeNodes[VT.getSimpleVT().SimpleTy] = nullptr;
- }
- break;
- }
- default:
- // Remove it from the CSE Map.
- assert(N->getOpcode() != ISD::DELETED_NODE && "DELETED_NODE in CSEMap!");
- assert(N->getOpcode() != ISD::EntryToken && "EntryToken in CSEMap!");
- Erased = CSEMap.RemoveNode(N);
- break;
- }
- #ifndef NDEBUG
- // Verify that the node was actually in one of the CSE maps, unless it has a
- // flag result (which cannot be CSE'd) or is one of the special cases that are
- // not subject to CSE.
- if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Glue &&
- !N->isMachineOpcode() && !doNotCSE(N)) {
- N->dump(this);
- dbgs() << "\n";
- llvm_unreachable("Node is not in map!");
- }
- #endif
- return Erased;
- }
- /// AddModifiedNodeToCSEMaps - The specified node has been removed from the CSE
- /// maps and modified in place. Add it back to the CSE maps, unless an identical
- /// node already exists, in which case transfer all its users to the existing
- /// node. This transfer can potentially trigger recursive merging.
- ///
- void
- SelectionDAG::AddModifiedNodeToCSEMaps(SDNode *N) {
- // For node types that aren't CSE'd, just act as if no identical node
- // already exists.
- if (!doNotCSE(N)) {
- SDNode *Existing = CSEMap.GetOrInsertNode(N);
- if (Existing != N) {
- // If there was already an existing matching node, use ReplaceAllUsesWith
- // to replace the dead one with the existing one. This can cause
- // recursive merging of other unrelated nodes down the line.
- ReplaceAllUsesWith(N, Existing);
- // N is now dead. Inform the listeners and delete it.
- for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
- DUL->NodeDeleted(N, Existing);
- DeleteNodeNotInCSEMaps(N);
- return;
- }
- }
- // If the node doesn't already exist, we updated it. Inform listeners.
- for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
- DUL->NodeUpdated(N);
- }
- /// FindModifiedNodeSlot - Find a slot for the specified node if its operands
- /// were replaced with those specified. If this node is never memoized,
- /// return null, otherwise return a pointer to the slot it would take. If a
- /// node already exists with these operands, the slot will be non-null.
- SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDValue Op,
- void *&InsertPos) {
- if (doNotCSE(N))
- return nullptr;
- SDValue Ops[] = { Op };
- FoldingSetNodeID ID;
- AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops);
- AddNodeIDCustom(ID, N);
- SDNode *Node = FindNodeOrInsertPos(ID, N->getDebugLoc(), InsertPos);
- return Node;
- }
- /// FindModifiedNodeSlot - Find a slot for the specified node if its operands
- /// were replaced with those specified. If this node is never memoized,
- /// return null, otherwise return a pointer to the slot it would take. If a
- /// node already exists with these operands, the slot will be non-null.
- SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
- SDValue Op1, SDValue Op2,
- void *&InsertPos) {
- if (doNotCSE(N))
- return nullptr;
- SDValue Ops[] = { Op1, Op2 };
- FoldingSetNodeID ID;
- AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops);
- AddNodeIDCustom(ID, N);
- SDNode *Node = FindNodeOrInsertPos(ID, N->getDebugLoc(), InsertPos);
- return Node;
- }
- /// FindModifiedNodeSlot - Find a slot for the specified node if its operands
- /// were replaced with those specified. If this node is never memoized,
- /// return null, otherwise return a pointer to the slot it would take. If a
- /// node already exists with these operands, the slot will be non-null.
- SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, ArrayRef<SDValue> Ops,
- void *&InsertPos) {
- if (doNotCSE(N))
- return nullptr;
- FoldingSetNodeID ID;
- AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops);
- AddNodeIDCustom(ID, N);
- SDNode *Node = FindNodeOrInsertPos(ID, N->getDebugLoc(), InsertPos);
- return Node;
- }
- /// getEVTAlignment - Compute the default alignment value for the
- /// given type.
- ///
- unsigned SelectionDAG::getEVTAlignment(EVT VT) const {
- Type *Ty = VT == MVT::iPTR ?
- PointerType::get(Type::getInt8Ty(*getContext()), 0) :
- VT.getTypeForEVT(*getContext());
- return getDataLayout().getABITypeAlignment(Ty);
- }
- // EntryNode could meaningfully have debug info if we can find it...
- SelectionDAG::SelectionDAG(const TargetMachine &tm, CodeGenOpt::Level OL)
- : TM(tm), TSI(nullptr), TLI(nullptr), OptLevel(OL),
- EntryNode(ISD::EntryToken, 0, DebugLoc(), getVTList(MVT::Other)),
- Root(getEntryNode()), NewNodesMustHaveLegalTypes(false),
- UpdateListeners(nullptr) {
- AllNodes.push_back(&EntryNode);
- DbgInfo = new SDDbgInfo();
- }
- void SelectionDAG::init(MachineFunction &mf) {
- MF = &mf;
- TLI = getSubtarget().getTargetLowering();
- TSI = getSubtarget().getSelectionDAGInfo();
- Context = &mf.getFunction()->getContext();
- }
- SelectionDAG::~SelectionDAG() {
- assert(!UpdateListeners && "Dangling registered DAGUpdateListeners");
- allnodes_clear();
- delete DbgInfo;
- }
- void SelectionDAG::allnodes_clear() {
- assert(&*AllNodes.begin() == &EntryNode);
- AllNodes.remove(AllNodes.begin());
- while (!AllNodes.empty())
- DeallocateNode(AllNodes.begin());
- }
- BinarySDNode *SelectionDAG::GetBinarySDNode(unsigned Opcode, SDLoc DL,
- SDVTList VTs, SDValue N1,
- SDValue N2,
- const SDNodeFlags *Flags) {
- if (isBinOpWithFlags(Opcode)) {
- // If no flags were passed in, use a default flags object.
- SDNodeFlags F;
- if (Flags == nullptr)
- Flags = &F;
- BinaryWithFlagsSDNode *FN = new (NodeAllocator) BinaryWithFlagsSDNode(
- Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs, N1, N2, *Flags);
- return FN;
- }
- BinarySDNode *N = new (NodeAllocator)
- BinarySDNode(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs, N1, N2);
- return N;
- }
- SDNode *SelectionDAG::FindNodeOrInsertPos(const FoldingSetNodeID &ID,
- void *&InsertPos) {
- SDNode *N = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
- if (N) {
- switch (N->getOpcode()) {
- default: break;
- case ISD::Constant:
- case ISD::ConstantFP:
- llvm_unreachable("Querying for Constant and ConstantFP nodes requires "
- "debug location. Use another overload.");
- }
- }
- return N;
- }
- SDNode *SelectionDAG::FindNodeOrInsertPos(const FoldingSetNodeID &ID,
- DebugLoc DL, void *&InsertPos) {
- SDNode *N = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
- if (N) {
- switch (N->getOpcode()) {
- default: break; // Process only regular (non-target) constant nodes.
- case ISD::Constant:
- case ISD::ConstantFP:
- // Erase debug location from the node if the node is used at several
- // different places to do not propagate one location to all uses as it
- // leads to incorrect debug info.
- if (N->getDebugLoc() != DL)
- N->setDebugLoc(DebugLoc());
- break;
- }
- }
- return N;
- }
- void SelectionDAG::clear() {
- allnodes_clear();
- OperandAllocator.Reset();
- CSEMap.clear();
- ExtendedValueTypeNodes.clear();
- ExternalSymbols.clear();
- TargetExternalSymbols.clear();
- MCSymbols.clear();
- std::fill(CondCodeNodes.begin(), CondCodeNodes.end(),
- static_cast<CondCodeSDNode*>(nullptr));
- std::fill(ValueTypeNodes.begin(), ValueTypeNodes.end(),
- static_cast<SDNode*>(nullptr));
- EntryNode.UseList = nullptr;
- AllNodes.push_back(&EntryNode);
- Root = getEntryNode();
- DbgInfo->clear();
- }
- SDValue SelectionDAG::getAnyExtOrTrunc(SDValue Op, SDLoc DL, EVT VT) {
- return VT.bitsGT(Op.getValueType()) ?
- getNode(ISD::ANY_EXTEND, DL, VT, Op) :
- getNode(ISD::TRUNCATE, DL, VT, Op);
- }
- SDValue SelectionDAG::getSExtOrTrunc(SDValue Op, SDLoc DL, EVT VT) {
- return VT.bitsGT(Op.getValueType()) ?
- getNode(ISD::SIGN_EXTEND, DL, VT, Op) :
- getNode(ISD::TRUNCATE, DL, VT, Op);
- }
- SDValue SelectionDAG::getZExtOrTrunc(SDValue Op, SDLoc DL, EVT VT) {
- return VT.bitsGT(Op.getValueType()) ?
- getNode(ISD::ZERO_EXTEND, DL, VT, Op) :
- getNode(ISD::TRUNCATE, DL, VT, Op);
- }
- SDValue SelectionDAG::getBoolExtOrTrunc(SDValue Op, SDLoc SL, EVT VT,
- EVT OpVT) {
- if (VT.bitsLE(Op.getValueType()))
- return getNode(ISD::TRUNCATE, SL, VT, Op);
- TargetLowering::BooleanContent BType = TLI->getBooleanContents(OpVT);
- return getNode(TLI->getExtendForContent(BType), SL, VT, Op);
- }
- SDValue SelectionDAG::getZeroExtendInReg(SDValue Op, SDLoc DL, EVT VT) {
- assert(!VT.isVector() &&
- "getZeroExtendInReg should use the vector element type instead of "
- "the vector type!");
- if (Op.getValueType() == VT) return Op;
- unsigned BitWidth = Op.getValueType().getScalarType().getSizeInBits();
- APInt Imm = APInt::getLowBitsSet(BitWidth,
- VT.getSizeInBits());
- return getNode(ISD::AND, DL, Op.getValueType(), Op,
- getConstant(Imm, DL, Op.getValueType()));
- }
- SDValue SelectionDAG::getAnyExtendVectorInReg(SDValue Op, SDLoc DL, EVT VT) {
- assert(VT.isVector() && "This DAG node is restricted to vector types.");
- assert(VT.getSizeInBits() == Op.getValueType().getSizeInBits() &&
- "The sizes of the input and result must match in order to perform the "
- "extend in-register.");
- assert(VT.getVectorNumElements() < Op.getValueType().getVectorNumElements() &&
- "The destination vector type must have fewer lanes than the input.");
- return getNode(ISD::ANY_EXTEND_VECTOR_INREG, DL, VT, Op);
- }
- SDValue SelectionDAG::getSignExtendVectorInReg(SDValue Op, SDLoc DL, EVT VT) {
- assert(VT.isVector() && "This DAG node is restricted to vector types.");
- assert(VT.getSizeInBits() == Op.getValueType().getSizeInBits() &&
- "The sizes of the input and result must match in order to perform the "
- "extend in-register.");
- assert(VT.getVectorNumElements() < Op.getValueType().getVectorNumElements() &&
- "The destination vector type must have fewer lanes than the input.");
- return getNode(ISD::SIGN_EXTEND_VECTOR_INREG, DL, VT, Op);
- }
- SDValue SelectionDAG::getZeroExtendVectorInReg(SDValue Op, SDLoc DL, EVT VT) {
- assert(VT.isVector() && "This DAG node is restricted to vector types.");
- assert(VT.getSizeInBits() == Op.getValueType().getSizeInBits() &&
- "The sizes of the input and result must match in order to perform the "
- "extend in-register.");
- assert(VT.getVectorNumElements() < Op.getValueType().getVectorNumElements() &&
- "The destination vector type must have fewer lanes than the input.");
- return getNode(ISD::ZERO_EXTEND_VECTOR_INREG, DL, VT, Op);
- }
- /// getNOT - Create a bitwise NOT operation as (XOR Val, -1).
- ///
- SDValue SelectionDAG::getNOT(SDLoc DL, SDValue Val, EVT VT) {
- EVT EltVT = VT.getScalarType();
- SDValue NegOne =
- getConstant(APInt::getAllOnesValue(EltVT.getSizeInBits()), DL, VT);
- return getNode(ISD::XOR, DL, VT, Val, NegOne);
- }
- SDValue SelectionDAG::getLogicalNOT(SDLoc DL, SDValue Val, EVT VT) {
- EVT EltVT = VT.getScalarType();
- SDValue TrueValue;
- switch (TLI->getBooleanContents(VT)) {
- case TargetLowering::ZeroOrOneBooleanContent:
- case TargetLowering::UndefinedBooleanContent:
- TrueValue = getConstant(1, DL, VT);
- break;
- case TargetLowering::ZeroOrNegativeOneBooleanContent:
- TrueValue = getConstant(APInt::getAllOnesValue(EltVT.getSizeInBits()), DL,
- VT);
- break;
- }
- return getNode(ISD::XOR, DL, VT, Val, TrueValue);
- }
- SDValue SelectionDAG::getConstant(uint64_t Val, SDLoc DL, EVT VT, bool isT,
- bool isO) {
- EVT EltVT = VT.getScalarType();
- assert((EltVT.getSizeInBits() >= 64 ||
- (uint64_t)((int64_t)Val >> EltVT.getSizeInBits()) + 1 < 2) &&
- "getConstant with a uint64_t value that doesn't fit in the type!");
- return getConstant(APInt(EltVT.getSizeInBits(), Val), DL, VT, isT, isO);
- }
- SDValue SelectionDAG::getConstant(const APInt &Val, SDLoc DL, EVT VT, bool isT,
- bool isO)
- {
- return getConstant(*ConstantInt::get(*Context, Val), DL, VT, isT, isO);
- }
- SDValue SelectionDAG::getConstant(const ConstantInt &Val, SDLoc DL, EVT VT,
- bool isT, bool isO) {
- assert(VT.isInteger() && "Cannot create FP integer constant!");
- EVT EltVT = VT.getScalarType();
- const ConstantInt *Elt = &Val;
- // In some cases the vector type is legal but the element type is illegal and
- // needs to be promoted, for example v8i8 on ARM. In this case, promote the
- // inserted value (the type does not need to match the vector element type).
- // Any extra bits introduced will be truncated away.
- if (VT.isVector() && TLI->getTypeAction(*getContext(), EltVT) ==
- TargetLowering::TypePromoteInteger) {
- EltVT = TLI->getTypeToTransformTo(*getContext(), EltVT);
- APInt NewVal = Elt->getValue().zext(EltVT.getSizeInBits());
- Elt = ConstantInt::get(*getContext(), NewVal);
- }
- // In other cases the element type is illegal and needs to be expanded, for
- // example v2i64 on MIPS32. In this case, find the nearest legal type, split
- // the value into n parts and use a vector type with n-times the elements.
- // Then bitcast to the type requested.
- // Legalizing constants too early makes the DAGCombiner's job harder so we
- // only legalize if the DAG tells us we must produce legal types.
- else if (NewNodesMustHaveLegalTypes && VT.isVector() &&
- TLI->getTypeAction(*getContext(), EltVT) ==
- TargetLowering::TypeExpandInteger) {
- APInt NewVal = Elt->getValue();
- EVT ViaEltVT = TLI->getTypeToTransformTo(*getContext(), EltVT);
- unsigned ViaEltSizeInBits = ViaEltVT.getSizeInBits();
- unsigned ViaVecNumElts = VT.getSizeInBits() / ViaEltSizeInBits;
- EVT ViaVecVT = EVT::getVectorVT(*getContext(), ViaEltVT, ViaVecNumElts);
- // Check the temporary vector is the correct size. If this fails then
- // getTypeToTransformTo() probably returned a type whose size (in bits)
- // isn't a power-of-2 factor of the requested type size.
- assert(ViaVecVT.getSizeInBits() == VT.getSizeInBits());
- SmallVector<SDValue, 2> EltParts;
- for (unsigned i = 0; i < ViaVecNumElts / VT.getVectorNumElements(); ++i) {
- EltParts.push_back(getConstant(NewVal.lshr(i * ViaEltSizeInBits)
- .trunc(ViaEltSizeInBits), DL,
- ViaEltVT, isT, isO));
- }
- // EltParts is currently in little endian order. If we actually want
- // big-endian order then reverse it now.
- if (getDataLayout().isBigEndian())
- std::reverse(EltParts.begin(), EltParts.end());
- // The elements must be reversed when the element order is different
- // to the endianness of the elements (because the BITCAST is itself a
- // vector shuffle in this situation). However, we do not need any code to
- // perform this reversal because getConstant() is producing a vector
- // splat.
- // This situation occurs in MIPS MSA.
- SmallVector<SDValue, 8> Ops;
- for (unsigned i = 0; i < VT.getVectorNumElements(); ++i)
- Ops.insert(Ops.end(), EltParts.begin(), EltParts.end());
- SDValue Result = getNode(ISD::BITCAST, SDLoc(), VT,
- getNode(ISD::BUILD_VECTOR, SDLoc(), ViaVecVT,
- Ops));
- return Result;
- }
- assert(Elt->getBitWidth() == EltVT.getSizeInBits() &&
- "APInt size does not match type size!");
- unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant;
- FoldingSetNodeID ID;
- AddNodeIDNode(ID, Opc, getVTList(EltVT), None);
- ID.AddPointer(Elt);
- ID.AddBoolean(isO);
- void *IP = nullptr;
- SDNode *N = nullptr;
- if ((N = FindNodeOrInsertPos(ID, DL.getDebugLoc(), IP)))
- if (!VT.isVector())
- return SDValue(N, 0);
- if (!N) {
- N = new (NodeAllocator) ConstantSDNode(isT, isO, Elt, DL.getDebugLoc(),
- EltVT);
- CSEMap.InsertNode(N, IP);
- InsertNode(N);
- }
- SDValue Result(N, 0);
- if (VT.isVector()) {
- SmallVector<SDValue, 8> Ops;
- Ops.assign(VT.getVectorNumElements(), Result);
- Result = getNode(ISD::BUILD_VECTOR, SDLoc(), VT, Ops);
- }
- return Result;
- }
- SDValue SelectionDAG::getIntPtrConstant(uint64_t Val, SDLoc DL, bool isTarget) {
- return getConstant(Val, DL, TLI->getPointerTy(getDataLayout()), isTarget);
- }
- SDValue SelectionDAG::getConstantFP(const APFloat& V, SDLoc DL, EVT VT,
- bool isTarget) {
- return getConstantFP(*ConstantFP::get(*getContext(), V), DL, VT, isTarget);
- }
- SDValue SelectionDAG::getConstantFP(const ConstantFP& V, SDLoc DL, EVT VT,
- bool isTarget){
- assert(VT.isFloatingPoint() && "Cannot create integer FP constant!");
- EVT EltVT = VT.getScalarType();
- // Do the map lookup using the actual bit pattern for the floating point
- // value, so that we don't have problems with 0.0 comparing equal to -0.0, and
- // we don't have issues with SNANs.
- unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP;
- FoldingSetNodeID ID;
- AddNodeIDNode(ID, Opc, getVTList(EltVT), None);
- ID.AddPointer(&V);
- void *IP = nullptr;
- SDNode *N = nullptr;
- if ((N = FindNodeOrInsertPos(ID, DL.getDebugLoc(), IP)))
- if (!VT.isVector())
- return SDValue(N, 0);
- if (!N) {
- N = new (NodeAllocator) ConstantFPSDNode(isTarget, &V, DL.getDebugLoc(),
- EltVT);
- CSEMap.InsertNode(N, IP);
- InsertNode(N);
- }
- SDValue Result(N, 0);
- if (VT.isVector()) {
- SmallVector<SDValue, 8> Ops;
- Ops.assign(VT.getVectorNumElements(), Result);
- Result = getNode(ISD::BUILD_VECTOR, SDLoc(), VT, Ops);
- }
- return Result;
- }
- SDValue SelectionDAG::getConstantFP(double Val, SDLoc DL, EVT VT,
- bool isTarget) {
- EVT EltVT = VT.getScalarType();
- if (EltVT==MVT::f32)
- return getConstantFP(APFloat((float)Val), DL, VT, isTarget);
- else if (EltVT==MVT::f64)
- return getConstantFP(APFloat(Val), DL, VT, isTarget);
- else if (EltVT==MVT::f80 || EltVT==MVT::f128 || EltVT==MVT::ppcf128 ||
- EltVT==MVT::f16) {
- bool ignored;
- APFloat apf = APFloat(Val);
- apf.convert(EVTToAPFloatSemantics(EltVT), APFloat::rmNearestTiesToEven,
- &ignored);
- return getConstantFP(apf, DL, VT, isTarget);
- } else
- llvm_unreachable("Unsupported type in getConstantFP");
- }
- SDValue SelectionDAG::getGlobalAddress(const GlobalValue *GV, SDLoc DL,
- EVT VT, int64_t Offset,
- bool isTargetGA,
- unsigned char TargetFlags) {
- assert((TargetFlags == 0 || isTargetGA) &&
- "Cannot set target flags on target-independent globals");
- // Truncate (with sign-extension) the offset value to the pointer size.
- unsigned BitWidth = getDataLayout().getPointerTypeSizeInBits(GV->getType());
- if (BitWidth < 64)
- Offset = SignExtend64(Offset, BitWidth);
- unsigned Opc;
- if (GV->isThreadLocal())
- Opc = isTargetGA ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress;
- else
- Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress;
- FoldingSetNodeID ID;
- AddNodeIDNode(ID, Opc, getVTList(VT), None);
- ID.AddPointer(GV);
- ID.AddInteger(Offset);
- ID.AddInteger(TargetFlags);
- ID.AddInteger(GV->getType()->getAddressSpace());
- void *IP = nullptr;
- if (SDNode *E = FindNodeOrInsertPos(ID, DL.getDebugLoc(), IP))
- return SDValue(E, 0);
- SDNode *N = new (NodeAllocator) GlobalAddressSDNode(Opc, DL.getIROrder(),
- DL.getDebugLoc(), GV, VT,
- Offset, TargetFlags);
- CSEMap.InsertNode(N, IP);
- InsertNode(N);
- return SDValue(N, 0);
- }
- SDValue SelectionDAG::getFrameIndex(int FI, EVT VT, bool isTarget) {
- unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex;
- FoldingSetNodeID ID;
- AddNodeIDNode(ID, Opc, getVTList(VT), None);
- ID.AddInteger(FI);
- void *IP = nullptr;
- if (SDNode *E = FindNodeOrInsertPos(ID, IP))
- return SDValue(E, 0);
- SDNode *N = new (NodeAllocator) FrameIndexSDNode(FI, VT, isTarget);
- CSEMap.InsertNode(N, IP);
- InsertNode(N);
- return SDValue(N, 0);
- }
- SDValue SelectionDAG::getJumpTable(int JTI, EVT VT, bool isTarget,
- unsigned char TargetFlags) {
- assert((TargetFlags == 0 || isTarget) &&
- "Cannot set target flags on target-independent jump tables");
- unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable;
- FoldingSetNodeID ID;
- AddNodeIDNode(ID, Opc, getVTList(VT), None);
- ID.AddInteger(JTI);
- ID.AddInteger(TargetFlags);
- void *IP = nullptr;
- if (SDNode *E = FindNodeOrInsertPos(ID, IP))
- return SDValue(E, 0);
- SDNode *N = new (NodeAllocator) JumpTableSDNode(JTI, VT, isTarget,
- TargetFlags);
- CSEMap.InsertNode(N, IP);
- InsertNode(N);
- return SDValue(N, 0);
- }
- SDValue SelectionDAG::getConstantPool(const Constant *C, EVT VT,
- unsigned Alignment, int Offset,
- bool isTarget,
- unsigned char TargetFlags) {
- assert((TargetFlags == 0 || isTarget) &&
- "Cannot set target flags on target-independent globals");
- if (Alignment == 0)
- Alignment = getDataLayout().getPrefTypeAlignment(C->getType());
- unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
- FoldingSetNodeID ID;
- AddNodeIDNode(ID, Opc, getVTList(VT), None);
- ID.AddInteger(Alignment);
- ID.AddInteger(Offset);
- ID.AddPointer(C);
- ID.AddInteger(TargetFlags);
- void *IP = nullptr;
- if (SDNode *E = FindNodeOrInsertPos(ID, IP))
- return SDValue(E, 0);
- SDNode *N = new (NodeAllocator) ConstantPoolSDNode(isTarget, C, VT, Offset,
- Alignment, TargetFlags);
- CSEMap.InsertNode(N, IP);
- InsertNode(N);
- return SDValue(N, 0);
- }
- SDValue SelectionDAG::getConstantPool(MachineConstantPoolValue *C, EVT VT,
- unsigned Alignment, int Offset,
- bool isTarget,
- unsigned char TargetFlags) {
- assert((TargetFlags == 0 || isTarget) &&
- "Cannot set target flags on target-independent globals");
- if (Alignment == 0)
- Alignment = getDataLayout().getPrefTypeAlignment(C->getType());
- unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
- FoldingSetNodeID ID;
- AddNodeIDNode(ID, Opc, getVTList(VT), None);
- ID.AddInteger(Alignment);
- ID.AddInteger(Offset);
- C->addSelectionDAGCSEId(ID);
- ID.AddInteger(TargetFlags);
- void *IP = nullptr;
- if (SDNode *E = FindNodeOrInsertPos(ID, IP))
- return SDValue(E, 0);
- SDNode *N = new (NodeAllocator) ConstantPoolSDNode(isTarget, C, VT, Offset,
- Alignment, TargetFlags);
- CSEMap.InsertNode(N, IP);
- InsertNode(N);
- return SDValue(N, 0);
- }
- SDValue SelectionDAG::getTargetIndex(int Index, EVT VT, int64_t Offset,
- unsigned char TargetFlags) {
- FoldingSetNodeID ID;
- AddNodeIDNode(ID, ISD::TargetIndex, getVTList(VT), None);
- ID.AddInteger(Index);
- ID.AddInteger(Offset);
- ID.AddInteger(TargetFlags);
- void *IP = nullptr;
- if (SDNode *E = FindNodeOrInsertPos(ID, IP))
- return SDValue(E, 0);
- SDNode *N = new (NodeAllocator) TargetIndexSDNode(Index, VT, Offset,
- TargetFlags);
- CSEMap.InsertNode(N, IP);
- InsertNode(N);
- return SDValue(N, 0);
- }
- SDValue SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) {
- FoldingSetNodeID ID;
- AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), None);
- ID.AddPointer(MBB);
- void *IP = nullptr;
- if (SDNode *E = FindNodeOrInsertPos(ID, IP))
- return SDValue(E, 0);
- SDNode *N = new (NodeAllocator) BasicBlockSDNode(MBB);
- CSEMap.InsertNode(N, IP);
- InsertNode(N);
- return SDValue(N, 0);
- }
- SDValue SelectionDAG::getValueType(EVT VT) {
- if (VT.isSimple() && (unsigned)VT.getSimpleVT().SimpleTy >=
- ValueTypeNodes.size())
- ValueTypeNodes.resize(VT.getSimpleVT().SimpleTy+1);
- SDNode *&N = VT.isExtended() ?
- ExtendedValueTypeNodes[VT] : ValueTypeNodes[VT.getSimpleVT().SimpleTy];
- if (N) return SDValue(N, 0);
- N = new (NodeAllocator) VTSDNode(VT);
- InsertNode(N);
- return SDValue(N, 0);
- }
- SDValue SelectionDAG::getExternalSymbol(const char *Sym, EVT VT) {
- SDNode *&N = ExternalSymbols[Sym];
- if (N) return SDValue(N, 0);
- N = new (NodeAllocator) ExternalSymbolSDNode(false, Sym, 0, VT);
- InsertNode(N);
- return SDValue(N, 0);
- }
- SDValue SelectionDAG::getMCSymbol(MCSymbol *Sym, EVT VT) {
- SDNode *&N = MCSymbols[Sym];
- if (N)
- return SDValue(N, 0);
- N = new (NodeAllocator) MCSymbolSDNode(Sym, VT);
- InsertNode(N);
- return SDValue(N, 0);
- }
- SDValue SelectionDAG::getTargetExternalSymbol(const char *Sym, EVT VT,
- unsigned char TargetFlags) {
- SDNode *&N =
- TargetExternalSymbols[std::pair<std::string,unsigned char>(Sym,
- TargetFlags)];
- if (N) return SDValue(N, 0);
- N = new (NodeAllocator) ExternalSymbolSDNode(true, Sym, TargetFlags, VT);
- InsertNode(N);
- return SDValue(N, 0);
- }
- SDValue SelectionDAG::getCondCode(ISD::CondCode Cond) {
- if ((unsigned)Cond >= CondCodeNodes.size())
- CondCodeNodes.resize(Cond+1);
- if (!CondCodeNodes[Cond]) {
- CondCodeSDNode *N = new (NodeAllocator) CondCodeSDNode(Cond);
- CondCodeNodes[Cond] = N;
- InsertNode(N);
- }
- return SDValue(CondCodeNodes[Cond], 0);
- }
- // commuteShuffle - swaps the values of N1 and N2, and swaps all indices in
- // the shuffle mask M that point at N1 to point at N2, and indices that point
- // N2 to point at N1.
- static void commuteShuffle(SDValue &N1, SDValue &N2, SmallVectorImpl<int> &M) {
- std::swap(N1, N2);
- ShuffleVectorSDNode::commuteMask(M);
- }
- SDValue SelectionDAG::getVectorShuffle(EVT VT, SDLoc dl, SDValue N1,
- SDValue N2, const int *Mask) {
- assert(VT == N1.getValueType() && VT == N2.getValueType() &&
- "Invalid VECTOR_SHUFFLE");
- // Canonicalize shuffle undef, undef -> undef
- if (N1.getOpcode() == ISD::UNDEF && N2.getOpcode() == ISD::UNDEF)
- return getUNDEF(VT);
- // Validate that all indices in Mask are within the range of the elements
- // input to the shuffle.
- unsigned NElts = VT.getVectorNumElements();
- SmallVector<int, 8> MaskVec;
- for (unsigned i = 0; i != NElts; ++i) {
- assert(Mask[i] < (int)(NElts * 2) && "Index out of range");
- MaskVec.push_back(Mask[i]);
- }
- // Canonicalize shuffle v, v -> v, undef
- if (N1 == N2) {
- N2 = getUNDEF(VT);
- for (unsigned i = 0; i != NElts; ++i)
- if (MaskVec[i] >= (int)NElts) MaskVec[i] -= NElts;
- }
- // Canonicalize shuffle undef, v -> v, undef. Commute the shuffle mask.
- if (N1.getOpcode() == ISD::UNDEF)
- commuteShuffle(N1, N2, MaskVec);
- // If shuffling a splat, try to blend the splat instead. We do this here so
- // that even when this arises during lowering we don't have to re-handle it.
- auto BlendSplat = [&](BuildVectorSDNode *BV, int Offset) {
- BitVector UndefElements;
- SDValue Splat = BV->getSplatValue(&UndefElements);
- if (!Splat)
- return;
- for (int i = 0; i < (int)NElts; ++i) {
- if (MaskVec[i] < Offset || MaskVec[i] >= (Offset + (int)NElts))
- continue;
- // If this input comes from undef, mark it as such.
- if (UndefElements[MaskVec[i] - Offset]) {
- MaskVec[i] = -1;
- continue;
- }
- // If we can blend a non-undef lane, use that instead.
- if (!UndefElements[i])
- MaskVec[i] = i + Offset;
- }
- };
- if (auto *N1BV = dyn_cast<BuildVectorSDNode>(N1))
- BlendSplat(N1BV, 0);
- if (auto *N2BV = dyn_cast<BuildVectorSDNode>(N2))
- BlendSplat(N2BV, NElts);
- // Canonicalize all index into lhs, -> shuffle lhs, undef
- // Canonicalize all index into rhs, -> shuffle rhs, undef
- bool AllLHS = true, AllRHS = true;
- bool N2Undef = N2.getOpcode() == ISD::UNDEF;
- for (unsigned i = 0; i != NElts; ++i) {
- if (MaskVec[i] >= (int)NElts) {
- if (N2Undef)
- MaskVec[i] = -1;
- else
- AllLHS = false;
- } else if (MaskVec[i] >= 0) {
- AllRHS = false;
- }
- }
- if (AllLHS && AllRHS)
- return getUNDEF(VT);
- if (AllLHS && !N2Undef)
- N2 = getUNDEF(VT);
- if (AllRHS) {
- N1 = getUNDEF(VT);
- commuteShuffle(N1, N2, MaskVec);
- }
- // Reset our undef status after accounting for the mask.
- N2Undef = N2.getOpcode() == ISD::UNDEF;
- // Re-check whether both sides ended up undef.
- if (N1.getOpcode() == ISD::UNDEF && N2Undef)
- return getUNDEF(VT);
- // If Identity shuffle return that node.
- bool Identity = true, AllSame = true;
- for (unsigned i = 0; i != NElts; ++i) {
- if (MaskVec[i] >= 0 && MaskVec[i] != (int)i) Identity = false;
- if (MaskVec[i] != MaskVec[0]) AllSame = false;
- }
- if (Identity && NElts)
- return N1;
- // Shuffling a constant splat doesn't change the result.
- if (N2Undef) {
- SDValue V = N1;
- // Look through any bitcasts. We check that these don't change the number
- // (and size) of elements and just changes their types.
- while (V.getOpcode() == ISD::BITCAST)
- V = V->getOperand(0);
- // A splat should always show up as a build vector node.
- if (auto *BV = dyn_cast<BuildVectorSDNode>(V)) {
- BitVector UndefElements;
- SDValue Splat = BV->getSplatValue(&UndefElements);
- // If this is a splat of an undef, shuffling it is also undef.
- if (Splat && Splat.getOpcode() == ISD::UNDEF)
- return getUNDEF(VT);
- bool SameNumElts =
- V.getValueType().getVectorNumElements() == VT.getVectorNumElements();
- // We only have a splat which can skip shuffles if there is a splatted
- // value and no undef lanes rearranged by the shuffle.
- if (Splat && UndefElements.none()) {
- // Splat of <x, x, ..., x>, return <x, x, ..., x>, provided that the
- // number of elements match or the value splatted is a zero constant.
- if (SameNumElts)
- return N1;
- if (auto *C = dyn_cast<ConstantSDNode>(Splat))
- if (C->isNullValue())
- return N1;
- }
- // If the shuffle itself creates a splat, build the vector directly.
- if (AllSame && SameNumElts) {
- const SDValue &Splatted = BV->getOperand(MaskVec[0]);
- SmallVector<SDValue, 8> Ops(NElts, Splatted);
- EVT BuildVT = BV->getValueType(0);
- SDValue NewBV = getNode(ISD::BUILD_VECTOR, dl, BuildVT, Ops);
- // We may have jumped through bitcasts, so the type of the
- // BUILD_VECTOR may not match the type of the shuffle.
- if (BuildVT != VT)
- NewBV = getNode(ISD::BITCAST, dl, VT, NewBV);
- return NewBV;
- }
- }
- }
- FoldingSetNodeID ID;
- SDValue Ops[2] = { N1, N2 };
- AddNodeIDNode(ID, ISD::VECTOR_SHUFFLE, getVTList(VT), Ops);
- for (unsigned i = 0; i != NElts; ++i)
- ID.AddInteger(MaskVec[i]);
- void* IP = nullptr;
- if (SDNode *E = FindNodeOrInsertPos(ID, dl.getDebugLoc(), IP))
- return SDValue(E, 0);
- // Allocate the mask array for the node out of the BumpPtrAllocator, since
- // SDNode doesn't have access to it. This memory will be "leaked" when
- // the node is deallocated, but recovered when the NodeAllocator is released.
- int *MaskAlloc = OperandAllocator.Allocate<int>(NElts);
- memcpy(MaskAlloc, &MaskVec[0], NElts * sizeof(int));
- ShuffleVectorSDNode *N =
- new (NodeAllocator) ShuffleVectorSDNode(VT, dl.getIROrder(),
- dl.getDebugLoc(), N1, N2,
- MaskAlloc);
- CSEMap.InsertNode(N, IP);
- InsertNode(N);
- return SDValue(N, 0);
- }
- SDValue SelectionDAG::getCommutedVectorShuffle(const ShuffleVectorSDNode &SV) {
- MVT VT = SV.getSimpleValueType(0);
- SmallVector<int, 8> MaskVec(SV.getMask().begin(), SV.getMask().end());
- ShuffleVectorSDNode::commuteMask(MaskVec);
- SDValue Op0 = SV.getOperand(0);
- SDValue Op1 = SV.getOperand(1);
- return getVectorShuffle(VT, SDLoc(&SV), Op1, Op0, &MaskVec[0]);
- }
- SDValue SelectionDAG::getConvertRndSat(EVT VT, SDLoc dl,
- SDValue Val, SDValue DTy,
- SDValue STy, SDValue Rnd, SDValue Sat,
- ISD::CvtCode Code) {
- // If the src and dest types are the same and the conversion is between
- // integer types of the same sign or two floats, no conversion is necessary.
- if (DTy == STy &&
- (Code == ISD::CVT_UU || Code == ISD::CVT_SS || Code == ISD::CVT_FF))
- return Val;
- FoldingSetNodeID ID;
- SDValue Ops[] = { Val, DTy, STy, Rnd, Sat };
- AddNodeIDNode(ID, ISD::CONVERT_RNDSAT, getVTList(VT), Ops);
- void* IP = nullptr;
- if (SDNode *E = FindNodeOrInsertPos(ID, dl.getDebugLoc(), IP))
- return SDValue(E, 0);
- CvtRndSatSDNode *N = new (NodeAllocator) CvtRndSatSDNode(VT, dl.getIROrder(),
- dl.getDebugLoc(),
- Ops, Code);
- CSEMap.InsertNode(N, IP);
- InsertNode(N);
- return SDValue(N, 0);
- }
- SDValue SelectionDAG::getRegister(unsigned RegNo, EVT VT) {
- FoldingSetNodeID ID;
- AddNodeIDNode(ID, ISD::Register, getVTList(VT), None);
- ID.AddInteger(RegNo);
- void *IP = nullptr;
- if (SDNode *E = FindNodeOrInsertPos(ID, IP))
- return SDValue(E, 0);
- SDNode *N = new (NodeAllocator) RegisterSDNode(RegNo, VT);
- CSEMap.InsertNode(N, IP);
- InsertNode(N);
- return SDValue(N, 0);
- }
- SDValue SelectionDAG::getRegisterMask(const uint32_t *RegMask) {
- FoldingSetNodeID ID;
- AddNodeIDNode(ID, ISD::RegisterMask, getVTList(MVT::Untyped), None);
- ID.AddPointer(RegMask);
- void *IP = nullptr;
- if (SDNode *E = FindNodeOrInsertPos(ID, IP))
- return SDValue(E, 0);
- SDNode *N = new (NodeAllocator) RegisterMaskSDNode(RegMask);
- CSEMap.InsertNode(N, IP);
- InsertNode(N);
- return SDValue(N, 0);
- }
- SDValue SelectionDAG::getEHLabel(SDLoc dl, SDValue Root, MCSymbol *Label) {
- FoldingSetNodeID ID;
- SDValue Ops[] = { Root };
- AddNodeIDNode(ID, ISD::EH_LABEL, getVTList(MVT::Other), Ops);
- ID.AddPointer(Label);
- void *IP = nullptr;
- if (SDNode *E = FindNodeOrInsertPos(ID, IP))
- return SDValue(E, 0);
- SDNode *N = new (NodeAllocator) EHLabelSDNode(dl.getIROrder(),
- dl.getDebugLoc(), Root, Label);
- CSEMap.InsertNode(N, IP);
- InsertNode(N);
- return SDValue(N, 0);
- }
- SDValue SelectionDAG::getBlockAddress(const BlockAddress *BA, EVT VT,
- int64_t Offset,
- bool isTarget,
- unsigned char TargetFlags) {
- unsigned Opc = isTarget ? ISD::TargetBlockAddress : ISD::BlockAddress;
- FoldingSetNodeID ID;
- AddNodeIDNode(ID, Opc, getVTList(VT), None);
- ID.AddPointer(BA);
- ID.AddInteger(Offset);
- ID.AddInteger(TargetFlags);
- void *IP = nullptr;
- if (SDNode *E = FindNodeOrInsertPos(ID, IP))
- return SDValue(E, 0);
- SDNode *N = new (NodeAllocator) BlockAddressSDNode(Opc, VT, BA, Offset,
- TargetFlags);
- CSEMap.InsertNode(N, IP);
- InsertNode(N);
- return SDValue(N, 0);
- }
- SDValue SelectionDAG::getSrcValue(const Value *V) {
- assert((!V || V->getType()->isPointerTy()) &&
- "SrcValue is not a pointer?");
- FoldingSetNodeID ID;
- AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), None);
- ID.AddPointer(V);
- void *IP = nullptr;
- if (SDNode *E = FindNodeOrInsertPos(ID, IP))
- return SDValue(E, 0);
- SDNode *N = new (NodeAllocator) SrcValueSDNode(V);
- CSEMap.InsertNode(N, IP);
- InsertNode(N);
- return SDValue(N, 0);
- }
- /// getMDNode - Return an MDNodeSDNode which holds an MDNode.
- SDValue SelectionDAG::getMDNode(const MDNode *MD) {
- FoldingSetNodeID ID;
- AddNodeIDNode(ID, ISD::MDNODE_SDNODE, getVTList(MVT::Other), None);
- ID.AddPointer(MD);
- void *IP = nullptr;
- if (SDNode *E = FindNodeOrInsertPos(ID, IP))
- return SDValue(E, 0);
- SDNode *N = new (NodeAllocator) MDNodeSDNode(MD);
- CSEMap.InsertNode(N, IP);
- InsertNode(N);
- return SDValue(N, 0);
- }
- SDValue SelectionDAG::getBitcast(EVT VT, SDValue V) {
- if (VT == V.getValueType())
- return V;
- return getNode(ISD::BITCAST, SDLoc(V), VT, V);
- }
- /// getAddrSpaceCast - Return an AddrSpaceCastSDNode.
- SDValue SelectionDAG::getAddrSpaceCast(SDLoc dl, EVT VT, SDValue Ptr,
- unsigned SrcAS, unsigned DestAS) {
- SDValue Ops[] = {Ptr};
- FoldingSetNodeID ID;
- AddNodeIDNode(ID, ISD::ADDRSPACECAST, getVTList(VT), Ops);
- ID.AddInteger(SrcAS);
- ID.AddInteger(DestAS);
- void *IP = nullptr;
- if (SDNode *E = FindNodeOrInsertPos(ID, dl.getDebugLoc(), IP))
- return SDValue(E, 0);
- SDNode *N = new (NodeAllocator) AddrSpaceCastSDNode(dl.getIROrder(),
- dl.getDebugLoc(),
- VT, Ptr, SrcAS, DestAS);
- CSEMap.InsertNode(N, IP);
- InsertNode(N);
- return SDValue(N, 0);
- }
- /// getShiftAmountOperand - Return the specified value casted to
- /// the target's desired shift amount type.
- SDValue SelectionDAG::getShiftAmountOperand(EVT LHSTy, SDValue Op) {
- EVT OpTy = Op.getValueType();
- EVT ShTy = TLI->getShiftAmountTy(LHSTy, getDataLayout());
- if (OpTy == ShTy || OpTy.isVector()) return Op;
- ISD::NodeType Opcode = OpTy.bitsGT(ShTy) ? ISD::TRUNCATE : ISD::ZERO_EXTEND;
- return getNode(Opcode, SDLoc(Op), ShTy, Op);
- }
- /// CreateStackTemporary - Create a stack temporary, suitable for holding the
- /// specified value type.
- SDValue SelectionDAG::CreateStackTemporary(EVT VT, unsigned minAlign) {
- MachineFrameInfo *FrameInfo = getMachineFunction().getFrameInfo();
- unsigned ByteSize = VT.getStoreSize();
- Type *Ty = VT.getTypeForEVT(*getContext());
- unsigned StackAlign =
- std::max((unsigned)getDataLayout().getPrefTypeAlignment(Ty), minAlign);
- int FrameIdx = FrameInfo->CreateStackObject(ByteSize, StackAlign, false);
- return getFrameIndex(FrameIdx, TLI->getPointerTy(getDataLayout()));
- }
- /// CreateStackTemporary - Create a stack temporary suitable for holding
- /// either of the specified value types.
- SDValue SelectionDAG::CreateStackTemporary(EVT VT1, EVT VT2) {
- unsigned Bytes = std::max(VT1.getStoreSizeInBits(),
- VT2.getStoreSizeInBits())/8;
- Type *Ty1 = VT1.getTypeForEVT(*getContext());
- Type *Ty2 = VT2.getTypeForEVT(*getContext());
- const DataLayout &DL = getDataLayout();
- unsigned Align =
- std::max(DL.getPrefTypeAlignment(Ty1), DL.getPrefTypeAlignment(Ty2));
- MachineFrameInfo *FrameInfo = getMachineFunction().getFrameInfo();
- int FrameIdx = FrameInfo->CreateStackObject(Bytes, Align, false);
- return getFrameIndex(FrameIdx, TLI->getPointerTy(getDataLayout()));
- }
- SDValue SelectionDAG::FoldSetCC(EVT VT, SDValue N1,
- SDValue N2, ISD::CondCode Cond, SDLoc dl) {
- // These setcc operations always fold.
- switch (Cond) {
- default: break;
- case ISD::SETFALSE:
- case ISD::SETFALSE2: return getConstant(0, dl, VT);
- case ISD::SETTRUE:
- case ISD::SETTRUE2: {
- TargetLowering::BooleanContent Cnt =
- TLI->getBooleanContents(N1->getValueType(0));
- return getConstant(
- Cnt == TargetLowering::ZeroOrNegativeOneBooleanContent ? -1ULL : 1, dl,
- VT);
- }
- case ISD::SETOEQ:
- case ISD::SETOGT:
- case ISD::SETOGE:
- case ISD::SETOLT:
- case ISD::SETOLE:
- case ISD::SETONE:
- case ISD::SETO:
- case ISD::SETUO:
- case ISD::SETUEQ:
- case ISD::SETUNE:
- assert(!N1.getValueType().isInteger() && "Illegal setcc for integer!");
- break;
- }
- if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2)) {
- const APInt &C2 = N2C->getAPIntValue();
- if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1)) {
- const APInt &C1 = N1C->getAPIntValue();
- switch (Cond) {
- default: llvm_unreachable("Unknown integer setcc!");
- case ISD::SETEQ: return getConstant(C1 == C2, dl, VT);
- case ISD::SETNE: return getConstant(C1 != C2, dl, VT);
- case ISD::SETULT: return getConstant(C1.ult(C2), dl, VT);
- case ISD::SETUGT: return getConstant(C1.ugt(C2), dl, VT);
- case ISD::SETULE: return getConstant(C1.ule(C2), dl, VT);
- case ISD::SETUGE: return getConstant(C1.uge(C2), dl, VT);
- case ISD::SETLT: return getConstant(C1.slt(C2), dl, VT);
- case ISD::SETGT: return getConstant(C1.sgt(C2), dl, VT);
- case ISD::SETLE: return getConstant(C1.sle(C2), dl, VT);
- case ISD::SETGE: return getConstant(C1.sge(C2), dl, VT);
- }
- }
- }
- if (ConstantFPSDNode *N1C = dyn_cast<ConstantFPSDNode>(N1)) {
- if (ConstantFPSDNode *N2C = dyn_cast<ConstantFPSDNode>(N2)) {
- APFloat::cmpResult R = N1C->getValueAPF().compare(N2C->getValueAPF());
- switch (Cond) {
- default: break;
- case ISD::SETEQ: if (R==APFloat::cmpUnordered)
- return getUNDEF(VT);
- // fall through
- case ISD::SETOEQ: return getConstant(R==APFloat::cmpEqual, dl, VT);
- case ISD::SETNE: if (R==APFloat::cmpUnordered)
- return getUNDEF(VT);
- // fall through
- case ISD::SETONE: return getConstant(R==APFloat::cmpGreaterThan ||
- R==APFloat::cmpLessThan, dl, VT);
- case ISD::SETLT: if (R==APFloat::cmpUnordered)
- return getUNDEF(VT);
- // fall through
- case ISD::SETOLT: return getConstant(R==APFloat::cmpLessThan, dl, VT);
- case ISD::SETGT: if (R==APFloat::cmpUnordered)
- return getUNDEF(VT);
- // fall through
- case ISD::SETOGT: return getConstant(R==APFloat::cmpGreaterThan, dl, VT);
- case ISD::SETLE: if (R==APFloat::cmpUnordered)
- return getUNDEF(VT);
- // fall through
- case ISD::SETOLE: return getConstant(R==APFloat::cmpLessThan ||
- R==APFloat::cmpEqual, dl, VT);
- case ISD::SETGE: if (R==APFloat::cmpUnordered)
- return getUNDEF(VT);
- // fall through
- case ISD::SETOGE: return getConstant(R==APFloat::cmpGreaterThan ||
- R==APFloat::cmpEqual, dl, VT);
- case ISD::SETO: return getConstant(R!=APFloat::cmpUnordered, dl, VT);
- case ISD::SETUO: return getConstant(R==APFloat::cmpUnordered, dl, VT);
- case ISD::SETUEQ: return getConstant(R==APFloat::cmpUnordered ||
- R==APFloat::cmpEqual, dl, VT);
- case ISD::SETUNE: return getConstant(R!=APFloat::cmpEqual, dl, VT);
- case ISD::SETULT: return getConstant(R==APFloat::cmpUnordered ||
- R==APFloat::cmpLessThan, dl, VT);
- case ISD::SETUGT: return getConstant(R==APFloat::cmpGreaterThan ||
- R==APFloat::cmpUnordered, dl, VT);
- case ISD::SETULE: return getConstant(R!=APFloat::cmpGreaterThan, dl, VT);
- case ISD::SETUGE: return getConstant(R!=APFloat::cmpLessThan, dl, VT);
- }
- } else {
- // Ensure that the constant occurs on the RHS.
- ISD::CondCode SwappedCond = ISD::getSetCCSwappedOperands(Cond);
- MVT CompVT = N1.getValueType().getSimpleVT();
- if (!TLI->isCondCodeLegal(SwappedCond, CompVT))
- return SDValue();
- return getSetCC(dl, VT, N2, N1, SwappedCond);
- }
- }
- // Could not fold it.
- return SDValue();
- }
- /// SignBitIsZero - Return true if the sign bit of Op is known to be zero. We
- /// use this predicate to simplify operations downstream.
- bool SelectionDAG::SignBitIsZero(SDValue Op, unsigned Depth) const {
- // This predicate is not safe for vector operations.
- if (Op.getValueType().isVector())
- return false;
- unsigned BitWidth = Op.getValueType().getScalarType().getSizeInBits();
- return MaskedValueIsZero(Op, APInt::getSignBit(BitWidth), Depth);
- }
- /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero. We use
- /// this predicate to simplify operations downstream. Mask is known to be zero
- /// for bits that V cannot have.
- bool SelectionDAG::MaskedValueIsZero(SDValue Op, const APInt &Mask,
- unsigned Depth) const {
- APInt KnownZero, KnownOne;
- computeKnownBits(Op, KnownZero, KnownOne, Depth);
- return (KnownZero & Mask) == Mask;
- }
- /// Determine which bits of Op are known to be either zero or one and return
- /// them in the KnownZero/KnownOne bitsets.
- void SelectionDAG::computeKnownBits(SDValue Op, APInt &KnownZero,
- APInt &KnownOne, unsigned Depth) const {
- unsigned BitWidth = Op.getValueType().getScalarType().getSizeInBits();
- KnownZero = KnownOne = APInt(BitWidth, 0); // Don't know anything.
- if (Depth == 6)
- return; // Limit search depth.
- APInt KnownZero2, KnownOne2;
- switch (Op.getOpcode()) {
- case ISD::Constant:
- // We know all of the bits for a constant!
- KnownOne = cast<ConstantSDNode>(Op)->getAPIntValue();
- KnownZero = ~KnownOne;
- break;
- case ISD::AND:
- // If either the LHS or the RHS are Zero, the result is zero.
- computeKnownBits(Op.getOperand(1), KnownZero, KnownOne, Depth+1);
- computeKnownBits(Op.getOperand(0), KnownZero2, KnownOne2, Depth+1);
- // Output known-1 bits are only known if set in both the LHS & RHS.
- KnownOne &= KnownOne2;
- // Output known-0 are known to be clear if zero in either the LHS | RHS.
- KnownZero |= KnownZero2;
- break;
- case ISD::OR:
- computeKnownBits(Op.getOperand(1), KnownZero, KnownOne, Depth+1);
- computeKnownBits(Op.getOperand(0), KnownZero2, KnownOne2, Depth+1);
- // Output known-0 bits are only known if clear in both the LHS & RHS.
- KnownZero &= KnownZero2;
- // Output known-1 are known to be set if set in either the LHS | RHS.
- KnownOne |= KnownOne2;
- break;
- case ISD::XOR: {
- computeKnownBits(Op.getOperand(1), KnownZero, KnownOne, Depth+1);
- computeKnownBits(Op.getOperand(0), KnownZero2, KnownOne2, Depth+1);
- // Output known-0 bits are known if clear or set in both the LHS & RHS.
- APInt KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
- // Output known-1 are known to be set if set in only one of the LHS, RHS.
- KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
- KnownZero = KnownZeroOut;
- break;
- }
- case ISD::MUL: {
- computeKnownBits(Op.getOperand(1), KnownZero, KnownOne, Depth+1);
- computeKnownBits(Op.getOperand(0), KnownZero2, KnownOne2, Depth+1);
- // If low bits are zero in either operand, output low known-0 bits.
- // Also compute a conserative estimate for high known-0 bits.
- // More trickiness is possible, but this is sufficient for the
- // interesting case of alignment computation.
- KnownOne.clearAllBits();
- unsigned TrailZ = KnownZero.countTrailingOnes() +
- KnownZero2.countTrailingOnes();
- unsigned LeadZ = std::max(KnownZero.countLeadingOnes() +
- KnownZero2.countLeadingOnes(),
- BitWidth) - BitWidth;
- TrailZ = std::min(TrailZ, BitWidth);
- LeadZ = std::min(LeadZ, BitWidth);
- KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ) |
- APInt::getHighBitsSet(BitWidth, LeadZ);
- break;
- }
- case ISD::UDIV: {
- // For the purposes of computing leading zeros we can conservatively
- // treat a udiv as a logical right shift by the power of 2 known to
- // be less than the denominator.
- computeKnownBits(Op.getOperand(0), KnownZero2, KnownOne2, Depth+1);
- unsigned LeadZ = KnownZero2.countLeadingOnes();
- KnownOne2.clearAllBits();
- KnownZero2.clearAllBits();
- computeKnownBits(Op.getOperand(1), KnownZero2, KnownOne2, Depth+1);
- unsigned RHSUnknownLeadingOnes = KnownOne2.countLeadingZeros();
- if (RHSUnknownLeadingOnes != BitWidth)
- LeadZ = std::min(BitWidth,
- LeadZ + BitWidth - RHSUnknownLeadingOnes - 1);
- KnownZero = APInt::getHighBitsSet(BitWidth, LeadZ);
- break;
- }
- case ISD::SELECT:
- computeKnownBits(Op.getOperand(2), KnownZero, KnownOne, Depth+1);
- computeKnownBits(Op.getOperand(1), KnownZero2, KnownOne2, Depth+1);
- // Only known if known in both the LHS and RHS.
- KnownOne &= KnownOne2;
- KnownZero &= KnownZero2;
- break;
- case ISD::SELECT_CC:
- computeKnownBits(Op.getOperand(3), KnownZero, KnownOne, Depth+1);
- computeKnownBits(Op.getOperand(2), KnownZero2, KnownOne2, Depth+1);
- // Only known if known in both the LHS and RHS.
- KnownOne &= KnownOne2;
- KnownZero &= KnownZero2;
- break;
- case ISD::SADDO:
- case ISD::UADDO:
- case ISD::SSUBO:
- case ISD::USUBO:
- case ISD::SMULO:
- case ISD::UMULO:
- if (Op.getResNo() != 1)
- break;
- // The boolean result conforms to getBooleanContents.
- // If we know the result of a setcc has the top bits zero, use this info.
- // We know that we have an integer-based boolean since these operations
- // are only available for integer.
- if (TLI->getBooleanContents(Op.getValueType().isVector(), false) ==
- TargetLowering::ZeroOrOneBooleanContent &&
- BitWidth > 1)
- KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - 1);
- break;
- case ISD::SETCC:
- // If we know the result of a setcc has the top bits zero, use this info.
- if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) ==
- TargetLowering::ZeroOrOneBooleanContent &&
- BitWidth > 1)
- KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - 1);
- break;
- case ISD::SHL:
- // (shl X, C1) & C2 == 0 iff (X & C2 >>u C1) == 0
- if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
- unsigned ShAmt = SA->getZExtValue();
- // If the shift count is an invalid immediate, don't do anything.
- if (ShAmt >= BitWidth)
- break;
- computeKnownBits(Op.getOperand(0), KnownZero, KnownOne, Depth+1);
- KnownZero <<= ShAmt;
- KnownOne <<= ShAmt;
- // low bits known zero.
- KnownZero |= APInt::getLowBitsSet(BitWidth, ShAmt);
- }
- break;
- case ISD::SRL:
- // (ushr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0
- if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
- unsigned ShAmt = SA->getZExtValue();
- // If the shift count is an invalid immediate, don't do anything.
- if (ShAmt >= BitWidth)
- break;
- computeKnownBits(Op.getOperand(0), KnownZero, KnownOne, Depth+1);
- KnownZero = KnownZero.lshr(ShAmt);
- KnownOne = KnownOne.lshr(ShAmt);
- APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt);
- KnownZero |= HighBits; // High bits known zero.
- }
- break;
- case ISD::SRA:
- if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
- unsigned ShAmt = SA->getZExtValue();
- // If the shift count is an invalid immediate, don't do anything.
- if (ShAmt >= BitWidth)
- break;
- // If any of the demanded bits are produced by the sign extension, we also
- // demand the input sign bit.
- APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt);
- computeKnownBits(Op.getOperand(0), KnownZero, KnownOne, Depth+1);
- KnownZero = KnownZero.lshr(ShAmt);
- KnownOne = KnownOne.lshr(ShAmt);
- // Handle the sign bits.
- APInt SignBit = APInt::getSignBit(BitWidth);
- SignBit = SignBit.lshr(ShAmt); // Adjust to where it is now in the mask.
- if (KnownZero.intersects(SignBit)) {
- KnownZero |= HighBits; // New bits are known zero.
- } else if (KnownOne.intersects(SignBit)) {
- KnownOne |= HighBits; // New bits are known one.
- }
- }
- break;
- case ISD::SIGN_EXTEND_INREG: {
- EVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
- unsigned EBits = EVT.getScalarType().getSizeInBits();
- // Sign extension. Compute the demanded bits in the result that are not
- // present in the input.
- APInt NewBits = APInt::getHighBitsSet(BitWidth, BitWidth - EBits);
- APInt InSignBit = APInt::getSignBit(EBits);
- APInt InputDemandedBits = APInt::getLowBitsSet(BitWidth, EBits);
- // If the sign extended bits are demanded, we know that the sign
- // bit is demanded.
- InSignBit = InSignBit.zext(BitWidth);
- if (NewBits.getBoolValue())
- InputDemandedBits |= InSignBit;
- computeKnownBits(Op.getOperand(0), KnownZero, KnownOne, Depth+1);
- KnownOne &= InputDemandedBits;
- KnownZero &= InputDemandedBits;
- // If the sign bit of the input is known set or clear, then we know the
- // top bits of the result.
- if (KnownZero.intersects(InSignBit)) { // Input sign bit known clear
- KnownZero |= NewBits;
- KnownOne &= ~NewBits;
- } else if (KnownOne.intersects(InSignBit)) { // Input sign bit known set
- KnownOne |= NewBits;
- KnownZero &= ~NewBits;
- } else { // Input sign bit unknown
- KnownZero &= ~NewBits;
- KnownOne &= ~NewBits;
- }
- break;
- }
- case ISD::CTTZ:
- case ISD::CTTZ_ZERO_UNDEF:
- case ISD::CTLZ:
- case ISD::CTLZ_ZERO_UNDEF:
- case ISD::CTPOP: {
- unsigned LowBits = Log2_32(BitWidth)+1;
- KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - LowBits);
- KnownOne.clearAllBits();
- break;
- }
- case ISD::LOAD: {
- LoadSDNode *LD = cast<LoadSDNode>(Op);
- // If this is a ZEXTLoad and we are looking at the loaded value.
- if (ISD::isZEXTLoad(Op.getNode()) && Op.getResNo() == 0) {
- EVT VT = LD->getMemoryVT();
- unsigned MemBits = VT.getScalarType().getSizeInBits();
- KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - MemBits);
- } else if (const MDNode *Ranges = LD->getRanges()) {
- computeKnownBitsFromRangeMetadata(*Ranges, KnownZero);
- }
- break;
- }
- case ISD::ZERO_EXTEND: {
- EVT InVT = Op.getOperand(0).getValueType();
- unsigned InBits = InVT.getScalarType().getSizeInBits();
- APInt NewBits = APInt::getHighBitsSet(BitWidth, BitWidth - InBits);
- KnownZero = KnownZero.trunc(InBits);
- KnownOne = KnownOne.trunc(InBits);
- computeKnownBits(Op.getOperand(0), KnownZero, KnownOne, Depth+1);
- KnownZero = KnownZero.zext(BitWidth);
- KnownOne = KnownOne.zext(BitWidth);
- KnownZero |= NewBits;
- break;
- }
- case ISD::SIGN_EXTEND: {
- EVT InVT = Op.getOperand(0).getValueType();
- unsigned InBits = InVT.getScalarType().getSizeInBits();
- APInt NewBits = APInt::getHighBitsSet(BitWidth, BitWidth - InBits);
- KnownZero = KnownZero.trunc(InBits);
- KnownOne = KnownOne.trunc(InBits);
- computeKnownBits(Op.getOperand(0), KnownZero, KnownOne, Depth+1);
- // Note if the sign bit is known to be zero or one.
- bool SignBitKnownZero = KnownZero.isNegative();
- bool SignBitKnownOne = KnownOne.isNegative();
- KnownZero = KnownZero.zext(BitWidth);
- KnownOne = KnownOne.zext(BitWidth);
- // If the sign bit is known zero or one, the top bits match.
- if (SignBitKnownZero)
- KnownZero |= NewBits;
- else if (SignBitKnownOne)
- KnownOne |= NewBits;
- break;
- }
- case ISD::ANY_EXTEND: {
- EVT InVT = Op.getOperand(0).getValueType();
- unsigned InBits = InVT.getScalarType().getSizeInBits();
- KnownZero = KnownZero.trunc(InBits);
- KnownOne = KnownOne.trunc(InBits);
- computeKnownBits(Op.getOperand(0), KnownZero, KnownOne, Depth+1);
- KnownZero = KnownZero.zext(BitWidth);
- KnownOne = KnownOne.zext(BitWidth);
- break;
- }
- case ISD::TRUNCATE: {
- EVT InVT = Op.getOperand(0).getValueType();
- unsigned InBits = InVT.getScalarType().getSizeInBits();
- KnownZero = KnownZero.zext(InBits);
- KnownOne = KnownOne.zext(InBits);
- computeKnownBits(Op.getOperand(0), KnownZero, KnownOne, Depth+1);
- KnownZero = KnownZero.trunc(BitWidth);
- KnownOne = KnownOne.trunc(BitWidth);
- break;
- }
- case ISD::AssertZext: {
- EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
- APInt InMask = APInt::getLowBitsSet(BitWidth, VT.getSizeInBits());
- computeKnownBits(Op.getOperand(0), KnownZero, KnownOne, Depth+1);
- KnownZero |= (~InMask);
- KnownOne &= (~KnownZero);
- break;
- }
- case ISD::FGETSIGN:
- // All bits are zero except the low bit.
- KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - 1);
- break;
- case ISD::SUB: {
- if (ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0))) {
- // We know that the top bits of C-X are clear if X contains less bits
- // than C (i.e. no wrap-around can happen). For example, 20-X is
- // positive if we can prove that X is >= 0 and < 16.
- if (CLHS->getAPIntValue().isNonNegative()) {
- unsigned NLZ = (CLHS->getAPIntValue()+1).countLeadingZeros();
- // NLZ can't be BitWidth with no sign bit
- APInt MaskV = APInt::getHighBitsSet(BitWidth, NLZ+1);
- computeKnownBits(Op.getOperand(1), KnownZero2, KnownOne2, Depth+1);
- // If all of the MaskV bits are known to be zero, then we know the
- // output top bits are zero, because we now know that the output is
- // from [0-C].
- if ((KnownZero2 & MaskV) == MaskV) {
- unsigned NLZ2 = CLHS->getAPIntValue().countLeadingZeros();
- // Top bits known zero.
- KnownZero = APInt::getHighBitsSet(BitWidth, NLZ2);
- }
- }
- }
- }
- // fall through
- case ISD::ADD:
- case ISD::ADDE: {
- // Output known-0 bits are known if clear or set in both the low clear bits
- // common to both LHS & RHS. For example, 8+(X<<3) is known to have the
- // low 3 bits clear.
- // Output known-0 bits are also known if the top bits of each input are
- // known to be clear. For example, if one input has the top 10 bits clear
- // and the other has the top 8 bits clear, we know the top 7 bits of the
- // output must be clear.
- computeKnownBits(Op.getOperand(0), KnownZero2, KnownOne2, Depth+1);
- unsigned KnownZeroHigh = KnownZero2.countLeadingOnes();
- unsigned KnownZeroLow = KnownZero2.countTrailingOnes();
- computeKnownBits(Op.getOperand(1), KnownZero2, KnownOne2, Depth+1);
- KnownZeroHigh = std::min(KnownZeroHigh,
- KnownZero2.countLeadingOnes());
- KnownZeroLow = std::min(KnownZeroLow,
- KnownZero2.countTrailingOnes());
- if (Op.getOpcode() == ISD::ADD) {
- KnownZero |= APInt::getLowBitsSet(BitWidth, KnownZeroLow);
- if (KnownZeroHigh > 1)
- KnownZero |= APInt::getHighBitsSet(BitWidth, KnownZeroHigh - 1);
- break;
- }
- // With ADDE, a carry bit may be added in, so we can only use this
- // information if we know (at least) that the low two bits are clear. We
- // then return to the caller that the low bit is unknown but that other bits
- // are known zero.
- if (KnownZeroLow >= 2) // ADDE
- KnownZero |= APInt::getBitsSet(BitWidth, 1, KnownZeroLow);
- break;
- }
- case ISD::SREM:
- if (ConstantSDNode *Rem = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
- const APInt &RA = Rem->getAPIntValue().abs();
- if (RA.isPowerOf2()) {
- APInt LowBits = RA - 1;
- computeKnownBits(Op.getOperand(0), KnownZero2,KnownOne2,Depth+1);
- // The low bits of the first operand are unchanged by the srem.
- KnownZero = KnownZero2 & LowBits;
- KnownOne = KnownOne2 & LowBits;
- // If the first operand is non-negative or has all low bits zero, then
- // the upper bits are all zero.
- if (KnownZero2[BitWidth-1] || ((KnownZero2 & LowBits) == LowBits))
- KnownZero |= ~LowBits;
- // If the first operand is negative and not all low bits are zero, then
- // the upper bits are all one.
- if (KnownOne2[BitWidth-1] && ((KnownOne2 & LowBits) != 0))
- KnownOne |= ~LowBits;
- assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
- }
- }
- break;
- case ISD::UREM: {
- if (ConstantSDNode *Rem = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
- const APInt &RA = Rem->getAPIntValue();
- if (RA.isPowerOf2()) {
- APInt LowBits = (RA - 1);
- computeKnownBits(Op.getOperand(0), KnownZero2, KnownOne2, Depth + 1);
- // The upper bits are all zero, the lower ones are unchanged.
- KnownZero = KnownZero2 | ~LowBits;
- KnownOne = KnownOne2 & LowBits;
- break;
- }
- }
- // Since the result is less than or equal to either operand, any leading
- // zero bits in either operand must also exist in the result.
- computeKnownBits(Op.getOperand(0), KnownZero, KnownOne, Depth+1);
- computeKnownBits(Op.getOperand(1), KnownZero2, KnownOne2, Depth+1);
- uint32_t Leaders = std::max(KnownZero.countLeadingOnes(),
- KnownZero2.countLeadingOnes());
- KnownOne.clearAllBits();
- KnownZero = APInt::getHighBitsSet(BitWidth, Leaders);
- break;
- }
- case ISD::EXTRACT_ELEMENT: {
- computeKnownBits(Op.getOperand(0), KnownZero, KnownOne, Depth+1);
- const unsigned Index =
- cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
- const unsigned BitWidth = Op.getValueType().getSizeInBits();
- // Remove low part of known bits mask
- KnownZero = KnownZero.getHiBits(KnownZero.getBitWidth() - Index * BitWidth);
- KnownOne = KnownOne.getHiBits(KnownOne.getBitWidth() - Index * BitWidth);
- // Remove high part of known bit mask
- KnownZero = KnownZero.trunc(BitWidth);
- KnownOne = KnownOne.trunc(BitWidth);
- break;
- }
- case ISD::SMIN:
- case ISD::SMAX:
- case ISD::UMIN:
- case ISD::UMAX: {
- APInt Op0Zero, Op0One;
- APInt Op1Zero, Op1One;
- computeKnownBits(Op.getOperand(0), Op0Zero, Op0One, Depth);
- computeKnownBits(Op.getOperand(1), Op1Zero, Op1One, Depth);
- KnownZero = Op0Zero & Op1Zero;
- KnownOne = Op0One & Op1One;
- break;
- }
- case ISD::FrameIndex:
- case ISD::TargetFrameIndex:
- if (unsigned Align = InferPtrAlignment(Op)) {
- // The low bits are known zero if the pointer is aligned.
- KnownZero = APInt::getLowBitsSet(BitWidth, Log2_32(Align));
- break;
- }
- break;
- default:
- if (Op.getOpcode() < ISD::BUILTIN_OP_END)
- break;
- // Fallthrough
- case ISD::INTRINSIC_WO_CHAIN:
- case ISD::INTRINSIC_W_CHAIN:
- case ISD::INTRINSIC_VOID:
- // Allow the target to implement this method for its nodes.
- TLI->computeKnownBitsForTargetNode(Op, KnownZero, KnownOne, *this, Depth);
- break;
- }
- assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
- }
- /// ComputeNumSignBits - Return the number of times the sign bit of the
- /// register is replicated into the other bits. We know that at least 1 bit
- /// is always equal to the sign bit (itself), but other cases can give us
- /// information. For example, immediately after an "SRA X, 2", we know that
- /// the top 3 bits are all equal to each other, so we return 3.
- unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, unsigned Depth) const{
- EVT VT = Op.getValueType();
- assert(VT.isInteger() && "Invalid VT!");
- unsigned VTBits = VT.getScalarType().getSizeInBits();
- unsigned Tmp, Tmp2;
- unsigned FirstAnswer = 1;
- if (Depth == 6)
- return 1; // Limit search depth.
- switch (Op.getOpcode()) {
- default: break;
- case ISD::AssertSext:
- Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
- return VTBits-Tmp+1;
- case ISD::AssertZext:
- Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
- return VTBits-Tmp;
- case ISD::Constant: {
- const APInt &Val = cast<ConstantSDNode>(Op)->getAPIntValue();
- return Val.getNumSignBits();
- }
- case ISD::SIGN_EXTEND:
- Tmp =
- VTBits-Op.getOperand(0).getValueType().getScalarType().getSizeInBits();
- return ComputeNumSignBits(Op.getOperand(0), Depth+1) + Tmp;
- case ISD::SIGN_EXTEND_INREG:
- // Max of the input and what this extends.
- Tmp =
- cast<VTSDNode>(Op.getOperand(1))->getVT().getScalarType().getSizeInBits();
- Tmp = VTBits-Tmp+1;
- Tmp2 = ComputeNumSignBits(Op.getOperand(0), Depth+1);
- return std::max(Tmp, Tmp2);
- case ISD::SRA:
- Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
- // SRA X, C -> adds C sign bits.
- if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
- Tmp += C->getZExtValue();
- if (Tmp > VTBits) Tmp = VTBits;
- }
- return Tmp;
- case ISD::SHL:
- if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
- // shl destroys sign bits.
- Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
- if (C->getZExtValue() >= VTBits || // Bad shift.
- C->getZExtValue() >= Tmp) break; // Shifted all sign bits out.
- return Tmp - C->getZExtValue();
- }
- break;
- case ISD::AND:
- case ISD::OR:
- case ISD::XOR: // NOT is handled here.
- // Logical binary ops preserve the number of sign bits at the worst.
- Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
- if (Tmp != 1) {
- Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
- FirstAnswer = std::min(Tmp, Tmp2);
- // We computed what we know about the sign bits as our first
- // answer. Now proceed to the generic code that uses
- // computeKnownBits, and pick whichever answer is better.
- }
- break;
- case ISD::SELECT:
- Tmp = ComputeNumSignBits(Op.getOperand(1), Depth+1);
- if (Tmp == 1) return 1; // Early out.
- Tmp2 = ComputeNumSignBits(Op.getOperand(2), Depth+1);
- return std::min(Tmp, Tmp2);
- case ISD::SMIN:
- case ISD::SMAX:
- case ISD::UMIN:
- case ISD::UMAX:
- Tmp = ComputeNumSignBits(Op.getOperand(0), Depth + 1);
- if (Tmp == 1)
- return 1; // Early out.
- Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth + 1);
- return std::min(Tmp, Tmp2);
- case ISD::SADDO:
- case ISD::UADDO:
- case ISD::SSUBO:
- case ISD::USUBO:
- case ISD::SMULO:
- case ISD::UMULO:
- if (Op.getResNo() != 1)
- break;
- // The boolean result conforms to getBooleanContents. Fall through.
- // If setcc returns 0/-1, all bits are sign bits.
- // We know that we have an integer-based boolean since these operations
- // are only available for integer.
- if (TLI->getBooleanContents(Op.getValueType().isVector(), false) ==
- TargetLowering::ZeroOrNegativeOneBooleanContent)
- return VTBits;
- break;
- case ISD::SETCC:
- // If setcc returns 0/-1, all bits are sign bits.
- if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) ==
- TargetLowering::ZeroOrNegativeOneBooleanContent)
- return VTBits;
- break;
- case ISD::ROTL:
- case ISD::ROTR:
- if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
- unsigned RotAmt = C->getZExtValue() & (VTBits-1);
- // Handle rotate right by N like a rotate left by 32-N.
- if (Op.getOpcode() == ISD::ROTR)
- RotAmt = (VTBits-RotAmt) & (VTBits-1);
- // If we aren't rotating out all of the known-in sign bits, return the
- // number that are left. This handles rotl(sext(x), 1) for example.
- Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
- if (Tmp > RotAmt+1) return Tmp-RotAmt;
- }
- break;
- case ISD::ADD:
- // Add can have at most one carry bit. Thus we know that the output
- // is, at worst, one more bit than the inputs.
- Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
- if (Tmp == 1) return 1; // Early out.
- // Special case decrementing a value (ADD X, -1):
- if (ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(Op.getOperand(1)))
- if (CRHS->isAllOnesValue()) {
- APInt KnownZero, KnownOne;
- computeKnownBits(Op.getOperand(0), KnownZero, KnownOne, Depth+1);
- // If the input is known to be 0 or 1, the output is 0/-1, which is all
- // sign bits set.
- if ((KnownZero | APInt(VTBits, 1)).isAllOnesValue())
- return VTBits;
- // If we are subtracting one from a positive number, there is no carry
- // out of the result.
- if (KnownZero.isNegative())
- return Tmp;
- }
- Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
- if (Tmp2 == 1) return 1;
- return std::min(Tmp, Tmp2)-1;
- case ISD::SUB:
- Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
- if (Tmp2 == 1) return 1;
- // Handle NEG.
- if (ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0)))
- if (CLHS->isNullValue()) {
- APInt KnownZero, KnownOne;
- computeKnownBits(Op.getOperand(1), KnownZero, KnownOne, Depth+1);
- // If the input is known to be 0 or 1, the output is 0/-1, which is all
- // sign bits set.
- if ((KnownZero | APInt(VTBits, 1)).isAllOnesValue())
- return VTBits;
- // If the input is known to be positive (the sign bit is known clear),
- // the output of the NEG has the same number of sign bits as the input.
- if (KnownZero.isNegative())
- return Tmp2;
- // Otherwise, we treat this like a SUB.
- }
- // Sub can have at most one carry bit. Thus we know that the output
- // is, at worst, one more bit than the inputs.
- Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
- if (Tmp == 1) return 1; // Early out.
- return std::min(Tmp, Tmp2)-1;
- case ISD::TRUNCATE:
- // FIXME: it's tricky to do anything useful for this, but it is an important
- // case for targets like X86.
- break;
- case ISD::EXTRACT_ELEMENT: {
- const int KnownSign = ComputeNumSignBits(Op.getOperand(0), Depth+1);
- const int BitWidth = Op.getValueType().getSizeInBits();
- const int Items =
- Op.getOperand(0).getValueType().getSizeInBits() / BitWidth;
- // Get reverse index (starting from 1), Op1 value indexes elements from
- // little end. Sign starts at big end.
- const int rIndex = Items - 1 -
- cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
- // If the sign portion ends in our element the substraction gives correct
- // result. Otherwise it gives either negative or > bitwidth result
- return std::max(std::min(KnownSign - rIndex * BitWidth, BitWidth), 0);
- }
- }
- // If we are looking at the loaded value of the SDNode.
- if (Op.getResNo() == 0) {
- // Handle LOADX separately here. EXTLOAD case will fallthrough.
- if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Op)) {
- unsigned ExtType = LD->getExtensionType();
- switch (ExtType) {
- default: break;
- case ISD::SEXTLOAD: // '17' bits known
- Tmp = LD->getMemoryVT().getScalarType().getSizeInBits();
- return VTBits-Tmp+1;
- case ISD::ZEXTLOAD: // '16' bits known
- Tmp = LD->getMemoryVT().getScalarType().getSizeInBits();
- return VTBits-Tmp;
- }
- }
- }
- // Allow the target to implement this method for its nodes.
- if (Op.getOpcode() >= ISD::BUILTIN_OP_END ||
- Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
- Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
- Op.getOpcode() == ISD::INTRINSIC_VOID) {
- unsigned NumBits = TLI->ComputeNumSignBitsForTargetNode(Op, *this, Depth);
- if (NumBits > 1) FirstAnswer = std::max(FirstAnswer, NumBits);
- }
- // Finally, if we can prove that the top bits of the result are 0's or 1's,
- // use this information.
- APInt KnownZero, KnownOne;
- computeKnownBits(Op, KnownZero, KnownOne, Depth);
- APInt Mask;
- if (KnownZero.isNegative()) { // sign bit is 0
- Mask = KnownZero;
- } else if (KnownOne.isNegative()) { // sign bit is 1;
- Mask = KnownOne;
- } else {
- // Nothing known.
- return FirstAnswer;
- }
- // Okay, we know that the sign bit in Mask is set. Use CLZ to determine
- // the number of identical bits in the top of the input value.
- Mask = ~Mask;
- Mask <<= Mask.getBitWidth()-VTBits;
- // Return # leading zeros. We use 'min' here in case Val was zero before
- // shifting. We don't want to return '64' as for an i32 "0".
- return std::max(FirstAnswer, std::min(VTBits, Mask.countLeadingZeros()));
- }
- /// isBaseWithConstantOffset - Return true if the specified operand is an
- /// ISD::ADD with a ConstantSDNode on the right-hand side, or if it is an
- /// ISD::OR with a ConstantSDNode that is guaranteed to have the same
- /// semantics as an ADD. This handles the equivalence:
- /// X|Cst == X+Cst iff X&Cst = 0.
- bool SelectionDAG::isBaseWithConstantOffset(SDValue Op) const {
- if ((Op.getOpcode() != ISD::ADD && Op.getOpcode() != ISD::OR) ||
- !isa<ConstantSDNode>(Op.getOperand(1)))
- return false;
- if (Op.getOpcode() == ISD::OR &&
- !MaskedValueIsZero(Op.getOperand(0),
- cast<ConstantSDNode>(Op.getOperand(1))->getAPIntValue()))
- return false;
- return true;
- }
- bool SelectionDAG::isKnownNeverNaN(SDValue Op) const {
- // If we're told that NaNs won't happen, assume they won't.
- if (getTarget().Options.NoNaNsFPMath)
- return true;
- // If the value is a constant, we can obviously see if it is a NaN or not.
- if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op))
- return !C->getValueAPF().isNaN();
- // TODO: Recognize more cases here.
- return false;
- }
- bool SelectionDAG::isKnownNeverZero(SDValue Op) const {
- // If the value is a constant, we can obviously see if it is a zero or not.
- if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op))
- return !C->isZero();
- // TODO: Recognize more cases here.
- switch (Op.getOpcode()) {
- default: break;
- case ISD::OR:
- if (const ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1)))
- return !C->isNullValue();
- break;
- }
- return false;
- }
- bool SelectionDAG::isEqualTo(SDValue A, SDValue B) const {
- // Check the obvious case.
- if (A == B) return true;
- // For for negative and positive zero.
- if (const ConstantFPSDNode *CA = dyn_cast<ConstantFPSDNode>(A))
- if (const ConstantFPSDNode *CB = dyn_cast<ConstantFPSDNode>(B))
- if (CA->isZero() && CB->isZero()) return true;
- // Otherwise they may not be equal.
- return false;
- }
- /// getNode - Gets or creates the specified node.
- ///
- SDValue SelectionDAG::getNode(unsigned Opcode, SDLoc DL, EVT VT) {
- FoldingSetNodeID ID;
- AddNodeIDNode(ID, Opcode, getVTList(VT), None);
- void *IP = nullptr;
- if (SDNode *E = FindNodeOrInsertPos(ID, DL.getDebugLoc(), IP))
- return SDValue(E, 0);
- SDNode *N = new (NodeAllocator) SDNode(Opcode, DL.getIROrder(),
- DL.getDebugLoc(), getVTList(VT));
- CSEMap.InsertNode(N, IP);
- InsertNode(N);
- return SDValue(N, 0);
- }
- SDValue SelectionDAG::getNode(unsigned Opcode, SDLoc DL,
- EVT VT, SDValue Operand) {
- // Constant fold unary operations with an integer constant operand. Even
- // opaque constant will be folded, because the folding of unary operations
- // doesn't create new constants with different values. Nevertheless, the
- // opaque flag is preserved during folding to prevent future folding with
- // other constants.
- if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand)) {
- const APInt &Val = C->getAPIntValue();
- switch (Opcode) {
- default: break;
- case ISD::SIGN_EXTEND:
- return getConstant(Val.sextOrTrunc(VT.getSizeInBits()), DL, VT,
- C->isTargetOpcode(), C->isOpaque());
- case ISD::ANY_EXTEND:
- case ISD::ZERO_EXTEND:
- case ISD::TRUNCATE:
- return getConstant(Val.zextOrTrunc(VT.getSizeInBits()), DL, VT,
- C->isTargetOpcode(), C->isOpaque());
- case ISD::UINT_TO_FP:
- case ISD::SINT_TO_FP: {
- APFloat apf(EVTToAPFloatSemantics(VT),
- APInt::getNullValue(VT.getSizeInBits()));
- (void)apf.convertFromAPInt(Val,
- Opcode==ISD::SINT_TO_FP,
- APFloat::rmNearestTiesToEven);
- return getConstantFP(apf, DL, VT);
- }
- case ISD::BITCAST:
- if (VT == MVT::f16 && C->getValueType(0) == MVT::i16)
- return getConstantFP(APFloat(APFloat::IEEEhalf, Val), DL, VT);
- if (VT == MVT::f32 && C->getValueType(0) == MVT::i32)
- return getConstantFP(APFloat(APFloat::IEEEsingle, Val), DL, VT);
- else if (VT == MVT::f64 && C->getValueType(0) == MVT::i64)
- return getConstantFP(APFloat(APFloat::IEEEdouble, Val), DL, VT);
- break;
- case ISD::BSWAP:
- return getConstant(Val.byteSwap(), DL, VT, C->isTargetOpcode(),
- C->isOpaque());
- case ISD::CTPOP:
- return getConstant(Val.countPopulation(), DL, VT, C->isTargetOpcode(),
- C->isOpaque());
- case ISD::CTLZ:
- case ISD::CTLZ_ZERO_UNDEF:
- return getConstant(Val.countLeadingZeros(), DL, VT, C->isTargetOpcode(),
- C->isOpaque());
- case ISD::CTTZ:
- case ISD::CTTZ_ZERO_UNDEF:
- return getConstant(Val.countTrailingZeros(), DL, VT, C->isTargetOpcode(),
- C->isOpaque());
- }
- }
- // Constant fold unary operations with a floating point constant operand.
- if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand)) {
- APFloat V = C->getValueAPF(); // make copy
- switch (Opcode) {
- case ISD::FNEG:
- V.changeSign();
- return getConstantFP(V, DL, VT);
- case ISD::FABS:
- V.clearSign();
- return getConstantFP(V, DL, VT);
- case ISD::FCEIL: {
- APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardPositive);
- if (fs == APFloat::opOK || fs == APFloat::opInexact)
- return getConstantFP(V, DL, VT);
- break;
- }
- case ISD::FTRUNC: {
- APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardZero);
- if (fs == APFloat::opOK || fs == APFloat::opInexact)
- return getConstantFP(V, DL, VT);
- break;
- }
- case ISD::FFLOOR: {
- APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardNegative);
- if (fs == APFloat::opOK || fs == APFloat::opInexact)
- return getConstantFP(V, DL, VT);
- break;
- }
- case ISD::FP_EXTEND: {
- bool ignored;
- // This can return overflow, underflow, or inexact; we don't care.
- // FIXME need to be more flexible about rounding mode.
- (void)V.convert(EVTToAPFloatSemantics(VT),
- APFloat::rmNearestTiesToEven, &ignored);
- return getConstantFP(V, DL, VT);
- }
- case ISD::FP_TO_SINT:
- case ISD::FP_TO_UINT: {
- integerPart x[2];
- bool ignored;
- static_assert(integerPartWidth >= 64, "APFloat parts too small!");
- // FIXME need to be more flexible about rounding mode.
- APFloat::opStatus s = V.convertToInteger(x, VT.getSizeInBits(),
- Opcode==ISD::FP_TO_SINT,
- APFloat::rmTowardZero, &ignored);
- if (s==APFloat::opInvalidOp) // inexact is OK, in fact usual
- break;
- APInt api(VT.getSizeInBits(), x);
- return getConstant(api, DL, VT);
- }
- case ISD::BITCAST:
- if (VT == MVT::i16 && C->getValueType(0) == MVT::f16)
- return getConstant((uint16_t)V.bitcastToAPInt().getZExtValue(), DL, VT);
- else if (VT == MVT::i32 && C->getValueType(0) == MVT::f32)
- return getConstant((uint32_t)V.bitcastToAPInt().getZExtValue(), DL, VT);
- else if (VT == MVT::i64 && C->getValueType(0) == MVT::f64)
- return getConstant(V.bitcastToAPInt().getZExtValue(), DL, VT);
- break;
- }
- }
- // Constant fold unary operations with a vector integer or float operand.
- if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(Operand)) {
- if (BV->isConstant()) {
- switch (Opcode) {
- default:
- // FIXME: Entirely reasonable to perform folding of other unary
- // operations here as the need arises.
- break;
- case ISD::FNEG:
- case ISD::FABS:
- case ISD::FCEIL:
- case ISD::FTRUNC:
- case ISD::FFLOOR:
- case ISD::FP_EXTEND:
- case ISD::FP_TO_SINT:
- case ISD::FP_TO_UINT:
- case ISD::TRUNCATE:
- case ISD::UINT_TO_FP:
- case ISD::SINT_TO_FP:
- case ISD::BSWAP:
- case ISD::CTLZ:
- case ISD::CTLZ_ZERO_UNDEF:
- case ISD::CTTZ:
- case ISD::CTTZ_ZERO_UNDEF:
- case ISD::CTPOP: {
- EVT SVT = VT.getScalarType();
- EVT InVT = BV->getValueType(0);
- EVT InSVT = InVT.getScalarType();
- // Find legal integer scalar type for constant promotion and
- // ensure that its scalar size is at least as large as source.
- EVT LegalSVT = SVT;
- if (SVT.isInteger()) {
- LegalSVT = TLI->getTypeToTransformTo(*getContext(), SVT);
- if (LegalSVT.bitsLT(SVT)) break;
- }
- // Let the above scalar folding handle the folding of each element.
- SmallVector<SDValue, 8> Ops;
- for (int i = 0, e = VT.getVectorNumElements(); i != e; ++i) {
- SDValue OpN = BV->getOperand(i);
- EVT OpVT = OpN.getValueType();
- // Build vector (integer) scalar operands may need implicit
- // truncation - do this before constant folding.
- if (OpVT.isInteger() && OpVT.bitsGT(InSVT))
- OpN = getNode(ISD::TRUNCATE, DL, InSVT, OpN);
- OpN = getNode(Opcode, DL, SVT, OpN);
- // Legalize the (integer) scalar constant if necessary.
- if (LegalSVT != SVT)
- OpN = getNode(ISD::ANY_EXTEND, DL, LegalSVT, OpN);
- if (OpN.getOpcode() != ISD::UNDEF &&
- OpN.getOpcode() != ISD::Constant &&
- OpN.getOpcode() != ISD::ConstantFP)
- break;
- Ops.push_back(OpN);
- }
- if (Ops.size() == VT.getVectorNumElements())
- return getNode(ISD::BUILD_VECTOR, DL, VT, Ops);
- break;
- }
- }
- }
- }
- unsigned OpOpcode = Operand.getNode()->getOpcode();
- switch (Opcode) {
- case ISD::TokenFactor:
- case ISD::MERGE_VALUES:
- case ISD::CONCAT_VECTORS:
- return Operand; // Factor, merge or concat of one node? No need.
- case ISD::FP_ROUND: llvm_unreachable("Invalid method to make FP_ROUND node");
- case ISD::FP_EXTEND:
- assert(VT.isFloatingPoint() &&
- Operand.getValueType().isFloatingPoint() && "Invalid FP cast!");
- if (Operand.getValueType() == VT) return Operand; // noop conversion.
- assert((!VT.isVector() ||
- VT.getVectorNumElements() ==
- Operand.getValueType().getVectorNumElements()) &&
- "Vector element count mismatch!");
- if (Operand.getOpcode() == ISD::UNDEF)
- return getUNDEF(VT);
- break;
- case ISD::SIGN_EXTEND:
- assert(VT.isInteger() && Operand.getValueType().isInteger() &&
- "Invalid SIGN_EXTEND!");
- if (Operand.getValueType() == VT) return Operand; // noop extension
- assert(Operand.getValueType().getScalarType().bitsLT(VT.getScalarType()) &&
- "Invalid sext node, dst < src!");
- assert((!VT.isVector() ||
- VT.getVectorNumElements() ==
- Operand.getValueType().getVectorNumElements()) &&
- "Vector element count mismatch!");
- if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND)
- return getNode(OpOpcode, DL, VT, Operand.getNode()->getOperand(0));
- else if (OpOpcode == ISD::UNDEF)
- // sext(undef) = 0, because the top bits will all be the same.
- return getConstant(0, DL, VT);
- break;
- case ISD::ZERO_EXTEND:
- assert(VT.isInteger() && Operand.getValueType().isInteger() &&
- "Invalid ZERO_EXTEND!");
- if (Operand.getValueType() == VT) return Operand; // noop extension
- assert(Operand.getValueType().getScalarType().bitsLT(VT.getScalarType()) &&
- "Invalid zext node, dst < src!");
- assert((!VT.isVector() ||
- VT.getVectorNumElements() ==
- Operand.getValueType().getVectorNumElements()) &&
- "Vector element count mismatch!");
- if (OpOpcode == ISD::ZERO_EXTEND) // (zext (zext x)) -> (zext x)
- return getNode(ISD::ZERO_EXTEND, DL, VT,
- Operand.getNode()->getOperand(0));
- else if (OpOpcode == ISD::UNDEF)
- // zext(undef) = 0, because the top bits will be zero.
- return getConstant(0, DL, VT);
- break;
- case ISD::ANY_EXTEND:
- assert(VT.isInteger() && Operand.getValueType().isInteger() &&
- "Invalid ANY_EXTEND!");
- if (Operand.getValueType() == VT) return Operand; // noop extension
- assert(Operand.getValueType().getScalarType().bitsLT(VT.getScalarType()) &&
- "Invalid anyext node, dst < src!");
- assert((!VT.isVector() ||
- VT.getVectorNumElements() ==
- Operand.getValueType().getVectorNumElements()) &&
- "Vector element count mismatch!");
- if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
- OpOpcode == ISD::ANY_EXTEND)
- // (ext (zext x)) -> (zext x) and (ext (sext x)) -> (sext x)
- return getNode(OpOpcode, DL, VT, Operand.getNode()->getOperand(0));
- else if (OpOpcode == ISD::UNDEF)
- return getUNDEF(VT);
- // (ext (trunx x)) -> x
- if (OpOpcode == ISD::TRUNCATE) {
- SDValue OpOp = Operand.getNode()->getOperand(0);
- if (OpOp.getValueType() == VT)
- return OpOp;
- }
- break;
- case ISD::TRUNCATE:
- assert(VT.isInteger() && Operand.getValueType().isInteger() &&
- "Invalid TRUNCATE!");
- if (Operand.getValueType() == VT) return Operand; // noop truncate
- assert(Operand.getValueType().getScalarType().bitsGT(VT.getScalarType()) &&
- "Invalid truncate node, src < dst!");
- assert((!VT.isVector() ||
- VT.getVectorNumElements() ==
- Operand.getValueType().getVectorNumElements()) &&
- "Vector element count mismatch!");
- if (OpOpcode == ISD::TRUNCATE)
- return getNode(ISD::TRUNCATE, DL, VT, Operand.getNode()->getOperand(0));
- if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
- OpOpcode == ISD::ANY_EXTEND) {
- // If the source is smaller than the dest, we still need an extend.
- if (Operand.getNode()->getOperand(0).getValueType().getScalarType()
- .bitsLT(VT.getScalarType()))
- return getNode(OpOpcode, DL, VT, Operand.getNode()->getOperand(0));
- if (Operand.getNode()->getOperand(0).getValueType().bitsGT(VT))
- return getNode(ISD::TRUNCATE, DL, VT, Operand.getNode()->getOperand(0));
- return Operand.getNode()->getOperand(0);
- }
- if (OpOpcode == ISD::UNDEF)
- return getUNDEF(VT);
- break;
- case ISD::BSWAP:
- assert(VT.isInteger() && VT == Operand.getValueType() &&
- "Invalid BSWAP!");
- assert((VT.getScalarSizeInBits() % 16 == 0) &&
- "BSWAP types must be a multiple of 16 bits!");
- if (OpOpcode == ISD::UNDEF)
- return getUNDEF(VT);
- break;
- case ISD::BITCAST:
- // Basic sanity checking.
- assert(VT.getSizeInBits() == Operand.getValueType().getSizeInBits()
- && "Cannot BITCAST between types of different sizes!");
- if (VT == Operand.getValueType()) return Operand; // noop conversion.
- if (OpOpcode == ISD::BITCAST) // bitconv(bitconv(x)) -> bitconv(x)
- return getNode(ISD::BITCAST, DL, VT, Operand.getOperand(0));
- if (OpOpcode == ISD::UNDEF)
- return getUNDEF(VT);
- break;
- case ISD::SCALAR_TO_VECTOR:
- assert(VT.isVector() && !Operand.getValueType().isVector() &&
- (VT.getVectorElementType() == Operand.getValueType() ||
- (VT.getVectorElementType().isInteger() &&
- Operand.getValueType().isInteger() &&
- VT.getVectorElementType().bitsLE(Operand.getValueType()))) &&
- "Illegal SCALAR_TO_VECTOR node!");
- if (OpOpcode == ISD::UNDEF)
- return getUNDEF(VT);
- // scalar_to_vector(extract_vector_elt V, 0) -> V, top bits are undefined.
- if (OpOpcode == ISD::EXTRACT_VECTOR_ELT &&
- isa<ConstantSDNode>(Operand.getOperand(1)) &&
- Operand.getConstantOperandVal(1) == 0 &&
- Operand.getOperand(0).getValueType() == VT)
- return Operand.getOperand(0);
- break;
- case ISD::FNEG:
- // -(X-Y) -> (Y-X) is unsafe because when X==Y, -0.0 != +0.0
- if (getTarget().Options.UnsafeFPMath && OpOpcode == ISD::FSUB)
- return getNode(ISD::FSUB, DL, VT, Operand.getNode()->getOperand(1),
- Operand.getNode()->getOperand(0));
- if (OpOpcode == ISD::FNEG) // --X -> X
- return Operand.getNode()->getOperand(0);
- break;
- case ISD::FABS:
- if (OpOpcode == ISD::FNEG) // abs(-X) -> abs(X)
- return getNode(ISD::FABS, DL, VT, Operand.getNode()->getOperand(0));
- break;
- }
- SDNode *N;
- SDVTList VTs = getVTList(VT);
- if (VT != MVT::Glue) { // Don't CSE flag producing nodes
- FoldingSetNodeID ID;
- SDValue Ops[1] = { Operand };
- AddNodeIDNode(ID, Opcode, VTs, Ops);
- void *IP = nullptr;
- if (SDNode *E = FindNodeOrInsertPos(ID, DL.getDebugLoc(), IP))
- return SDValue(E, 0);
- N = new (NodeAllocator) UnarySDNode(Opcode, DL.getIROrder(),
- DL.getDebugLoc(), VTs, Operand);
- CSEMap.InsertNode(N, IP);
- } else {
- N = new (NodeAllocator) UnarySDNode(Opcode, DL.getIROrder(),
- DL.getDebugLoc(), VTs, Operand);
- }
- InsertNode(N);
- return SDValue(N, 0);
- }
- static std::pair<APInt, bool> FoldValue(unsigned Opcode, const APInt &C1,
- const APInt &C2) {
- switch (Opcode) {
- case ISD::ADD: return std::make_pair(C1 + C2, true);
- case ISD::SUB: return std::make_pair(C1 - C2, true);
- case ISD::MUL: return std::make_pair(C1 * C2, true);
- case ISD::AND: return std::make_pair(C1 & C2, true);
- case ISD::OR: return std::make_pair(C1 | C2, true);
- case ISD::XOR: return std::make_pair(C1 ^ C2, true);
- case ISD::SHL: return std::make_pair(C1 << C2, true);
- case ISD::SRL: return std::make_pair(C1.lshr(C2), true);
- case ISD::SRA: return std::make_pair(C1.ashr(C2), true);
- case ISD::ROTL: return std::make_pair(C1.rotl(C2), true);
- case ISD::ROTR: return std::make_pair(C1.rotr(C2), true);
- case ISD::UDIV:
- if (!C2.getBoolValue())
- break;
- return std::make_pair(C1.udiv(C2), true);
- case ISD::UREM:
- if (!C2.getBoolValue())
- break;
- return std::make_pair(C1.urem(C2), true);
- case ISD::SDIV:
- if (!C2.getBoolValue())
- break;
- return std::make_pair(C1.sdiv(C2), true);
- case ISD::SREM:
- if (!C2.getBoolValue())
- break;
- return std::make_pair(C1.srem(C2), true);
- }
- return std::make_pair(APInt(1, 0), false);
- }
- SDValue SelectionDAG::FoldConstantArithmetic(unsigned Opcode, SDLoc DL, EVT VT,
- const ConstantSDNode *Cst1,
- const ConstantSDNode *Cst2) {
- if (Cst1->isOpaque() || Cst2->isOpaque())
- return SDValue();
- std::pair<APInt, bool> Folded = FoldValue(Opcode, Cst1->getAPIntValue(),
- Cst2->getAPIntValue());
- if (!Folded.second)
- return SDValue();
- return getConstant(Folded.first, DL, VT);
- }
- SDValue SelectionDAG::FoldConstantArithmetic(unsigned Opcode, SDLoc DL, EVT VT,
- SDNode *Cst1, SDNode *Cst2) {
- // If the opcode is a target-specific ISD node, there's nothing we can
- // do here and the operand rules may not line up with the below, so
- // bail early.
- if (Opcode >= ISD::BUILTIN_OP_END)
- return SDValue();
- // Handle the case of two scalars.
- if (const ConstantSDNode *Scalar1 = dyn_cast<ConstantSDNode>(Cst1)) {
- if (const ConstantSDNode *Scalar2 = dyn_cast<ConstantSDNode>(Cst2)) {
- if (SDValue Folded =
- FoldConstantArithmetic(Opcode, DL, VT, Scalar1, Scalar2)) {
- if (!VT.isVector())
- return Folded;
- SmallVector<SDValue, 4> Outputs;
- // We may have a vector type but a scalar result. Create a splat.
- Outputs.resize(VT.getVectorNumElements(), Outputs.back());
- // Build a big vector out of the scalar elements we generated.
- return getNode(ISD::BUILD_VECTOR, SDLoc(), VT, Outputs);
- } else {
- return SDValue();
- }
- }
- }
- // For vectors extract each constant element into Inputs so we can constant
- // fold them individually.
- BuildVectorSDNode *BV1 = dyn_cast<BuildVectorSDNode>(Cst1);
- BuildVectorSDNode *BV2 = dyn_cast<BuildVectorSDNode>(Cst2);
- if (!BV1 || !BV2)
- return SDValue();
- assert(BV1->getNumOperands() == BV2->getNumOperands() && "Out of sync!");
- EVT SVT = VT.getScalarType();
- SmallVector<SDValue, 4> Outputs;
- for (unsigned I = 0, E = BV1->getNumOperands(); I != E; ++I) {
- ConstantSDNode *V1 = dyn_cast<ConstantSDNode>(BV1->getOperand(I));
- ConstantSDNode *V2 = dyn_cast<ConstantSDNode>(BV2->getOperand(I));
- if (!V1 || !V2) // Not a constant, bail.
- return SDValue();
- if (V1->isOpaque() || V2->isOpaque())
- return SDValue();
- // Avoid BUILD_VECTOR nodes that perform implicit truncation.
- // FIXME: This is valid and could be handled by truncating the APInts.
- if (V1->getValueType(0) != SVT || V2->getValueType(0) != SVT)
- return SDValue();
- // Fold one vector element.
- std::pair<APInt, bool> Folded = FoldValue(Opcode, V1->getAPIntValue(),
- V2->getAPIntValue());
- if (!Folded.second)
- return SDValue();
- Outputs.push_back(getConstant(Folded.first, DL, SVT));
- }
- assert(VT.getVectorNumElements() == Outputs.size() &&
- "Vector size mismatch!");
- // We may have a vector type but a scalar result. Create a splat.
- Outputs.resize(VT.getVectorNumElements(), Outputs.back());
- // Build a big vector out of the scalar elements we generated.
- return getNode(ISD::BUILD_VECTOR, SDLoc(), VT, Outputs);
- }
- SDValue SelectionDAG::getNode(unsigned Opcode, SDLoc DL, EVT VT, SDValue N1,
- SDValue N2, const SDNodeFlags *Flags) {
- ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
- ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2);
- switch (Opcode) {
- default: break;
- case ISD::TokenFactor:
- assert(VT == MVT::Other && N1.getValueType() == MVT::Other &&
- N2.getValueType() == MVT::Other && "Invalid token factor!");
- // Fold trivial token factors.
- if (N1.getOpcode() == ISD::EntryToken) return N2;
- if (N2.getOpcode() == ISD::EntryToken) return N1;
- if (N1 == N2) return N1;
- break;
- case ISD::CONCAT_VECTORS:
- // Concat of UNDEFs is UNDEF.
- if (N1.getOpcode() == ISD::UNDEF &&
- N2.getOpcode() == ISD::UNDEF)
- return getUNDEF(VT);
- // A CONCAT_VECTOR with all operands BUILD_VECTOR can be simplified to
- // one big BUILD_VECTOR.
- if (N1.getOpcode() == ISD::BUILD_VECTOR &&
- N2.getOpcode() == ISD::BUILD_VECTOR) {
- SmallVector<SDValue, 16> Elts(N1.getNode()->op_begin(),
- N1.getNode()->op_end());
- Elts.append(N2.getNode()->op_begin(), N2.getNode()->op_end());
- // BUILD_VECTOR requires all inputs to be of the same type, find the
- // maximum type and extend them all.
- EVT SVT = VT.getScalarType();
- for (SDValue Op : Elts)
- SVT = (SVT.bitsLT(Op.getValueType()) ? Op.getValueType() : SVT);
- if (SVT.bitsGT(VT.getScalarType()))
- for (SDValue &Op : Elts)
- Op = TLI->isZExtFree(Op.getValueType(), SVT)
- ? getZExtOrTrunc(Op, DL, SVT)
- : getSExtOrTrunc(Op, DL, SVT);
- return getNode(ISD::BUILD_VECTOR, DL, VT, Elts);
- }
- break;
- case ISD::AND:
- assert(VT.isInteger() && "This operator does not apply to FP types!");
- assert(N1.getValueType() == N2.getValueType() &&
- N1.getValueType() == VT && "Binary operator types must match!");
- // (X & 0) -> 0. This commonly occurs when legalizing i64 values, so it's
- // worth handling here.
- if (N2C && N2C->isNullValue())
- return N2;
- if (N2C && N2C->isAllOnesValue()) // X & -1 -> X
- return N1;
- break;
- case ISD::OR:
- case ISD::XOR:
- case ISD::ADD:
- case ISD::SUB:
- assert(VT.isInteger() && "This operator does not apply to FP types!");
- assert(N1.getValueType() == N2.getValueType() &&
- N1.getValueType() == VT && "Binary operator types must match!");
- // (X ^|+- 0) -> X. This commonly occurs when legalizing i64 values, so
- // it's worth handling here.
- if (N2C && N2C->isNullValue())
- return N1;
- break;
- case ISD::UDIV:
- case ISD::UREM:
- case ISD::MULHU:
- case ISD::MULHS:
- case ISD::MUL:
- case ISD::SDIV:
- case ISD::SREM:
- assert(VT.isInteger() && "This operator does not apply to FP types!");
- assert(N1.getValueType() == N2.getValueType() &&
- N1.getValueType() == VT && "Binary operator types must match!");
- break;
- case ISD::FADD:
- case ISD::FSUB:
- case ISD::FMUL:
- case ISD::FDIV:
- case ISD::FREM:
- if (getTarget().Options.UnsafeFPMath) {
- if (Opcode == ISD::FADD) {
- // 0+x --> x
- if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N1))
- if (CFP->getValueAPF().isZero())
- return N2;
- // x+0 --> x
- if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N2))
- if (CFP->getValueAPF().isZero())
- return N1;
- } else if (Opcode == ISD::FSUB) {
- // x-0 --> x
- if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N2))
- if (CFP->getValueAPF().isZero())
- return N1;
- } else if (Opcode == ISD::FMUL) {
- ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N1);
- SDValue V = N2;
- // If the first operand isn't the constant, try the second
- if (!CFP) {
- CFP = dyn_cast<ConstantFPSDNode>(N2);
- V = N1;
- }
- if (CFP) {
- // 0*x --> 0
- if (CFP->isZero())
- return SDValue(CFP,0);
- // 1*x --> x
- if (CFP->isExactlyValue(1.0))
- return V;
- }
- }
- }
- assert(VT.isFloatingPoint() && "This operator only applies to FP types!");
- assert(N1.getValueType() == N2.getValueType() &&
- N1.getValueType() == VT && "Binary operator types must match!");
- break;
- case ISD::FCOPYSIGN: // N1 and result must match. N1/N2 need not match.
- assert(N1.getValueType() == VT &&
- N1.getValueType().isFloatingPoint() &&
- N2.getValueType().isFloatingPoint() &&
- "Invalid FCOPYSIGN!");
- break;
- case ISD::SHL:
- case ISD::SRA:
- case ISD::SRL:
- case ISD::ROTL:
- case ISD::ROTR:
- assert(VT == N1.getValueType() &&
- "Shift operators return type must be the same as their first arg");
- assert(VT.isInteger() && N2.getValueType().isInteger() &&
- "Shifts only work on integers");
- assert((!VT.isVector() || VT == N2.getValueType()) &&
- "Vector shift amounts must be in the same as their first arg");
- // Verify that the shift amount VT is bit enough to hold valid shift
- // amounts. This catches things like trying to shift an i1024 value by an
- // i8, which is easy to fall into in generic code that uses
- // TLI.getShiftAmount().
- assert(N2.getValueType().getSizeInBits() >=
- Log2_32_Ceil(N1.getValueType().getSizeInBits()) &&
- "Invalid use of small shift amount with oversized value!");
- // Always fold shifts of i1 values so the code generator doesn't need to
- // handle them. Since we know the size of the shift has to be less than the
- // size of the value, the shift/rotate count is guaranteed to be zero.
- if (VT == MVT::i1)
- return N1;
- if (N2C && N2C->isNullValue())
- return N1;
- break;
- case ISD::FP_ROUND_INREG: {
- EVT EVT = cast<VTSDNode>(N2)->getVT();
- assert(VT == N1.getValueType() && "Not an inreg round!");
- assert(VT.isFloatingPoint() && EVT.isFloatingPoint() &&
- "Cannot FP_ROUND_INREG integer types");
- assert(EVT.isVector() == VT.isVector() &&
- "FP_ROUND_INREG type should be vector iff the operand "
- "type is vector!");
- assert((!EVT.isVector() ||
- EVT.getVectorNumElements() == VT.getVectorNumElements()) &&
- "Vector element counts must match in FP_ROUND_INREG");
- assert(EVT.bitsLE(VT) && "Not rounding down!");
- (void)EVT;
- if (cast<VTSDNode>(N2)->getVT() == VT) return N1; // Not actually rounding.
- break;
- }
- case ISD::FP_ROUND:
- assert(VT.isFloatingPoint() &&
- N1.getValueType().isFloatingPoint() &&
- VT.bitsLE(N1.getValueType()) &&
- isa<ConstantSDNode>(N2) && "Invalid FP_ROUND!");
- if (N1.getValueType() == VT) return N1; // noop conversion.
- break;
- case ISD::AssertSext:
- case ISD::AssertZext: {
- EVT EVT = cast<VTSDNode>(N2)->getVT();
- assert(VT == N1.getValueType() && "Not an inreg extend!");
- assert(VT.isInteger() && EVT.isInteger() &&
- "Cannot *_EXTEND_INREG FP types");
- assert(!EVT.isVector() &&
- "AssertSExt/AssertZExt type should be the vector element type "
- "rather than the vector type!");
- assert(EVT.bitsLE(VT) && "Not extending!");
- if (VT == EVT) return N1; // noop assertion.
- break;
- }
- case ISD::SIGN_EXTEND_INREG: {
- EVT EVT = cast<VTSDNode>(N2)->getVT();
- assert(VT == N1.getValueType() && "Not an inreg extend!");
- assert(VT.isInteger() && EVT.isInteger() &&
- "Cannot *_EXTEND_INREG FP types");
- assert(EVT.isVector() == VT.isVector() &&
- "SIGN_EXTEND_INREG type should be vector iff the operand "
- "type is vector!");
- assert((!EVT.isVector() ||
- EVT.getVectorNumElements() == VT.getVectorNumElements()) &&
- "Vector element counts must match in SIGN_EXTEND_INREG");
- assert(EVT.bitsLE(VT) && "Not extending!");
- if (EVT == VT) return N1; // Not actually extending
- auto SignExtendInReg = [&](APInt Val) {
- unsigned FromBits = EVT.getScalarType().getSizeInBits();
- Val <<= Val.getBitWidth() - FromBits;
- Val = Val.ashr(Val.getBitWidth() - FromBits);
- return getConstant(Val, DL, VT.getScalarType());
- };
- if (N1C) {
- APInt Val = N1C->getAPIntValue();
- return SignExtendInReg(Val);
- }
- if (ISD::isBuildVectorOfConstantSDNodes(N1.getNode())) {
- SmallVector<SDValue, 8> Ops;
- for (int i = 0, e = VT.getVectorNumElements(); i != e; ++i) {
- SDValue Op = N1.getOperand(i);
- if (Op.getValueType() != VT.getScalarType()) break;
- if (Op.getOpcode() == ISD::UNDEF) {
- Ops.push_back(Op);
- continue;
- }
- if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
- APInt Val = C->getAPIntValue();
- Ops.push_back(SignExtendInReg(Val));
- continue;
- }
- break;
- }
- if (Ops.size() == VT.getVectorNumElements())
- return getNode(ISD::BUILD_VECTOR, DL, VT, Ops);
- }
- break;
- }
- case ISD::EXTRACT_VECTOR_ELT:
- // EXTRACT_VECTOR_ELT of an UNDEF is an UNDEF.
- if (N1.getOpcode() == ISD::UNDEF)
- return getUNDEF(VT);
- // EXTRACT_VECTOR_ELT of out-of-bounds element is an UNDEF
- if (N2C && N2C->getZExtValue() >= N1.getValueType().getVectorNumElements())
- return getUNDEF(VT);
- // EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is
- // expanding copies of large vectors from registers.
- if (N2C &&
- N1.getOpcode() == ISD::CONCAT_VECTORS &&
- N1.getNumOperands() > 0) {
- unsigned Factor =
- N1.getOperand(0).getValueType().getVectorNumElements();
- return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT,
- N1.getOperand(N2C->getZExtValue() / Factor),
- getConstant(N2C->getZExtValue() % Factor, DL,
- N2.getValueType()));
- }
- // EXTRACT_VECTOR_ELT of BUILD_VECTOR is often formed while lowering is
- // expanding large vector constants.
- if (N2C && N1.getOpcode() == ISD::BUILD_VECTOR) {
- SDValue Elt = N1.getOperand(N2C->getZExtValue());
- if (VT != Elt.getValueType())
- // If the vector element type is not legal, the BUILD_VECTOR operands
- // are promoted and implicitly truncated, and the result implicitly
- // extended. Make that explicit here.
- Elt = getAnyExtOrTrunc(Elt, DL, VT);
- return Elt;
- }
- // EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector
- // operations are lowered to scalars.
- if (N1.getOpcode() == ISD::INSERT_VECTOR_ELT) {
- // If the indices are the same, return the inserted element else
- // if the indices are known different, extract the element from
- // the original vector.
- SDValue N1Op2 = N1.getOperand(2);
- ConstantSDNode *N1Op2C = dyn_cast<ConstantSDNode>(N1Op2);
- if (N1Op2C && N2C) {
- if (N1Op2C->getZExtValue() == N2C->getZExtValue()) {
- if (VT == N1.getOperand(1).getValueType())
- return N1.getOperand(1);
- else
- return getSExtOrTrunc(N1.getOperand(1), DL, VT);
- }
- return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0), N2);
- }
- }
- break;
- case ISD::EXTRACT_ELEMENT:
- assert(N2C && (unsigned)N2C->getZExtValue() < 2 && "Bad EXTRACT_ELEMENT!");
- assert(!N1.getValueType().isVector() && !VT.isVector() &&
- (N1.getValueType().isInteger() == VT.isInteger()) &&
- N1.getValueType() != VT &&
- "Wrong types for EXTRACT_ELEMENT!");
- // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding
- // 64-bit integers into 32-bit parts. Instead of building the extract of
- // the BUILD_PAIR, only to have legalize rip it apart, just do it now.
- if (N1.getOpcode() == ISD::BUILD_PAIR)
- return N1.getOperand(N2C->getZExtValue());
- // EXTRACT_ELEMENT of a constant int is also very common.
- if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N1)) {
- unsigned ElementSize = VT.getSizeInBits();
- unsigned Shift = ElementSize * N2C->getZExtValue();
- APInt ShiftedVal = C->getAPIntValue().lshr(Shift);
- return getConstant(ShiftedVal.trunc(ElementSize), DL, VT);
- }
- break;
- case ISD::EXTRACT_SUBVECTOR: {
- SDValue Index = N2;
- if (VT.isSimple() && N1.getValueType().isSimple()) {
- assert(VT.isVector() && N1.getValueType().isVector() &&
- "Extract subvector VTs must be a vectors!");
- assert(VT.getVectorElementType() ==
- N1.getValueType().getVectorElementType() &&
- "Extract subvector VTs must have the same element type!");
- assert(VT.getSimpleVT() <= N1.getSimpleValueType() &&
- "Extract subvector must be from larger vector to smaller vector!");
- if (isa<ConstantSDNode>(Index)) {
- assert((VT.getVectorNumElements() +
- cast<ConstantSDNode>(Index)->getZExtValue()
- <= N1.getValueType().getVectorNumElements())
- && "Extract subvector overflow!");
- }
- // Trivial extraction.
- if (VT.getSimpleVT() == N1.getSimpleValueType())
- return N1;
- }
- break;
- }
- }
- // Perform trivial constant folding.
- if (SDValue SV =
- FoldConstantArithmetic(Opcode, DL, VT, N1.getNode(), N2.getNode()))
- return SV;
- // Canonicalize constant to RHS if commutative.
- if (N1C && !N2C && isCommutativeBinOp(Opcode)) {
- std::swap(N1C, N2C);
- std::swap(N1, N2);
- }
- // Constant fold FP operations.
- bool HasFPExceptions = TLI->hasFloatingPointExceptions();
- ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
- ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2);
- if (N1CFP) {
- if (!N2CFP && isCommutativeBinOp(Opcode)) {
- // Canonicalize constant to RHS if commutative.
- std::swap(N1CFP, N2CFP);
- std::swap(N1, N2);
- } else if (N2CFP) {
- APFloat V1 = N1CFP->getValueAPF(), V2 = N2CFP->getValueAPF();
- APFloat::opStatus s;
- switch (Opcode) {
- case ISD::FADD:
- s = V1.add(V2, APFloat::rmNearestTiesToEven);
- if (!HasFPExceptions || s != APFloat::opInvalidOp)
- return getConstantFP(V1, DL, VT);
- break;
- case ISD::FSUB:
- s = V1.subtract(V2, APFloat::rmNearestTiesToEven);
- if (!HasFPExceptions || s!=APFloat::opInvalidOp)
- return getConstantFP(V1, DL, VT);
- break;
- case ISD::FMUL:
- s = V1.multiply(V2, APFloat::rmNearestTiesToEven);
- if (!HasFPExceptions || s!=APFloat::opInvalidOp)
- return getConstantFP(V1, DL, VT);
- break;
- case ISD::FDIV:
- s = V1.divide(V2, APFloat::rmNearestTiesToEven);
- if (!HasFPExceptions || (s!=APFloat::opInvalidOp &&
- s!=APFloat::opDivByZero)) {
- return getConstantFP(V1, DL, VT);
- }
- break;
- case ISD::FREM :
- s = V1.mod(V2, APFloat::rmNearestTiesToEven);
- if (!HasFPExceptions || (s!=APFloat::opInvalidOp &&
- s!=APFloat::opDivByZero)) {
- return getConstantFP(V1, DL, VT);
- }
- break;
- case ISD::FCOPYSIGN:
- V1.copySign(V2);
- return getConstantFP(V1, DL, VT);
- default: break;
- }
- }
- if (Opcode == ISD::FP_ROUND) {
- APFloat V = N1CFP->getValueAPF(); // make copy
- bool ignored;
- // This can return overflow, underflow, or inexact; we don't care.
- // FIXME need to be more flexible about rounding mode.
- (void)V.convert(EVTToAPFloatSemantics(VT),
- APFloat::rmNearestTiesToEven, &ignored);
- return getConstantFP(V, DL, VT);
- }
- }
- // Canonicalize an UNDEF to the RHS, even over a constant.
- if (N1.getOpcode() == ISD::UNDEF) {
- if (isCommutativeBinOp(Opcode)) {
- std::swap(N1, N2);
- } else {
- switch (Opcode) {
- case ISD::FP_ROUND_INREG:
- case ISD::SIGN_EXTEND_INREG:
- case ISD::SUB:
- case ISD::FSUB:
- case ISD::FDIV:
- case ISD::FREM:
- case ISD::SRA:
- return N1; // fold op(undef, arg2) -> undef
- case ISD::UDIV:
- case ISD::SDIV:
- case ISD::UREM:
- case ISD::SREM:
- case ISD::SRL:
- case ISD::SHL:
- if (!VT.isVector())
- return getConstant(0, DL, VT); // fold op(undef, arg2) -> 0
- // For vectors, we can't easily build an all zero vector, just return
- // the LHS.
- return N2;
- }
- }
- }
- // Fold a bunch of operators when the RHS is undef.
- if (N2.getOpcode() == ISD::UNDEF) {
- switch (Opcode) {
- case ISD::XOR:
- if (N1.getOpcode() == ISD::UNDEF)
- // Handle undef ^ undef -> 0 special case. This is a common
- // idiom (misuse).
- return getConstant(0, DL, VT);
- // fallthrough
- case ISD::ADD:
- case ISD::ADDC:
- case ISD::ADDE:
- case ISD::SUB:
- case ISD::UDIV:
- case ISD::SDIV:
- case ISD::UREM:
- case ISD::SREM:
- return N2; // fold op(arg1, undef) -> undef
- case ISD::FADD:
- case ISD::FSUB:
- case ISD::FMUL:
- case ISD::FDIV:
- case ISD::FREM:
- if (getTarget().Options.UnsafeFPMath)
- return N2;
- break;
- case ISD::MUL:
- case ISD::AND:
- case ISD::SRL:
- case ISD::SHL:
- if (!VT.isVector())
- return getConstant(0, DL, VT); // fold op(arg1, undef) -> 0
- // For vectors, we can't easily build an all zero vector, just return
- // the LHS.
- return N1;
- case ISD::OR:
- if (!VT.isVector())
- return getConstant(APInt::getAllOnesValue(VT.getSizeInBits()), DL, VT);
- // For vectors, we can't easily build an all one vector, just return
- // the LHS.
- return N1;
- case ISD::SRA:
- return N1;
- }
- }
- // Memoize this node if possible.
- BinarySDNode *N;
- SDVTList VTs = getVTList(VT);
- if (VT != MVT::Glue) {
- SDValue Ops[] = {N1, N2};
- FoldingSetNodeID ID;
- AddNodeIDNode(ID, Opcode, VTs, Ops);
- AddNodeIDFlags(ID, Opcode, Flags);
- void *IP = nullptr;
- if (SDNode *E = FindNodeOrInsertPos(ID, DL.getDebugLoc(), IP))
- return SDValue(E, 0);
- N = GetBinarySDNode(Opcode, DL, VTs, N1, N2, Flags);
- CSEMap.InsertNode(N, IP);
- } else {
- N = GetBinarySDNode(Opcode, DL, VTs, N1, N2, Flags);
- }
- InsertNode(N);
- return SDValue(N, 0);
- }
- SDValue SelectionDAG::getNode(unsigned Opcode, SDLoc DL, EVT VT,
- SDValue N1, SDValue N2, SDValue N3) {
- // Perform various simplifications.
- ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
- switch (Opcode) {
- case ISD::FMA: {
- ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
- ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2);
- ConstantFPSDNode *N3CFP = dyn_cast<ConstantFPSDNode>(N3);
- if (N1CFP && N2CFP && N3CFP) {
- APFloat V1 = N1CFP->getValueAPF();
- const APFloat &V2 = N2CFP->getValueAPF();
- const APFloat &V3 = N3CFP->getValueAPF();
- APFloat::opStatus s =
- V1.fusedMultiplyAdd(V2, V3, APFloat::rmNearestTiesToEven);
- if (!TLI->hasFloatingPointExceptions() || s != APFloat::opInvalidOp)
- return getConstantFP(V1, DL, VT);
- }
- break;
- }
- case ISD::CONCAT_VECTORS:
- // A CONCAT_VECTOR with all operands BUILD_VECTOR can be simplified to
- // one big BUILD_VECTOR.
- if (N1.getOpcode() == ISD::BUILD_VECTOR &&
- N2.getOpcode() == ISD::BUILD_VECTOR &&
- N3.getOpcode() == ISD::BUILD_VECTOR) {
- SmallVector<SDValue, 16> Elts(N1.getNode()->op_begin(),
- N1.getNode()->op_end());
- Elts.append(N2.getNode()->op_begin(), N2.getNode()->op_end());
- Elts.append(N3.getNode()->op_begin(), N3.getNode()->op_end());
- return getNode(ISD::BUILD_VECTOR, DL, VT, Elts);
- }
- break;
- case ISD::SETCC: {
- // Use FoldSetCC to simplify SETCC's.
- SDValue Simp = FoldSetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get(), DL);
- if (Simp.getNode()) return Simp;
- break;
- }
- case ISD::SELECT:
- if (N1C) {
- if (N1C->getZExtValue())
- return N2; // select true, X, Y -> X
- return N3; // select false, X, Y -> Y
- }
- if (N2 == N3) return N2; // select C, X, X -> X
- break;
- case ISD::VECTOR_SHUFFLE:
- llvm_unreachable("should use getVectorShuffle constructor!");
- case ISD::INSERT_SUBVECTOR: {
- SDValue Index = N3;
- if (VT.isSimple() && N1.getValueType().isSimple()
- && N2.getValueType().isSimple()) {
- assert(VT.isVector() && N1.getValueType().isVector() &&
- N2.getValueType().isVector() &&
- "Insert subvector VTs must be a vectors");
- assert(VT == N1.getValueType() &&
- "Dest and insert subvector source types must match!");
- assert(N2.getSimpleValueType() <= N1.getSimpleValueType() &&
- "Insert subvector must be from smaller vector to larger vector!");
- if (isa<ConstantSDNode>(Index)) {
- assert((N2.getValueType().getVectorNumElements() +
- cast<ConstantSDNode>(Index)->getZExtValue()
- <= VT.getVectorNumElements())
- && "Insert subvector overflow!");
- }
- // Trivial insertion.
- if (VT.getSimpleVT() == N2.getSimpleValueType())
- return N2;
- }
- break;
- }
- case ISD::BITCAST:
- // Fold bit_convert nodes from a type to themselves.
- if (N1.getValueType() == VT)
- return N1;
- break;
- }
- // Memoize node if it doesn't produce a flag.
- SDNode *N;
- SDVTList VTs = getVTList(VT);
- if (VT != MVT::Glue) {
- SDValue Ops[] = { N1, N2, N3 };
- FoldingSetNodeID ID;
- AddNodeIDNode(ID, Opcode, VTs, Ops);
- void *IP = nullptr;
- if (SDNode *E = FindNodeOrInsertPos(ID, DL.getDebugLoc(), IP))
- return SDValue(E, 0);
- N = new (NodeAllocator) TernarySDNode(Opcode, DL.getIROrder(),
- DL.getDebugLoc(), VTs, N1, N2, N3);
- CSEMap.InsertNode(N, IP);
- } else {
- N = new (NodeAllocator) TernarySDNode(Opcode, DL.getIROrder(),
- DL.getDebugLoc(), VTs, N1, N2, N3);
- }
- InsertNode(N);
- return SDValue(N, 0);
- }
- SDValue SelectionDAG::getNode(unsigned Opcode, SDLoc DL, EVT VT,
- SDValue N1, SDValue N2, SDValue N3,
- SDValue N4) {
- SDValue Ops[] = { N1, N2, N3, N4 };
- return getNode(Opcode, DL, VT, Ops);
- }
- SDValue SelectionDAG::getNode(unsigned Opcode, SDLoc DL, EVT VT,
- SDValue N1, SDValue N2, SDValue N3,
- SDValue N4, SDValue N5) {
- SDValue Ops[] = { N1, N2, N3, N4, N5 };
- return getNode(Opcode, DL, VT, Ops);
- }
- /// getStackArgumentTokenFactor - Compute a TokenFactor to force all
- /// the incoming stack arguments to be loaded from the stack.
- SDValue SelectionDAG::getStackArgumentTokenFactor(SDValue Chain) {
- SmallVector<SDValue, 8> ArgChains;
- // Include the original chain at the beginning of the list. When this is
- // used by target LowerCall hooks, this helps legalize find the
- // CALLSEQ_BEGIN node.
- ArgChains.push_back(Chain);
- // Add a chain value for each stack argument.
- for (SDNode::use_iterator U = getEntryNode().getNode()->use_begin(),
- UE = getEntryNode().getNode()->use_end(); U != UE; ++U)
- if (LoadSDNode *L = dyn_cast<LoadSDNode>(*U))
- if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr()))
- if (FI->getIndex() < 0)
- ArgChains.push_back(SDValue(L, 1));
- // Build a tokenfactor for all the chains.
- return getNode(ISD::TokenFactor, SDLoc(Chain), MVT::Other, ArgChains);
- }
- /// getMemsetValue - Vectorized representation of the memset value
- /// operand.
- static SDValue getMemsetValue(SDValue Value, EVT VT, SelectionDAG &DAG,
- SDLoc dl) {
- assert(Value.getOpcode() != ISD::UNDEF);
- unsigned NumBits = VT.getScalarType().getSizeInBits();
- if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) {
- assert(C->getAPIntValue().getBitWidth() == 8);
- APInt Val = APInt::getSplat(NumBits, C->getAPIntValue());
- if (VT.isInteger())
- return DAG.getConstant(Val, dl, VT);
- return DAG.getConstantFP(APFloat(DAG.EVTToAPFloatSemantics(VT), Val), dl,
- VT);
- }
- assert(Value.getValueType() == MVT::i8 && "memset with non-byte fill value?");
- EVT IntVT = VT.getScalarType();
- if (!IntVT.isInteger())
- IntVT = EVT::getIntegerVT(*DAG.getContext(), IntVT.getSizeInBits());
- Value = DAG.getNode(ISD::ZERO_EXTEND, dl, IntVT, Value);
- if (NumBits > 8) {
- // Use a multiplication with 0x010101... to extend the input to the
- // required length.
- APInt Magic = APInt::getSplat(NumBits, APInt(8, 0x01));
- Value = DAG.getNode(ISD::MUL, dl, IntVT, Value,
- DAG.getConstant(Magic, dl, IntVT));
- }
- if (VT != Value.getValueType() && !VT.isInteger())
- Value = DAG.getNode(ISD::BITCAST, dl, VT.getScalarType(), Value);
- if (VT != Value.getValueType()) {
- assert(VT.getVectorElementType() == Value.getValueType() &&
- "value type should be one vector element here");
- SmallVector<SDValue, 8> BVOps(VT.getVectorNumElements(), Value);
- Value = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, BVOps);
- }
- return Value;
- }
- /// getMemsetStringVal - Similar to getMemsetValue. Except this is only
- /// used when a memcpy is turned into a memset when the source is a constant
- /// string ptr.
- static SDValue getMemsetStringVal(EVT VT, SDLoc dl, SelectionDAG &DAG,
- const TargetLowering &TLI, StringRef Str) {
- // Handle vector with all elements zero.
- if (Str.empty()) {
- if (VT.isInteger())
- return DAG.getConstant(0, dl, VT);
- else if (VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128)
- return DAG.getConstantFP(0.0, dl, VT);
- else if (VT.isVector()) {
- unsigned NumElts = VT.getVectorNumElements();
- MVT EltVT = (VT.getVectorElementType() == MVT::f32) ? MVT::i32 : MVT::i64;
- return DAG.getNode(ISD::BITCAST, dl, VT,
- DAG.getConstant(0, dl,
- EVT::getVectorVT(*DAG.getContext(),
- EltVT, NumElts)));
- } else
- llvm_unreachable("Expected type!");
- }
- assert(!VT.isVector() && "Can't handle vector type here!");
- unsigned NumVTBits = VT.getSizeInBits();
- unsigned NumVTBytes = NumVTBits / 8;
- unsigned NumBytes = std::min(NumVTBytes, unsigned(Str.size()));
- APInt Val(NumVTBits, 0);
- if (DAG.getDataLayout().isLittleEndian()) {
- for (unsigned i = 0; i != NumBytes; ++i)
- Val |= (uint64_t)(unsigned char)Str[i] << i*8;
- } else {
- for (unsigned i = 0; i != NumBytes; ++i)
- Val |= (uint64_t)(unsigned char)Str[i] << (NumVTBytes-i-1)*8;
- }
- // If the "cost" of materializing the integer immediate is less than the cost
- // of a load, then it is cost effective to turn the load into the immediate.
- Type *Ty = VT.getTypeForEVT(*DAG.getContext());
- if (TLI.shouldConvertConstantLoadToIntImm(Val, Ty))
- return DAG.getConstant(Val, dl, VT);
- return SDValue(nullptr, 0);
- }
- /// getMemBasePlusOffset - Returns base and offset node for the
- ///
- static SDValue getMemBasePlusOffset(SDValue Base, unsigned Offset, SDLoc dl,
- SelectionDAG &DAG) {
- EVT VT = Base.getValueType();
- return DAG.getNode(ISD::ADD, dl,
- VT, Base, DAG.getConstant(Offset, dl, VT));
- }
- /// isMemSrcFromString - Returns true if memcpy source is a string constant.
- ///
- static bool isMemSrcFromString(SDValue Src, StringRef &Str) {
- unsigned SrcDelta = 0;
- GlobalAddressSDNode *G = nullptr;
- if (Src.getOpcode() == ISD::GlobalAddress)
- G = cast<GlobalAddressSDNode>(Src);
- else if (Src.getOpcode() == ISD::ADD &&
- Src.getOperand(0).getOpcode() == ISD::GlobalAddress &&
- Src.getOperand(1).getOpcode() == ISD::Constant) {
- G = cast<GlobalAddressSDNode>(Src.getOperand(0));
- SrcDelta = cast<ConstantSDNode>(Src.getOperand(1))->getZExtValue();
- }
- if (!G)
- return false;
- return getConstantStringInfo(G->getGlobal(), Str, SrcDelta, false);
- }
- /// Determines the optimal series of memory ops to replace the memset / memcpy.
- /// Return true if the number of memory ops is below the threshold (Limit).
- /// It returns the types of the sequence of memory ops to perform
- /// memset / memcpy by reference.
- static bool FindOptimalMemOpLowering(std::vector<EVT> &MemOps,
- unsigned Limit, uint64_t Size,
- unsigned DstAlign, unsigned SrcAlign,
- bool IsMemset,
- bool ZeroMemset,
- bool MemcpyStrSrc,
- bool AllowOverlap,
- SelectionDAG &DAG,
- const TargetLowering &TLI) {
- assert((SrcAlign == 0 || SrcAlign >= DstAlign) &&
- "Expecting memcpy / memset source to meet alignment requirement!");
- // If 'SrcAlign' is zero, that means the memory operation does not need to
- // load the value, i.e. memset or memcpy from constant string. Otherwise,
- // it's the inferred alignment of the source. 'DstAlign', on the other hand,
- // is the specified alignment of the memory operation. If it is zero, that
- // means it's possible to change the alignment of the destination.
- // 'MemcpyStrSrc' indicates whether the memcpy source is constant so it does
- // not need to be loaded.
- EVT VT = TLI.getOptimalMemOpType(Size, DstAlign, SrcAlign,
- IsMemset, ZeroMemset, MemcpyStrSrc,
- DAG.getMachineFunction());
- if (VT == MVT::Other) {
- unsigned AS = 0;
- if (DstAlign >= DAG.getDataLayout().getPointerPrefAlignment(AS) ||
- TLI.allowsMisalignedMemoryAccesses(VT, AS, DstAlign)) {
- VT = TLI.getPointerTy(DAG.getDataLayout());
- } else {
- switch (DstAlign & 7) {
- case 0: VT = MVT::i64; break;
- case 4: VT = MVT::i32; break;
- case 2: VT = MVT::i16; break;
- default: VT = MVT::i8; break;
- }
- }
- MVT LVT = MVT::i64;
- while (!TLI.isTypeLegal(LVT))
- LVT = (MVT::SimpleValueType)(LVT.SimpleTy - 1);
- assert(LVT.isInteger());
- if (VT.bitsGT(LVT))
- VT = LVT;
- }
- unsigned NumMemOps = 0;
- while (Size != 0) {
- unsigned VTSize = VT.getSizeInBits() / 8;
- while (VTSize > Size) {
- // For now, only use non-vector load / store's for the left-over pieces.
- EVT NewVT = VT;
- unsigned NewVTSize;
- bool Found = false;
- if (VT.isVector() || VT.isFloatingPoint()) {
- NewVT = (VT.getSizeInBits() > 64) ? MVT::i64 : MVT::i32;
- if (TLI.isOperationLegalOrCustom(ISD::STORE, NewVT) &&
- TLI.isSafeMemOpType(NewVT.getSimpleVT()))
- Found = true;
- else if (NewVT == MVT::i64 &&
- TLI.isOperationLegalOrCustom(ISD::STORE, MVT::f64) &&
- TLI.isSafeMemOpType(MVT::f64)) {
- // i64 is usually not legal on 32-bit targets, but f64 may be.
- NewVT = MVT::f64;
- Found = true;
- }
- }
- if (!Found) {
- do {
- NewVT = (MVT::SimpleValueType)(NewVT.getSimpleVT().SimpleTy - 1);
- if (NewVT == MVT::i8)
- break;
- } while (!TLI.isSafeMemOpType(NewVT.getSimpleVT()));
- }
- NewVTSize = NewVT.getSizeInBits() / 8;
- // If the new VT cannot cover all of the remaining bits, then consider
- // issuing a (or a pair of) unaligned and overlapping load / store.
- // FIXME: Only does this for 64-bit or more since we don't have proper
- // cost model for unaligned load / store.
- bool Fast;
- unsigned AS = 0;
- if (NumMemOps && AllowOverlap &&
- VTSize >= 8 && NewVTSize < Size &&
- TLI.allowsMisalignedMemoryAccesses(VT, AS, DstAlign, &Fast) && Fast)
- VTSize = Size;
- else {
- VT = NewVT;
- VTSize = NewVTSize;
- }
- }
- if (++NumMemOps > Limit)
- return false;
- MemOps.push_back(VT);
- Size -= VTSize;
- }
- return true;
- }
- static SDValue getMemcpyLoadsAndStores(SelectionDAG &DAG, SDLoc dl,
- SDValue Chain, SDValue Dst,
- SDValue Src, uint64_t Size,
- unsigned Align, bool isVol,
- bool AlwaysInline,
- MachinePointerInfo DstPtrInfo,
- MachinePointerInfo SrcPtrInfo) {
- // Turn a memcpy of undef to nop.
- if (Src.getOpcode() == ISD::UNDEF)
- return Chain;
- // Expand memcpy to a series of load and store ops if the size operand falls
- // below a certain threshold.
- // TODO: In the AlwaysInline case, if the size is big then generate a loop
- // rather than maybe a humongous number of loads and stores.
- const TargetLowering &TLI = DAG.getTargetLoweringInfo();
- std::vector<EVT> MemOps;
- bool DstAlignCanChange = false;
- MachineFunction &MF = DAG.getMachineFunction();
- MachineFrameInfo *MFI = MF.getFrameInfo();
- bool OptSize = MF.getFunction()->hasFnAttribute(Attribute::OptimizeForSize);
- FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
- if (FI && !MFI->isFixedObjectIndex(FI->getIndex()))
- DstAlignCanChange = true;
- unsigned SrcAlign = DAG.InferPtrAlignment(Src);
- if (Align > SrcAlign)
- SrcAlign = Align;
- StringRef Str;
- bool CopyFromStr = isMemSrcFromString(Src, Str);
- bool isZeroStr = CopyFromStr && Str.empty();
- unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemcpy(OptSize);
- if (!FindOptimalMemOpLowering(MemOps, Limit, Size,
- (DstAlignCanChange ? 0 : Align),
- (isZeroStr ? 0 : SrcAlign),
- false, false, CopyFromStr, true, DAG, TLI))
- return SDValue();
- if (DstAlignCanChange) {
- Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext());
- unsigned NewAlign = (unsigned)DAG.getDataLayout().getABITypeAlignment(Ty);
- // Don't promote to an alignment that would require dynamic stack
- // realignment.
- const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
- if (!TRI->needsStackRealignment(MF))
- while (NewAlign > Align &&
- DAG.getDataLayout().exceedsNaturalStackAlignment(NewAlign))
- NewAlign /= 2;
- if (NewAlign > Align) {
- // Give the stack frame object a larger alignment if needed.
- if (MFI->getObjectAlignment(FI->getIndex()) < NewAlign)
- MFI->setObjectAlignment(FI->getIndex(), NewAlign);
- Align = NewAlign;
- }
- }
- SmallVector<SDValue, 8> OutChains;
- unsigned NumMemOps = MemOps.size();
- uint64_t SrcOff = 0, DstOff = 0;
- for (unsigned i = 0; i != NumMemOps; ++i) {
- EVT VT = MemOps[i];
- unsigned VTSize = VT.getSizeInBits() / 8;
- SDValue Value, Store;
- if (VTSize > Size) {
- // Issuing an unaligned load / store pair that overlaps with the previous
- // pair. Adjust the offset accordingly.
- assert(i == NumMemOps-1 && i != 0);
- SrcOff -= VTSize - Size;
- DstOff -= VTSize - Size;
- }
- if (CopyFromStr &&
- (isZeroStr || (VT.isInteger() && !VT.isVector()))) {
- // It's unlikely a store of a vector immediate can be done in a single
- // instruction. It would require a load from a constantpool first.
- // We only handle zero vectors here.
- // FIXME: Handle other cases where store of vector immediate is done in
- // a single instruction.
- Value = getMemsetStringVal(VT, dl, DAG, TLI, Str.substr(SrcOff));
- if (Value.getNode())
- Store = DAG.getStore(Chain, dl, Value,
- getMemBasePlusOffset(Dst, DstOff, dl, DAG),
- DstPtrInfo.getWithOffset(DstOff), isVol,
- false, Align);
- }
- if (!Store.getNode()) {
- // The type might not be legal for the target. This should only happen
- // if the type is smaller than a legal type, as on PPC, so the right
- // thing to do is generate a LoadExt/StoreTrunc pair. These simplify
- // to Load/Store if NVT==VT.
- // FIXME does the case above also need this?
- EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), VT);
- assert(NVT.bitsGE(VT));
- Value = DAG.getExtLoad(ISD::EXTLOAD, dl, NVT, Chain,
- getMemBasePlusOffset(Src, SrcOff, dl, DAG),
- SrcPtrInfo.getWithOffset(SrcOff), VT, isVol, false,
- false, MinAlign(SrcAlign, SrcOff));
- Store = DAG.getTruncStore(Chain, dl, Value,
- getMemBasePlusOffset(Dst, DstOff, dl, DAG),
- DstPtrInfo.getWithOffset(DstOff), VT, isVol,
- false, Align);
- }
- OutChains.push_back(Store);
- SrcOff += VTSize;
- DstOff += VTSize;
- Size -= VTSize;
- }
- return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
- }
- static SDValue getMemmoveLoadsAndStores(SelectionDAG &DAG, SDLoc dl,
- SDValue Chain, SDValue Dst,
- SDValue Src, uint64_t Size,
- unsigned Align, bool isVol,
- bool AlwaysInline,
- MachinePointerInfo DstPtrInfo,
- MachinePointerInfo SrcPtrInfo) {
- // Turn a memmove of undef to nop.
- if (Src.getOpcode() == ISD::UNDEF)
- return Chain;
- // Expand memmove to a series of load and store ops if the size operand falls
- // below a certain threshold.
- const TargetLowering &TLI = DAG.getTargetLoweringInfo();
- std::vector<EVT> MemOps;
- bool DstAlignCanChange = false;
- MachineFunction &MF = DAG.getMachineFunction();
- MachineFrameInfo *MFI = MF.getFrameInfo();
- bool OptSize = MF.getFunction()->hasFnAttribute(Attribute::OptimizeForSize);
- FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
- if (FI && !MFI->isFixedObjectIndex(FI->getIndex()))
- DstAlignCanChange = true;
- unsigned SrcAlign = DAG.InferPtrAlignment(Src);
- if (Align > SrcAlign)
- SrcAlign = Align;
- unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemmove(OptSize);
- if (!FindOptimalMemOpLowering(MemOps, Limit, Size,
- (DstAlignCanChange ? 0 : Align), SrcAlign,
- false, false, false, false, DAG, TLI))
- return SDValue();
- if (DstAlignCanChange) {
- Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext());
- unsigned NewAlign = (unsigned)DAG.getDataLayout().getABITypeAlignment(Ty);
- if (NewAlign > Align) {
- // Give the stack frame object a larger alignment if needed.
- if (MFI->getObjectAlignment(FI->getIndex()) < NewAlign)
- MFI->setObjectAlignment(FI->getIndex(), NewAlign);
- Align = NewAlign;
- }
- }
- uint64_t SrcOff = 0, DstOff = 0;
- SmallVector<SDValue, 8> LoadValues;
- SmallVector<SDValue, 8> LoadChains;
- SmallVector<SDValue, 8> OutChains;
- unsigned NumMemOps = MemOps.size();
- for (unsigned i = 0; i < NumMemOps; i++) {
- EVT VT = MemOps[i];
- unsigned VTSize = VT.getSizeInBits() / 8;
- SDValue Value;
- Value = DAG.getLoad(VT, dl, Chain,
- getMemBasePlusOffset(Src, SrcOff, dl, DAG),
- SrcPtrInfo.getWithOffset(SrcOff), isVol,
- false, false, SrcAlign);
- LoadValues.push_back(Value);
- LoadChains.push_back(Value.getValue(1));
- SrcOff += VTSize;
- }
- Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains);
- OutChains.clear();
- for (unsigned i = 0; i < NumMemOps; i++) {
- EVT VT = MemOps[i];
- unsigned VTSize = VT.getSizeInBits() / 8;
- SDValue Store;
- Store = DAG.getStore(Chain, dl, LoadValues[i],
- getMemBasePlusOffset(Dst, DstOff, dl, DAG),
- DstPtrInfo.getWithOffset(DstOff), isVol, false, Align);
- OutChains.push_back(Store);
- DstOff += VTSize;
- }
- return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
- }
- /// \brief Lower the call to 'memset' intrinsic function into a series of store
- /// operations.
- ///
- /// \param DAG Selection DAG where lowered code is placed.
- /// \param dl Link to corresponding IR location.
- /// \param Chain Control flow dependency.
- /// \param Dst Pointer to destination memory location.
- /// \param Src Value of byte to write into the memory.
- /// \param Size Number of bytes to write.
- /// \param Align Alignment of the destination in bytes.
- /// \param isVol True if destination is volatile.
- /// \param DstPtrInfo IR information on the memory pointer.
- /// \returns New head in the control flow, if lowering was successful, empty
- /// SDValue otherwise.
- ///
- /// The function tries to replace 'llvm.memset' intrinsic with several store
- /// operations and value calculation code. This is usually profitable for small
- /// memory size.
- static SDValue getMemsetStores(SelectionDAG &DAG, SDLoc dl,
- SDValue Chain, SDValue Dst,
- SDValue Src, uint64_t Size,
- unsigned Align, bool isVol,
- MachinePointerInfo DstPtrInfo) {
- // Turn a memset of undef to nop.
- if (Src.getOpcode() == ISD::UNDEF)
- return Chain;
- // Expand memset to a series of load/store ops if the size operand
- // falls below a certain threshold.
- const TargetLowering &TLI = DAG.getTargetLoweringInfo();
- std::vector<EVT> MemOps;
- bool DstAlignCanChange = false;
- MachineFunction &MF = DAG.getMachineFunction();
- MachineFrameInfo *MFI = MF.getFrameInfo();
- bool OptSize = MF.getFunction()->hasFnAttribute(Attribute::OptimizeForSize);
- FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
- if (FI && !MFI->isFixedObjectIndex(FI->getIndex()))
- DstAlignCanChange = true;
- bool IsZeroVal =
- isa<ConstantSDNode>(Src) && cast<ConstantSDNode>(Src)->isNullValue();
- if (!FindOptimalMemOpLowering(MemOps, TLI.getMaxStoresPerMemset(OptSize),
- Size, (DstAlignCanChange ? 0 : Align), 0,
- true, IsZeroVal, false, true, DAG, TLI))
- return SDValue();
- if (DstAlignCanChange) {
- Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext());
- unsigned NewAlign = (unsigned)DAG.getDataLayout().getABITypeAlignment(Ty);
- if (NewAlign > Align) {
- // Give the stack frame object a larger alignment if needed.
- if (MFI->getObjectAlignment(FI->getIndex()) < NewAlign)
- MFI->setObjectAlignment(FI->getIndex(), NewAlign);
- Align = NewAlign;
- }
- }
- SmallVector<SDValue, 8> OutChains;
- uint64_t DstOff = 0;
- unsigned NumMemOps = MemOps.size();
- // Find the largest store and generate the bit pattern for it.
- EVT LargestVT = MemOps[0];
- for (unsigned i = 1; i < NumMemOps; i++)
- if (MemOps[i].bitsGT(LargestVT))
- LargestVT = MemOps[i];
- SDValue MemSetValue = getMemsetValue(Src, LargestVT, DAG, dl);
- for (unsigned i = 0; i < NumMemOps; i++) {
- EVT VT = MemOps[i];
- unsigned VTSize = VT.getSizeInBits() / 8;
- if (VTSize > Size) {
- // Issuing an unaligned load / store pair that overlaps with the previous
- // pair. Adjust the offset accordingly.
- assert(i == NumMemOps-1 && i != 0);
- DstOff -= VTSize - Size;
- }
- // If this store is smaller than the largest store see whether we can get
- // the smaller value for free with a truncate.
- SDValue Value = MemSetValue;
- if (VT.bitsLT(LargestVT)) {
- if (!LargestVT.isVector() && !VT.isVector() &&
- TLI.isTruncateFree(LargestVT, VT))
- Value = DAG.getNode(ISD::TRUNCATE, dl, VT, MemSetValue);
- else
- Value = getMemsetValue(Src, VT, DAG, dl);
- }
- assert(Value.getValueType() == VT && "Value with wrong type.");
- SDValue Store = DAG.getStore(Chain, dl, Value,
- getMemBasePlusOffset(Dst, DstOff, dl, DAG),
- DstPtrInfo.getWithOffset(DstOff),
- isVol, false, Align);
- OutChains.push_back(Store);
- DstOff += VT.getSizeInBits() / 8;
- Size -= VTSize;
- }
- return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
- }
- SDValue SelectionDAG::getMemcpy(SDValue Chain, SDLoc dl, SDValue Dst,
- SDValue Src, SDValue Size,
- unsigned Align, bool isVol, bool AlwaysInline,
- bool isTailCall, MachinePointerInfo DstPtrInfo,
- MachinePointerInfo SrcPtrInfo) {
- assert(Align && "The SDAG layer expects explicit alignment and reserves 0");
- // Check to see if we should lower the memcpy to loads and stores first.
- // For cases within the target-specified limits, this is the best choice.
- ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
- if (ConstantSize) {
- // Memcpy with size zero? Just return the original chain.
- if (ConstantSize->isNullValue())
- return Chain;
- SDValue Result = getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src,
- ConstantSize->getZExtValue(),Align,
- isVol, false, DstPtrInfo, SrcPtrInfo);
- if (Result.getNode())
- return Result;
- }
- // Then check to see if we should lower the memcpy with target-specific
- // code. If the target chooses to do this, this is the next best.
- if (TSI) {
- SDValue Result = TSI->EmitTargetCodeForMemcpy(
- *this, dl, Chain, Dst, Src, Size, Align, isVol, AlwaysInline,
- DstPtrInfo, SrcPtrInfo);
- if (Result.getNode())
- return Result;
- }
- // If we really need inline code and the target declined to provide it,
- // use a (potentially long) sequence of loads and stores.
- if (AlwaysInline) {
- assert(ConstantSize && "AlwaysInline requires a constant size!");
- return getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src,
- ConstantSize->getZExtValue(), Align, isVol,
- true, DstPtrInfo, SrcPtrInfo);
- }
- // FIXME: If the memcpy is volatile (isVol), lowering it to a plain libc
- // memcpy is not guaranteed to be safe. libc memcpys aren't required to
- // respect volatile, so they may do things like read or write memory
- // beyond the given memory regions. But fixing this isn't easy, and most
- // people don't care.
- // Emit a library call.
- TargetLowering::ArgListTy Args;
- TargetLowering::ArgListEntry Entry;
- Entry.Ty = getDataLayout().getIntPtrType(*getContext());
- Entry.Node = Dst; Args.push_back(Entry);
- Entry.Node = Src; Args.push_back(Entry);
- Entry.Node = Size; Args.push_back(Entry);
- // FIXME: pass in SDLoc
- TargetLowering::CallLoweringInfo CLI(*this);
- CLI.setDebugLoc(dl)
- .setChain(Chain)
- .setCallee(TLI->getLibcallCallingConv(RTLIB::MEMCPY),
- Type::getVoidTy(*getContext()),
- getExternalSymbol(TLI->getLibcallName(RTLIB::MEMCPY),
- TLI->getPointerTy(getDataLayout())),
- std::move(Args), 0)
- .setDiscardResult()
- .setTailCall(isTailCall);
- std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI);
- return CallResult.second;
- }
- SDValue SelectionDAG::getMemmove(SDValue Chain, SDLoc dl, SDValue Dst,
- SDValue Src, SDValue Size,
- unsigned Align, bool isVol, bool isTailCall,
- MachinePointerInfo DstPtrInfo,
- MachinePointerInfo SrcPtrInfo) {
- assert(Align && "The SDAG layer expects explicit alignment and reserves 0");
- // Check to see if we should lower the memmove to loads and stores first.
- // For cases within the target-specified limits, this is the best choice.
- ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
- if (ConstantSize) {
- // Memmove with size zero? Just return the original chain.
- if (ConstantSize->isNullValue())
- return Chain;
- SDValue Result =
- getMemmoveLoadsAndStores(*this, dl, Chain, Dst, Src,
- ConstantSize->getZExtValue(), Align, isVol,
- false, DstPtrInfo, SrcPtrInfo);
- if (Result.getNode())
- return Result;
- }
- // Then check to see if we should lower the memmove with target-specific
- // code. If the target chooses to do this, this is the next best.
- if (TSI) {
- SDValue Result = TSI->EmitTargetCodeForMemmove(
- *this, dl, Chain, Dst, Src, Size, Align, isVol, DstPtrInfo, SrcPtrInfo);
- if (Result.getNode())
- return Result;
- }
- // FIXME: If the memmove is volatile, lowering it to plain libc memmove may
- // not be safe. See memcpy above for more details.
- // Emit a library call.
- TargetLowering::ArgListTy Args;
- TargetLowering::ArgListEntry Entry;
- Entry.Ty = getDataLayout().getIntPtrType(*getContext());
- Entry.Node = Dst; Args.push_back(Entry);
- Entry.Node = Src; Args.push_back(Entry);
- Entry.Node = Size; Args.push_back(Entry);
- // FIXME: pass in SDLoc
- TargetLowering::CallLoweringInfo CLI(*this);
- CLI.setDebugLoc(dl)
- .setChain(Chain)
- .setCallee(TLI->getLibcallCallingConv(RTLIB::MEMMOVE),
- Type::getVoidTy(*getContext()),
- getExternalSymbol(TLI->getLibcallName(RTLIB::MEMMOVE),
- TLI->getPointerTy(getDataLayout())),
- std::move(Args), 0)
- .setDiscardResult()
- .setTailCall(isTailCall);
- std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI);
- return CallResult.second;
- }
- SDValue SelectionDAG::getMemset(SDValue Chain, SDLoc dl, SDValue Dst,
- SDValue Src, SDValue Size,
- unsigned Align, bool isVol, bool isTailCall,
- MachinePointerInfo DstPtrInfo) {
- assert(Align && "The SDAG layer expects explicit alignment and reserves 0");
- // Check to see if we should lower the memset to stores first.
- // For cases within the target-specified limits, this is the best choice.
- ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
- if (ConstantSize) {
- // Memset with size zero? Just return the original chain.
- if (ConstantSize->isNullValue())
- return Chain;
- SDValue Result =
- getMemsetStores(*this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(),
- Align, isVol, DstPtrInfo);
- if (Result.getNode())
- return Result;
- }
- // Then check to see if we should lower the memset with target-specific
- // code. If the target chooses to do this, this is the next best.
- if (TSI) {
- SDValue Result = TSI->EmitTargetCodeForMemset(
- *this, dl, Chain, Dst, Src, Size, Align, isVol, DstPtrInfo);
- if (Result.getNode())
- return Result;
- }
- // Emit a library call.
- Type *IntPtrTy = getDataLayout().getIntPtrType(*getContext());
- TargetLowering::ArgListTy Args;
- TargetLowering::ArgListEntry Entry;
- Entry.Node = Dst; Entry.Ty = IntPtrTy;
- Args.push_back(Entry);
- Entry.Node = Src;
- Entry.Ty = Src.getValueType().getTypeForEVT(*getContext());
- Args.push_back(Entry);
- Entry.Node = Size;
- Entry.Ty = IntPtrTy;
- Args.push_back(Entry);
- // FIXME: pass in SDLoc
- TargetLowering::CallLoweringInfo CLI(*this);
- CLI.setDebugLoc(dl)
- .setChain(Chain)
- .setCallee(TLI->getLibcallCallingConv(RTLIB::MEMSET),
- Type::getVoidTy(*getContext()),
- getExternalSymbol(TLI->getLibcallName(RTLIB::MEMSET),
- TLI->getPointerTy(getDataLayout())),
- std::move(Args), 0)
- .setDiscardResult()
- .setTailCall(isTailCall);
- std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI);
- return CallResult.second;
- }
- SDValue SelectionDAG::getAtomic(unsigned Opcode, SDLoc dl, EVT MemVT,
- SDVTList VTList, ArrayRef<SDValue> Ops,
- MachineMemOperand *MMO,
- AtomicOrdering SuccessOrdering,
- AtomicOrdering FailureOrdering,
- SynchronizationScope SynchScope) {
- FoldingSetNodeID ID;
- ID.AddInteger(MemVT.getRawBits());
- AddNodeIDNode(ID, Opcode, VTList, Ops);
- ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
- void* IP = nullptr;
- if (SDNode *E = FindNodeOrInsertPos(ID, dl.getDebugLoc(), IP)) {
- cast<AtomicSDNode>(E)->refineAlignment(MMO);
- return SDValue(E, 0);
- }
- // Allocate the operands array for the node out of the BumpPtrAllocator, since
- // SDNode doesn't have access to it. This memory will be "leaked" when
- // the node is deallocated, but recovered when the allocator is released.
- // If the number of operands is less than 5 we use AtomicSDNode's internal
- // storage.
- unsigned NumOps = Ops.size();
- SDUse *DynOps = NumOps > 4 ? OperandAllocator.Allocate<SDUse>(NumOps)
- : nullptr;
- SDNode *N = new (NodeAllocator) AtomicSDNode(Opcode, dl.getIROrder(),
- dl.getDebugLoc(), VTList, MemVT,
- Ops.data(), DynOps, NumOps, MMO,
- SuccessOrdering, FailureOrdering,
- SynchScope);
- CSEMap.InsertNode(N, IP);
- InsertNode(N);
- return SDValue(N, 0);
- }
- SDValue SelectionDAG::getAtomic(unsigned Opcode, SDLoc dl, EVT MemVT,
- SDVTList VTList, ArrayRef<SDValue> Ops,
- MachineMemOperand *MMO,
- AtomicOrdering Ordering,
- SynchronizationScope SynchScope) {
- return getAtomic(Opcode, dl, MemVT, VTList, Ops, MMO, Ordering,
- Ordering, SynchScope);
- }
- SDValue SelectionDAG::getAtomicCmpSwap(
- unsigned Opcode, SDLoc dl, EVT MemVT, SDVTList VTs, SDValue Chain,
- SDValue Ptr, SDValue Cmp, SDValue Swp, MachinePointerInfo PtrInfo,
- unsigned Alignment, AtomicOrdering SuccessOrdering,
- AtomicOrdering FailureOrdering, SynchronizationScope SynchScope) {
- assert(Opcode == ISD::ATOMIC_CMP_SWAP ||
- Opcode == ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS);
- assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types");
- if (Alignment == 0) // Ensure that codegen never sees alignment 0
- Alignment = getEVTAlignment(MemVT);
- MachineFunction &MF = getMachineFunction();
- // FIXME: Volatile isn't really correct; we should keep track of atomic
- // orderings in the memoperand.
- unsigned Flags = MachineMemOperand::MOVolatile;
- Flags |= MachineMemOperand::MOLoad;
- Flags |= MachineMemOperand::MOStore;
- MachineMemOperand *MMO =
- MF.getMachineMemOperand(PtrInfo, Flags, MemVT.getStoreSize(), Alignment);
- return getAtomicCmpSwap(Opcode, dl, MemVT, VTs, Chain, Ptr, Cmp, Swp, MMO,
- SuccessOrdering, FailureOrdering, SynchScope);
- }
- SDValue SelectionDAG::getAtomicCmpSwap(unsigned Opcode, SDLoc dl, EVT MemVT,
- SDVTList VTs, SDValue Chain, SDValue Ptr,
- SDValue Cmp, SDValue Swp,
- MachineMemOperand *MMO,
- AtomicOrdering SuccessOrdering,
- AtomicOrdering FailureOrdering,
- SynchronizationScope SynchScope) {
- assert(Opcode == ISD::ATOMIC_CMP_SWAP ||
- Opcode == ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS);
- assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types");
- SDValue Ops[] = {Chain, Ptr, Cmp, Swp};
- return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO,
- SuccessOrdering, FailureOrdering, SynchScope);
- }
- SDValue SelectionDAG::getAtomic(unsigned Opcode, SDLoc dl, EVT MemVT,
- SDValue Chain,
- SDValue Ptr, SDValue Val,
- const Value* PtrVal,
- unsigned Alignment,
- AtomicOrdering Ordering,
- SynchronizationScope SynchScope) {
- if (Alignment == 0) // Ensure that codegen never sees alignment 0
- Alignment = getEVTAlignment(MemVT);
- MachineFunction &MF = getMachineFunction();
- // An atomic store does not load. An atomic load does not store.
- // (An atomicrmw obviously both loads and stores.)
- // For now, atomics are considered to be volatile always, and they are
- // chained as such.
- // FIXME: Volatile isn't really correct; we should keep track of atomic
- // orderings in the memoperand.
- unsigned Flags = MachineMemOperand::MOVolatile;
- if (Opcode != ISD::ATOMIC_STORE)
- Flags |= MachineMemOperand::MOLoad;
- if (Opcode != ISD::ATOMIC_LOAD)
- Flags |= MachineMemOperand::MOStore;
- MachineMemOperand *MMO =
- MF.getMachineMemOperand(MachinePointerInfo(PtrVal), Flags,
- MemVT.getStoreSize(), Alignment);
- return getAtomic(Opcode, dl, MemVT, Chain, Ptr, Val, MMO,
- Ordering, SynchScope);
- }
- SDValue SelectionDAG::getAtomic(unsigned Opcode, SDLoc dl, EVT MemVT,
- SDValue Chain,
- SDValue Ptr, SDValue Val,
- MachineMemOperand *MMO,
- AtomicOrdering Ordering,
- SynchronizationScope SynchScope) {
- assert((Opcode == ISD::ATOMIC_LOAD_ADD ||
- Opcode == ISD::ATOMIC_LOAD_SUB ||
- Opcode == ISD::ATOMIC_LOAD_AND ||
- Opcode == ISD::ATOMIC_LOAD_OR ||
- Opcode == ISD::ATOMIC_LOAD_XOR ||
- Opcode == ISD::ATOMIC_LOAD_NAND ||
- Opcode == ISD::ATOMIC_LOAD_MIN ||
- Opcode == ISD::ATOMIC_LOAD_MAX ||
- Opcode == ISD::ATOMIC_LOAD_UMIN ||
- Opcode == ISD::ATOMIC_LOAD_UMAX ||
- Opcode == ISD::ATOMIC_SWAP ||
- Opcode == ISD::ATOMIC_STORE) &&
- "Invalid Atomic Op");
- EVT VT = Val.getValueType();
- SDVTList VTs = Opcode == ISD::ATOMIC_STORE ? getVTList(MVT::Other) :
- getVTList(VT, MVT::Other);
- SDValue Ops[] = {Chain, Ptr, Val};
- return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO, Ordering, SynchScope);
- }
- SDValue SelectionDAG::getAtomic(unsigned Opcode, SDLoc dl, EVT MemVT,
- EVT VT, SDValue Chain,
- SDValue Ptr,
- MachineMemOperand *MMO,
- AtomicOrdering Ordering,
- SynchronizationScope SynchScope) {
- assert(Opcode == ISD::ATOMIC_LOAD && "Invalid Atomic Op");
- SDVTList VTs = getVTList(VT, MVT::Other);
- SDValue Ops[] = {Chain, Ptr};
- return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO, Ordering, SynchScope);
- }
- /// getMergeValues - Create a MERGE_VALUES node from the given operands.
- SDValue SelectionDAG::getMergeValues(ArrayRef<SDValue> Ops, SDLoc dl) {
- if (Ops.size() == 1)
- return Ops[0];
- SmallVector<EVT, 4> VTs;
- VTs.reserve(Ops.size());
- for (unsigned i = 0; i < Ops.size(); ++i)
- VTs.push_back(Ops[i].getValueType());
- return getNode(ISD::MERGE_VALUES, dl, getVTList(VTs), Ops);
- }
- SDValue
- SelectionDAG::getMemIntrinsicNode(unsigned Opcode, SDLoc dl, SDVTList VTList,
- ArrayRef<SDValue> Ops,
- EVT MemVT, MachinePointerInfo PtrInfo,
- unsigned Align, bool Vol,
- bool ReadMem, bool WriteMem, unsigned Size) {
- if (Align == 0) // Ensure that codegen never sees alignment 0
- Align = getEVTAlignment(MemVT);
- MachineFunction &MF = getMachineFunction();
- unsigned Flags = 0;
- if (WriteMem)
- Flags |= MachineMemOperand::MOStore;
- if (ReadMem)
- Flags |= MachineMemOperand::MOLoad;
- if (Vol)
- Flags |= MachineMemOperand::MOVolatile;
- if (!Size)
- Size = MemVT.getStoreSize();
- MachineMemOperand *MMO =
- MF.getMachineMemOperand(PtrInfo, Flags, Size, Align);
- return getMemIntrinsicNode(Opcode, dl, VTList, Ops, MemVT, MMO);
- }
- SDValue
- SelectionDAG::getMemIntrinsicNode(unsigned Opcode, SDLoc dl, SDVTList VTList,
- ArrayRef<SDValue> Ops, EVT MemVT,
- MachineMemOperand *MMO) {
- assert((Opcode == ISD::INTRINSIC_VOID ||
- Opcode == ISD::INTRINSIC_W_CHAIN ||
- Opcode == ISD::PREFETCH ||
- Opcode == ISD::LIFETIME_START ||
- Opcode == ISD::LIFETIME_END ||
- (Opcode <= INT_MAX &&
- (int)Opcode >= ISD::FIRST_TARGET_MEMORY_OPCODE)) &&
- "Opcode is not a memory-accessing opcode!");
- // Memoize the node unless it returns a flag.
- MemIntrinsicSDNode *N;
- if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) {
- FoldingSetNodeID ID;
- AddNodeIDNode(ID, Opcode, VTList, Ops);
- ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
- void *IP = nullptr;
- if (SDNode *E = FindNodeOrInsertPos(ID, dl.getDebugLoc(), IP)) {
- cast<MemIntrinsicSDNode>(E)->refineAlignment(MMO);
- return SDValue(E, 0);
- }
- N = new (NodeAllocator) MemIntrinsicSDNode(Opcode, dl.getIROrder(),
- dl.getDebugLoc(), VTList, Ops,
- MemVT, MMO);
- CSEMap.InsertNode(N, IP);
- } else {
- N = new (NodeAllocator) MemIntrinsicSDNode(Opcode, dl.getIROrder(),
- dl.getDebugLoc(), VTList, Ops,
- MemVT, MMO);
- }
- InsertNode(N);
- return SDValue(N, 0);
- }
- /// InferPointerInfo - If the specified ptr/offset is a frame index, infer a
- /// MachinePointerInfo record from it. This is particularly useful because the
- /// code generator has many cases where it doesn't bother passing in a
- /// MachinePointerInfo to getLoad or getStore when it has "FI+Cst".
- static MachinePointerInfo InferPointerInfo(SDValue Ptr, int64_t Offset = 0) {
- // If this is FI+Offset, we can model it.
- if (const FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr))
- return MachinePointerInfo::getFixedStack(FI->getIndex(), Offset);
- // If this is (FI+Offset1)+Offset2, we can model it.
- if (Ptr.getOpcode() != ISD::ADD ||
- !isa<ConstantSDNode>(Ptr.getOperand(1)) ||
- !isa<FrameIndexSDNode>(Ptr.getOperand(0)))
- return MachinePointerInfo();
- int FI = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
- return MachinePointerInfo::getFixedStack(FI, Offset+
- cast<ConstantSDNode>(Ptr.getOperand(1))->getSExtValue());
- }
- /// InferPointerInfo - If the specified ptr/offset is a frame index, infer a
- /// MachinePointerInfo record from it. This is particularly useful because the
- /// code generator has many cases where it doesn't bother passing in a
- /// MachinePointerInfo to getLoad or getStore when it has "FI+Cst".
- static MachinePointerInfo InferPointerInfo(SDValue Ptr, SDValue OffsetOp) {
- // If the 'Offset' value isn't a constant, we can't handle this.
- if (ConstantSDNode *OffsetNode = dyn_cast<ConstantSDNode>(OffsetOp))
- return InferPointerInfo(Ptr, OffsetNode->getSExtValue());
- if (OffsetOp.getOpcode() == ISD::UNDEF)
- return InferPointerInfo(Ptr);
- return MachinePointerInfo();
- }
- SDValue
- SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType,
- EVT VT, SDLoc dl, SDValue Chain,
- SDValue Ptr, SDValue Offset,
- MachinePointerInfo PtrInfo, EVT MemVT,
- bool isVolatile, bool isNonTemporal, bool isInvariant,
- unsigned Alignment, const AAMDNodes &AAInfo,
- const MDNode *Ranges) {
- assert(Chain.getValueType() == MVT::Other &&
- "Invalid chain type");
- if (Alignment == 0) // Ensure that codegen never sees alignment 0
- Alignment = getEVTAlignment(VT);
- unsigned Flags = MachineMemOperand::MOLoad;
- if (isVolatile)
- Flags |= MachineMemOperand::MOVolatile;
- if (isNonTemporal)
- Flags |= MachineMemOperand::MONonTemporal;
- if (isInvariant)
- Flags |= MachineMemOperand::MOInvariant;
- // If we don't have a PtrInfo, infer the trivial frame index case to simplify
- // clients.
- if (PtrInfo.V.isNull())
- PtrInfo = InferPointerInfo(Ptr, Offset);
- MachineFunction &MF = getMachineFunction();
- MachineMemOperand *MMO =
- MF.getMachineMemOperand(PtrInfo, Flags, MemVT.getStoreSize(), Alignment,
- AAInfo, Ranges);
- return getLoad(AM, ExtType, VT, dl, Chain, Ptr, Offset, MemVT, MMO);
- }
- SDValue
- SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType,
- EVT VT, SDLoc dl, SDValue Chain,
- SDValue Ptr, SDValue Offset, EVT MemVT,
- MachineMemOperand *MMO) {
- if (VT == MemVT) {
- ExtType = ISD::NON_EXTLOAD;
- } else if (ExtType == ISD::NON_EXTLOAD) {
- assert(VT == MemVT && "Non-extending load from different memory type!");
- } else {
- // Extending load.
- assert(MemVT.getScalarType().bitsLT(VT.getScalarType()) &&
- "Should only be an extending load, not truncating!");
- assert(VT.isInteger() == MemVT.isInteger() &&
- "Cannot convert from FP to Int or Int -> FP!");
- assert(VT.isVector() == MemVT.isVector() &&
- "Cannot use an ext load to convert to or from a vector!");
- assert((!VT.isVector() ||
- VT.getVectorNumElements() == MemVT.getVectorNumElements()) &&
- "Cannot use an ext load to change the number of vector elements!");
- }
- bool Indexed = AM != ISD::UNINDEXED;
- assert((Indexed || Offset.getOpcode() == ISD::UNDEF) &&
- "Unindexed load with an offset!");
- SDVTList VTs = Indexed ?
- getVTList(VT, Ptr.getValueType(), MVT::Other) : getVTList(VT, MVT::Other);
- SDValue Ops[] = { Chain, Ptr, Offset };
- FoldingSetNodeID ID;
- AddNodeIDNode(ID, ISD::LOAD, VTs, Ops);
- ID.AddInteger(MemVT.getRawBits());
- ID.AddInteger(encodeMemSDNodeFlags(ExtType, AM, MMO->isVolatile(),
- MMO->isNonTemporal(),
- MMO->isInvariant()));
- ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
- void *IP = nullptr;
- if (SDNode *E = FindNodeOrInsertPos(ID, dl.getDebugLoc(), IP)) {
- cast<LoadSDNode>(E)->refineAlignment(MMO);
- return SDValue(E, 0);
- }
- SDNode *N = new (NodeAllocator) LoadSDNode(Ops, dl.getIROrder(),
- dl.getDebugLoc(), VTs, AM, ExtType,
- MemVT, MMO);
- CSEMap.InsertNode(N, IP);
- InsertNode(N);
- return SDValue(N, 0);
- }
- SDValue SelectionDAG::getLoad(EVT VT, SDLoc dl,
- SDValue Chain, SDValue Ptr,
- MachinePointerInfo PtrInfo,
- bool isVolatile, bool isNonTemporal,
- bool isInvariant, unsigned Alignment,
- const AAMDNodes &AAInfo,
- const MDNode *Ranges) {
- SDValue Undef = getUNDEF(Ptr.getValueType());
- return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef,
- PtrInfo, VT, isVolatile, isNonTemporal, isInvariant, Alignment,
- AAInfo, Ranges);
- }
- SDValue SelectionDAG::getLoad(EVT VT, SDLoc dl,
- SDValue Chain, SDValue Ptr,
- MachineMemOperand *MMO) {
- SDValue Undef = getUNDEF(Ptr.getValueType());
- return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef,
- VT, MMO);
- }
- SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, SDLoc dl, EVT VT,
- SDValue Chain, SDValue Ptr,
- MachinePointerInfo PtrInfo, EVT MemVT,
- bool isVolatile, bool isNonTemporal,
- bool isInvariant, unsigned Alignment,
- const AAMDNodes &AAInfo) {
- SDValue Undef = getUNDEF(Ptr.getValueType());
- return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef,
- PtrInfo, MemVT, isVolatile, isNonTemporal, isInvariant,
- Alignment, AAInfo);
- }
- SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, SDLoc dl, EVT VT,
- SDValue Chain, SDValue Ptr, EVT MemVT,
- MachineMemOperand *MMO) {
- SDValue Undef = getUNDEF(Ptr.getValueType());
- return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef,
- MemVT, MMO);
- }
- SDValue
- SelectionDAG::getIndexedLoad(SDValue OrigLoad, SDLoc dl, SDValue Base,
- SDValue Offset, ISD::MemIndexedMode AM) {
- LoadSDNode *LD = cast<LoadSDNode>(OrigLoad);
- assert(LD->getOffset().getOpcode() == ISD::UNDEF &&
- "Load is already a indexed load!");
- return getLoad(AM, LD->getExtensionType(), OrigLoad.getValueType(), dl,
- LD->getChain(), Base, Offset, LD->getPointerInfo(),
- LD->getMemoryVT(), LD->isVolatile(), LD->isNonTemporal(),
- false, LD->getAlignment());
- }
- SDValue SelectionDAG::getStore(SDValue Chain, SDLoc dl, SDValue Val,
- SDValue Ptr, MachinePointerInfo PtrInfo,
- bool isVolatile, bool isNonTemporal,
- unsigned Alignment, const AAMDNodes &AAInfo) {
- assert(Chain.getValueType() == MVT::Other &&
- "Invalid chain type");
- if (Alignment == 0) // Ensure that codegen never sees alignment 0
- Alignment = getEVTAlignment(Val.getValueType());
- unsigned Flags = MachineMemOperand::MOStore;
- if (isVolatile)
- Flags |= MachineMemOperand::MOVolatile;
- if (isNonTemporal)
- Flags |= MachineMemOperand::MONonTemporal;
- if (PtrInfo.V.isNull())
- PtrInfo = InferPointerInfo(Ptr);
- MachineFunction &MF = getMachineFunction();
- MachineMemOperand *MMO =
- MF.getMachineMemOperand(PtrInfo, Flags,
- Val.getValueType().getStoreSize(), Alignment,
- AAInfo);
- return getStore(Chain, dl, Val, Ptr, MMO);
- }
- SDValue SelectionDAG::getStore(SDValue Chain, SDLoc dl, SDValue Val,
- SDValue Ptr, MachineMemOperand *MMO) {
- assert(Chain.getValueType() == MVT::Other &&
- "Invalid chain type");
- EVT VT = Val.getValueType();
- SDVTList VTs = getVTList(MVT::Other);
- SDValue Undef = getUNDEF(Ptr.getValueType());
- SDValue Ops[] = { Chain, Val, Ptr, Undef };
- FoldingSetNodeID ID;
- AddNodeIDNode(ID, ISD::STORE, VTs, Ops);
- ID.AddInteger(VT.getRawBits());
- ID.AddInteger(encodeMemSDNodeFlags(false, ISD::UNINDEXED, MMO->isVolatile(),
- MMO->isNonTemporal(), MMO->isInvariant()));
- ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
- void *IP = nullptr;
- if (SDNode *E = FindNodeOrInsertPos(ID, dl.getDebugLoc(), IP)) {
- cast<StoreSDNode>(E)->refineAlignment(MMO);
- return SDValue(E, 0);
- }
- SDNode *N = new (NodeAllocator) StoreSDNode(Ops, dl.getIROrder(),
- dl.getDebugLoc(), VTs,
- ISD::UNINDEXED, false, VT, MMO);
- CSEMap.InsertNode(N, IP);
- InsertNode(N);
- return SDValue(N, 0);
- }
- SDValue SelectionDAG::getTruncStore(SDValue Chain, SDLoc dl, SDValue Val,
- SDValue Ptr, MachinePointerInfo PtrInfo,
- EVT SVT,bool isVolatile, bool isNonTemporal,
- unsigned Alignment,
- const AAMDNodes &AAInfo) {
- assert(Chain.getValueType() == MVT::Other &&
- "Invalid chain type");
- if (Alignment == 0) // Ensure that codegen never sees alignment 0
- Alignment = getEVTAlignment(SVT);
- unsigned Flags = MachineMemOperand::MOStore;
- if (isVolatile)
- Flags |= MachineMemOperand::MOVolatile;
- if (isNonTemporal)
- Flags |= MachineMemOperand::MONonTemporal;
- if (PtrInfo.V.isNull())
- PtrInfo = InferPointerInfo(Ptr);
- MachineFunction &MF = getMachineFunction();
- MachineMemOperand *MMO =
- MF.getMachineMemOperand(PtrInfo, Flags, SVT.getStoreSize(), Alignment,
- AAInfo);
- return getTruncStore(Chain, dl, Val, Ptr, SVT, MMO);
- }
- SDValue SelectionDAG::getTruncStore(SDValue Chain, SDLoc dl, SDValue Val,
- SDValue Ptr, EVT SVT,
- MachineMemOperand *MMO) {
- EVT VT = Val.getValueType();
- assert(Chain.getValueType() == MVT::Other &&
- "Invalid chain type");
- if (VT == SVT)
- return getStore(Chain, dl, Val, Ptr, MMO);
- assert(SVT.getScalarType().bitsLT(VT.getScalarType()) &&
- "Should only be a truncating store, not extending!");
- assert(VT.isInteger() == SVT.isInteger() &&
- "Can't do FP-INT conversion!");
- assert(VT.isVector() == SVT.isVector() &&
- "Cannot use trunc store to convert to or from a vector!");
- assert((!VT.isVector() ||
- VT.getVectorNumElements() == SVT.getVectorNumElements()) &&
- "Cannot use trunc store to change the number of vector elements!");
- SDVTList VTs = getVTList(MVT::Other);
- SDValue Undef = getUNDEF(Ptr.getValueType());
- SDValue Ops[] = { Chain, Val, Ptr, Undef };
- FoldingSetNodeID ID;
- AddNodeIDNode(ID, ISD::STORE, VTs, Ops);
- ID.AddInteger(SVT.getRawBits());
- ID.AddInteger(encodeMemSDNodeFlags(true, ISD::UNINDEXED, MMO->isVolatile(),
- MMO->isNonTemporal(), MMO->isInvariant()));
- ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
- void *IP = nullptr;
- if (SDNode *E = FindNodeOrInsertPos(ID, dl.getDebugLoc(), IP)) {
- cast<StoreSDNode>(E)->refineAlignment(MMO);
- return SDValue(E, 0);
- }
- SDNode *N = new (NodeAllocator) StoreSDNode(Ops, dl.getIROrder(),
- dl.getDebugLoc(), VTs,
- ISD::UNINDEXED, true, SVT, MMO);
- CSEMap.InsertNode(N, IP);
- InsertNode(N);
- return SDValue(N, 0);
- }
- SDValue
- SelectionDAG::getIndexedStore(SDValue OrigStore, SDLoc dl, SDValue Base,
- SDValue Offset, ISD::MemIndexedMode AM) {
- StoreSDNode *ST = cast<StoreSDNode>(OrigStore);
- assert(ST->getOffset().getOpcode() == ISD::UNDEF &&
- "Store is already a indexed store!");
- SDVTList VTs = getVTList(Base.getValueType(), MVT::Other);
- SDValue Ops[] = { ST->getChain(), ST->getValue(), Base, Offset };
- FoldingSetNodeID ID;
- AddNodeIDNode(ID, ISD::STORE, VTs, Ops);
- ID.AddInteger(ST->getMemoryVT().getRawBits());
- ID.AddInteger(ST->getRawSubclassData());
- ID.AddInteger(ST->getPointerInfo().getAddrSpace());
- void *IP = nullptr;
- if (SDNode *E = FindNodeOrInsertPos(ID, dl.getDebugLoc(), IP))
- return SDValue(E, 0);
- SDNode *N = new (NodeAllocator) StoreSDNode(Ops, dl.getIROrder(),
- dl.getDebugLoc(), VTs, AM,
- ST->isTruncatingStore(),
- ST->getMemoryVT(),
- ST->getMemOperand());
- CSEMap.InsertNode(N, IP);
- InsertNode(N);
- return SDValue(N, 0);
- }
- SDValue
- SelectionDAG::getMaskedLoad(EVT VT, SDLoc dl, SDValue Chain,
- SDValue Ptr, SDValue Mask, SDValue Src0, EVT MemVT,
- MachineMemOperand *MMO, ISD::LoadExtType ExtTy) {
- SDVTList VTs = getVTList(VT, MVT::Other);
- SDValue Ops[] = { Chain, Ptr, Mask, Src0 };
- FoldingSetNodeID ID;
- AddNodeIDNode(ID, ISD::MLOAD, VTs, Ops);
- ID.AddInteger(VT.getRawBits());
- ID.AddInteger(encodeMemSDNodeFlags(ExtTy, ISD::UNINDEXED,
- MMO->isVolatile(),
- MMO->isNonTemporal(),
- MMO->isInvariant()));
- ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
- void *IP = nullptr;
- if (SDNode *E = FindNodeOrInsertPos(ID, dl.getDebugLoc(), IP)) {
- cast<MaskedLoadSDNode>(E)->refineAlignment(MMO);
- return SDValue(E, 0);
- }
- SDNode *N = new (NodeAllocator) MaskedLoadSDNode(dl.getIROrder(),
- dl.getDebugLoc(), Ops, 4, VTs,
- ExtTy, MemVT, MMO);
- CSEMap.InsertNode(N, IP);
- InsertNode(N);
- return SDValue(N, 0);
- }
- SDValue SelectionDAG::getMaskedStore(SDValue Chain, SDLoc dl, SDValue Val,
- SDValue Ptr, SDValue Mask, EVT MemVT,
- MachineMemOperand *MMO, bool isTrunc) {
- assert(Chain.getValueType() == MVT::Other &&
- "Invalid chain type");
- EVT VT = Val.getValueType();
- SDVTList VTs = getVTList(MVT::Other);
- SDValue Ops[] = { Chain, Ptr, Mask, Val };
- FoldingSetNodeID ID;
- AddNodeIDNode(ID, ISD::MSTORE, VTs, Ops);
- ID.AddInteger(VT.getRawBits());
- ID.AddInteger(encodeMemSDNodeFlags(false, ISD::UNINDEXED, MMO->isVolatile(),
- MMO->isNonTemporal(), MMO->isInvariant()));
- ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
- void *IP = nullptr;
- if (SDNode *E = FindNodeOrInsertPos(ID, dl.getDebugLoc(), IP)) {
- cast<MaskedStoreSDNode>(E)->refineAlignment(MMO);
- return SDValue(E, 0);
- }
- SDNode *N = new (NodeAllocator) MaskedStoreSDNode(dl.getIROrder(),
- dl.getDebugLoc(), Ops, 4,
- VTs, isTrunc, MemVT, MMO);
- CSEMap.InsertNode(N, IP);
- InsertNode(N);
- return SDValue(N, 0);
- }
- SDValue
- SelectionDAG::getMaskedGather(SDVTList VTs, EVT VT, SDLoc dl,
- ArrayRef<SDValue> Ops,
- MachineMemOperand *MMO) {
- FoldingSetNodeID ID;
- AddNodeIDNode(ID, ISD::MGATHER, VTs, Ops);
- ID.AddInteger(VT.getRawBits());
- ID.AddInteger(encodeMemSDNodeFlags(ISD::NON_EXTLOAD, ISD::UNINDEXED,
- MMO->isVolatile(),
- MMO->isNonTemporal(),
- MMO->isInvariant()));
- ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
- void *IP = nullptr;
- if (SDNode *E = FindNodeOrInsertPos(ID, dl.getDebugLoc(), IP)) {
- cast<MaskedGatherSDNode>(E)->refineAlignment(MMO);
- return SDValue(E, 0);
- }
- MaskedGatherSDNode *N =
- new (NodeAllocator) MaskedGatherSDNode(dl.getIROrder(), dl.getDebugLoc(),
- Ops, VTs, VT, MMO);
- CSEMap.InsertNode(N, IP);
- InsertNode(N);
- return SDValue(N, 0);
- }
- SDValue SelectionDAG::getMaskedScatter(SDVTList VTs, EVT VT, SDLoc dl,
- ArrayRef<SDValue> Ops,
- MachineMemOperand *MMO) {
- FoldingSetNodeID ID;
- AddNodeIDNode(ID, ISD::MSCATTER, VTs, Ops);
- ID.AddInteger(VT.getRawBits());
- ID.AddInteger(encodeMemSDNodeFlags(false, ISD::UNINDEXED, MMO->isVolatile(),
- MMO->isNonTemporal(),
- MMO->isInvariant()));
- ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
- void *IP = nullptr;
- if (SDNode *E = FindNodeOrInsertPos(ID, dl.getDebugLoc(), IP)) {
- cast<MaskedScatterSDNode>(E)->refineAlignment(MMO);
- return SDValue(E, 0);
- }
- SDNode *N =
- new (NodeAllocator) MaskedScatterSDNode(dl.getIROrder(), dl.getDebugLoc(),
- Ops, VTs, VT, MMO);
- CSEMap.InsertNode(N, IP);
- InsertNode(N);
- return SDValue(N, 0);
- }
- SDValue SelectionDAG::getVAArg(EVT VT, SDLoc dl,
- SDValue Chain, SDValue Ptr,
- SDValue SV,
- unsigned Align) {
- SDValue Ops[] = { Chain, Ptr, SV, getTargetConstant(Align, dl, MVT::i32) };
- return getNode(ISD::VAARG, dl, getVTList(VT, MVT::Other), Ops);
- }
- SDValue SelectionDAG::getNode(unsigned Opcode, SDLoc DL, EVT VT,
- ArrayRef<SDUse> Ops) {
- switch (Ops.size()) {
- case 0: return getNode(Opcode, DL, VT);
- case 1: return getNode(Opcode, DL, VT, static_cast<const SDValue>(Ops[0]));
- case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]);
- case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]);
- default: break;
- }
- // Copy from an SDUse array into an SDValue array for use with
- // the regular getNode logic.
- SmallVector<SDValue, 8> NewOps(Ops.begin(), Ops.end());
- return getNode(Opcode, DL, VT, NewOps);
- }
- SDValue SelectionDAG::getNode(unsigned Opcode, SDLoc DL, EVT VT,
- ArrayRef<SDValue> Ops) {
- unsigned NumOps = Ops.size();
- switch (NumOps) {
- case 0: return getNode(Opcode, DL, VT);
- case 1: return getNode(Opcode, DL, VT, Ops[0]);
- case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]);
- case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]);
- default: break;
- }
- switch (Opcode) {
- default: break;
- case ISD::SELECT_CC: {
- assert(NumOps == 5 && "SELECT_CC takes 5 operands!");
- assert(Ops[0].getValueType() == Ops[1].getValueType() &&
- "LHS and RHS of condition must have same type!");
- assert(Ops[2].getValueType() == Ops[3].getValueType() &&
- "True and False arms of SelectCC must have same type!");
- assert(Ops[2].getValueType() == VT &&
- "select_cc node must be of same type as true and false value!");
- break;
- }
- case ISD::BR_CC: {
- assert(NumOps == 5 && "BR_CC takes 5 operands!");
- assert(Ops[2].getValueType() == Ops[3].getValueType() &&
- "LHS/RHS of comparison should match types!");
- break;
- }
- }
- // Memoize nodes.
- SDNode *N;
- SDVTList VTs = getVTList(VT);
- if (VT != MVT::Glue) {
- FoldingSetNodeID ID;
- AddNodeIDNode(ID, Opcode, VTs, Ops);
- void *IP = nullptr;
- if (SDNode *E = FindNodeOrInsertPos(ID, DL.getDebugLoc(), IP))
- return SDValue(E, 0);
- N = new (NodeAllocator) SDNode(Opcode, DL.getIROrder(), DL.getDebugLoc(),
- VTs, Ops);
- CSEMap.InsertNode(N, IP);
- } else {
- N = new (NodeAllocator) SDNode(Opcode, DL.getIROrder(), DL.getDebugLoc(),
- VTs, Ops);
- }
- InsertNode(N);
- return SDValue(N, 0);
- }
- SDValue SelectionDAG::getNode(unsigned Opcode, SDLoc DL,
- ArrayRef<EVT> ResultTys, ArrayRef<SDValue> Ops) {
- return getNode(Opcode, DL, getVTList(ResultTys), Ops);
- }
- SDValue SelectionDAG::getNode(unsigned Opcode, SDLoc DL, SDVTList VTList,
- ArrayRef<SDValue> Ops) {
- if (VTList.NumVTs == 1)
- return getNode(Opcode, DL, VTList.VTs[0], Ops);
- #if 0
- switch (Opcode) {
- // FIXME: figure out how to safely handle things like
- // int foo(int x) { return 1 << (x & 255); }
- // int bar() { return foo(256); }
- case ISD::SRA_PARTS:
- case ISD::SRL_PARTS:
- case ISD::SHL_PARTS:
- if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG &&
- cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1)
- return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
- else if (N3.getOpcode() == ISD::AND)
- if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) {
- // If the and is only masking out bits that cannot effect the shift,
- // eliminate the and.
- unsigned NumBits = VT.getScalarType().getSizeInBits()*2;
- if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1)
- return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
- }
- break;
- }
- #endif
- // Memoize the node unless it returns a flag.
- SDNode *N;
- unsigned NumOps = Ops.size();
- if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) {
- FoldingSetNodeID ID;
- AddNodeIDNode(ID, Opcode, VTList, Ops);
- void *IP = nullptr;
- if (SDNode *E = FindNodeOrInsertPos(ID, DL.getDebugLoc(), IP))
- return SDValue(E, 0);
- if (NumOps == 1) {
- N = new (NodeAllocator) UnarySDNode(Opcode, DL.getIROrder(),
- DL.getDebugLoc(), VTList, Ops[0]);
- } else if (NumOps == 2) {
- N = new (NodeAllocator) BinarySDNode(Opcode, DL.getIROrder(),
- DL.getDebugLoc(), VTList, Ops[0],
- Ops[1]);
- } else if (NumOps == 3) {
- N = new (NodeAllocator) TernarySDNode(Opcode, DL.getIROrder(),
- DL.getDebugLoc(), VTList, Ops[0],
- Ops[1], Ops[2]);
- } else {
- N = new (NodeAllocator) SDNode(Opcode, DL.getIROrder(), DL.getDebugLoc(),
- VTList, Ops);
- }
- CSEMap.InsertNode(N, IP);
- } else {
- if (NumOps == 1) {
- N = new (NodeAllocator) UnarySDNode(Opcode, DL.getIROrder(),
- DL.getDebugLoc(), VTList, Ops[0]);
- } else if (NumOps == 2) {
- N = new (NodeAllocator) BinarySDNode(Opcode, DL.getIROrder(),
- DL.getDebugLoc(), VTList, Ops[0],
- Ops[1]);
- } else if (NumOps == 3) {
- N = new (NodeAllocator) TernarySDNode(Opcode, DL.getIROrder(),
- DL.getDebugLoc(), VTList, Ops[0],
- Ops[1], Ops[2]);
- } else {
- N = new (NodeAllocator) SDNode(Opcode, DL.getIROrder(), DL.getDebugLoc(),
- VTList, Ops);
- }
- }
- InsertNode(N);
- return SDValue(N, 0);
- }
- SDValue SelectionDAG::getNode(unsigned Opcode, SDLoc DL, SDVTList VTList) {
- return getNode(Opcode, DL, VTList, None);
- }
- SDValue SelectionDAG::getNode(unsigned Opcode, SDLoc DL, SDVTList VTList,
- SDValue N1) {
- SDValue Ops[] = { N1 };
- return getNode(Opcode, DL, VTList, Ops);
- }
- SDValue SelectionDAG::getNode(unsigned Opcode, SDLoc DL, SDVTList VTList,
- SDValue N1, SDValue N2) {
- SDValue Ops[] = { N1, N2 };
- return getNode(Opcode, DL, VTList, Ops);
- }
- SDValue SelectionDAG::getNode(unsigned Opcode, SDLoc DL, SDVTList VTList,
- SDValue N1, SDValue N2, SDValue N3) {
- SDValue Ops[] = { N1, N2, N3 };
- return getNode(Opcode, DL, VTList, Ops);
- }
- SDValue SelectionDAG::getNode(unsigned Opcode, SDLoc DL, SDVTList VTList,
- SDValue N1, SDValue N2, SDValue N3,
- SDValue N4) {
- SDValue Ops[] = { N1, N2, N3, N4 };
- return getNode(Opcode, DL, VTList, Ops);
- }
- SDValue SelectionDAG::getNode(unsigned Opcode, SDLoc DL, SDVTList VTList,
- SDValue N1, SDValue N2, SDValue N3,
- SDValue N4, SDValue N5) {
- SDValue Ops[] = { N1, N2, N3, N4, N5 };
- return getNode(Opcode, DL, VTList, Ops);
- }
- SDVTList SelectionDAG::getVTList(EVT VT) {
- return makeVTList(SDNode::getValueTypeList(VT), 1);
- }
- SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2) {
- FoldingSetNodeID ID;
- ID.AddInteger(2U);
- ID.AddInteger(VT1.getRawBits());
- ID.AddInteger(VT2.getRawBits());
- void *IP = nullptr;
- SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
- if (!Result) {
- EVT *Array = Allocator.Allocate<EVT>(2);
- Array[0] = VT1;
- Array[1] = VT2;
- Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 2);
- VTListMap.InsertNode(Result, IP);
- }
- return Result->getSDVTList();
- }
- SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3) {
- FoldingSetNodeID ID;
- ID.AddInteger(3U);
- ID.AddInteger(VT1.getRawBits());
- ID.AddInteger(VT2.getRawBits());
- ID.AddInteger(VT3.getRawBits());
- void *IP = nullptr;
- SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
- if (!Result) {
- EVT *Array = Allocator.Allocate<EVT>(3);
- Array[0] = VT1;
- Array[1] = VT2;
- Array[2] = VT3;
- Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 3);
- VTListMap.InsertNode(Result, IP);
- }
- return Result->getSDVTList();
- }
- SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3, EVT VT4) {
- FoldingSetNodeID ID;
- ID.AddInteger(4U);
- ID.AddInteger(VT1.getRawBits());
- ID.AddInteger(VT2.getRawBits());
- ID.AddInteger(VT3.getRawBits());
- ID.AddInteger(VT4.getRawBits());
- void *IP = nullptr;
- SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
- if (!Result) {
- EVT *Array = Allocator.Allocate<EVT>(4);
- Array[0] = VT1;
- Array[1] = VT2;
- Array[2] = VT3;
- Array[3] = VT4;
- Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 4);
- VTListMap.InsertNode(Result, IP);
- }
- return Result->getSDVTList();
- }
- SDVTList SelectionDAG::getVTList(ArrayRef<EVT> VTs) {
- unsigned NumVTs = VTs.size();
- FoldingSetNodeID ID;
- ID.AddInteger(NumVTs);
- for (unsigned index = 0; index < NumVTs; index++) {
- ID.AddInteger(VTs[index].getRawBits());
- }
- void *IP = nullptr;
- SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
- if (!Result) {
- EVT *Array = Allocator.Allocate<EVT>(NumVTs);
- std::copy(VTs.begin(), VTs.end(), Array);
- Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, NumVTs);
- VTListMap.InsertNode(Result, IP);
- }
- return Result->getSDVTList();
- }
- /// UpdateNodeOperands - *Mutate* the specified node in-place to have the
- /// specified operands. If the resultant node already exists in the DAG,
- /// this does not modify the specified node, instead it returns the node that
- /// already exists. If the resultant node does not exist in the DAG, the
- /// input node is returned. As a degenerate case, if you specify the same
- /// input operands as the node already has, the input node is returned.
- SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op) {
- assert(N->getNumOperands() == 1 && "Update with wrong number of operands");
- // Check to see if there is no change.
- if (Op == N->getOperand(0)) return N;
- // See if the modified node already exists.
- void *InsertPos = nullptr;
- if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos))
- return Existing;
- // Nope it doesn't. Remove the node from its current place in the maps.
- if (InsertPos)
- if (!RemoveNodeFromCSEMaps(N))
- InsertPos = nullptr;
- // Now we update the operands.
- N->OperandList[0].set(Op);
- // If this gets put into a CSE map, add it.
- if (InsertPos) CSEMap.InsertNode(N, InsertPos);
- return N;
- }
- SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2) {
- assert(N->getNumOperands() == 2 && "Update with wrong number of operands");
- // Check to see if there is no change.
- if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1))
- return N; // No operands changed, just return the input node.
- // See if the modified node already exists.
- void *InsertPos = nullptr;
- if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos))
- return Existing;
- // Nope it doesn't. Remove the node from its current place in the maps.
- if (InsertPos)
- if (!RemoveNodeFromCSEMaps(N))
- InsertPos = nullptr;
- // Now we update the operands.
- if (N->OperandList[0] != Op1)
- N->OperandList[0].set(Op1);
- if (N->OperandList[1] != Op2)
- N->OperandList[1].set(Op2);
- // If this gets put into a CSE map, add it.
- if (InsertPos) CSEMap.InsertNode(N, InsertPos);
- return N;
- }
- SDNode *SelectionDAG::
- UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, SDValue Op3) {
- SDValue Ops[] = { Op1, Op2, Op3 };
- return UpdateNodeOperands(N, Ops);
- }
- SDNode *SelectionDAG::
- UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2,
- SDValue Op3, SDValue Op4) {
- SDValue Ops[] = { Op1, Op2, Op3, Op4 };
- return UpdateNodeOperands(N, Ops);
- }
- SDNode *SelectionDAG::
- UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2,
- SDValue Op3, SDValue Op4, SDValue Op5) {
- SDValue Ops[] = { Op1, Op2, Op3, Op4, Op5 };
- return UpdateNodeOperands(N, Ops);
- }
- SDNode *SelectionDAG::
- UpdateNodeOperands(SDNode *N, ArrayRef<SDValue> Ops) {
- unsigned NumOps = Ops.size();
- assert(N->getNumOperands() == NumOps &&
- "Update with wrong number of operands");
- // If no operands changed just return the input node.
- if (Ops.empty() || std::equal(Ops.begin(), Ops.end(), N->op_begin()))
- return N;
- // See if the modified node already exists.
- void *InsertPos = nullptr;
- if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, InsertPos))
- return Existing;
- // Nope it doesn't. Remove the node from its current place in the maps.
- if (InsertPos)
- if (!RemoveNodeFromCSEMaps(N))
- InsertPos = nullptr;
- // Now we update the operands.
- for (unsigned i = 0; i != NumOps; ++i)
- if (N->OperandList[i] != Ops[i])
- N->OperandList[i].set(Ops[i]);
- // If this gets put into a CSE map, add it.
- if (InsertPos) CSEMap.InsertNode(N, InsertPos);
- return N;
- }
- /// DropOperands - Release the operands and set this node to have
- /// zero operands.
- void SDNode::DropOperands() {
- // Unlike the code in MorphNodeTo that does this, we don't need to
- // watch for dead nodes here.
- for (op_iterator I = op_begin(), E = op_end(); I != E; ) {
- SDUse &Use = *I++;
- Use.set(SDValue());
- }
- }
- /// SelectNodeTo - These are wrappers around MorphNodeTo that accept a
- /// machine opcode.
- ///
- SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
- EVT VT) {
- SDVTList VTs = getVTList(VT);
- return SelectNodeTo(N, MachineOpc, VTs, None);
- }
- SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
- EVT VT, SDValue Op1) {
- SDVTList VTs = getVTList(VT);
- SDValue Ops[] = { Op1 };
- return SelectNodeTo(N, MachineOpc, VTs, Ops);
- }
- SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
- EVT VT, SDValue Op1,
- SDValue Op2) {
- SDVTList VTs = getVTList(VT);
- SDValue Ops[] = { Op1, Op2 };
- return SelectNodeTo(N, MachineOpc, VTs, Ops);
- }
- SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
- EVT VT, SDValue Op1,
- SDValue Op2, SDValue Op3) {
- SDVTList VTs = getVTList(VT);
- SDValue Ops[] = { Op1, Op2, Op3 };
- return SelectNodeTo(N, MachineOpc, VTs, Ops);
- }
- SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
- EVT VT, ArrayRef<SDValue> Ops) {
- SDVTList VTs = getVTList(VT);
- return SelectNodeTo(N, MachineOpc, VTs, Ops);
- }
- SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
- EVT VT1, EVT VT2, ArrayRef<SDValue> Ops) {
- SDVTList VTs = getVTList(VT1, VT2);
- return SelectNodeTo(N, MachineOpc, VTs, Ops);
- }
- SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
- EVT VT1, EVT VT2) {
- SDVTList VTs = getVTList(VT1, VT2);
- return SelectNodeTo(N, MachineOpc, VTs, None);
- }
- SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
- EVT VT1, EVT VT2, EVT VT3,
- ArrayRef<SDValue> Ops) {
- SDVTList VTs = getVTList(VT1, VT2, VT3);
- return SelectNodeTo(N, MachineOpc, VTs, Ops);
- }
- SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
- EVT VT1, EVT VT2, EVT VT3, EVT VT4,
- ArrayRef<SDValue> Ops) {
- SDVTList VTs = getVTList(VT1, VT2, VT3, VT4);
- return SelectNodeTo(N, MachineOpc, VTs, Ops);
- }
- SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
- EVT VT1, EVT VT2,
- SDValue Op1) {
- SDVTList VTs = getVTList(VT1, VT2);
- SDValue Ops[] = { Op1 };
- return SelectNodeTo(N, MachineOpc, VTs, Ops);
- }
- SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
- EVT VT1, EVT VT2,
- SDValue Op1, SDValue Op2) {
- SDVTList VTs = getVTList(VT1, VT2);
- SDValue Ops[] = { Op1, Op2 };
- return SelectNodeTo(N, MachineOpc, VTs, Ops);
- }
- SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
- EVT VT1, EVT VT2,
- SDValue Op1, SDValue Op2,
- SDValue Op3) {
- SDVTList VTs = getVTList(VT1, VT2);
- SDValue Ops[] = { Op1, Op2, Op3 };
- return SelectNodeTo(N, MachineOpc, VTs, Ops);
- }
- SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
- EVT VT1, EVT VT2, EVT VT3,
- SDValue Op1, SDValue Op2,
- SDValue Op3) {
- SDVTList VTs = getVTList(VT1, VT2, VT3);
- SDValue Ops[] = { Op1, Op2, Op3 };
- return SelectNodeTo(N, MachineOpc, VTs, Ops);
- }
- SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
- SDVTList VTs,ArrayRef<SDValue> Ops) {
- N = MorphNodeTo(N, ~MachineOpc, VTs, Ops);
- // Reset the NodeID to -1.
- N->setNodeId(-1);
- return N;
- }
- /// UpdadeSDLocOnMergedSDNode - If the opt level is -O0 then it throws away
- /// the line number information on the merged node since it is not possible to
- /// preserve the information that operation is associated with multiple lines.
- /// This will make the debugger working better at -O0, were there is a higher
- /// probability having other instructions associated with that line.
- ///
- /// For IROrder, we keep the smaller of the two
- SDNode *SelectionDAG::UpdadeSDLocOnMergedSDNode(SDNode *N, SDLoc OLoc) {
- DebugLoc NLoc = N->getDebugLoc();
- if (NLoc && OptLevel == CodeGenOpt::None && OLoc.getDebugLoc() != NLoc) {
- N->setDebugLoc(DebugLoc());
- }
- unsigned Order = std::min(N->getIROrder(), OLoc.getIROrder());
- N->setIROrder(Order);
- return N;
- }
- /// MorphNodeTo - This *mutates* the specified node to have the specified
- /// return type, opcode, and operands.
- ///
- /// Note that MorphNodeTo returns the resultant node. If there is already a
- /// node of the specified opcode and operands, it returns that node instead of
- /// the current one. Note that the SDLoc need not be the same.
- ///
- /// Using MorphNodeTo is faster than creating a new node and swapping it in
- /// with ReplaceAllUsesWith both because it often avoids allocating a new
- /// node, and because it doesn't require CSE recalculation for any of
- /// the node's users.
- ///
- /// However, note that MorphNodeTo recursively deletes dead nodes from the DAG.
- /// As a consequence it isn't appropriate to use from within the DAG combiner or
- /// the legalizer which maintain worklists that would need to be updated when
- /// deleting things.
- SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
- SDVTList VTs, ArrayRef<SDValue> Ops) {
- unsigned NumOps = Ops.size();
- // If an identical node already exists, use it.
- void *IP = nullptr;
- if (VTs.VTs[VTs.NumVTs-1] != MVT::Glue) {
- FoldingSetNodeID ID;
- AddNodeIDNode(ID, Opc, VTs, Ops);
- if (SDNode *ON = FindNodeOrInsertPos(ID, N->getDebugLoc(), IP))
- return UpdadeSDLocOnMergedSDNode(ON, SDLoc(N));
- }
- if (!RemoveNodeFromCSEMaps(N))
- IP = nullptr;
- // Start the morphing.
- N->NodeType = Opc;
- N->ValueList = VTs.VTs;
- N->NumValues = VTs.NumVTs;
- // Clear the operands list, updating used nodes to remove this from their
- // use list. Keep track of any operands that become dead as a result.
- SmallPtrSet<SDNode*, 16> DeadNodeSet;
- for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
- SDUse &Use = *I++;
- SDNode *Used = Use.getNode();
- Use.set(SDValue());
- if (Used->use_empty())
- DeadNodeSet.insert(Used);
- }
- if (MachineSDNode *MN = dyn_cast<MachineSDNode>(N)) {
- // Initialize the memory references information.
- MN->setMemRefs(nullptr, nullptr);
- // If NumOps is larger than the # of operands we can have in a
- // MachineSDNode, reallocate the operand list.
- if (NumOps > MN->NumOperands || !MN->OperandsNeedDelete) {
- if (MN->OperandsNeedDelete)
- delete[] MN->OperandList;
- if (NumOps > array_lengthof(MN->LocalOperands))
- // We're creating a final node that will live unmorphed for the
- // remainder of the current SelectionDAG iteration, so we can allocate
- // the operands directly out of a pool with no recycling metadata.
- MN->InitOperands(OperandAllocator.Allocate<SDUse>(NumOps),
- Ops.data(), NumOps);
- else
- MN->InitOperands(MN->LocalOperands, Ops.data(), NumOps);
- MN->OperandsNeedDelete = false;
- } else
- MN->InitOperands(MN->OperandList, Ops.data(), NumOps);
- } else {
- // If NumOps is larger than the # of operands we currently have, reallocate
- // the operand list.
- if (NumOps > N->NumOperands) {
- if (N->OperandsNeedDelete)
- delete[] N->OperandList;
- N->InitOperands(new SDUse[NumOps], Ops.data(), NumOps);
- N->OperandsNeedDelete = true;
- } else
- N->InitOperands(N->OperandList, Ops.data(), NumOps);
- }
- // Delete any nodes that are still dead after adding the uses for the
- // new operands.
- if (!DeadNodeSet.empty()) {
- SmallVector<SDNode *, 16> DeadNodes;
- for (SDNode *N : DeadNodeSet)
- if (N->use_empty())
- DeadNodes.push_back(N);
- RemoveDeadNodes(DeadNodes);
- }
- if (IP)
- CSEMap.InsertNode(N, IP); // Memoize the new node.
- return N;
- }
- /// getMachineNode - These are used for target selectors to create a new node
- /// with specified return type(s), MachineInstr opcode, and operands.
- ///
- /// Note that getMachineNode returns the resultant node. If there is already a
- /// node of the specified opcode and operands, it returns that node instead of
- /// the current one.
- MachineSDNode *
- SelectionDAG::getMachineNode(unsigned Opcode, SDLoc dl, EVT VT) {
- SDVTList VTs = getVTList(VT);
- return getMachineNode(Opcode, dl, VTs, None);
- }
- MachineSDNode *
- SelectionDAG::getMachineNode(unsigned Opcode, SDLoc dl, EVT VT, SDValue Op1) {
- SDVTList VTs = getVTList(VT);
- SDValue Ops[] = { Op1 };
- return getMachineNode(Opcode, dl, VTs, Ops);
- }
- MachineSDNode *
- SelectionDAG::getMachineNode(unsigned Opcode, SDLoc dl, EVT VT,
- SDValue Op1, SDValue Op2) {
- SDVTList VTs = getVTList(VT);
- SDValue Ops[] = { Op1, Op2 };
- return getMachineNode(Opcode, dl, VTs, Ops);
- }
- MachineSDNode *
- SelectionDAG::getMachineNode(unsigned Opcode, SDLoc dl, EVT VT,
- SDValue Op1, SDValue Op2, SDValue Op3) {
- SDVTList VTs = getVTList(VT);
- SDValue Ops[] = { Op1, Op2, Op3 };
- return getMachineNode(Opcode, dl, VTs, Ops);
- }
- MachineSDNode *
- SelectionDAG::getMachineNode(unsigned Opcode, SDLoc dl, EVT VT,
- ArrayRef<SDValue> Ops) {
- SDVTList VTs = getVTList(VT);
- return getMachineNode(Opcode, dl, VTs, Ops);
- }
- MachineSDNode *
- SelectionDAG::getMachineNode(unsigned Opcode, SDLoc dl, EVT VT1, EVT VT2) {
- SDVTList VTs = getVTList(VT1, VT2);
- return getMachineNode(Opcode, dl, VTs, None);
- }
- MachineSDNode *
- SelectionDAG::getMachineNode(unsigned Opcode, SDLoc dl,
- EVT VT1, EVT VT2, SDValue Op1) {
- SDVTList VTs = getVTList(VT1, VT2);
- SDValue Ops[] = { Op1 };
- return getMachineNode(Opcode, dl, VTs, Ops);
- }
- MachineSDNode *
- SelectionDAG::getMachineNode(unsigned Opcode, SDLoc dl,
- EVT VT1, EVT VT2, SDValue Op1, SDValue Op2) {
- SDVTList VTs = getVTList(VT1, VT2);
- SDValue Ops[] = { Op1, Op2 };
- return getMachineNode(Opcode, dl, VTs, Ops);
- }
- MachineSDNode *
- SelectionDAG::getMachineNode(unsigned Opcode, SDLoc dl,
- EVT VT1, EVT VT2, SDValue Op1,
- SDValue Op2, SDValue Op3) {
- SDVTList VTs = getVTList(VT1, VT2);
- SDValue Ops[] = { Op1, Op2, Op3 };
- return getMachineNode(Opcode, dl, VTs, Ops);
- }
- MachineSDNode *
- SelectionDAG::getMachineNode(unsigned Opcode, SDLoc dl,
- EVT VT1, EVT VT2,
- ArrayRef<SDValue> Ops) {
- SDVTList VTs = getVTList(VT1, VT2);
- return getMachineNode(Opcode, dl, VTs, Ops);
- }
- MachineSDNode *
- SelectionDAG::getMachineNode(unsigned Opcode, SDLoc dl,
- EVT VT1, EVT VT2, EVT VT3,
- SDValue Op1, SDValue Op2) {
- SDVTList VTs = getVTList(VT1, VT2, VT3);
- SDValue Ops[] = { Op1, Op2 };
- return getMachineNode(Opcode, dl, VTs, Ops);
- }
- MachineSDNode *
- SelectionDAG::getMachineNode(unsigned Opcode, SDLoc dl,
- EVT VT1, EVT VT2, EVT VT3,
- SDValue Op1, SDValue Op2, SDValue Op3) {
- SDVTList VTs = getVTList(VT1, VT2, VT3);
- SDValue Ops[] = { Op1, Op2, Op3 };
- return getMachineNode(Opcode, dl, VTs, Ops);
- }
- MachineSDNode *
- SelectionDAG::getMachineNode(unsigned Opcode, SDLoc dl,
- EVT VT1, EVT VT2, EVT VT3,
- ArrayRef<SDValue> Ops) {
- SDVTList VTs = getVTList(VT1, VT2, VT3);
- return getMachineNode(Opcode, dl, VTs, Ops);
- }
- MachineSDNode *
- SelectionDAG::getMachineNode(unsigned Opcode, SDLoc dl, EVT VT1,
- EVT VT2, EVT VT3, EVT VT4,
- ArrayRef<SDValue> Ops) {
- SDVTList VTs = getVTList(VT1, VT2, VT3, VT4);
- return getMachineNode(Opcode, dl, VTs, Ops);
- }
- MachineSDNode *
- SelectionDAG::getMachineNode(unsigned Opcode, SDLoc dl,
- ArrayRef<EVT> ResultTys,
- ArrayRef<SDValue> Ops) {
- SDVTList VTs = getVTList(ResultTys);
- return getMachineNode(Opcode, dl, VTs, Ops);
- }
- MachineSDNode *
- SelectionDAG::getMachineNode(unsigned Opcode, SDLoc DL, SDVTList VTs,
- ArrayRef<SDValue> OpsArray) {
- bool DoCSE = VTs.VTs[VTs.NumVTs-1] != MVT::Glue;
- MachineSDNode *N;
- void *IP = nullptr;
- const SDValue *Ops = OpsArray.data();
- unsigned NumOps = OpsArray.size();
- if (DoCSE) {
- FoldingSetNodeID ID;
- AddNodeIDNode(ID, ~Opcode, VTs, OpsArray);
- IP = nullptr;
- if (SDNode *E = FindNodeOrInsertPos(ID, DL.getDebugLoc(), IP)) {
- return cast<MachineSDNode>(UpdadeSDLocOnMergedSDNode(E, DL));
- }
- }
- // Allocate a new MachineSDNode.
- N = new (NodeAllocator) MachineSDNode(~Opcode, DL.getIROrder(),
- DL.getDebugLoc(), VTs);
- // Initialize the operands list.
- if (NumOps > array_lengthof(N->LocalOperands))
- // We're creating a final node that will live unmorphed for the
- // remainder of the current SelectionDAG iteration, so we can allocate
- // the operands directly out of a pool with no recycling metadata.
- N->InitOperands(OperandAllocator.Allocate<SDUse>(NumOps),
- Ops, NumOps);
- else
- N->InitOperands(N->LocalOperands, Ops, NumOps);
- N->OperandsNeedDelete = false;
- if (DoCSE)
- CSEMap.InsertNode(N, IP);
- InsertNode(N);
- return N;
- }
- /// getTargetExtractSubreg - A convenience function for creating
- /// TargetOpcode::EXTRACT_SUBREG nodes.
- SDValue
- SelectionDAG::getTargetExtractSubreg(int SRIdx, SDLoc DL, EVT VT,
- SDValue Operand) {
- SDValue SRIdxVal = getTargetConstant(SRIdx, DL, MVT::i32);
- SDNode *Subreg = getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL,
- VT, Operand, SRIdxVal);
- return SDValue(Subreg, 0);
- }
- /// getTargetInsertSubreg - A convenience function for creating
- /// TargetOpcode::INSERT_SUBREG nodes.
- SDValue
- SelectionDAG::getTargetInsertSubreg(int SRIdx, SDLoc DL, EVT VT,
- SDValue Operand, SDValue Subreg) {
- SDValue SRIdxVal = getTargetConstant(SRIdx, DL, MVT::i32);
- SDNode *Result = getMachineNode(TargetOpcode::INSERT_SUBREG, DL,
- VT, Operand, Subreg, SRIdxVal);
- return SDValue(Result, 0);
- }
- /// getNodeIfExists - Get the specified node if it's already available, or
- /// else return NULL.
- SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList,
- ArrayRef<SDValue> Ops,
- const SDNodeFlags *Flags) {
- if (VTList.VTs[VTList.NumVTs - 1] != MVT::Glue) {
- FoldingSetNodeID ID;
- AddNodeIDNode(ID, Opcode, VTList, Ops);
- AddNodeIDFlags(ID, Opcode, Flags);
- void *IP = nullptr;
- if (SDNode *E = FindNodeOrInsertPos(ID, DebugLoc(), IP))
- return E;
- }
- return nullptr;
- }
- /// getDbgValue - Creates a SDDbgValue node.
- ///
- /// SDNode
- SDDbgValue *SelectionDAG::getDbgValue(MDNode *Var, MDNode *Expr, SDNode *N,
- unsigned R, bool IsIndirect, uint64_t Off,
- DebugLoc DL, unsigned O) {
- assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
- "Expected inlined-at fields to agree");
- return new (DbgInfo->getAlloc())
- SDDbgValue(Var, Expr, N, R, IsIndirect, Off, DL, O);
- }
- /// Constant
- SDDbgValue *SelectionDAG::getConstantDbgValue(MDNode *Var, MDNode *Expr,
- const Value *C, uint64_t Off,
- DebugLoc DL, unsigned O) {
- assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
- "Expected inlined-at fields to agree");
- return new (DbgInfo->getAlloc()) SDDbgValue(Var, Expr, C, Off, DL, O);
- }
- /// FrameIndex
- SDDbgValue *SelectionDAG::getFrameIndexDbgValue(MDNode *Var, MDNode *Expr,
- unsigned FI, uint64_t Off,
- DebugLoc DL, unsigned O) {
- assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
- "Expected inlined-at fields to agree");
- return new (DbgInfo->getAlloc()) SDDbgValue(Var, Expr, FI, Off, DL, O);
- }
- namespace {
- /// RAUWUpdateListener - Helper for ReplaceAllUsesWith - When the node
- /// pointed to by a use iterator is deleted, increment the use iterator
- /// so that it doesn't dangle.
- ///
- class RAUWUpdateListener : public SelectionDAG::DAGUpdateListener {
- SDNode::use_iterator &UI;
- SDNode::use_iterator &UE;
- void NodeDeleted(SDNode *N, SDNode *E) override {
- // Increment the iterator as needed.
- while (UI != UE && N == *UI)
- ++UI;
- }
- public:
- RAUWUpdateListener(SelectionDAG &d,
- SDNode::use_iterator &ui,
- SDNode::use_iterator &ue)
- : SelectionDAG::DAGUpdateListener(d), UI(ui), UE(ue) {}
- };
- }
- /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
- /// This can cause recursive merging of nodes in the DAG.
- ///
- /// This version assumes From has a single result value.
- ///
- void SelectionDAG::ReplaceAllUsesWith(SDValue FromN, SDValue To) {
- SDNode *From = FromN.getNode();
- assert(From->getNumValues() == 1 && FromN.getResNo() == 0 &&
- "Cannot replace with this method!");
- assert(From != To.getNode() && "Cannot replace uses of with self");
- // Iterate over all the existing uses of From. New uses will be added
- // to the beginning of the use list, which we avoid visiting.
- // This specifically avoids visiting uses of From that arise while the
- // replacement is happening, because any such uses would be the result
- // of CSE: If an existing node looks like From after one of its operands
- // is replaced by To, we don't want to replace of all its users with To
- // too. See PR3018 for more info.
- SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
- RAUWUpdateListener Listener(*this, UI, UE);
- while (UI != UE) {
- SDNode *User = *UI;
- // This node is about to morph, remove its old self from the CSE maps.
- RemoveNodeFromCSEMaps(User);
- // A user can appear in a use list multiple times, and when this
- // happens the uses are usually next to each other in the list.
- // To help reduce the number of CSE recomputations, process all
- // the uses of this user that we can find this way.
- do {
- SDUse &Use = UI.getUse();
- ++UI;
- Use.set(To);
- } while (UI != UE && *UI == User);
- // Now that we have modified User, add it back to the CSE maps. If it
- // already exists there, recursively merge the results together.
- AddModifiedNodeToCSEMaps(User);
- }
- // If we just RAUW'd the root, take note.
- if (FromN == getRoot())
- setRoot(To);
- }
- /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
- /// This can cause recursive merging of nodes in the DAG.
- ///
- /// This version assumes that for each value of From, there is a
- /// corresponding value in To in the same position with the same type.
- ///
- void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To) {
- #ifndef NDEBUG
- for (unsigned i = 0, e = From->getNumValues(); i != e; ++i)
- assert((!From->hasAnyUseOfValue(i) ||
- From->getValueType(i) == To->getValueType(i)) &&
- "Cannot use this version of ReplaceAllUsesWith!");
- #endif
- // Handle the trivial case.
- if (From == To)
- return;
- // Iterate over just the existing users of From. See the comments in
- // the ReplaceAllUsesWith above.
- SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
- RAUWUpdateListener Listener(*this, UI, UE);
- while (UI != UE) {
- SDNode *User = *UI;
- // This node is about to morph, remove its old self from the CSE maps.
- RemoveNodeFromCSEMaps(User);
- // A user can appear in a use list multiple times, and when this
- // happens the uses are usually next to each other in the list.
- // To help reduce the number of CSE recomputations, process all
- // the uses of this user that we can find this way.
- do {
- SDUse &Use = UI.getUse();
- ++UI;
- Use.setNode(To);
- } while (UI != UE && *UI == User);
- // Now that we have modified User, add it back to the CSE maps. If it
- // already exists there, recursively merge the results together.
- AddModifiedNodeToCSEMaps(User);
- }
- // If we just RAUW'd the root, take note.
- if (From == getRoot().getNode())
- setRoot(SDValue(To, getRoot().getResNo()));
- }
- /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
- /// This can cause recursive merging of nodes in the DAG.
- ///
- /// This version can replace From with any result values. To must match the
- /// number and types of values returned by From.
- void SelectionDAG::ReplaceAllUsesWith(SDNode *From, const SDValue *To) {
- if (From->getNumValues() == 1) // Handle the simple case efficiently.
- return ReplaceAllUsesWith(SDValue(From, 0), To[0]);
- // Iterate over just the existing users of From. See the comments in
- // the ReplaceAllUsesWith above.
- SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
- RAUWUpdateListener Listener(*this, UI, UE);
- while (UI != UE) {
- SDNode *User = *UI;
- // This node is about to morph, remove its old self from the CSE maps.
- RemoveNodeFromCSEMaps(User);
- // A user can appear in a use list multiple times, and when this
- // happens the uses are usually next to each other in the list.
- // To help reduce the number of CSE recomputations, process all
- // the uses of this user that we can find this way.
- do {
- SDUse &Use = UI.getUse();
- const SDValue &ToOp = To[Use.getResNo()];
- ++UI;
- Use.set(ToOp);
- } while (UI != UE && *UI == User);
- // Now that we have modified User, add it back to the CSE maps. If it
- // already exists there, recursively merge the results together.
- AddModifiedNodeToCSEMaps(User);
- }
- // If we just RAUW'd the root, take note.
- if (From == getRoot().getNode())
- setRoot(SDValue(To[getRoot().getResNo()]));
- }
- /// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving
- /// uses of other values produced by From.getNode() alone. The Deleted
- /// vector is handled the same way as for ReplaceAllUsesWith.
- void SelectionDAG::ReplaceAllUsesOfValueWith(SDValue From, SDValue To){
- // Handle the really simple, really trivial case efficiently.
- if (From == To) return;
- // Handle the simple, trivial, case efficiently.
- if (From.getNode()->getNumValues() == 1) {
- ReplaceAllUsesWith(From, To);
- return;
- }
- // Iterate over just the existing users of From. See the comments in
- // the ReplaceAllUsesWith above.
- SDNode::use_iterator UI = From.getNode()->use_begin(),
- UE = From.getNode()->use_end();
- RAUWUpdateListener Listener(*this, UI, UE);
- while (UI != UE) {
- SDNode *User = *UI;
- bool UserRemovedFromCSEMaps = false;
- // A user can appear in a use list multiple times, and when this
- // happens the uses are usually next to each other in the list.
- // To help reduce the number of CSE recomputations, process all
- // the uses of this user that we can find this way.
- do {
- SDUse &Use = UI.getUse();
- // Skip uses of different values from the same node.
- if (Use.getResNo() != From.getResNo()) {
- ++UI;
- continue;
- }
- // If this node hasn't been modified yet, it's still in the CSE maps,
- // so remove its old self from the CSE maps.
- if (!UserRemovedFromCSEMaps) {
- RemoveNodeFromCSEMaps(User);
- UserRemovedFromCSEMaps = true;
- }
- ++UI;
- Use.set(To);
- } while (UI != UE && *UI == User);
- // We are iterating over all uses of the From node, so if a use
- // doesn't use the specific value, no changes are made.
- if (!UserRemovedFromCSEMaps)
- continue;
- // Now that we have modified User, add it back to the CSE maps. If it
- // already exists there, recursively merge the results together.
- AddModifiedNodeToCSEMaps(User);
- }
- // If we just RAUW'd the root, take note.
- if (From == getRoot())
- setRoot(To);
- }
- namespace {
- /// UseMemo - This class is used by SelectionDAG::ReplaceAllUsesOfValuesWith
- /// to record information about a use.
- struct UseMemo {
- SDNode *User;
- unsigned Index;
- SDUse *Use;
- };
- /// operator< - Sort Memos by User.
- bool operator<(const UseMemo &L, const UseMemo &R) {
- return (intptr_t)L.User < (intptr_t)R.User;
- }
- }
- /// ReplaceAllUsesOfValuesWith - Replace any uses of From with To, leaving
- /// uses of other values produced by From.getNode() alone. The same value
- /// may appear in both the From and To list. The Deleted vector is
- /// handled the same way as for ReplaceAllUsesWith.
- void SelectionDAG::ReplaceAllUsesOfValuesWith(const SDValue *From,
- const SDValue *To,
- unsigned Num){
- // Handle the simple, trivial case efficiently.
- if (Num == 1)
- return ReplaceAllUsesOfValueWith(*From, *To);
- // Read up all the uses and make records of them. This helps
- // processing new uses that are introduced during the
- // replacement process.
- SmallVector<UseMemo, 4> Uses;
- for (unsigned i = 0; i != Num; ++i) {
- unsigned FromResNo = From[i].getResNo();
- SDNode *FromNode = From[i].getNode();
- for (SDNode::use_iterator UI = FromNode->use_begin(),
- E = FromNode->use_end(); UI != E; ++UI) {
- SDUse &Use = UI.getUse();
- if (Use.getResNo() == FromResNo) {
- UseMemo Memo = { *UI, i, &Use };
- Uses.push_back(Memo);
- }
- }
- }
- // Sort the uses, so that all the uses from a given User are together.
- std::sort(Uses.begin(), Uses.end());
- for (unsigned UseIndex = 0, UseIndexEnd = Uses.size();
- UseIndex != UseIndexEnd; ) {
- // We know that this user uses some value of From. If it is the right
- // value, update it.
- SDNode *User = Uses[UseIndex].User;
- // This node is about to morph, remove its old self from the CSE maps.
- RemoveNodeFromCSEMaps(User);
- // The Uses array is sorted, so all the uses for a given User
- // are next to each other in the list.
- // To help reduce the number of CSE recomputations, process all
- // the uses of this user that we can find this way.
- do {
- unsigned i = Uses[UseIndex].Index;
- SDUse &Use = *Uses[UseIndex].Use;
- ++UseIndex;
- Use.set(To[i]);
- } while (UseIndex != UseIndexEnd && Uses[UseIndex].User == User);
- // Now that we have modified User, add it back to the CSE maps. If it
- // already exists there, recursively merge the results together.
- AddModifiedNodeToCSEMaps(User);
- }
- }
- /// AssignTopologicalOrder - Assign a unique node id for each node in the DAG
- /// based on their topological order. It returns the maximum id and a vector
- /// of the SDNodes* in assigned order by reference.
- unsigned SelectionDAG::AssignTopologicalOrder() {
- unsigned DAGSize = 0;
- // SortedPos tracks the progress of the algorithm. Nodes before it are
- // sorted, nodes after it are unsorted. When the algorithm completes
- // it is at the end of the list.
- allnodes_iterator SortedPos = allnodes_begin();
- // Visit all the nodes. Move nodes with no operands to the front of
- // the list immediately. Annotate nodes that do have operands with their
- // operand count. Before we do this, the Node Id fields of the nodes
- // may contain arbitrary values. After, the Node Id fields for nodes
- // before SortedPos will contain the topological sort index, and the
- // Node Id fields for nodes At SortedPos and after will contain the
- // count of outstanding operands.
- for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ) {
- SDNode *N = I++;
- checkForCycles(N, this);
- unsigned Degree = N->getNumOperands();
- if (Degree == 0) {
- // A node with no uses, add it to the result array immediately.
- N->setNodeId(DAGSize++);
- allnodes_iterator Q = N;
- if (Q != SortedPos)
- SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(Q));
- assert(SortedPos != AllNodes.end() && "Overran node list");
- ++SortedPos;
- } else {
- // Temporarily use the Node Id as scratch space for the degree count.
- N->setNodeId(Degree);
- }
- }
- // Visit all the nodes. As we iterate, move nodes into sorted order,
- // such that by the time the end is reached all nodes will be sorted.
- for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ++I) {
- SDNode *N = I;
- checkForCycles(N, this);
- // N is in sorted position, so all its uses have one less operand
- // that needs to be sorted.
- for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
- UI != UE; ++UI) {
- SDNode *P = *UI;
- unsigned Degree = P->getNodeId();
- assert(Degree != 0 && "Invalid node degree");
- --Degree;
- if (Degree == 0) {
- // All of P's operands are sorted, so P may sorted now.
- P->setNodeId(DAGSize++);
- if (P != SortedPos)
- SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(P));
- assert(SortedPos != AllNodes.end() && "Overran node list");
- ++SortedPos;
- } else {
- // Update P's outstanding operand count.
- P->setNodeId(Degree);
- }
- }
- if (I == SortedPos) {
- #ifndef NDEBUG
- SDNode *S = ++I;
- dbgs() << "Overran sorted position:\n";
- S->dumprFull(this); dbgs() << "\n";
- dbgs() << "Checking if this is due to cycles\n";
- checkForCycles(this, true);
- #endif
- llvm_unreachable(nullptr);
- }
- }
- assert(SortedPos == AllNodes.end() &&
- "Topological sort incomplete!");
- assert(AllNodes.front().getOpcode() == ISD::EntryToken &&
- "First node in topological sort is not the entry token!");
- assert(AllNodes.front().getNodeId() == 0 &&
- "First node in topological sort has non-zero id!");
- assert(AllNodes.front().getNumOperands() == 0 &&
- "First node in topological sort has operands!");
- assert(AllNodes.back().getNodeId() == (int)DAGSize-1 &&
- "Last node in topologic sort has unexpected id!");
- assert(AllNodes.back().use_empty() &&
- "Last node in topologic sort has users!");
- assert(DAGSize == allnodes_size() && "Node count mismatch!");
- return DAGSize;
- }
- /// AddDbgValue - Add a dbg_value SDNode. If SD is non-null that means the
- /// value is produced by SD.
- void SelectionDAG::AddDbgValue(SDDbgValue *DB, SDNode *SD, bool isParameter) {
- if (SD) {
- assert(DbgInfo->getSDDbgValues(SD).empty() || SD->getHasDebugValue());
- SD->setHasDebugValue(true);
- }
- DbgInfo->add(DB, SD, isParameter);
- }
- /// TransferDbgValues - Transfer SDDbgValues.
- void SelectionDAG::TransferDbgValues(SDValue From, SDValue To) {
- if (From == To || !From.getNode()->getHasDebugValue())
- return;
- SDNode *FromNode = From.getNode();
- SDNode *ToNode = To.getNode();
- ArrayRef<SDDbgValue *> DVs = GetDbgValues(FromNode);
- SmallVector<SDDbgValue *, 2> ClonedDVs;
- for (ArrayRef<SDDbgValue *>::iterator I = DVs.begin(), E = DVs.end();
- I != E; ++I) {
- SDDbgValue *Dbg = *I;
- if (Dbg->getKind() == SDDbgValue::SDNODE) {
- SDDbgValue *Clone =
- getDbgValue(Dbg->getVariable(), Dbg->getExpression(), ToNode,
- To.getResNo(), Dbg->isIndirect(), Dbg->getOffset(),
- Dbg->getDebugLoc(), Dbg->getOrder());
- ClonedDVs.push_back(Clone);
- }
- }
- for (SmallVectorImpl<SDDbgValue *>::iterator I = ClonedDVs.begin(),
- E = ClonedDVs.end(); I != E; ++I)
- AddDbgValue(*I, ToNode, false);
- }
- //===----------------------------------------------------------------------===//
- // SDNode Class
- //===----------------------------------------------------------------------===//
- HandleSDNode::~HandleSDNode() {
- DropOperands();
- }
- GlobalAddressSDNode::GlobalAddressSDNode(unsigned Opc, unsigned Order,
- DebugLoc DL, const GlobalValue *GA,
- EVT VT, int64_t o, unsigned char TF)
- : SDNode(Opc, Order, DL, getSDVTList(VT)), Offset(o), TargetFlags(TF) {
- TheGlobal = GA;
- }
- AddrSpaceCastSDNode::AddrSpaceCastSDNode(unsigned Order, DebugLoc dl, EVT VT,
- SDValue X, unsigned SrcAS,
- unsigned DestAS)
- : UnarySDNode(ISD::ADDRSPACECAST, Order, dl, getSDVTList(VT), X),
- SrcAddrSpace(SrcAS), DestAddrSpace(DestAS) {}
- MemSDNode::MemSDNode(unsigned Opc, unsigned Order, DebugLoc dl, SDVTList VTs,
- EVT memvt, MachineMemOperand *mmo)
- : SDNode(Opc, Order, dl, VTs), MemoryVT(memvt), MMO(mmo) {
- SubclassData = encodeMemSDNodeFlags(0, ISD::UNINDEXED, MMO->isVolatile(),
- MMO->isNonTemporal(), MMO->isInvariant());
- assert(isVolatile() == MMO->isVolatile() && "Volatile encoding error!");
- assert(isNonTemporal() == MMO->isNonTemporal() &&
- "Non-temporal encoding error!");
- // We check here that the size of the memory operand fits within the size of
- // the MMO. This is because the MMO might indicate only a possible address
- // range instead of specifying the affected memory addresses precisely.
- assert(memvt.getStoreSize() <= MMO->getSize() && "Size mismatch!");
- }
- MemSDNode::MemSDNode(unsigned Opc, unsigned Order, DebugLoc dl, SDVTList VTs,
- ArrayRef<SDValue> Ops, EVT memvt, MachineMemOperand *mmo)
- : SDNode(Opc, Order, dl, VTs, Ops),
- MemoryVT(memvt), MMO(mmo) {
- SubclassData = encodeMemSDNodeFlags(0, ISD::UNINDEXED, MMO->isVolatile(),
- MMO->isNonTemporal(), MMO->isInvariant());
- assert(isVolatile() == MMO->isVolatile() && "Volatile encoding error!");
- assert(memvt.getStoreSize() <= MMO->getSize() && "Size mismatch!");
- }
- /// Profile - Gather unique data for the node.
- ///
- void SDNode::Profile(FoldingSetNodeID &ID) const {
- AddNodeIDNode(ID, this);
- }
- namespace {
- struct EVTArray {
- std::vector<EVT> VTs;
- EVTArray() {
- VTs.reserve(MVT::LAST_VALUETYPE);
- for (unsigned i = 0; i < MVT::LAST_VALUETYPE; ++i)
- VTs.push_back(MVT((MVT::SimpleValueType)i));
- }
- };
- }
- static ManagedStatic<std::set<EVT, EVT::compareRawBits> > EVTs;
- static ManagedStatic<EVTArray> SimpleVTArray;
- static ManagedStatic<sys::SmartMutex<true> > VTMutex;
- /// getValueTypeList - Return a pointer to the specified value type.
- ///
- const EVT *SDNode::getValueTypeList(EVT VT) {
- if (VT.isExtended()) {
- sys::SmartScopedLock<true> Lock(*VTMutex);
- return &(*EVTs->insert(VT).first);
- } else {
- assert(VT.getSimpleVT() < MVT::LAST_VALUETYPE &&
- "Value type out of range!");
- return &SimpleVTArray->VTs[VT.getSimpleVT().SimpleTy];
- }
- }
- /// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
- /// indicated value. This method ignores uses of other values defined by this
- /// operation.
- bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const {
- assert(Value < getNumValues() && "Bad value!");
- // TODO: Only iterate over uses of a given value of the node
- for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) {
- if (UI.getUse().getResNo() == Value) {
- if (NUses == 0)
- return false;
- --NUses;
- }
- }
- // Found exactly the right number of uses?
- return NUses == 0;
- }
- /// hasAnyUseOfValue - Return true if there are any use of the indicated
- /// value. This method ignores uses of other values defined by this operation.
- bool SDNode::hasAnyUseOfValue(unsigned Value) const {
- assert(Value < getNumValues() && "Bad value!");
- for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI)
- if (UI.getUse().getResNo() == Value)
- return true;
- return false;
- }
- /// isOnlyUserOf - Return true if this node is the only use of N.
- ///
- bool SDNode::isOnlyUserOf(const SDNode *N) const {
- bool Seen = false;
- for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
- SDNode *User = *I;
- if (User == this)
- Seen = true;
- else
- return false;
- }
- return Seen;
- }
- /// isOperand - Return true if this node is an operand of N.
- ///
- bool SDValue::isOperandOf(const SDNode *N) const {
- for (const SDValue &Op : N->op_values())
- if (*this == Op)
- return true;
- return false;
- }
- bool SDNode::isOperandOf(const SDNode *N) const {
- for (const SDValue &Op : N->op_values())
- if (this == Op.getNode())
- return true;
- return false;
- }
- /// reachesChainWithoutSideEffects - Return true if this operand (which must
- /// be a chain) reaches the specified operand without crossing any
- /// side-effecting instructions on any chain path. In practice, this looks
- /// through token factors and non-volatile loads. In order to remain efficient,
- /// this only looks a couple of nodes in, it does not do an exhaustive search.
- bool SDValue::reachesChainWithoutSideEffects(SDValue Dest,
- unsigned Depth) const {
- if (*this == Dest) return true;
- // Don't search too deeply, we just want to be able to see through
- // TokenFactor's etc.
- if (Depth == 0) return false;
- // If this is a token factor, all inputs to the TF happen in parallel. If any
- // of the operands of the TF does not reach dest, then we cannot do the xform.
- if (getOpcode() == ISD::TokenFactor) {
- for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
- if (!getOperand(i).reachesChainWithoutSideEffects(Dest, Depth-1))
- return false;
- return true;
- }
- // Loads don't have side effects, look through them.
- if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(*this)) {
- if (!Ld->isVolatile())
- return Ld->getChain().reachesChainWithoutSideEffects(Dest, Depth-1);
- }
- return false;
- }
- /// hasPredecessor - Return true if N is a predecessor of this node.
- /// N is either an operand of this node, or can be reached by recursively
- /// traversing up the operands.
- /// NOTE: This is an expensive method. Use it carefully.
- bool SDNode::hasPredecessor(const SDNode *N) const {
- SmallPtrSet<const SDNode *, 32> Visited;
- SmallVector<const SDNode *, 16> Worklist;
- return hasPredecessorHelper(N, Visited, Worklist);
- }
- bool
- SDNode::hasPredecessorHelper(const SDNode *N,
- SmallPtrSetImpl<const SDNode *> &Visited,
- SmallVectorImpl<const SDNode *> &Worklist) const {
- if (Visited.empty()) {
- Worklist.push_back(this);
- } else {
- // Take a look in the visited set. If we've already encountered this node
- // we needn't search further.
- if (Visited.count(N))
- return true;
- }
- // Haven't visited N yet. Continue the search.
- while (!Worklist.empty()) {
- const SDNode *M = Worklist.pop_back_val();
- for (const SDValue &OpV : M->op_values()) {
- SDNode *Op = OpV.getNode();
- if (Visited.insert(Op).second)
- Worklist.push_back(Op);
- if (Op == N)
- return true;
- }
- }
- return false;
- }
- uint64_t SDNode::getConstantOperandVal(unsigned Num) const {
- assert(Num < NumOperands && "Invalid child # of SDNode!");
- return cast<ConstantSDNode>(OperandList[Num])->getZExtValue();
- }
- SDValue SelectionDAG::UnrollVectorOp(SDNode *N, unsigned ResNE) {
- assert(N->getNumValues() == 1 &&
- "Can't unroll a vector with multiple results!");
- EVT VT = N->getValueType(0);
- unsigned NE = VT.getVectorNumElements();
- EVT EltVT = VT.getVectorElementType();
- SDLoc dl(N);
- SmallVector<SDValue, 8> Scalars;
- SmallVector<SDValue, 4> Operands(N->getNumOperands());
- // If ResNE is 0, fully unroll the vector op.
- if (ResNE == 0)
- ResNE = NE;
- else if (NE > ResNE)
- NE = ResNE;
- unsigned i;
- for (i= 0; i != NE; ++i) {
- for (unsigned j = 0, e = N->getNumOperands(); j != e; ++j) {
- SDValue Operand = N->getOperand(j);
- EVT OperandVT = Operand.getValueType();
- if (OperandVT.isVector()) {
- // A vector operand; extract a single element.
- EVT OperandEltVT = OperandVT.getVectorElementType();
- Operands[j] =
- getNode(ISD::EXTRACT_VECTOR_ELT, dl, OperandEltVT, Operand,
- getConstant(i, dl, TLI->getVectorIdxTy(getDataLayout())));
- } else {
- // A scalar operand; just use it as is.
- Operands[j] = Operand;
- }
- }
- switch (N->getOpcode()) {
- default:
- Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands));
- break;
- case ISD::VSELECT:
- Scalars.push_back(getNode(ISD::SELECT, dl, EltVT, Operands));
- break;
- case ISD::SHL:
- case ISD::SRA:
- case ISD::SRL:
- case ISD::ROTL:
- case ISD::ROTR:
- Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands[0],
- getShiftAmountOperand(Operands[0].getValueType(),
- Operands[1])));
- break;
- case ISD::SIGN_EXTEND_INREG:
- case ISD::FP_ROUND_INREG: {
- EVT ExtVT = cast<VTSDNode>(Operands[1])->getVT().getVectorElementType();
- Scalars.push_back(getNode(N->getOpcode(), dl, EltVT,
- Operands[0],
- getValueType(ExtVT)));
- }
- }
- }
- for (; i < ResNE; ++i)
- Scalars.push_back(getUNDEF(EltVT));
- return getNode(ISD::BUILD_VECTOR, dl,
- EVT::getVectorVT(*getContext(), EltVT, ResNE), Scalars);
- }
- /// isConsecutiveLoad - Return true if LD is loading 'Bytes' bytes from a
- /// location that is 'Dist' units away from the location that the 'Base' load
- /// is loading from.
- bool SelectionDAG::isConsecutiveLoad(LoadSDNode *LD, LoadSDNode *Base,
- unsigned Bytes, int Dist) const {
- if (LD->getChain() != Base->getChain())
- return false;
- EVT VT = LD->getValueType(0);
- if (VT.getSizeInBits() / 8 != Bytes)
- return false;
- SDValue Loc = LD->getOperand(1);
- SDValue BaseLoc = Base->getOperand(1);
- if (Loc.getOpcode() == ISD::FrameIndex) {
- if (BaseLoc.getOpcode() != ISD::FrameIndex)
- return false;
- const MachineFrameInfo *MFI = getMachineFunction().getFrameInfo();
- int FI = cast<FrameIndexSDNode>(Loc)->getIndex();
- int BFI = cast<FrameIndexSDNode>(BaseLoc)->getIndex();
- int FS = MFI->getObjectSize(FI);
- int BFS = MFI->getObjectSize(BFI);
- if (FS != BFS || FS != (int)Bytes) return false;
- return MFI->getObjectOffset(FI) == (MFI->getObjectOffset(BFI) + Dist*Bytes);
- }
- // Handle X + C.
- if (isBaseWithConstantOffset(Loc)) {
- int64_t LocOffset = cast<ConstantSDNode>(Loc.getOperand(1))->getSExtValue();
- if (Loc.getOperand(0) == BaseLoc) {
- // If the base location is a simple address with no offset itself, then
- // the second load's first add operand should be the base address.
- if (LocOffset == Dist * (int)Bytes)
- return true;
- } else if (isBaseWithConstantOffset(BaseLoc)) {
- // The base location itself has an offset, so subtract that value from the
- // second load's offset before comparing to distance * size.
- int64_t BOffset =
- cast<ConstantSDNode>(BaseLoc.getOperand(1))->getSExtValue();
- if (Loc.getOperand(0) == BaseLoc.getOperand(0)) {
- if ((LocOffset - BOffset) == Dist * (int)Bytes)
- return true;
- }
- }
- }
- const GlobalValue *GV1 = nullptr;
- const GlobalValue *GV2 = nullptr;
- int64_t Offset1 = 0;
- int64_t Offset2 = 0;
- bool isGA1 = TLI->isGAPlusOffset(Loc.getNode(), GV1, Offset1);
- bool isGA2 = TLI->isGAPlusOffset(BaseLoc.getNode(), GV2, Offset2);
- if (isGA1 && isGA2 && GV1 == GV2)
- return Offset1 == (Offset2 + Dist*Bytes);
- return false;
- }
- /// InferPtrAlignment - Infer alignment of a load / store address. Return 0 if
- /// it cannot be inferred.
- unsigned SelectionDAG::InferPtrAlignment(SDValue Ptr) const {
- // If this is a GlobalAddress + cst, return the alignment.
- const GlobalValue *GV;
- int64_t GVOffset = 0;
- if (TLI->isGAPlusOffset(Ptr.getNode(), GV, GVOffset)) {
- unsigned PtrWidth = getDataLayout().getPointerTypeSizeInBits(GV->getType());
- APInt KnownZero(PtrWidth, 0), KnownOne(PtrWidth, 0);
- llvm::computeKnownBits(const_cast<GlobalValue *>(GV), KnownZero, KnownOne,
- getDataLayout());
- unsigned AlignBits = KnownZero.countTrailingOnes();
- unsigned Align = AlignBits ? 1 << std::min(31U, AlignBits) : 0;
- if (Align)
- return MinAlign(Align, GVOffset);
- }
- // If this is a direct reference to a stack slot, use information about the
- // stack slot's alignment.
- int FrameIdx = 1 << 31;
- int64_t FrameOffset = 0;
- if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr)) {
- FrameIdx = FI->getIndex();
- } else if (isBaseWithConstantOffset(Ptr) &&
- isa<FrameIndexSDNode>(Ptr.getOperand(0))) {
- // Handle FI+Cst
- FrameIdx = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
- FrameOffset = Ptr.getConstantOperandVal(1);
- }
- if (FrameIdx != (1 << 31)) {
- const MachineFrameInfo &MFI = *getMachineFunction().getFrameInfo();
- unsigned FIInfoAlign = MinAlign(MFI.getObjectAlignment(FrameIdx),
- FrameOffset);
- return FIInfoAlign;
- }
- return 0;
- }
- /// GetSplitDestVTs - Compute the VTs needed for the low/hi parts of a type
- /// which is split (or expanded) into two not necessarily identical pieces.
- std::pair<EVT, EVT> SelectionDAG::GetSplitDestVTs(const EVT &VT) const {
- // Currently all types are split in half.
- EVT LoVT, HiVT;
- if (!VT.isVector()) {
- LoVT = HiVT = TLI->getTypeToTransformTo(*getContext(), VT);
- } else {
- unsigned NumElements = VT.getVectorNumElements();
- assert(!(NumElements & 1) && "Splitting vector, but not in half!");
- LoVT = HiVT = EVT::getVectorVT(*getContext(), VT.getVectorElementType(),
- NumElements/2);
- }
- return std::make_pair(LoVT, HiVT);
- }
- /// SplitVector - Split the vector with EXTRACT_SUBVECTOR and return the
- /// low/high part.
- std::pair<SDValue, SDValue>
- SelectionDAG::SplitVector(const SDValue &N, const SDLoc &DL, const EVT &LoVT,
- const EVT &HiVT) {
- assert(LoVT.getVectorNumElements() + HiVT.getVectorNumElements() <=
- N.getValueType().getVectorNumElements() &&
- "More vector elements requested than available!");
- SDValue Lo, Hi;
- Lo = getNode(ISD::EXTRACT_SUBVECTOR, DL, LoVT, N,
- getConstant(0, DL, TLI->getVectorIdxTy(getDataLayout())));
- Hi = getNode(ISD::EXTRACT_SUBVECTOR, DL, HiVT, N,
- getConstant(LoVT.getVectorNumElements(), DL,
- TLI->getVectorIdxTy(getDataLayout())));
- return std::make_pair(Lo, Hi);
- }
- void SelectionDAG::ExtractVectorElements(SDValue Op,
- SmallVectorImpl<SDValue> &Args,
- unsigned Start, unsigned Count) {
- EVT VT = Op.getValueType();
- if (Count == 0)
- Count = VT.getVectorNumElements();
- EVT EltVT = VT.getVectorElementType();
- EVT IdxTy = TLI->getVectorIdxTy(getDataLayout());
- SDLoc SL(Op);
- for (unsigned i = Start, e = Start + Count; i != e; ++i) {
- Args.push_back(getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT,
- Op, getConstant(i, SL, IdxTy)));
- }
- }
- // getAddressSpace - Return the address space this GlobalAddress belongs to.
- unsigned GlobalAddressSDNode::getAddressSpace() const {
- return getGlobal()->getType()->getAddressSpace();
- }
- Type *ConstantPoolSDNode::getType() const {
- if (isMachineConstantPoolEntry())
- return Val.MachineCPVal->getType();
- return Val.ConstVal->getType();
- }
- bool BuildVectorSDNode::isConstantSplat(APInt &SplatValue,
- APInt &SplatUndef,
- unsigned &SplatBitSize,
- bool &HasAnyUndefs,
- unsigned MinSplatBits,
- bool isBigEndian) const {
- EVT VT = getValueType(0);
- assert(VT.isVector() && "Expected a vector type");
- unsigned sz = VT.getSizeInBits();
- if (MinSplatBits > sz)
- return false;
- SplatValue = APInt(sz, 0);
- SplatUndef = APInt(sz, 0);
- // Get the bits. Bits with undefined values (when the corresponding element
- // of the vector is an ISD::UNDEF value) are set in SplatUndef and cleared
- // in SplatValue. If any of the values are not constant, give up and return
- // false.
- unsigned int nOps = getNumOperands();
- assert(nOps > 0 && "isConstantSplat has 0-size build vector");
- unsigned EltBitSize = VT.getVectorElementType().getSizeInBits();
- for (unsigned j = 0; j < nOps; ++j) {
- unsigned i = isBigEndian ? nOps-1-j : j;
- SDValue OpVal = getOperand(i);
- unsigned BitPos = j * EltBitSize;
- if (OpVal.getOpcode() == ISD::UNDEF)
- SplatUndef |= APInt::getBitsSet(sz, BitPos, BitPos + EltBitSize);
- else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal))
- SplatValue |= CN->getAPIntValue().zextOrTrunc(EltBitSize).
- zextOrTrunc(sz) << BitPos;
- else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal))
- SplatValue |= CN->getValueAPF().bitcastToAPInt().zextOrTrunc(sz) <<BitPos;
- else
- return false;
- }
- // The build_vector is all constants or undefs. Find the smallest element
- // size that splats the vector.
- HasAnyUndefs = (SplatUndef != 0);
- while (sz > 8) {
- unsigned HalfSize = sz / 2;
- APInt HighValue = SplatValue.lshr(HalfSize).trunc(HalfSize);
- APInt LowValue = SplatValue.trunc(HalfSize);
- APInt HighUndef = SplatUndef.lshr(HalfSize).trunc(HalfSize);
- APInt LowUndef = SplatUndef.trunc(HalfSize);
- // If the two halves do not match (ignoring undef bits), stop here.
- if ((HighValue & ~LowUndef) != (LowValue & ~HighUndef) ||
- MinSplatBits > HalfSize)
- break;
- SplatValue = HighValue | LowValue;
- SplatUndef = HighUndef & LowUndef;
- sz = HalfSize;
- }
- SplatBitSize = sz;
- return true;
- }
- SDValue BuildVectorSDNode::getSplatValue(BitVector *UndefElements) const {
- if (UndefElements) {
- UndefElements->clear();
- UndefElements->resize(getNumOperands());
- }
- SDValue Splatted;
- for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
- SDValue Op = getOperand(i);
- if (Op.getOpcode() == ISD::UNDEF) {
- if (UndefElements)
- (*UndefElements)[i] = true;
- } else if (!Splatted) {
- Splatted = Op;
- } else if (Splatted != Op) {
- return SDValue();
- }
- }
- if (!Splatted) {
- assert(getOperand(0).getOpcode() == ISD::UNDEF &&
- "Can only have a splat without a constant for all undefs.");
- return getOperand(0);
- }
- return Splatted;
- }
- ConstantSDNode *
- BuildVectorSDNode::getConstantSplatNode(BitVector *UndefElements) const {
- return dyn_cast_or_null<ConstantSDNode>(getSplatValue(UndefElements));
- }
- ConstantFPSDNode *
- BuildVectorSDNode::getConstantFPSplatNode(BitVector *UndefElements) const {
- return dyn_cast_or_null<ConstantFPSDNode>(getSplatValue(UndefElements));
- }
- bool BuildVectorSDNode::isConstant() const {
- for (const SDValue &Op : op_values()) {
- unsigned Opc = Op.getOpcode();
- if (Opc != ISD::UNDEF && Opc != ISD::Constant && Opc != ISD::ConstantFP)
- return false;
- }
- return true;
- }
- bool ShuffleVectorSDNode::isSplatMask(const int *Mask, EVT VT) {
- // Find the first non-undef value in the shuffle mask.
- unsigned i, e;
- for (i = 0, e = VT.getVectorNumElements(); i != e && Mask[i] < 0; ++i)
- /* search */;
- assert(i != e && "VECTOR_SHUFFLE node with all undef indices!");
- // Make sure all remaining elements are either undef or the same as the first
- // non-undef value.
- for (int Idx = Mask[i]; i != e; ++i)
- if (Mask[i] >= 0 && Mask[i] != Idx)
- return false;
- return true;
- }
- #ifndef NDEBUG
- static void checkForCyclesHelper(const SDNode *N,
- SmallPtrSetImpl<const SDNode*> &Visited,
- SmallPtrSetImpl<const SDNode*> &Checked,
- const llvm::SelectionDAG *DAG) {
- // If this node has already been checked, don't check it again.
- if (Checked.count(N))
- return;
- // If a node has already been visited on this depth-first walk, reject it as
- // a cycle.
- if (!Visited.insert(N).second) {
- errs() << "Detected cycle in SelectionDAG\n";
- dbgs() << "Offending node:\n";
- N->dumprFull(DAG); dbgs() << "\n";
- abort();
- }
- for (const SDValue &Op : N->op_values())
- checkForCyclesHelper(Op.getNode(), Visited, Checked, DAG);
- Checked.insert(N);
- Visited.erase(N);
- }
- #endif
- void llvm::checkForCycles(const llvm::SDNode *N,
- const llvm::SelectionDAG *DAG,
- bool force) {
- #ifndef NDEBUG
- bool check = force;
- #ifdef XDEBUG
- check = true;
- #endif // XDEBUG
- if (check) {
- assert(N && "Checking nonexistent SDNode");
- SmallPtrSet<const SDNode*, 32> visited;
- SmallPtrSet<const SDNode*, 32> checked;
- checkForCyclesHelper(N, visited, checked, DAG);
- }
- #endif // !NDEBUG
- }
- void llvm::checkForCycles(const llvm::SelectionDAG *DAG, bool force) {
- checkForCycles(DAG->getRoot().getNode(), DAG, force);
- }
|