12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325732673277328732973307331733273337334733573367337733873397340734173427343734473457346734773487349735073517352735373547355735673577358735973607361736273637364736573667367736873697370737173727373737473757376737773787379738073817382738373847385738673877388738973907391739273937394739573967397739873997400740174027403740474057406740774087409741074117412741374147415741674177418741974207421742274237424742574267427742874297430743174327433743474357436743774387439744074417442744374447445744674477448744974507451745274537454745574567457745874597460746174627463746474657466746774687469747074717472747374747475747674777478747974807481748274837484748574867487748874897490749174927493749474957496749774987499750075017502750375047505750675077508750975107511751275137514751575167517751875197520752175227523752475257526752775287529753075317532753375347535753675377538753975407541754275437544754575467547754875497550755175527553755475557556755775587559756075617562756375647565756675677568756975707571757275737574757575767577757875797580758175827583758475857586758775887589759075917592759375947595759675977598759976007601760276037604760576067607760876097610761176127613761476157616761776187619762076217622762376247625762676277628762976307631763276337634763576367637763876397640764176427643764476457646764776487649765076517652765376547655765676577658765976607661766276637664766576667667766876697670767176727673767476757676767776787679768076817682768376847685768676877688768976907691769276937694769576967697769876997700770177027703770477057706770777087709771077117712771377147715771677177718771977207721772277237724772577267727772877297730773177327733773477357736773777387739774077417742774377447745774677477748774977507751775277537754775577567757775877597760776177627763776477657766776777687769777077717772777377747775777677777778777977807781778277837784778577867787778877897790779177927793779477957796779777987799780078017802780378047805780678077808780978107811781278137814781578167817781878197820782178227823782478257826782778287829783078317832783378347835783678377838783978407841784278437844784578467847784878497850785178527853785478557856785778587859786078617862786378647865786678677868786978707871787278737874787578767877787878797880788178827883788478857886788778887889789078917892789378947895789678977898789979007901790279037904790579067907790879097910791179127913791479157916791779187919792079217922792379247925792679277928792979307931793279337934793579367937793879397940794179427943794479457946794779487949795079517952795379547955795679577958795979607961796279637964796579667967796879697970797179727973797479757976797779787979798079817982798379847985798679877988798979907991799279937994799579967997799879998000800180028003800480058006800780088009801080118012801380148015801680178018801980208021802280238024802580268027802880298030803180328033803480358036803780388039804080418042804380448045804680478048804980508051805280538054805580568057805880598060806180628063806480658066806780688069807080718072807380748075807680778078807980808081808280838084808580868087808880898090809180928093809480958096809780988099810081018102810381048105810681078108810981108111811281138114811581168117811881198120812181228123812481258126812781288129813081318132813381348135813681378138813981408141814281438144814581468147814881498150815181528153815481558156815781588159816081618162816381648165816681678168816981708171817281738174817581768177817881798180818181828183818481858186818781888189819081918192819381948195819681978198819982008201820282038204820582068207820882098210821182128213821482158216821782188219822082218222822382248225822682278228822982308231823282338234823582368237823882398240824182428243824482458246824782488249825082518252825382548255825682578258825982608261826282638264826582668267826882698270827182728273827482758276827782788279828082818282828382848285828682878288828982908291829282938294 |
- //===-- SelectionDAGBuilder.cpp - Selection-DAG building ------------------===//
- //
- // The LLVM Compiler Infrastructure
- //
- // This file is distributed under the University of Illinois Open Source
- // License. See LICENSE.TXT for details.
- //
- //===----------------------------------------------------------------------===//
- //
- // This implements routines for translating from LLVM IR into SelectionDAG IR.
- //
- //===----------------------------------------------------------------------===//
- #include "SelectionDAGBuilder.h"
- #include "SDNodeDbgValue.h"
- #include "llvm/ADT/BitVector.h"
- #include "llvm/ADT/Optional.h"
- #include "llvm/ADT/SmallSet.h"
- #include "llvm/ADT/Statistic.h"
- #include "llvm/Analysis/AliasAnalysis.h"
- #include "llvm/Analysis/BranchProbabilityInfo.h"
- #include "llvm/Analysis/ConstantFolding.h"
- #include "llvm/Analysis/TargetLibraryInfo.h"
- #include "llvm/Analysis/ValueTracking.h"
- #include "llvm/CodeGen/FastISel.h"
- #include "llvm/CodeGen/FunctionLoweringInfo.h"
- #include "llvm/CodeGen/GCMetadata.h"
- #include "llvm/CodeGen/GCStrategy.h"
- #include "llvm/CodeGen/MachineFrameInfo.h"
- #include "llvm/CodeGen/MachineFunction.h"
- #include "llvm/CodeGen/MachineInstrBuilder.h"
- #include "llvm/CodeGen/MachineJumpTableInfo.h"
- #include "llvm/CodeGen/MachineModuleInfo.h"
- #include "llvm/CodeGen/MachineRegisterInfo.h"
- #include "llvm/CodeGen/SelectionDAG.h"
- #include "llvm/CodeGen/StackMaps.h"
- #include "llvm/CodeGen/WinEHFuncInfo.h"
- #include "llvm/IR/CallingConv.h"
- #include "llvm/IR/Constants.h"
- #include "llvm/IR/DataLayout.h"
- #include "llvm/IR/DebugInfo.h"
- #include "llvm/IR/DerivedTypes.h"
- #include "llvm/IR/Function.h"
- #include "llvm/IR/GlobalVariable.h"
- #include "llvm/IR/InlineAsm.h"
- #include "llvm/IR/Instructions.h"
- #include "llvm/IR/IntrinsicInst.h"
- #include "llvm/IR/Intrinsics.h"
- #include "llvm/IR/LLVMContext.h"
- #include "llvm/IR/Module.h"
- #include "llvm/IR/Statepoint.h"
- #include "llvm/MC/MCSymbol.h"
- #include "llvm/Support/CommandLine.h"
- #include "llvm/Support/Debug.h"
- #include "llvm/Support/ErrorHandling.h"
- #include "llvm/Support/MathExtras.h"
- #include "llvm/Support/raw_ostream.h"
- #include "llvm/Target/TargetFrameLowering.h"
- #include "llvm/Target/TargetInstrInfo.h"
- #include "llvm/Target/TargetIntrinsicInfo.h"
- #include "llvm/Target/TargetLowering.h"
- #include "llvm/Target/TargetOptions.h"
- #include "llvm/Target/TargetSelectionDAGInfo.h"
- #include "llvm/Target/TargetSubtargetInfo.h"
- #include <algorithm>
- using namespace llvm;
- #define DEBUG_TYPE "isel"
- /// LimitFloatPrecision - Generate low-precision inline sequences for
- /// some float libcalls (6, 8 or 12 bits).
- static unsigned LimitFloatPrecision;
- static cl::opt<unsigned, true>
- LimitFPPrecision("limit-float-precision",
- cl::desc("Generate low-precision inline sequences "
- "for some float libcalls"),
- cl::location(LimitFloatPrecision),
- cl::init(0));
- static cl::opt<bool>
- EnableFMFInDAG("enable-fmf-dag", cl::init(false), cl::Hidden,
- cl::desc("Enable fast-math-flags for DAG nodes"));
- // Limit the width of DAG chains. This is important in general to prevent
- // DAG-based analysis from blowing up. For example, alias analysis and
- // load clustering may not complete in reasonable time. It is difficult to
- // recognize and avoid this situation within each individual analysis, and
- // future analyses are likely to have the same behavior. Limiting DAG width is
- // the safe approach and will be especially important with global DAGs.
- //
- // MaxParallelChains default is arbitrarily high to avoid affecting
- // optimization, but could be lowered to improve compile time. Any ld-ld-st-st
- // sequence over this should have been converted to llvm.memcpy by the
- // frontend. It easy to induce this behavior with .ll code such as:
- // %buffer = alloca [4096 x i8]
- // %data = load [4096 x i8]* %argPtr
- // store [4096 x i8] %data, [4096 x i8]* %buffer
- static const unsigned MaxParallelChains = 64;
- static SDValue getCopyFromPartsVector(SelectionDAG &DAG, SDLoc DL,
- const SDValue *Parts, unsigned NumParts,
- MVT PartVT, EVT ValueVT, const Value *V);
- /// getCopyFromParts - Create a value that contains the specified legal parts
- /// combined into the value they represent. If the parts combine to a type
- /// larger then ValueVT then AssertOp can be used to specify whether the extra
- /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT
- /// (ISD::AssertSext).
- static SDValue getCopyFromParts(SelectionDAG &DAG, SDLoc DL,
- const SDValue *Parts,
- unsigned NumParts, MVT PartVT, EVT ValueVT,
- const Value *V,
- ISD::NodeType AssertOp = ISD::DELETED_NODE) {
- if (ValueVT.isVector())
- return getCopyFromPartsVector(DAG, DL, Parts, NumParts,
- PartVT, ValueVT, V);
- assert(NumParts > 0 && "No parts to assemble!");
- const TargetLowering &TLI = DAG.getTargetLoweringInfo();
- SDValue Val = Parts[0];
- if (NumParts > 1) {
- // Assemble the value from multiple parts.
- if (ValueVT.isInteger()) {
- unsigned PartBits = PartVT.getSizeInBits();
- unsigned ValueBits = ValueVT.getSizeInBits();
- // Assemble the power of 2 part.
- unsigned RoundParts = NumParts & (NumParts - 1) ?
- 1 << Log2_32(NumParts) : NumParts;
- unsigned RoundBits = PartBits * RoundParts;
- EVT RoundVT = RoundBits == ValueBits ?
- ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits);
- SDValue Lo, Hi;
- EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2);
- if (RoundParts > 2) {
- Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2,
- PartVT, HalfVT, V);
- Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2,
- RoundParts / 2, PartVT, HalfVT, V);
- } else {
- Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]);
- Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]);
- }
- if (DAG.getDataLayout().isBigEndian())
- std::swap(Lo, Hi);
- Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi);
- if (RoundParts < NumParts) {
- // Assemble the trailing non-power-of-2 part.
- unsigned OddParts = NumParts - RoundParts;
- EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits);
- Hi = getCopyFromParts(DAG, DL,
- Parts + RoundParts, OddParts, PartVT, OddVT, V);
- // Combine the round and odd parts.
- Lo = Val;
- if (DAG.getDataLayout().isBigEndian())
- std::swap(Lo, Hi);
- EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
- Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi);
- Hi =
- DAG.getNode(ISD::SHL, DL, TotalVT, Hi,
- DAG.getConstant(Lo.getValueType().getSizeInBits(), DL,
- TLI.getPointerTy(DAG.getDataLayout())));
- Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo);
- Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi);
- }
- } else if (PartVT.isFloatingPoint()) {
- // FP split into multiple FP parts (for ppcf128)
- assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 &&
- "Unexpected split");
- SDValue Lo, Hi;
- Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]);
- Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]);
- if (TLI.hasBigEndianPartOrdering(ValueVT, DAG.getDataLayout()))
- std::swap(Lo, Hi);
- Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi);
- } else {
- // FP split into integer parts (soft fp)
- assert(ValueVT.isFloatingPoint() && PartVT.isInteger() &&
- !PartVT.isVector() && "Unexpected split");
- EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits());
- Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V);
- }
- }
- // There is now one part, held in Val. Correct it to match ValueVT.
- EVT PartEVT = Val.getValueType();
- if (PartEVT == ValueVT)
- return Val;
- if (PartEVT.isInteger() && ValueVT.isInteger()) {
- if (ValueVT.bitsLT(PartEVT)) {
- // For a truncate, see if we have any information to
- // indicate whether the truncated bits will always be
- // zero or sign-extension.
- if (AssertOp != ISD::DELETED_NODE)
- Val = DAG.getNode(AssertOp, DL, PartEVT, Val,
- DAG.getValueType(ValueVT));
- return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
- }
- return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val);
- }
- if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
- // FP_ROUND's are always exact here.
- if (ValueVT.bitsLT(Val.getValueType()))
- return DAG.getNode(
- ISD::FP_ROUND, DL, ValueVT, Val,
- DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout())));
- return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val);
- }
- if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits())
- return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
- llvm_unreachable("Unknown mismatch!");
- }
- static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V,
- const Twine &ErrMsg) {
- const Instruction *I = dyn_cast_or_null<Instruction>(V);
- if (!V)
- return Ctx.emitError(ErrMsg);
- const char *AsmError = ", possible invalid constraint for vector type";
- if (const CallInst *CI = dyn_cast<CallInst>(I))
- if (isa<InlineAsm>(CI->getCalledValue()))
- return Ctx.emitError(I, ErrMsg + AsmError);
- return Ctx.emitError(I, ErrMsg);
- }
- /// getCopyFromPartsVector - Create a value that contains the specified legal
- /// parts combined into the value they represent. If the parts combine to a
- /// type larger then ValueVT then AssertOp can be used to specify whether the
- /// extra bits are known to be zero (ISD::AssertZext) or sign extended from
- /// ValueVT (ISD::AssertSext).
- static SDValue getCopyFromPartsVector(SelectionDAG &DAG, SDLoc DL,
- const SDValue *Parts, unsigned NumParts,
- MVT PartVT, EVT ValueVT, const Value *V) {
- assert(ValueVT.isVector() && "Not a vector value");
- assert(NumParts > 0 && "No parts to assemble!");
- const TargetLowering &TLI = DAG.getTargetLoweringInfo();
- SDValue Val = Parts[0];
- // Handle a multi-element vector.
- if (NumParts > 1) {
- EVT IntermediateVT;
- MVT RegisterVT;
- unsigned NumIntermediates;
- unsigned NumRegs =
- TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
- NumIntermediates, RegisterVT);
- assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
- NumParts = NumRegs; // Silence a compiler warning.
- assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
- assert(RegisterVT.getSizeInBits() ==
- Parts[0].getSimpleValueType().getSizeInBits() &&
- "Part type sizes don't match!");
- // Assemble the parts into intermediate operands.
- SmallVector<SDValue, 8> Ops(NumIntermediates);
- if (NumIntermediates == NumParts) {
- // If the register was not expanded, truncate or copy the value,
- // as appropriate.
- for (unsigned i = 0; i != NumParts; ++i)
- Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1,
- PartVT, IntermediateVT, V);
- } else if (NumParts > 0) {
- // If the intermediate type was expanded, build the intermediate
- // operands from the parts.
- assert(NumParts % NumIntermediates == 0 &&
- "Must expand into a divisible number of parts!");
- unsigned Factor = NumParts / NumIntermediates;
- for (unsigned i = 0; i != NumIntermediates; ++i)
- Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor,
- PartVT, IntermediateVT, V);
- }
- // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the
- // intermediate operands.
- Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS
- : ISD::BUILD_VECTOR,
- DL, ValueVT, Ops);
- }
- // There is now one part, held in Val. Correct it to match ValueVT.
- EVT PartEVT = Val.getValueType();
- if (PartEVT == ValueVT)
- return Val;
- if (PartEVT.isVector()) {
- // If the element type of the source/dest vectors are the same, but the
- // parts vector has more elements than the value vector, then we have a
- // vector widening case (e.g. <2 x float> -> <4 x float>). Extract the
- // elements we want.
- if (PartEVT.getVectorElementType() == ValueVT.getVectorElementType()) {
- assert(PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements() &&
- "Cannot narrow, it would be a lossy transformation");
- return DAG.getNode(
- ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val,
- DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout())));
- }
- // Vector/Vector bitcast.
- if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits())
- return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
- assert(PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements() &&
- "Cannot handle this kind of promotion");
- // Promoted vector extract
- bool Smaller = ValueVT.bitsLE(PartEVT);
- return DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND),
- DL, ValueVT, Val);
- }
- // Trivial bitcast if the types are the same size and the destination
- // vector type is legal.
- if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() &&
- TLI.isTypeLegal(ValueVT))
- return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
- // Handle cases such as i8 -> <1 x i1>
- if (ValueVT.getVectorNumElements() != 1) {
- diagnosePossiblyInvalidConstraint(*DAG.getContext(), V,
- "non-trivial scalar-to-vector conversion");
- return DAG.getUNDEF(ValueVT);
- }
- if (ValueVT.getVectorNumElements() == 1 &&
- ValueVT.getVectorElementType() != PartEVT) {
- bool Smaller = ValueVT.bitsLE(PartEVT);
- Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND),
- DL, ValueVT.getScalarType(), Val);
- }
- return DAG.getNode(ISD::BUILD_VECTOR, DL, ValueVT, Val);
- }
- static void getCopyToPartsVector(SelectionDAG &DAG, SDLoc dl,
- SDValue Val, SDValue *Parts, unsigned NumParts,
- MVT PartVT, const Value *V);
- /// getCopyToParts - Create a series of nodes that contain the specified value
- /// split into legal parts. If the parts contain more bits than Val, then, for
- /// integers, ExtendKind can be used to specify how to generate the extra bits.
- static void getCopyToParts(SelectionDAG &DAG, SDLoc DL,
- SDValue Val, SDValue *Parts, unsigned NumParts,
- MVT PartVT, const Value *V,
- ISD::NodeType ExtendKind = ISD::ANY_EXTEND) {
- EVT ValueVT = Val.getValueType();
- // Handle the vector case separately.
- if (ValueVT.isVector())
- return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V);
- unsigned PartBits = PartVT.getSizeInBits();
- unsigned OrigNumParts = NumParts;
- assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) &&
- "Copying to an illegal type!");
- if (NumParts == 0)
- return;
- assert(!ValueVT.isVector() && "Vector case handled elsewhere");
- EVT PartEVT = PartVT;
- if (PartEVT == ValueVT) {
- assert(NumParts == 1 && "No-op copy with multiple parts!");
- Parts[0] = Val;
- return;
- }
- if (NumParts * PartBits > ValueVT.getSizeInBits()) {
- // If the parts cover more bits than the value has, promote the value.
- if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
- assert(NumParts == 1 && "Do not know what to promote to!");
- Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val);
- } else {
- assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
- ValueVT.isInteger() &&
- "Unknown mismatch!");
- ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
- Val = DAG.getNode(ExtendKind, DL, ValueVT, Val);
- if (PartVT == MVT::x86mmx)
- Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
- }
- } else if (PartBits == ValueVT.getSizeInBits()) {
- // Different types of the same size.
- assert(NumParts == 1 && PartEVT != ValueVT);
- Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
- } else if (NumParts * PartBits < ValueVT.getSizeInBits()) {
- // If the parts cover less bits than value has, truncate the value.
- assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
- ValueVT.isInteger() &&
- "Unknown mismatch!");
- ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
- Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
- if (PartVT == MVT::x86mmx)
- Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
- }
- // The value may have changed - recompute ValueVT.
- ValueVT = Val.getValueType();
- assert(NumParts * PartBits == ValueVT.getSizeInBits() &&
- "Failed to tile the value with PartVT!");
- if (NumParts == 1) {
- if (PartEVT != ValueVT)
- diagnosePossiblyInvalidConstraint(*DAG.getContext(), V,
- "scalar-to-vector conversion failed");
- Parts[0] = Val;
- return;
- }
- // Expand the value into multiple parts.
- if (NumParts & (NumParts - 1)) {
- // The number of parts is not a power of 2. Split off and copy the tail.
- assert(PartVT.isInteger() && ValueVT.isInteger() &&
- "Do not know what to expand to!");
- unsigned RoundParts = 1 << Log2_32(NumParts);
- unsigned RoundBits = RoundParts * PartBits;
- unsigned OddParts = NumParts - RoundParts;
- SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val,
- DAG.getIntPtrConstant(RoundBits, DL));
- getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V);
- if (DAG.getDataLayout().isBigEndian())
- // The odd parts were reversed by getCopyToParts - unreverse them.
- std::reverse(Parts + RoundParts, Parts + NumParts);
- NumParts = RoundParts;
- ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
- Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
- }
- // The number of parts is a power of 2. Repeatedly bisect the value using
- // EXTRACT_ELEMENT.
- Parts[0] = DAG.getNode(ISD::BITCAST, DL,
- EVT::getIntegerVT(*DAG.getContext(),
- ValueVT.getSizeInBits()),
- Val);
- for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) {
- for (unsigned i = 0; i < NumParts; i += StepSize) {
- unsigned ThisBits = StepSize * PartBits / 2;
- EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits);
- SDValue &Part0 = Parts[i];
- SDValue &Part1 = Parts[i+StepSize/2];
- Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
- ThisVT, Part0, DAG.getIntPtrConstant(1, DL));
- Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
- ThisVT, Part0, DAG.getIntPtrConstant(0, DL));
- if (ThisBits == PartBits && ThisVT != PartVT) {
- Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0);
- Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1);
- }
- }
- }
- if (DAG.getDataLayout().isBigEndian())
- std::reverse(Parts, Parts + OrigNumParts);
- }
- /// getCopyToPartsVector - Create a series of nodes that contain the specified
- /// value split into legal parts.
- static void getCopyToPartsVector(SelectionDAG &DAG, SDLoc DL,
- SDValue Val, SDValue *Parts, unsigned NumParts,
- MVT PartVT, const Value *V) {
- EVT ValueVT = Val.getValueType();
- assert(ValueVT.isVector() && "Not a vector");
- const TargetLowering &TLI = DAG.getTargetLoweringInfo();
- if (NumParts == 1) {
- EVT PartEVT = PartVT;
- if (PartEVT == ValueVT) {
- // Nothing to do.
- } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) {
- // Bitconvert vector->vector case.
- Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
- } else if (PartVT.isVector() &&
- PartEVT.getVectorElementType() == ValueVT.getVectorElementType() &&
- PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements()) {
- EVT ElementVT = PartVT.getVectorElementType();
- // Vector widening case, e.g. <2 x float> -> <4 x float>. Shuffle in
- // undef elements.
- SmallVector<SDValue, 16> Ops;
- for (unsigned i = 0, e = ValueVT.getVectorNumElements(); i != e; ++i)
- Ops.push_back(DAG.getNode(
- ISD::EXTRACT_VECTOR_ELT, DL, ElementVT, Val,
- DAG.getConstant(i, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))));
- for (unsigned i = ValueVT.getVectorNumElements(),
- e = PartVT.getVectorNumElements(); i != e; ++i)
- Ops.push_back(DAG.getUNDEF(ElementVT));
- Val = DAG.getNode(ISD::BUILD_VECTOR, DL, PartVT, Ops);
- // FIXME: Use CONCAT for 2x -> 4x.
- //SDValue UndefElts = DAG.getUNDEF(VectorTy);
- //Val = DAG.getNode(ISD::CONCAT_VECTORS, DL, PartVT, Val, UndefElts);
- } else if (PartVT.isVector() &&
- PartEVT.getVectorElementType().bitsGE(
- ValueVT.getVectorElementType()) &&
- PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements()) {
- // Promoted vector extract
- bool Smaller = PartEVT.bitsLE(ValueVT);
- Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND),
- DL, PartVT, Val);
- } else{
- // Vector -> scalar conversion.
- assert(ValueVT.getVectorNumElements() == 1 &&
- "Only trivial vector-to-scalar conversions should get here!");
- Val = DAG.getNode(
- ISD::EXTRACT_VECTOR_ELT, DL, PartVT, Val,
- DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout())));
- bool Smaller = ValueVT.bitsLE(PartVT);
- Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND),
- DL, PartVT, Val);
- }
- Parts[0] = Val;
- return;
- }
- // Handle a multi-element vector.
- EVT IntermediateVT;
- MVT RegisterVT;
- unsigned NumIntermediates;
- unsigned NumRegs = TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT,
- IntermediateVT,
- NumIntermediates, RegisterVT);
- unsigned NumElements = ValueVT.getVectorNumElements();
- assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
- NumParts = NumRegs; // Silence a compiler warning.
- assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
- // Split the vector into intermediate operands.
- SmallVector<SDValue, 8> Ops(NumIntermediates);
- for (unsigned i = 0; i != NumIntermediates; ++i) {
- if (IntermediateVT.isVector())
- Ops[i] =
- DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, IntermediateVT, Val,
- DAG.getConstant(i * (NumElements / NumIntermediates), DL,
- TLI.getVectorIdxTy(DAG.getDataLayout())));
- else
- Ops[i] = DAG.getNode(
- ISD::EXTRACT_VECTOR_ELT, DL, IntermediateVT, Val,
- DAG.getConstant(i, DL, TLI.getVectorIdxTy(DAG.getDataLayout())));
- }
- // Split the intermediate operands into legal parts.
- if (NumParts == NumIntermediates) {
- // If the register was not expanded, promote or copy the value,
- // as appropriate.
- for (unsigned i = 0; i != NumParts; ++i)
- getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V);
- } else if (NumParts > 0) {
- // If the intermediate type was expanded, split each the value into
- // legal parts.
- assert(NumIntermediates != 0 && "division by zero");
- assert(NumParts % NumIntermediates == 0 &&
- "Must expand into a divisible number of parts!");
- unsigned Factor = NumParts / NumIntermediates;
- for (unsigned i = 0; i != NumIntermediates; ++i)
- getCopyToParts(DAG, DL, Ops[i], &Parts[i*Factor], Factor, PartVT, V);
- }
- }
- RegsForValue::RegsForValue() {}
- RegsForValue::RegsForValue(const SmallVector<unsigned, 4> ®s, MVT regvt,
- EVT valuevt)
- : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs) {}
- RegsForValue::RegsForValue(LLVMContext &Context, const TargetLowering &TLI,
- const DataLayout &DL, unsigned Reg, Type *Ty) {
- ComputeValueVTs(TLI, DL, Ty, ValueVTs);
- for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) {
- EVT ValueVT = ValueVTs[Value];
- unsigned NumRegs = TLI.getNumRegisters(Context, ValueVT);
- MVT RegisterVT = TLI.getRegisterType(Context, ValueVT);
- for (unsigned i = 0; i != NumRegs; ++i)
- Regs.push_back(Reg + i);
- RegVTs.push_back(RegisterVT);
- Reg += NumRegs;
- }
- }
- /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
- /// this value and returns the result as a ValueVT value. This uses
- /// Chain/Flag as the input and updates them for the output Chain/Flag.
- /// If the Flag pointer is NULL, no flag is used.
- SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG,
- FunctionLoweringInfo &FuncInfo,
- SDLoc dl,
- SDValue &Chain, SDValue *Flag,
- const Value *V) const {
- // A Value with type {} or [0 x %t] needs no registers.
- if (ValueVTs.empty())
- return SDValue();
- const TargetLowering &TLI = DAG.getTargetLoweringInfo();
- // Assemble the legal parts into the final values.
- SmallVector<SDValue, 4> Values(ValueVTs.size());
- SmallVector<SDValue, 8> Parts;
- for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
- // Copy the legal parts from the registers.
- EVT ValueVT = ValueVTs[Value];
- unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVT);
- MVT RegisterVT = RegVTs[Value];
- Parts.resize(NumRegs);
- for (unsigned i = 0; i != NumRegs; ++i) {
- SDValue P;
- if (!Flag) {
- P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT);
- } else {
- P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag);
- *Flag = P.getValue(2);
- }
- Chain = P.getValue(1);
- Parts[i] = P;
- // If the source register was virtual and if we know something about it,
- // add an assert node.
- if (!TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) ||
- !RegisterVT.isInteger() || RegisterVT.isVector())
- continue;
- const FunctionLoweringInfo::LiveOutInfo *LOI =
- FuncInfo.GetLiveOutRegInfo(Regs[Part+i]);
- if (!LOI)
- continue;
- unsigned RegSize = RegisterVT.getSizeInBits();
- unsigned NumSignBits = LOI->NumSignBits;
- unsigned NumZeroBits = LOI->KnownZero.countLeadingOnes();
- if (NumZeroBits == RegSize) {
- // The current value is a zero.
- // Explicitly express that as it would be easier for
- // optimizations to kick in.
- Parts[i] = DAG.getConstant(0, dl, RegisterVT);
- continue;
- }
- // FIXME: We capture more information than the dag can represent. For
- // now, just use the tightest assertzext/assertsext possible.
- bool isSExt = true;
- EVT FromVT(MVT::Other);
- if (NumSignBits == RegSize)
- isSExt = true, FromVT = MVT::i1; // ASSERT SEXT 1
- else if (NumZeroBits >= RegSize-1)
- isSExt = false, FromVT = MVT::i1; // ASSERT ZEXT 1
- else if (NumSignBits > RegSize-8)
- isSExt = true, FromVT = MVT::i8; // ASSERT SEXT 8
- else if (NumZeroBits >= RegSize-8)
- isSExt = false, FromVT = MVT::i8; // ASSERT ZEXT 8
- else if (NumSignBits > RegSize-16)
- isSExt = true, FromVT = MVT::i16; // ASSERT SEXT 16
- else if (NumZeroBits >= RegSize-16)
- isSExt = false, FromVT = MVT::i16; // ASSERT ZEXT 16
- else if (NumSignBits > RegSize-32)
- isSExt = true, FromVT = MVT::i32; // ASSERT SEXT 32
- else if (NumZeroBits >= RegSize-32)
- isSExt = false, FromVT = MVT::i32; // ASSERT ZEXT 32
- else
- continue;
- // Add an assertion node.
- assert(FromVT != MVT::Other);
- Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl,
- RegisterVT, P, DAG.getValueType(FromVT));
- }
- Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(),
- NumRegs, RegisterVT, ValueVT, V);
- Part += NumRegs;
- Parts.clear();
- }
- return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values);
- }
- /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
- /// specified value into the registers specified by this object. This uses
- /// Chain/Flag as the input and updates them for the output Chain/Flag.
- /// If the Flag pointer is NULL, no flag is used.
- void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, SDLoc dl,
- SDValue &Chain, SDValue *Flag, const Value *V,
- ISD::NodeType PreferredExtendType) const {
- const TargetLowering &TLI = DAG.getTargetLoweringInfo();
- ISD::NodeType ExtendKind = PreferredExtendType;
- // Get the list of the values's legal parts.
- unsigned NumRegs = Regs.size();
- SmallVector<SDValue, 8> Parts(NumRegs);
- for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
- EVT ValueVT = ValueVTs[Value];
- unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), ValueVT);
- MVT RegisterVT = RegVTs[Value];
- if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT))
- ExtendKind = ISD::ZERO_EXTEND;
- getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value),
- &Parts[Part], NumParts, RegisterVT, V, ExtendKind);
- Part += NumParts;
- }
- // Copy the parts into the registers.
- SmallVector<SDValue, 8> Chains(NumRegs);
- for (unsigned i = 0; i != NumRegs; ++i) {
- SDValue Part;
- if (!Flag) {
- Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]);
- } else {
- Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag);
- *Flag = Part.getValue(1);
- }
- Chains[i] = Part.getValue(0);
- }
- if (NumRegs == 1 || Flag)
- // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is
- // flagged to it. That is the CopyToReg nodes and the user are considered
- // a single scheduling unit. If we create a TokenFactor and return it as
- // chain, then the TokenFactor is both a predecessor (operand) of the
- // user as well as a successor (the TF operands are flagged to the user).
- // c1, f1 = CopyToReg
- // c2, f2 = CopyToReg
- // c3 = TokenFactor c1, c2
- // ...
- // = op c3, ..., f2
- Chain = Chains[NumRegs-1];
- else
- Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains);
- }
- /// AddInlineAsmOperands - Add this value to the specified inlineasm node
- /// operand list. This adds the code marker and includes the number of
- /// values added into it.
- void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching,
- unsigned MatchingIdx, SDLoc dl,
- SelectionDAG &DAG,
- std::vector<SDValue> &Ops) const {
- const TargetLowering &TLI = DAG.getTargetLoweringInfo();
- unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size());
- if (HasMatching)
- Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx);
- else if (!Regs.empty() &&
- TargetRegisterInfo::isVirtualRegister(Regs.front())) {
- // Put the register class of the virtual registers in the flag word. That
- // way, later passes can recompute register class constraints for inline
- // assembly as well as normal instructions.
- // Don't do this for tied operands that can use the regclass information
- // from the def.
- const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
- const TargetRegisterClass *RC = MRI.getRegClass(Regs.front());
- Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID());
- }
- SDValue Res = DAG.getTargetConstant(Flag, dl, MVT::i32);
- Ops.push_back(Res);
- unsigned SP = TLI.getStackPointerRegisterToSaveRestore();
- for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) {
- unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]);
- MVT RegisterVT = RegVTs[Value];
- for (unsigned i = 0; i != NumRegs; ++i) {
- assert(Reg < Regs.size() && "Mismatch in # registers expected");
- unsigned TheReg = Regs[Reg++];
- Ops.push_back(DAG.getRegister(TheReg, RegisterVT));
- if (TheReg == SP && Code == InlineAsm::Kind_Clobber) {
- // If we clobbered the stack pointer, MFI should know about it.
- assert(DAG.getMachineFunction().getFrameInfo()->
- hasOpaqueSPAdjustment());
- }
- }
- }
- }
- void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis &aa,
- const TargetLibraryInfo *li) {
- AA = &aa;
- GFI = gfi;
- LibInfo = li;
- DL = &DAG.getDataLayout();
- Context = DAG.getContext();
- LPadToCallSiteMap.clear();
- }
- /// clear - Clear out the current SelectionDAG and the associated
- /// state and prepare this SelectionDAGBuilder object to be used
- /// for a new block. This doesn't clear out information about
- /// additional blocks that are needed to complete switch lowering
- /// or PHI node updating; that information is cleared out as it is
- /// consumed.
- void SelectionDAGBuilder::clear() {
- NodeMap.clear();
- UnusedArgNodeMap.clear();
- PendingLoads.clear();
- PendingExports.clear();
- CurInst = nullptr;
- HasTailCall = false;
- SDNodeOrder = LowestSDNodeOrder;
- StatepointLowering.clear();
- }
- /// clearDanglingDebugInfo - Clear the dangling debug information
- /// map. This function is separated from the clear so that debug
- /// information that is dangling in a basic block can be properly
- /// resolved in a different basic block. This allows the
- /// SelectionDAG to resolve dangling debug information attached
- /// to PHI nodes.
- void SelectionDAGBuilder::clearDanglingDebugInfo() {
- DanglingDebugInfoMap.clear();
- }
- /// getRoot - Return the current virtual root of the Selection DAG,
- /// flushing any PendingLoad items. This must be done before emitting
- /// a store or any other node that may need to be ordered after any
- /// prior load instructions.
- ///
- SDValue SelectionDAGBuilder::getRoot() {
- if (PendingLoads.empty())
- return DAG.getRoot();
- if (PendingLoads.size() == 1) {
- SDValue Root = PendingLoads[0];
- DAG.setRoot(Root);
- PendingLoads.clear();
- return Root;
- }
- // Otherwise, we have to make a token factor node.
- SDValue Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other,
- PendingLoads);
- PendingLoads.clear();
- DAG.setRoot(Root);
- return Root;
- }
- /// getControlRoot - Similar to getRoot, but instead of flushing all the
- /// PendingLoad items, flush all the PendingExports items. It is necessary
- /// to do this before emitting a terminator instruction.
- ///
- SDValue SelectionDAGBuilder::getControlRoot() {
- SDValue Root = DAG.getRoot();
- if (PendingExports.empty())
- return Root;
- // Turn all of the CopyToReg chains into one factored node.
- if (Root.getOpcode() != ISD::EntryToken) {
- unsigned i = 0, e = PendingExports.size();
- for (; i != e; ++i) {
- assert(PendingExports[i].getNode()->getNumOperands() > 1);
- if (PendingExports[i].getNode()->getOperand(0) == Root)
- break; // Don't add the root if we already indirectly depend on it.
- }
- if (i == e)
- PendingExports.push_back(Root);
- }
- Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other,
- PendingExports);
- PendingExports.clear();
- DAG.setRoot(Root);
- return Root;
- }
- void SelectionDAGBuilder::visit(const Instruction &I) {
- // Set up outgoing PHI node register values before emitting the terminator.
- if (isa<TerminatorInst>(&I))
- HandlePHINodesInSuccessorBlocks(I.getParent());
- ++SDNodeOrder;
- CurInst = &I;
- visit(I.getOpcode(), I);
- if (!isa<TerminatorInst>(&I) && !HasTailCall)
- CopyToExportRegsIfNeeded(&I);
- CurInst = nullptr;
- }
- void SelectionDAGBuilder::visitPHI(const PHINode &) {
- llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!");
- }
- void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) {
- // Note: this doesn't use InstVisitor, because it has to work with
- // ConstantExpr's in addition to instructions.
- switch (Opcode) {
- default: llvm_unreachable("Unknown instruction type encountered!");
- // Build the switch statement using the Instruction.def file.
- #define HANDLE_INST(NUM, OPCODE, CLASS) \
- case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break;
- #include "llvm/IR/Instruction.def"
- }
- }
- // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V,
- // generate the debug data structures now that we've seen its definition.
- void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V,
- SDValue Val) {
- DanglingDebugInfo &DDI = DanglingDebugInfoMap[V];
- if (DDI.getDI()) {
- const DbgValueInst *DI = DDI.getDI();
- DebugLoc dl = DDI.getdl();
- unsigned DbgSDNodeOrder = DDI.getSDNodeOrder();
- DILocalVariable *Variable = DI->getVariable();
- DIExpression *Expr = DI->getExpression();
- assert(Variable->isValidLocationForIntrinsic(dl) &&
- "Expected inlined-at fields to agree");
- uint64_t Offset = DI->getOffset();
- // A dbg.value for an alloca is always indirect.
- bool IsIndirect = isa<AllocaInst>(V) || Offset != 0;
- SDDbgValue *SDV;
- if (Val.getNode()) {
- if (!EmitFuncArgumentDbgValue(V, Variable, Expr, dl, Offset, IsIndirect,
- Val)) {
- SDV = DAG.getDbgValue(Variable, Expr, Val.getNode(), Val.getResNo(),
- IsIndirect, Offset, dl, DbgSDNodeOrder);
- DAG.AddDbgValue(SDV, Val.getNode(), false);
- }
- } else
- DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n");
- DanglingDebugInfoMap[V] = DanglingDebugInfo();
- }
- }
- /// getCopyFromRegs - If there was virtual register allocated for the value V
- /// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise.
- SDValue SelectionDAGBuilder::getCopyFromRegs(const Value *V, Type *Ty) {
- DenseMap<const Value *, unsigned>::iterator It = FuncInfo.ValueMap.find(V);
- SDValue Result;
- if (It != FuncInfo.ValueMap.end()) {
- unsigned InReg = It->second;
- RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(),
- DAG.getDataLayout(), InReg, Ty);
- SDValue Chain = DAG.getEntryNode();
- Result = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V);
- resolveDanglingDebugInfo(V, Result);
- }
- return Result;
- }
- /// getValue - Return an SDValue for the given Value.
- SDValue SelectionDAGBuilder::getValue(const Value *V) {
- // If we already have an SDValue for this value, use it. It's important
- // to do this first, so that we don't create a CopyFromReg if we already
- // have a regular SDValue.
- SDValue &N = NodeMap[V];
- if (N.getNode()) return N;
- // If there's a virtual register allocated and initialized for this
- // value, use it.
- SDValue copyFromReg = getCopyFromRegs(V, V->getType());
- if (copyFromReg.getNode()) {
- return copyFromReg;
- }
- // Otherwise create a new SDValue and remember it.
- SDValue Val = getValueImpl(V);
- NodeMap[V] = Val;
- resolveDanglingDebugInfo(V, Val);
- return Val;
- }
- // Return true if SDValue exists for the given Value
- bool SelectionDAGBuilder::findValue(const Value *V) const {
- return (NodeMap.find(V) != NodeMap.end()) ||
- (FuncInfo.ValueMap.find(V) != FuncInfo.ValueMap.end());
- }
- /// getNonRegisterValue - Return an SDValue for the given Value, but
- /// don't look in FuncInfo.ValueMap for a virtual register.
- SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) {
- // If we already have an SDValue for this value, use it.
- SDValue &N = NodeMap[V];
- if (N.getNode()) {
- if (isa<ConstantSDNode>(N) || isa<ConstantFPSDNode>(N)) {
- // Remove the debug location from the node as the node is about to be used
- // in a location which may differ from the original debug location. This
- // is relevant to Constant and ConstantFP nodes because they can appear
- // as constant expressions inside PHI nodes.
- N->setDebugLoc(DebugLoc());
- }
- return N;
- }
- // Otherwise create a new SDValue and remember it.
- SDValue Val = getValueImpl(V);
- NodeMap[V] = Val;
- resolveDanglingDebugInfo(V, Val);
- return Val;
- }
- /// getValueImpl - Helper function for getValue and getNonRegisterValue.
- /// Create an SDValue for the given value.
- SDValue SelectionDAGBuilder::getValueImpl(const Value *V) {
- const TargetLowering &TLI = DAG.getTargetLoweringInfo();
- if (const Constant *C = dyn_cast<Constant>(V)) {
- EVT VT = TLI.getValueType(DAG.getDataLayout(), V->getType(), true);
- if (const ConstantInt *CI = dyn_cast<ConstantInt>(C))
- return DAG.getConstant(*CI, getCurSDLoc(), VT);
- if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
- return DAG.getGlobalAddress(GV, getCurSDLoc(), VT);
- if (isa<ConstantPointerNull>(C)) {
- unsigned AS = V->getType()->getPointerAddressSpace();
- return DAG.getConstant(0, getCurSDLoc(),
- TLI.getPointerTy(DAG.getDataLayout(), AS));
- }
- if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
- return DAG.getConstantFP(*CFP, getCurSDLoc(), VT);
- if (isa<UndefValue>(C) && !V->getType()->isAggregateType())
- return DAG.getUNDEF(VT);
- if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
- visit(CE->getOpcode(), *CE);
- SDValue N1 = NodeMap[V];
- assert(N1.getNode() && "visit didn't populate the NodeMap!");
- return N1;
- }
- if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) {
- SmallVector<SDValue, 4> Constants;
- for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end();
- OI != OE; ++OI) {
- SDNode *Val = getValue(*OI).getNode();
- // If the operand is an empty aggregate, there are no values.
- if (!Val) continue;
- // Add each leaf value from the operand to the Constants list
- // to form a flattened list of all the values.
- for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
- Constants.push_back(SDValue(Val, i));
- }
- return DAG.getMergeValues(Constants, getCurSDLoc());
- }
- if (const ConstantDataSequential *CDS =
- dyn_cast<ConstantDataSequential>(C)) {
- SmallVector<SDValue, 4> Ops;
- for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
- SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode();
- // Add each leaf value from the operand to the Constants list
- // to form a flattened list of all the values.
- for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
- Ops.push_back(SDValue(Val, i));
- }
- if (isa<ArrayType>(CDS->getType()))
- return DAG.getMergeValues(Ops, getCurSDLoc());
- return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(),
- VT, Ops);
- }
- if (C->getType()->isStructTy() || C->getType()->isArrayTy()) {
- assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) &&
- "Unknown struct or array constant!");
- SmallVector<EVT, 4> ValueVTs;
- ComputeValueVTs(TLI, DAG.getDataLayout(), C->getType(), ValueVTs);
- unsigned NumElts = ValueVTs.size();
- if (NumElts == 0)
- return SDValue(); // empty struct
- SmallVector<SDValue, 4> Constants(NumElts);
- for (unsigned i = 0; i != NumElts; ++i) {
- EVT EltVT = ValueVTs[i];
- if (isa<UndefValue>(C))
- Constants[i] = DAG.getUNDEF(EltVT);
- else if (EltVT.isFloatingPoint())
- Constants[i] = DAG.getConstantFP(0, getCurSDLoc(), EltVT);
- else
- Constants[i] = DAG.getConstant(0, getCurSDLoc(), EltVT);
- }
- return DAG.getMergeValues(Constants, getCurSDLoc());
- }
- if (const BlockAddress *BA = dyn_cast<BlockAddress>(C))
- return DAG.getBlockAddress(BA, VT);
- VectorType *VecTy = cast<VectorType>(V->getType());
- unsigned NumElements = VecTy->getNumElements();
- // Now that we know the number and type of the elements, get that number of
- // elements into the Ops array based on what kind of constant it is.
- SmallVector<SDValue, 16> Ops;
- if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) {
- for (unsigned i = 0; i != NumElements; ++i)
- Ops.push_back(getValue(CV->getOperand(i)));
- } else {
- assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!");
- EVT EltVT =
- TLI.getValueType(DAG.getDataLayout(), VecTy->getElementType());
- SDValue Op;
- if (EltVT.isFloatingPoint())
- Op = DAG.getConstantFP(0, getCurSDLoc(), EltVT);
- else
- Op = DAG.getConstant(0, getCurSDLoc(), EltVT);
- Ops.assign(NumElements, Op);
- }
- // Create a BUILD_VECTOR node.
- return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(), VT, Ops);
- }
- // If this is a static alloca, generate it as the frameindex instead of
- // computation.
- if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
- DenseMap<const AllocaInst*, int>::iterator SI =
- FuncInfo.StaticAllocaMap.find(AI);
- if (SI != FuncInfo.StaticAllocaMap.end())
- return DAG.getFrameIndex(SI->second,
- TLI.getPointerTy(DAG.getDataLayout()));
- }
- // If this is an instruction which fast-isel has deferred, select it now.
- if (const Instruction *Inst = dyn_cast<Instruction>(V)) {
- unsigned InReg = FuncInfo.InitializeRegForValue(Inst);
- RegsForValue RFV(*DAG.getContext(), TLI, DAG.getDataLayout(), InReg,
- Inst->getType());
- SDValue Chain = DAG.getEntryNode();
- return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V);
- }
- llvm_unreachable("Can't get register for value!");
- }
- void SelectionDAGBuilder::visitRet(const ReturnInst &I) {
- const TargetLowering &TLI = DAG.getTargetLoweringInfo();
- auto &DL = DAG.getDataLayout();
- SDValue Chain = getControlRoot();
- SmallVector<ISD::OutputArg, 8> Outs;
- SmallVector<SDValue, 8> OutVals;
- if (!FuncInfo.CanLowerReturn) {
- unsigned DemoteReg = FuncInfo.DemoteRegister;
- const Function *F = I.getParent()->getParent();
- // Emit a store of the return value through the virtual register.
- // Leave Outs empty so that LowerReturn won't try to load return
- // registers the usual way.
- SmallVector<EVT, 1> PtrValueVTs;
- ComputeValueVTs(TLI, DL, PointerType::getUnqual(F->getReturnType()),
- PtrValueVTs);
- SDValue RetPtr = DAG.getRegister(DemoteReg, PtrValueVTs[0]);
- SDValue RetOp = getValue(I.getOperand(0));
- SmallVector<EVT, 4> ValueVTs;
- SmallVector<uint64_t, 4> Offsets;
- ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs, &Offsets);
- unsigned NumValues = ValueVTs.size();
- SmallVector<SDValue, 4> Chains(NumValues);
- for (unsigned i = 0; i != NumValues; ++i) {
- SDValue Add = DAG.getNode(ISD::ADD, getCurSDLoc(),
- RetPtr.getValueType(), RetPtr,
- DAG.getIntPtrConstant(Offsets[i],
- getCurSDLoc()));
- Chains[i] =
- DAG.getStore(Chain, getCurSDLoc(),
- SDValue(RetOp.getNode(), RetOp.getResNo() + i),
- // FIXME: better loc info would be nice.
- Add, MachinePointerInfo(), false, false, 0);
- }
- Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(),
- MVT::Other, Chains);
- } else if (I.getNumOperands() != 0) {
- SmallVector<EVT, 4> ValueVTs;
- ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs);
- unsigned NumValues = ValueVTs.size();
- if (NumValues) {
- SDValue RetOp = getValue(I.getOperand(0));
- const Function *F = I.getParent()->getParent();
- ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
- if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex,
- Attribute::SExt))
- ExtendKind = ISD::SIGN_EXTEND;
- else if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex,
- Attribute::ZExt))
- ExtendKind = ISD::ZERO_EXTEND;
- LLVMContext &Context = F->getContext();
- bool RetInReg = F->getAttributes().hasAttribute(AttributeSet::ReturnIndex,
- Attribute::InReg);
- for (unsigned j = 0; j != NumValues; ++j) {
- EVT VT = ValueVTs[j];
- if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger())
- VT = TLI.getTypeForExtArgOrReturn(Context, VT, ExtendKind);
- unsigned NumParts = TLI.getNumRegisters(Context, VT);
- MVT PartVT = TLI.getRegisterType(Context, VT);
- SmallVector<SDValue, 4> Parts(NumParts);
- getCopyToParts(DAG, getCurSDLoc(),
- SDValue(RetOp.getNode(), RetOp.getResNo() + j),
- &Parts[0], NumParts, PartVT, &I, ExtendKind);
- // 'inreg' on function refers to return value
- ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
- if (RetInReg)
- Flags.setInReg();
- // Propagate extension type if any
- if (ExtendKind == ISD::SIGN_EXTEND)
- Flags.setSExt();
- else if (ExtendKind == ISD::ZERO_EXTEND)
- Flags.setZExt();
- for (unsigned i = 0; i < NumParts; ++i) {
- Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(),
- VT, /*isfixed=*/true, 0, 0));
- OutVals.push_back(Parts[i]);
- }
- }
- }
- }
- bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg();
- CallingConv::ID CallConv =
- DAG.getMachineFunction().getFunction()->getCallingConv();
- Chain = DAG.getTargetLoweringInfo().LowerReturn(
- Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG);
- // Verify that the target's LowerReturn behaved as expected.
- assert(Chain.getNode() && Chain.getValueType() == MVT::Other &&
- "LowerReturn didn't return a valid chain!");
- // Update the DAG with the new chain value resulting from return lowering.
- DAG.setRoot(Chain);
- }
- /// CopyToExportRegsIfNeeded - If the given value has virtual registers
- /// created for it, emit nodes to copy the value into the virtual
- /// registers.
- void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) {
- // Skip empty types
- if (V->getType()->isEmptyTy())
- return;
- DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V);
- if (VMI != FuncInfo.ValueMap.end()) {
- assert(!V->use_empty() && "Unused value assigned virtual registers!");
- CopyValueToVirtualRegister(V, VMI->second);
- }
- }
- /// ExportFromCurrentBlock - If this condition isn't known to be exported from
- /// the current basic block, add it to ValueMap now so that we'll get a
- /// CopyTo/FromReg.
- void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) {
- // No need to export constants.
- if (!isa<Instruction>(V) && !isa<Argument>(V)) return;
- // Already exported?
- if (FuncInfo.isExportedInst(V)) return;
- unsigned Reg = FuncInfo.InitializeRegForValue(V);
- CopyValueToVirtualRegister(V, Reg);
- }
- bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V,
- const BasicBlock *FromBB) {
- // The operands of the setcc have to be in this block. We don't know
- // how to export them from some other block.
- if (const Instruction *VI = dyn_cast<Instruction>(V)) {
- // Can export from current BB.
- if (VI->getParent() == FromBB)
- return true;
- // Is already exported, noop.
- return FuncInfo.isExportedInst(V);
- }
- // If this is an argument, we can export it if the BB is the entry block or
- // if it is already exported.
- if (isa<Argument>(V)) {
- if (FromBB == &FromBB->getParent()->getEntryBlock())
- return true;
- // Otherwise, can only export this if it is already exported.
- return FuncInfo.isExportedInst(V);
- }
- // Otherwise, constants can always be exported.
- return true;
- }
- /// Return branch probability calculated by BranchProbabilityInfo for IR blocks.
- uint32_t SelectionDAGBuilder::getEdgeWeight(const MachineBasicBlock *Src,
- const MachineBasicBlock *Dst) const {
- BranchProbabilityInfo *BPI = FuncInfo.BPI;
- if (!BPI)
- return 0;
- const BasicBlock *SrcBB = Src->getBasicBlock();
- const BasicBlock *DstBB = Dst->getBasicBlock();
- return BPI->getEdgeWeight(SrcBB, DstBB);
- }
- void SelectionDAGBuilder::
- addSuccessorWithWeight(MachineBasicBlock *Src, MachineBasicBlock *Dst,
- uint32_t Weight /* = 0 */) {
- if (!Weight)
- Weight = getEdgeWeight(Src, Dst);
- Src->addSuccessor(Dst, Weight);
- }
- static bool InBlock(const Value *V, const BasicBlock *BB) {
- if (const Instruction *I = dyn_cast<Instruction>(V))
- return I->getParent() == BB;
- return true;
- }
- /// EmitBranchForMergedCondition - Helper method for FindMergedConditions.
- /// This function emits a branch and is used at the leaves of an OR or an
- /// AND operator tree.
- ///
- void
- SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond,
- MachineBasicBlock *TBB,
- MachineBasicBlock *FBB,
- MachineBasicBlock *CurBB,
- MachineBasicBlock *SwitchBB,
- uint32_t TWeight,
- uint32_t FWeight) {
- const BasicBlock *BB = CurBB->getBasicBlock();
- // If the leaf of the tree is a comparison, merge the condition into
- // the caseblock.
- if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) {
- // The operands of the cmp have to be in this block. We don't know
- // how to export them from some other block. If this is the first block
- // of the sequence, no exporting is needed.
- if (CurBB == SwitchBB ||
- (isExportableFromCurrentBlock(BOp->getOperand(0), BB) &&
- isExportableFromCurrentBlock(BOp->getOperand(1), BB))) {
- ISD::CondCode Condition;
- if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) {
- Condition = getICmpCondCode(IC->getPredicate());
- } else if (const FCmpInst *FC = dyn_cast<FCmpInst>(Cond)) {
- Condition = getFCmpCondCode(FC->getPredicate());
- if (TM.Options.NoNaNsFPMath)
- Condition = getFCmpCodeWithoutNaN(Condition);
- } else {
- (void)Condition; // silence warning.
- llvm_unreachable("Unknown compare instruction");
- }
- CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr,
- TBB, FBB, CurBB, TWeight, FWeight);
- SwitchCases.push_back(CB);
- return;
- }
- }
- // Create a CaseBlock record representing this branch.
- CaseBlock CB(ISD::SETEQ, Cond, ConstantInt::getTrue(*DAG.getContext()),
- nullptr, TBB, FBB, CurBB, TWeight, FWeight);
- SwitchCases.push_back(CB);
- }
- /// Scale down both weights to fit into uint32_t.
- static void ScaleWeights(uint64_t &NewTrue, uint64_t &NewFalse) {
- uint64_t NewMax = (NewTrue > NewFalse) ? NewTrue : NewFalse;
- uint32_t Scale = (NewMax / UINT32_MAX) + 1;
- NewTrue = NewTrue / Scale;
- NewFalse = NewFalse / Scale;
- }
- /// FindMergedConditions - If Cond is an expression like
- void SelectionDAGBuilder::FindMergedConditions(const Value *Cond,
- MachineBasicBlock *TBB,
- MachineBasicBlock *FBB,
- MachineBasicBlock *CurBB,
- MachineBasicBlock *SwitchBB,
- unsigned Opc, uint32_t TWeight,
- uint32_t FWeight) {
- // If this node is not part of the or/and tree, emit it as a branch.
- const Instruction *BOp = dyn_cast<Instruction>(Cond);
- if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) ||
- (unsigned)BOp->getOpcode() != Opc || !BOp->hasOneUse() ||
- BOp->getParent() != CurBB->getBasicBlock() ||
- !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) ||
- !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) {
- EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB,
- TWeight, FWeight);
- return;
- }
- // Create TmpBB after CurBB.
- MachineFunction::iterator BBI = CurBB;
- MachineFunction &MF = DAG.getMachineFunction();
- MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock());
- CurBB->getParent()->insert(++BBI, TmpBB);
- if (Opc == Instruction::Or) {
- // Codegen X | Y as:
- // BB1:
- // jmp_if_X TBB
- // jmp TmpBB
- // TmpBB:
- // jmp_if_Y TBB
- // jmp FBB
- //
- // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
- // The requirement is that
- // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB)
- // = TrueProb for original BB.
- // Assuming the original weights are A and B, one choice is to set BB1's
- // weights to A and A+2B, and set TmpBB's weights to A and 2B. This choice
- // assumes that
- // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB.
- // Another choice is to assume TrueProb for BB1 equals to TrueProb for
- // TmpBB, but the math is more complicated.
- uint64_t NewTrueWeight = TWeight;
- uint64_t NewFalseWeight = (uint64_t)TWeight + 2 * (uint64_t)FWeight;
- ScaleWeights(NewTrueWeight, NewFalseWeight);
- // Emit the LHS condition.
- FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc,
- NewTrueWeight, NewFalseWeight);
- NewTrueWeight = TWeight;
- NewFalseWeight = 2 * (uint64_t)FWeight;
- ScaleWeights(NewTrueWeight, NewFalseWeight);
- // Emit the RHS condition into TmpBB.
- FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc,
- NewTrueWeight, NewFalseWeight);
- } else {
- assert(Opc == Instruction::And && "Unknown merge op!");
- // Codegen X & Y as:
- // BB1:
- // jmp_if_X TmpBB
- // jmp FBB
- // TmpBB:
- // jmp_if_Y TBB
- // jmp FBB
- //
- // This requires creation of TmpBB after CurBB.
- // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
- // The requirement is that
- // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB)
- // = FalseProb for original BB.
- // Assuming the original weights are A and B, one choice is to set BB1's
- // weights to 2A+B and B, and set TmpBB's weights to 2A and B. This choice
- // assumes that
- // FalseProb for BB1 == TrueProb for BB1 * FalseProb for TmpBB.
- uint64_t NewTrueWeight = 2 * (uint64_t)TWeight + (uint64_t)FWeight;
- uint64_t NewFalseWeight = FWeight;
- ScaleWeights(NewTrueWeight, NewFalseWeight);
- // Emit the LHS condition.
- FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc,
- NewTrueWeight, NewFalseWeight);
- NewTrueWeight = 2 * (uint64_t)TWeight;
- NewFalseWeight = FWeight;
- ScaleWeights(NewTrueWeight, NewFalseWeight);
- // Emit the RHS condition into TmpBB.
- FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc,
- NewTrueWeight, NewFalseWeight);
- }
- }
- /// If the set of cases should be emitted as a series of branches, return true.
- /// If we should emit this as a bunch of and/or'd together conditions, return
- /// false.
- bool
- SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) {
- if (Cases.size() != 2) return true;
- // If this is two comparisons of the same values or'd or and'd together, they
- // will get folded into a single comparison, so don't emit two blocks.
- if ((Cases[0].CmpLHS == Cases[1].CmpLHS &&
- Cases[0].CmpRHS == Cases[1].CmpRHS) ||
- (Cases[0].CmpRHS == Cases[1].CmpLHS &&
- Cases[0].CmpLHS == Cases[1].CmpRHS)) {
- return false;
- }
- // Handle: (X != null) | (Y != null) --> (X|Y) != 0
- // Handle: (X == null) & (Y == null) --> (X|Y) == 0
- if (Cases[0].CmpRHS == Cases[1].CmpRHS &&
- Cases[0].CC == Cases[1].CC &&
- isa<Constant>(Cases[0].CmpRHS) &&
- cast<Constant>(Cases[0].CmpRHS)->isNullValue()) {
- if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB)
- return false;
- if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB)
- return false;
- }
- return true;
- }
- void SelectionDAGBuilder::visitBr(const BranchInst &I) {
- MachineBasicBlock *BrMBB = FuncInfo.MBB;
- // Update machine-CFG edges.
- MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)];
- if (I.isUnconditional()) {
- // Update machine-CFG edges.
- BrMBB->addSuccessor(Succ0MBB);
- // If this is not a fall-through branch or optimizations are switched off,
- // emit the branch.
- if (Succ0MBB != NextBlock(BrMBB) || TM.getOptLevel() == CodeGenOpt::None)
- DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(),
- MVT::Other, getControlRoot(),
- DAG.getBasicBlock(Succ0MBB)));
- return;
- }
- // If this condition is one of the special cases we handle, do special stuff
- // now.
- const Value *CondVal = I.getCondition();
- MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)];
- // If this is a series of conditions that are or'd or and'd together, emit
- // this as a sequence of branches instead of setcc's with and/or operations.
- // As long as jumps are not expensive, this should improve performance.
- // For example, instead of something like:
- // cmp A, B
- // C = seteq
- // cmp D, E
- // F = setle
- // or C, F
- // jnz foo
- // Emit:
- // cmp A, B
- // je foo
- // cmp D, E
- // jle foo
- //
- if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) {
- if (!DAG.getTargetLoweringInfo().isJumpExpensive() &&
- BOp->hasOneUse() && (BOp->getOpcode() == Instruction::And ||
- BOp->getOpcode() == Instruction::Or)) {
- FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB,
- BOp->getOpcode(), getEdgeWeight(BrMBB, Succ0MBB),
- getEdgeWeight(BrMBB, Succ1MBB));
- // If the compares in later blocks need to use values not currently
- // exported from this block, export them now. This block should always
- // be the first entry.
- assert(SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!");
- // Allow some cases to be rejected.
- if (ShouldEmitAsBranches(SwitchCases)) {
- for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) {
- ExportFromCurrentBlock(SwitchCases[i].CmpLHS);
- ExportFromCurrentBlock(SwitchCases[i].CmpRHS);
- }
- // Emit the branch for this block.
- visitSwitchCase(SwitchCases[0], BrMBB);
- SwitchCases.erase(SwitchCases.begin());
- return;
- }
- // Okay, we decided not to do this, remove any inserted MBB's and clear
- // SwitchCases.
- for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i)
- FuncInfo.MF->erase(SwitchCases[i].ThisBB);
- SwitchCases.clear();
- }
- }
- // Create a CaseBlock record representing this branch.
- CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()),
- nullptr, Succ0MBB, Succ1MBB, BrMBB);
- // Use visitSwitchCase to actually insert the fast branch sequence for this
- // cond branch.
- visitSwitchCase(CB, BrMBB);
- }
- /// visitSwitchCase - Emits the necessary code to represent a single node in
- /// the binary search tree resulting from lowering a switch instruction.
- void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB,
- MachineBasicBlock *SwitchBB) {
- SDValue Cond;
- SDValue CondLHS = getValue(CB.CmpLHS);
- SDLoc dl = getCurSDLoc();
- // Build the setcc now.
- if (!CB.CmpMHS) {
- // Fold "(X == true)" to X and "(X == false)" to !X to
- // handle common cases produced by branch lowering.
- if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) &&
- CB.CC == ISD::SETEQ)
- Cond = CondLHS;
- else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) &&
- CB.CC == ISD::SETEQ) {
- SDValue True = DAG.getConstant(1, dl, CondLHS.getValueType());
- Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True);
- } else
- Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC);
- } else {
- assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now");
- const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue();
- const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue();
- SDValue CmpOp = getValue(CB.CmpMHS);
- EVT VT = CmpOp.getValueType();
- if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) {
- Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, dl, VT),
- ISD::SETLE);
- } else {
- SDValue SUB = DAG.getNode(ISD::SUB, dl,
- VT, CmpOp, DAG.getConstant(Low, dl, VT));
- Cond = DAG.getSetCC(dl, MVT::i1, SUB,
- DAG.getConstant(High-Low, dl, VT), ISD::SETULE);
- }
- }
- // Update successor info
- addSuccessorWithWeight(SwitchBB, CB.TrueBB, CB.TrueWeight);
- // TrueBB and FalseBB are always different unless the incoming IR is
- // degenerate. This only happens when running llc on weird IR.
- if (CB.TrueBB != CB.FalseBB)
- addSuccessorWithWeight(SwitchBB, CB.FalseBB, CB.FalseWeight);
- // If the lhs block is the next block, invert the condition so that we can
- // fall through to the lhs instead of the rhs block.
- if (CB.TrueBB == NextBlock(SwitchBB)) {
- std::swap(CB.TrueBB, CB.FalseBB);
- SDValue True = DAG.getConstant(1, dl, Cond.getValueType());
- Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True);
- }
- SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
- MVT::Other, getControlRoot(), Cond,
- DAG.getBasicBlock(CB.TrueBB));
- // Insert the false branch. Do this even if it's a fall through branch,
- // this makes it easier to do DAG optimizations which require inverting
- // the branch condition.
- BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
- DAG.getBasicBlock(CB.FalseBB));
- DAG.setRoot(BrCond);
- }
- /// visitJumpTable - Emit JumpTable node in the current MBB
- void SelectionDAGBuilder::visitJumpTable(JumpTable &JT) {
- // Emit the code for the jump table
- assert(JT.Reg != -1U && "Should lower JT Header first!");
- EVT PTy = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
- SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(),
- JT.Reg, PTy);
- SDValue Table = DAG.getJumpTable(JT.JTI, PTy);
- SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurSDLoc(),
- MVT::Other, Index.getValue(1),
- Table, Index);
- DAG.setRoot(BrJumpTable);
- }
- /// visitJumpTableHeader - This function emits necessary code to produce index
- /// in the JumpTable from switch case.
- void SelectionDAGBuilder::visitJumpTableHeader(JumpTable &JT,
- JumpTableHeader &JTH,
- MachineBasicBlock *SwitchBB) {
- SDLoc dl = getCurSDLoc();
- // Subtract the lowest switch case value from the value being switched on and
- // conditional branch to default mbb if the result is greater than the
- // difference between smallest and largest cases.
- SDValue SwitchOp = getValue(JTH.SValue);
- EVT VT = SwitchOp.getValueType();
- SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp,
- DAG.getConstant(JTH.First, dl, VT));
- // The SDNode we just created, which holds the value being switched on minus
- // the smallest case value, needs to be copied to a virtual register so it
- // can be used as an index into the jump table in a subsequent basic block.
- // This value may be smaller or larger than the target's pointer type, and
- // therefore require extension or truncating.
- const TargetLowering &TLI = DAG.getTargetLoweringInfo();
- SwitchOp = DAG.getZExtOrTrunc(Sub, dl, TLI.getPointerTy(DAG.getDataLayout()));
- unsigned JumpTableReg =
- FuncInfo.CreateReg(TLI.getPointerTy(DAG.getDataLayout()));
- SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl,
- JumpTableReg, SwitchOp);
- JT.Reg = JumpTableReg;
- // Emit the range check for the jump table, and branch to the default block
- // for the switch statement if the value being switched on exceeds the largest
- // case in the switch.
- SDValue CMP = DAG.getSetCC(
- dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
- Sub.getValueType()),
- Sub, DAG.getConstant(JTH.Last - JTH.First, dl, VT), ISD::SETUGT);
- SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
- MVT::Other, CopyTo, CMP,
- DAG.getBasicBlock(JT.Default));
- // Avoid emitting unnecessary branches to the next block.
- if (JT.MBB != NextBlock(SwitchBB))
- BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
- DAG.getBasicBlock(JT.MBB));
- DAG.setRoot(BrCond);
- }
- /// Codegen a new tail for a stack protector check ParentMBB which has had its
- /// tail spliced into a stack protector check success bb.
- ///
- /// For a high level explanation of how this fits into the stack protector
- /// generation see the comment on the declaration of class
- /// StackProtectorDescriptor.
- void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD,
- MachineBasicBlock *ParentBB) {
- // First create the loads to the guard/stack slot for the comparison.
- const TargetLowering &TLI = DAG.getTargetLoweringInfo();
- EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
- MachineFrameInfo *MFI = ParentBB->getParent()->getFrameInfo();
- int FI = MFI->getStackProtectorIndex();
- const Value *IRGuard = SPD.getGuard();
- SDValue GuardPtr = getValue(IRGuard);
- SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy);
- unsigned Align = DL->getPrefTypeAlignment(IRGuard->getType());
- SDValue Guard;
- SDLoc dl = getCurSDLoc();
- // If GuardReg is set and useLoadStackGuardNode returns true, retrieve the
- // guard value from the virtual register holding the value. Otherwise, emit a
- // volatile load to retrieve the stack guard value.
- unsigned GuardReg = SPD.getGuardReg();
- if (GuardReg && TLI.useLoadStackGuardNode())
- Guard = DAG.getCopyFromReg(DAG.getEntryNode(), dl, GuardReg,
- PtrTy);
- else
- Guard = DAG.getLoad(PtrTy, dl, DAG.getEntryNode(),
- GuardPtr, MachinePointerInfo(IRGuard, 0),
- true, false, false, Align);
- SDValue StackSlot = DAG.getLoad(PtrTy, dl, DAG.getEntryNode(),
- StackSlotPtr,
- MachinePointerInfo::getFixedStack(FI),
- true, false, false, Align);
- // Perform the comparison via a subtract/getsetcc.
- EVT VT = Guard.getValueType();
- SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, Guard, StackSlot);
- SDValue Cmp = DAG.getSetCC(dl, TLI.getSetCCResultType(DAG.getDataLayout(),
- *DAG.getContext(),
- Sub.getValueType()),
- Sub, DAG.getConstant(0, dl, VT), ISD::SETNE);
- // If the sub is not 0, then we know the guard/stackslot do not equal, so
- // branch to failure MBB.
- SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
- MVT::Other, StackSlot.getOperand(0),
- Cmp, DAG.getBasicBlock(SPD.getFailureMBB()));
- // Otherwise branch to success MBB.
- SDValue Br = DAG.getNode(ISD::BR, dl,
- MVT::Other, BrCond,
- DAG.getBasicBlock(SPD.getSuccessMBB()));
- DAG.setRoot(Br);
- }
- /// Codegen the failure basic block for a stack protector check.
- ///
- /// A failure stack protector machine basic block consists simply of a call to
- /// __stack_chk_fail().
- ///
- /// For a high level explanation of how this fits into the stack protector
- /// generation see the comment on the declaration of class
- /// StackProtectorDescriptor.
- void
- SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) {
- const TargetLowering &TLI = DAG.getTargetLoweringInfo();
- SDValue Chain =
- TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid,
- nullptr, 0, false, getCurSDLoc(), false, false).second;
- DAG.setRoot(Chain);
- }
- /// visitBitTestHeader - This function emits necessary code to produce value
- /// suitable for "bit tests"
- void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B,
- MachineBasicBlock *SwitchBB) {
- SDLoc dl = getCurSDLoc();
- // Subtract the minimum value
- SDValue SwitchOp = getValue(B.SValue);
- EVT VT = SwitchOp.getValueType();
- SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp,
- DAG.getConstant(B.First, dl, VT));
- // Check range
- const TargetLowering &TLI = DAG.getTargetLoweringInfo();
- SDValue RangeCmp = DAG.getSetCC(
- dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
- Sub.getValueType()),
- Sub, DAG.getConstant(B.Range, dl, VT), ISD::SETUGT);
- // Determine the type of the test operands.
- bool UsePtrType = false;
- if (!TLI.isTypeLegal(VT))
- UsePtrType = true;
- else {
- for (unsigned i = 0, e = B.Cases.size(); i != e; ++i)
- if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) {
- // Switch table case range are encoded into series of masks.
- // Just use pointer type, it's guaranteed to fit.
- UsePtrType = true;
- break;
- }
- }
- if (UsePtrType) {
- VT = TLI.getPointerTy(DAG.getDataLayout());
- Sub = DAG.getZExtOrTrunc(Sub, dl, VT);
- }
- B.RegVT = VT.getSimpleVT();
- B.Reg = FuncInfo.CreateReg(B.RegVT);
- SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, B.Reg, Sub);
- MachineBasicBlock* MBB = B.Cases[0].ThisBB;
- addSuccessorWithWeight(SwitchBB, B.Default);
- addSuccessorWithWeight(SwitchBB, MBB);
- SDValue BrRange = DAG.getNode(ISD::BRCOND, dl,
- MVT::Other, CopyTo, RangeCmp,
- DAG.getBasicBlock(B.Default));
- // Avoid emitting unnecessary branches to the next block.
- if (MBB != NextBlock(SwitchBB))
- BrRange = DAG.getNode(ISD::BR, dl, MVT::Other, BrRange,
- DAG.getBasicBlock(MBB));
- DAG.setRoot(BrRange);
- }
- /// visitBitTestCase - this function produces one "bit test"
- void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB,
- MachineBasicBlock* NextMBB,
- uint32_t BranchWeightToNext,
- unsigned Reg,
- BitTestCase &B,
- MachineBasicBlock *SwitchBB) {
- SDLoc dl = getCurSDLoc();
- MVT VT = BB.RegVT;
- SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), dl, Reg, VT);
- SDValue Cmp;
- unsigned PopCount = countPopulation(B.Mask);
- const TargetLowering &TLI = DAG.getTargetLoweringInfo();
- if (PopCount == 1) {
- // Testing for a single bit; just compare the shift count with what it
- // would need to be to shift a 1 bit in that position.
- Cmp = DAG.getSetCC(
- dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
- ShiftOp, DAG.getConstant(countTrailingZeros(B.Mask), dl, VT),
- ISD::SETEQ);
- } else if (PopCount == BB.Range) {
- // There is only one zero bit in the range, test for it directly.
- Cmp = DAG.getSetCC(
- dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
- ShiftOp, DAG.getConstant(countTrailingOnes(B.Mask), dl, VT),
- ISD::SETNE);
- } else {
- // Make desired shift
- SDValue SwitchVal = DAG.getNode(ISD::SHL, dl, VT,
- DAG.getConstant(1, dl, VT), ShiftOp);
- // Emit bit tests and jumps
- SDValue AndOp = DAG.getNode(ISD::AND, dl,
- VT, SwitchVal, DAG.getConstant(B.Mask, dl, VT));
- Cmp = DAG.getSetCC(
- dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
- AndOp, DAG.getConstant(0, dl, VT), ISD::SETNE);
- }
- // The branch weight from SwitchBB to B.TargetBB is B.ExtraWeight.
- addSuccessorWithWeight(SwitchBB, B.TargetBB, B.ExtraWeight);
- // The branch weight from SwitchBB to NextMBB is BranchWeightToNext.
- addSuccessorWithWeight(SwitchBB, NextMBB, BranchWeightToNext);
- SDValue BrAnd = DAG.getNode(ISD::BRCOND, dl,
- MVT::Other, getControlRoot(),
- Cmp, DAG.getBasicBlock(B.TargetBB));
- // Avoid emitting unnecessary branches to the next block.
- if (NextMBB != NextBlock(SwitchBB))
- BrAnd = DAG.getNode(ISD::BR, dl, MVT::Other, BrAnd,
- DAG.getBasicBlock(NextMBB));
- DAG.setRoot(BrAnd);
- }
- void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) {
- MachineBasicBlock *InvokeMBB = FuncInfo.MBB;
- // Retrieve successors.
- MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)];
- MachineBasicBlock *LandingPad = FuncInfo.MBBMap[I.getSuccessor(1)];
- const Value *Callee(I.getCalledValue());
- const Function *Fn = dyn_cast<Function>(Callee);
- if (isa<InlineAsm>(Callee))
- visitInlineAsm(&I);
- else if (Fn && Fn->isIntrinsic()) {
- switch (Fn->getIntrinsicID()) {
- default:
- llvm_unreachable("Cannot invoke this intrinsic");
- case Intrinsic::donothing:
- // Ignore invokes to @llvm.donothing: jump directly to the next BB.
- break;
- case Intrinsic::experimental_patchpoint_void:
- case Intrinsic::experimental_patchpoint_i64:
- visitPatchpoint(&I, LandingPad);
- break;
- case Intrinsic::experimental_gc_statepoint:
- LowerStatepoint(ImmutableStatepoint(&I), LandingPad);
- break;
- }
- } else
- LowerCallTo(&I, getValue(Callee), false, LandingPad);
- // If the value of the invoke is used outside of its defining block, make it
- // available as a virtual register.
- // We already took care of the exported value for the statepoint instruction
- // during call to the LowerStatepoint.
- if (!isStatepoint(I)) {
- CopyToExportRegsIfNeeded(&I);
- }
- // Update successor info
- addSuccessorWithWeight(InvokeMBB, Return);
- addSuccessorWithWeight(InvokeMBB, LandingPad);
- // Drop into normal successor.
- DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(),
- MVT::Other, getControlRoot(),
- DAG.getBasicBlock(Return)));
- }
- void SelectionDAGBuilder::visitResume(const ResumeInst &RI) {
- llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!");
- }
- void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) {
- assert(FuncInfo.MBB->isLandingPad() &&
- "Call to landingpad not in landing pad!");
- MachineBasicBlock *MBB = FuncInfo.MBB;
- MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
- AddLandingPadInfo(LP, MMI, MBB);
- // If there aren't registers to copy the values into (e.g., during SjLj
- // exceptions), then don't bother to create these DAG nodes.
- const TargetLowering &TLI = DAG.getTargetLoweringInfo();
- if (TLI.getExceptionPointerRegister() == 0 &&
- TLI.getExceptionSelectorRegister() == 0)
- return;
- SmallVector<EVT, 2> ValueVTs;
- SDLoc dl = getCurSDLoc();
- ComputeValueVTs(TLI, DAG.getDataLayout(), LP.getType(), ValueVTs);
- assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported");
- // Get the two live-in registers as SDValues. The physregs have already been
- // copied into virtual registers.
- SDValue Ops[2];
- if (FuncInfo.ExceptionPointerVirtReg) {
- Ops[0] = DAG.getZExtOrTrunc(
- DAG.getCopyFromReg(DAG.getEntryNode(), dl,
- FuncInfo.ExceptionPointerVirtReg,
- TLI.getPointerTy(DAG.getDataLayout())),
- dl, ValueVTs[0]);
- } else {
- Ops[0] = DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout()));
- }
- Ops[1] = DAG.getZExtOrTrunc(
- DAG.getCopyFromReg(DAG.getEntryNode(), dl,
- FuncInfo.ExceptionSelectorVirtReg,
- TLI.getPointerTy(DAG.getDataLayout())),
- dl, ValueVTs[1]);
- // Merge into one.
- SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl,
- DAG.getVTList(ValueVTs), Ops);
- setValue(&LP, Res);
- }
- void SelectionDAGBuilder::sortAndRangeify(CaseClusterVector &Clusters) {
- #ifndef NDEBUG
- for (const CaseCluster &CC : Clusters)
- assert(CC.Low == CC.High && "Input clusters must be single-case");
- #endif
- std::sort(Clusters.begin(), Clusters.end(),
- [](const CaseCluster &a, const CaseCluster &b) {
- return a.Low->getValue().slt(b.Low->getValue());
- });
- // Merge adjacent clusters with the same destination.
- const unsigned N = Clusters.size();
- unsigned DstIndex = 0;
- for (unsigned SrcIndex = 0; SrcIndex < N; ++SrcIndex) {
- CaseCluster &CC = Clusters[SrcIndex];
- const ConstantInt *CaseVal = CC.Low;
- MachineBasicBlock *Succ = CC.MBB;
- if (DstIndex != 0 && Clusters[DstIndex - 1].MBB == Succ &&
- (CaseVal->getValue() - Clusters[DstIndex - 1].High->getValue()) == 1) {
- // If this case has the same successor and is a neighbour, merge it into
- // the previous cluster.
- Clusters[DstIndex - 1].High = CaseVal;
- Clusters[DstIndex - 1].Weight += CC.Weight;
- assert(Clusters[DstIndex - 1].Weight >= CC.Weight && "Weight overflow!");
- } else {
- std::memmove(&Clusters[DstIndex++], &Clusters[SrcIndex],
- sizeof(Clusters[SrcIndex]));
- }
- }
- Clusters.resize(DstIndex);
- }
- void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First,
- MachineBasicBlock *Last) {
- // Update JTCases.
- for (unsigned i = 0, e = JTCases.size(); i != e; ++i)
- if (JTCases[i].first.HeaderBB == First)
- JTCases[i].first.HeaderBB = Last;
- // Update BitTestCases.
- for (unsigned i = 0, e = BitTestCases.size(); i != e; ++i)
- if (BitTestCases[i].Parent == First)
- BitTestCases[i].Parent = Last;
- }
- void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) {
- MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB;
- // Update machine-CFG edges with unique successors.
- SmallSet<BasicBlock*, 32> Done;
- for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) {
- BasicBlock *BB = I.getSuccessor(i);
- bool Inserted = Done.insert(BB).second;
- if (!Inserted)
- continue;
- MachineBasicBlock *Succ = FuncInfo.MBBMap[BB];
- addSuccessorWithWeight(IndirectBrMBB, Succ);
- }
- DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(),
- MVT::Other, getControlRoot(),
- getValue(I.getAddress())));
- }
- void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) {
- if (DAG.getTarget().Options.TrapUnreachable)
- DAG.setRoot(DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot()));
- }
- void SelectionDAGBuilder::visitFSub(const User &I) {
- // -0.0 - X --> fneg
- Type *Ty = I.getType();
- if (isa<Constant>(I.getOperand(0)) &&
- I.getOperand(0) == ConstantFP::getZeroValueForNegation(Ty)) {
- SDValue Op2 = getValue(I.getOperand(1));
- setValue(&I, DAG.getNode(ISD::FNEG, getCurSDLoc(),
- Op2.getValueType(), Op2));
- return;
- }
- visitBinary(I, ISD::FSUB);
- }
- void SelectionDAGBuilder::visitBinary(const User &I, unsigned OpCode) {
- SDValue Op1 = getValue(I.getOperand(0));
- SDValue Op2 = getValue(I.getOperand(1));
- bool nuw = false;
- bool nsw = false;
- bool exact = false;
- FastMathFlags FMF;
- if (const OverflowingBinaryOperator *OFBinOp =
- dyn_cast<const OverflowingBinaryOperator>(&I)) {
- nuw = OFBinOp->hasNoUnsignedWrap();
- nsw = OFBinOp->hasNoSignedWrap();
- }
- if (const PossiblyExactOperator *ExactOp =
- dyn_cast<const PossiblyExactOperator>(&I))
- exact = ExactOp->isExact();
- if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(&I))
- FMF = FPOp->getFastMathFlags();
- SDNodeFlags Flags;
- Flags.setExact(exact);
- Flags.setNoSignedWrap(nsw);
- Flags.setNoUnsignedWrap(nuw);
- if (EnableFMFInDAG) {
- Flags.setAllowReciprocal(FMF.allowReciprocal());
- Flags.setNoInfs(FMF.noInfs());
- Flags.setNoNaNs(FMF.noNaNs());
- Flags.setNoSignedZeros(FMF.noSignedZeros());
- Flags.setUnsafeAlgebra(FMF.unsafeAlgebra());
- }
- SDValue BinNodeValue = DAG.getNode(OpCode, getCurSDLoc(), Op1.getValueType(),
- Op1, Op2, &Flags);
- setValue(&I, BinNodeValue);
- }
- void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) {
- SDValue Op1 = getValue(I.getOperand(0));
- SDValue Op2 = getValue(I.getOperand(1));
- EVT ShiftTy = DAG.getTargetLoweringInfo().getShiftAmountTy(
- Op2.getValueType(), DAG.getDataLayout());
- // Coerce the shift amount to the right type if we can.
- if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) {
- unsigned ShiftSize = ShiftTy.getSizeInBits();
- unsigned Op2Size = Op2.getValueType().getSizeInBits();
- SDLoc DL = getCurSDLoc();
- // If the operand is smaller than the shift count type, promote it.
- if (ShiftSize > Op2Size)
- Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2);
- // If the operand is larger than the shift count type but the shift
- // count type has enough bits to represent any shift value, truncate
- // it now. This is a common case and it exposes the truncate to
- // optimization early.
- else if (ShiftSize >= Log2_32_Ceil(Op2.getValueType().getSizeInBits()))
- Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2);
- // Otherwise we'll need to temporarily settle for some other convenient
- // type. Type legalization will make adjustments once the shiftee is split.
- else
- Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32);
- }
- bool nuw = false;
- bool nsw = false;
- bool exact = false;
- if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) {
- if (const OverflowingBinaryOperator *OFBinOp =
- dyn_cast<const OverflowingBinaryOperator>(&I)) {
- nuw = OFBinOp->hasNoUnsignedWrap();
- nsw = OFBinOp->hasNoSignedWrap();
- }
- if (const PossiblyExactOperator *ExactOp =
- dyn_cast<const PossiblyExactOperator>(&I))
- exact = ExactOp->isExact();
- }
- SDNodeFlags Flags;
- Flags.setExact(exact);
- Flags.setNoSignedWrap(nsw);
- Flags.setNoUnsignedWrap(nuw);
- SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2,
- &Flags);
- setValue(&I, Res);
- }
- void SelectionDAGBuilder::visitSDiv(const User &I) {
- SDValue Op1 = getValue(I.getOperand(0));
- SDValue Op2 = getValue(I.getOperand(1));
- SDNodeFlags Flags;
- Flags.setExact(isa<PossiblyExactOperator>(&I) &&
- cast<PossiblyExactOperator>(&I)->isExact());
- setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), Op1,
- Op2, &Flags));
- }
- void SelectionDAGBuilder::visitICmp(const User &I) {
- ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE;
- if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I))
- predicate = IC->getPredicate();
- else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I))
- predicate = ICmpInst::Predicate(IC->getPredicate());
- SDValue Op1 = getValue(I.getOperand(0));
- SDValue Op2 = getValue(I.getOperand(1));
- ISD::CondCode Opcode = getICmpCondCode(predicate);
- EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
- I.getType());
- setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode));
- }
- void SelectionDAGBuilder::visitFCmp(const User &I) {
- FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE;
- if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I))
- predicate = FC->getPredicate();
- else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I))
- predicate = FCmpInst::Predicate(FC->getPredicate());
- SDValue Op1 = getValue(I.getOperand(0));
- SDValue Op2 = getValue(I.getOperand(1));
- ISD::CondCode Condition = getFCmpCondCode(predicate);
- if (TM.Options.NoNaNsFPMath)
- Condition = getFCmpCodeWithoutNaN(Condition);
- EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
- I.getType());
- setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition));
- }
- void SelectionDAGBuilder::visitSelect(const User &I) {
- SmallVector<EVT, 4> ValueVTs;
- ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(),
- ValueVTs);
- unsigned NumValues = ValueVTs.size();
- if (NumValues == 0) return;
- SmallVector<SDValue, 4> Values(NumValues);
- SDValue Cond = getValue(I.getOperand(0));
- SDValue LHSVal = getValue(I.getOperand(1));
- SDValue RHSVal = getValue(I.getOperand(2));
- auto BaseOps = {Cond};
- ISD::NodeType OpCode = Cond.getValueType().isVector() ?
- ISD::VSELECT : ISD::SELECT;
- // Min/max matching is only viable if all output VTs are the same.
- if (std::equal(ValueVTs.begin(), ValueVTs.end(), ValueVTs.begin())) {
- Value *LHS, *RHS;
- SelectPatternFlavor SPF = matchSelectPattern(const_cast<User*>(&I), LHS, RHS);
- ISD::NodeType Opc = ISD::DELETED_NODE;
- switch (SPF) {
- case SPF_UMAX: Opc = ISD::UMAX; break;
- case SPF_UMIN: Opc = ISD::UMIN; break;
- case SPF_SMAX: Opc = ISD::SMAX; break;
- case SPF_SMIN: Opc = ISD::SMIN; break;
- default: break;
- }
- EVT VT = ValueVTs[0];
- LLVMContext &Ctx = *DAG.getContext();
- auto &TLI = DAG.getTargetLoweringInfo();
- while (TLI.getTypeAction(Ctx, VT) == TargetLoweringBase::TypeSplitVector)
- VT = TLI.getTypeToTransformTo(Ctx, VT);
- if (Opc != ISD::DELETED_NODE && TLI.isOperationLegalOrCustom(Opc, VT) &&
- // If the underlying comparison instruction is used by any other instruction,
- // the consumed instructions won't be destroyed, so it is not profitable
- // to convert to a min/max.
- cast<SelectInst>(&I)->getCondition()->hasOneUse()) {
- OpCode = Opc;
- LHSVal = getValue(LHS);
- RHSVal = getValue(RHS);
- BaseOps = {};
- }
- }
- for (unsigned i = 0; i != NumValues; ++i) {
- SmallVector<SDValue, 3> Ops(BaseOps.begin(), BaseOps.end());
- Ops.push_back(SDValue(LHSVal.getNode(), LHSVal.getResNo() + i));
- Ops.push_back(SDValue(RHSVal.getNode(), RHSVal.getResNo() + i));
- Values[i] = DAG.getNode(OpCode, getCurSDLoc(),
- LHSVal.getNode()->getValueType(LHSVal.getResNo()+i),
- Ops);
- }
- setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
- DAG.getVTList(ValueVTs), Values));
- }
- void SelectionDAGBuilder::visitTrunc(const User &I) {
- // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest).
- SDValue N = getValue(I.getOperand(0));
- EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
- I.getType());
- setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N));
- }
- void SelectionDAGBuilder::visitZExt(const User &I) {
- // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
- // ZExt also can't be a cast to bool for same reason. So, nothing much to do
- SDValue N = getValue(I.getOperand(0));
- EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
- I.getType());
- setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N));
- }
- void SelectionDAGBuilder::visitSExt(const User &I) {
- // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
- // SExt also can't be a cast to bool for same reason. So, nothing much to do
- SDValue N = getValue(I.getOperand(0));
- EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
- I.getType());
- setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N));
- }
- void SelectionDAGBuilder::visitFPTrunc(const User &I) {
- // FPTrunc is never a no-op cast, no need to check
- SDValue N = getValue(I.getOperand(0));
- SDLoc dl = getCurSDLoc();
- const TargetLowering &TLI = DAG.getTargetLoweringInfo();
- EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
- setValue(&I, DAG.getNode(ISD::FP_ROUND, dl, DestVT, N,
- DAG.getTargetConstant(
- 0, dl, TLI.getPointerTy(DAG.getDataLayout()))));
- }
- void SelectionDAGBuilder::visitFPExt(const User &I) {
- // FPExt is never a no-op cast, no need to check
- SDValue N = getValue(I.getOperand(0));
- EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
- I.getType());
- setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N));
- }
- void SelectionDAGBuilder::visitFPToUI(const User &I) {
- // FPToUI is never a no-op cast, no need to check
- SDValue N = getValue(I.getOperand(0));
- EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
- I.getType());
- setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N));
- }
- void SelectionDAGBuilder::visitFPToSI(const User &I) {
- // FPToSI is never a no-op cast, no need to check
- SDValue N = getValue(I.getOperand(0));
- EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
- I.getType());
- setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N));
- }
- void SelectionDAGBuilder::visitUIToFP(const User &I) {
- // UIToFP is never a no-op cast, no need to check
- SDValue N = getValue(I.getOperand(0));
- EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
- I.getType());
- setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N));
- }
- void SelectionDAGBuilder::visitSIToFP(const User &I) {
- // SIToFP is never a no-op cast, no need to check
- SDValue N = getValue(I.getOperand(0));
- EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
- I.getType());
- setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N));
- }
- void SelectionDAGBuilder::visitPtrToInt(const User &I) {
- // What to do depends on the size of the integer and the size of the pointer.
- // We can either truncate, zero extend, or no-op, accordingly.
- SDValue N = getValue(I.getOperand(0));
- EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
- I.getType());
- setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT));
- }
- void SelectionDAGBuilder::visitIntToPtr(const User &I) {
- // What to do depends on the size of the integer and the size of the pointer.
- // We can either truncate, zero extend, or no-op, accordingly.
- SDValue N = getValue(I.getOperand(0));
- EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
- I.getType());
- setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT));
- }
- void SelectionDAGBuilder::visitBitCast(const User &I) {
- SDValue N = getValue(I.getOperand(0));
- SDLoc dl = getCurSDLoc();
- EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
- I.getType());
- // BitCast assures us that source and destination are the same size so this is
- // either a BITCAST or a no-op.
- if (DestVT != N.getValueType())
- setValue(&I, DAG.getNode(ISD::BITCAST, dl,
- DestVT, N)); // convert types.
- // Check if the original LLVM IR Operand was a ConstantInt, because getValue()
- // might fold any kind of constant expression to an integer constant and that
- // is not what we are looking for. Only regcognize a bitcast of a genuine
- // constant integer as an opaque constant.
- else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0)))
- setValue(&I, DAG.getConstant(C->getValue(), dl, DestVT, /*isTarget=*/false,
- /*isOpaque*/true));
- else
- setValue(&I, N); // noop cast.
- }
- void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) {
- const TargetLowering &TLI = DAG.getTargetLoweringInfo();
- const Value *SV = I.getOperand(0);
- SDValue N = getValue(SV);
- EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
- unsigned SrcAS = SV->getType()->getPointerAddressSpace();
- unsigned DestAS = I.getType()->getPointerAddressSpace();
- if (!TLI.isNoopAddrSpaceCast(SrcAS, DestAS))
- N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS);
- setValue(&I, N);
- }
- void SelectionDAGBuilder::visitInsertElement(const User &I) {
- const TargetLowering &TLI = DAG.getTargetLoweringInfo();
- SDValue InVec = getValue(I.getOperand(0));
- SDValue InVal = getValue(I.getOperand(1));
- SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(2)), getCurSDLoc(),
- TLI.getVectorIdxTy(DAG.getDataLayout()));
- setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(),
- TLI.getValueType(DAG.getDataLayout(), I.getType()),
- InVec, InVal, InIdx));
- }
- void SelectionDAGBuilder::visitExtractElement(const User &I) {
- const TargetLowering &TLI = DAG.getTargetLoweringInfo();
- SDValue InVec = getValue(I.getOperand(0));
- SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(1)), getCurSDLoc(),
- TLI.getVectorIdxTy(DAG.getDataLayout()));
- setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(),
- TLI.getValueType(DAG.getDataLayout(), I.getType()),
- InVec, InIdx));
- }
- // Utility for visitShuffleVector - Return true if every element in Mask,
- // beginning from position Pos and ending in Pos+Size, falls within the
- // specified sequential range [L, L+Pos). or is undef.
- static bool isSequentialInRange(const SmallVectorImpl<int> &Mask,
- unsigned Pos, unsigned Size, int Low) {
- for (unsigned i = Pos, e = Pos+Size; i != e; ++i, ++Low)
- if (Mask[i] >= 0 && Mask[i] != Low)
- return false;
- return true;
- }
- void SelectionDAGBuilder::visitShuffleVector(const User &I) {
- SDValue Src1 = getValue(I.getOperand(0));
- SDValue Src2 = getValue(I.getOperand(1));
- SmallVector<int, 8> Mask;
- ShuffleVectorInst::getShuffleMask(cast<Constant>(I.getOperand(2)), Mask);
- unsigned MaskNumElts = Mask.size();
- const TargetLowering &TLI = DAG.getTargetLoweringInfo();
- EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
- EVT SrcVT = Src1.getValueType();
- unsigned SrcNumElts = SrcVT.getVectorNumElements();
- if (SrcNumElts == MaskNumElts) {
- setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2,
- &Mask[0]));
- return;
- }
- // Normalize the shuffle vector since mask and vector length don't match.
- if (SrcNumElts < MaskNumElts && MaskNumElts % SrcNumElts == 0) {
- // Mask is longer than the source vectors and is a multiple of the source
- // vectors. We can use concatenate vector to make the mask and vectors
- // lengths match.
- if (SrcNumElts*2 == MaskNumElts) {
- // First check for Src1 in low and Src2 in high
- if (isSequentialInRange(Mask, 0, SrcNumElts, 0) &&
- isSequentialInRange(Mask, SrcNumElts, SrcNumElts, SrcNumElts)) {
- // The shuffle is concatenating two vectors together.
- setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurSDLoc(),
- VT, Src1, Src2));
- return;
- }
- // Then check for Src2 in low and Src1 in high
- if (isSequentialInRange(Mask, 0, SrcNumElts, SrcNumElts) &&
- isSequentialInRange(Mask, SrcNumElts, SrcNumElts, 0)) {
- // The shuffle is concatenating two vectors together.
- setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurSDLoc(),
- VT, Src2, Src1));
- return;
- }
- }
- // Pad both vectors with undefs to make them the same length as the mask.
- unsigned NumConcat = MaskNumElts / SrcNumElts;
- bool Src1U = Src1.getOpcode() == ISD::UNDEF;
- bool Src2U = Src2.getOpcode() == ISD::UNDEF;
- SDValue UndefVal = DAG.getUNDEF(SrcVT);
- SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal);
- SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal);
- MOps1[0] = Src1;
- MOps2[0] = Src2;
- Src1 = Src1U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS,
- getCurSDLoc(), VT, MOps1);
- Src2 = Src2U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS,
- getCurSDLoc(), VT, MOps2);
- // Readjust mask for new input vector length.
- SmallVector<int, 8> MappedOps;
- for (unsigned i = 0; i != MaskNumElts; ++i) {
- int Idx = Mask[i];
- if (Idx >= (int)SrcNumElts)
- Idx -= SrcNumElts - MaskNumElts;
- MappedOps.push_back(Idx);
- }
- setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2,
- &MappedOps[0]));
- return;
- }
- if (SrcNumElts > MaskNumElts) {
- // Analyze the access pattern of the vector to see if we can extract
- // two subvectors and do the shuffle. The analysis is done by calculating
- // the range of elements the mask access on both vectors.
- int MinRange[2] = { static_cast<int>(SrcNumElts),
- static_cast<int>(SrcNumElts)};
- int MaxRange[2] = {-1, -1};
- for (unsigned i = 0; i != MaskNumElts; ++i) {
- int Idx = Mask[i];
- unsigned Input = 0;
- if (Idx < 0)
- continue;
- if (Idx >= (int)SrcNumElts) {
- Input = 1;
- Idx -= SrcNumElts;
- }
- if (Idx > MaxRange[Input])
- MaxRange[Input] = Idx;
- if (Idx < MinRange[Input])
- MinRange[Input] = Idx;
- }
- // Check if the access is smaller than the vector size and can we find
- // a reasonable extract index.
- int RangeUse[2] = { -1, -1 }; // 0 = Unused, 1 = Extract, -1 = Can not
- // Extract.
- int StartIdx[2]; // StartIdx to extract from
- for (unsigned Input = 0; Input < 2; ++Input) {
- if (MinRange[Input] >= (int)SrcNumElts && MaxRange[Input] < 0) {
- RangeUse[Input] = 0; // Unused
- StartIdx[Input] = 0;
- continue;
- }
- // Find a good start index that is a multiple of the mask length. Then
- // see if the rest of the elements are in range.
- StartIdx[Input] = (MinRange[Input]/MaskNumElts)*MaskNumElts;
- if (MaxRange[Input] - StartIdx[Input] < (int)MaskNumElts &&
- StartIdx[Input] + MaskNumElts <= SrcNumElts)
- RangeUse[Input] = 1; // Extract from a multiple of the mask length.
- }
- if (RangeUse[0] == 0 && RangeUse[1] == 0) {
- setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used.
- return;
- }
- if (RangeUse[0] >= 0 && RangeUse[1] >= 0) {
- // Extract appropriate subvector and generate a vector shuffle
- for (unsigned Input = 0; Input < 2; ++Input) {
- SDValue &Src = Input == 0 ? Src1 : Src2;
- if (RangeUse[Input] == 0)
- Src = DAG.getUNDEF(VT);
- else {
- SDLoc dl = getCurSDLoc();
- Src = DAG.getNode(
- ISD::EXTRACT_SUBVECTOR, dl, VT, Src,
- DAG.getConstant(StartIdx[Input], dl,
- TLI.getVectorIdxTy(DAG.getDataLayout())));
- }
- }
- // Calculate new mask.
- SmallVector<int, 8> MappedOps;
- for (unsigned i = 0; i != MaskNumElts; ++i) {
- int Idx = Mask[i];
- if (Idx >= 0) {
- if (Idx < (int)SrcNumElts)
- Idx -= StartIdx[0];
- else
- Idx -= SrcNumElts + StartIdx[1] - MaskNumElts;
- }
- MappedOps.push_back(Idx);
- }
- setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2,
- &MappedOps[0]));
- return;
- }
- }
- // We can't use either concat vectors or extract subvectors so fall back to
- // replacing the shuffle with extract and build vector.
- // to insert and build vector.
- EVT EltVT = VT.getVectorElementType();
- EVT IdxVT = TLI.getVectorIdxTy(DAG.getDataLayout());
- SDLoc dl = getCurSDLoc();
- SmallVector<SDValue,8> Ops;
- for (unsigned i = 0; i != MaskNumElts; ++i) {
- int Idx = Mask[i];
- SDValue Res;
- if (Idx < 0) {
- Res = DAG.getUNDEF(EltVT);
- } else {
- SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2;
- if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts;
- Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl,
- EltVT, Src, DAG.getConstant(Idx, dl, IdxVT));
- }
- Ops.push_back(Res);
- }
- setValue(&I, DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Ops));
- }
- void SelectionDAGBuilder::visitInsertValue(const InsertValueInst &I) {
- const Value *Op0 = I.getOperand(0);
- const Value *Op1 = I.getOperand(1);
- Type *AggTy = I.getType();
- Type *ValTy = Op1->getType();
- bool IntoUndef = isa<UndefValue>(Op0);
- bool FromUndef = isa<UndefValue>(Op1);
- unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices());
- const TargetLowering &TLI = DAG.getTargetLoweringInfo();
- SmallVector<EVT, 4> AggValueVTs;
- ComputeValueVTs(TLI, DAG.getDataLayout(), AggTy, AggValueVTs);
- SmallVector<EVT, 4> ValValueVTs;
- ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs);
- unsigned NumAggValues = AggValueVTs.size();
- unsigned NumValValues = ValValueVTs.size();
- SmallVector<SDValue, 4> Values(NumAggValues);
- // Ignore an insertvalue that produces an empty object
- if (!NumAggValues) {
- setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
- return;
- }
- SDValue Agg = getValue(Op0);
- unsigned i = 0;
- // Copy the beginning value(s) from the original aggregate.
- for (; i != LinearIndex; ++i)
- Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
- SDValue(Agg.getNode(), Agg.getResNo() + i);
- // Copy values from the inserted value(s).
- if (NumValValues) {
- SDValue Val = getValue(Op1);
- for (; i != LinearIndex + NumValValues; ++i)
- Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) :
- SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex);
- }
- // Copy remaining value(s) from the original aggregate.
- for (; i != NumAggValues; ++i)
- Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
- SDValue(Agg.getNode(), Agg.getResNo() + i);
- setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
- DAG.getVTList(AggValueVTs), Values));
- }
- void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst &I) {
- const Value *Op0 = I.getOperand(0);
- Type *AggTy = Op0->getType();
- Type *ValTy = I.getType();
- bool OutOfUndef = isa<UndefValue>(Op0);
- unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices());
- const TargetLowering &TLI = DAG.getTargetLoweringInfo();
- SmallVector<EVT, 4> ValValueVTs;
- ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs);
- unsigned NumValValues = ValValueVTs.size();
- // Ignore a extractvalue that produces an empty object
- if (!NumValValues) {
- setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
- return;
- }
- SmallVector<SDValue, 4> Values(NumValValues);
- SDValue Agg = getValue(Op0);
- // Copy out the selected value(s).
- for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i)
- Values[i - LinearIndex] =
- OutOfUndef ?
- DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) :
- SDValue(Agg.getNode(), Agg.getResNo() + i);
- setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
- DAG.getVTList(ValValueVTs), Values));
- }
- void SelectionDAGBuilder::visitGetElementPtr(const User &I) {
- Value *Op0 = I.getOperand(0);
- // Note that the pointer operand may be a vector of pointers. Take the scalar
- // element which holds a pointer.
- Type *Ty = Op0->getType()->getScalarType();
- unsigned AS = Ty->getPointerAddressSpace();
- SDValue N = getValue(Op0);
- SDLoc dl = getCurSDLoc();
- // Normalize Vector GEP - all scalar operands should be converted to the
- // splat vector.
- unsigned VectorWidth = I.getType()->isVectorTy() ?
- cast<VectorType>(I.getType())->getVectorNumElements() : 0;
- if (VectorWidth && !N.getValueType().isVector()) {
- MVT VT = MVT::getVectorVT(N.getValueType().getSimpleVT(), VectorWidth);
- SmallVector<SDValue, 16> Ops(VectorWidth, N);
- N = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Ops);
- }
- for (GetElementPtrInst::const_op_iterator OI = I.op_begin()+1, E = I.op_end();
- OI != E; ++OI) {
- const Value *Idx = *OI;
- if (StructType *StTy = dyn_cast<StructType>(Ty)) {
- unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue();
- if (Field) {
- // N = N + Offset
- uint64_t Offset = DL->getStructLayout(StTy)->getElementOffset(Field);
- N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N,
- DAG.getConstant(Offset, dl, N.getValueType()));
- }
- Ty = StTy->getElementType(Field);
- } else {
- Ty = cast<SequentialType>(Ty)->getElementType();
- MVT PtrTy =
- DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout(), AS);
- unsigned PtrSize = PtrTy.getSizeInBits();
- APInt ElementSize(PtrSize, DL->getTypeAllocSize(Ty));
- // If this is a scalar constant or a splat vector of constants,
- // handle it quickly.
- const auto *CI = dyn_cast<ConstantInt>(Idx);
- if (!CI && isa<ConstantDataVector>(Idx) &&
- cast<ConstantDataVector>(Idx)->getSplatValue())
- CI = cast<ConstantInt>(cast<ConstantDataVector>(Idx)->getSplatValue());
- if (CI) {
- if (CI->isZero())
- continue;
- APInt Offs = ElementSize * CI->getValue().sextOrTrunc(PtrSize);
- SDValue OffsVal = VectorWidth ?
- DAG.getConstant(Offs, dl, MVT::getVectorVT(PtrTy, VectorWidth)) :
- DAG.getConstant(Offs, dl, PtrTy);
- N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, OffsVal);
- continue;
- }
- // N = N + Idx * ElementSize;
- SDValue IdxN = getValue(Idx);
- if (!IdxN.getValueType().isVector() && VectorWidth) {
- MVT VT = MVT::getVectorVT(IdxN.getValueType().getSimpleVT(), VectorWidth);
- SmallVector<SDValue, 16> Ops(VectorWidth, IdxN);
- IdxN = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Ops);
- }
- // If the index is smaller or larger than intptr_t, truncate or extend
- // it.
- IdxN = DAG.getSExtOrTrunc(IdxN, dl, N.getValueType());
- // If this is a multiply by a power of two, turn it into a shl
- // immediately. This is a very common case.
- if (ElementSize != 1) {
- if (ElementSize.isPowerOf2()) {
- unsigned Amt = ElementSize.logBase2();
- IdxN = DAG.getNode(ISD::SHL, dl,
- N.getValueType(), IdxN,
- DAG.getConstant(Amt, dl, IdxN.getValueType()));
- } else {
- SDValue Scale = DAG.getConstant(ElementSize, dl, IdxN.getValueType());
- IdxN = DAG.getNode(ISD::MUL, dl,
- N.getValueType(), IdxN, Scale);
- }
- }
- N = DAG.getNode(ISD::ADD, dl,
- N.getValueType(), N, IdxN);
- }
- }
- setValue(&I, N);
- }
- void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) {
- // If this is a fixed sized alloca in the entry block of the function,
- // allocate it statically on the stack.
- if (FuncInfo.StaticAllocaMap.count(&I))
- return; // getValue will auto-populate this.
- SDLoc dl = getCurSDLoc();
- Type *Ty = I.getAllocatedType();
- const TargetLowering &TLI = DAG.getTargetLoweringInfo();
- auto &DL = DAG.getDataLayout();
- uint64_t TySize = DL.getTypeAllocSize(Ty);
- unsigned Align =
- std::max((unsigned)DL.getPrefTypeAlignment(Ty), I.getAlignment());
- SDValue AllocSize = getValue(I.getArraySize());
- EVT IntPtr = TLI.getPointerTy(DAG.getDataLayout());
- if (AllocSize.getValueType() != IntPtr)
- AllocSize = DAG.getZExtOrTrunc(AllocSize, dl, IntPtr);
- AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr,
- AllocSize,
- DAG.getConstant(TySize, dl, IntPtr));
- // Handle alignment. If the requested alignment is less than or equal to
- // the stack alignment, ignore it. If the size is greater than or equal to
- // the stack alignment, we note this in the DYNAMIC_STACKALLOC node.
- unsigned StackAlign =
- DAG.getSubtarget().getFrameLowering()->getStackAlignment();
- if (Align <= StackAlign)
- Align = 0;
- // Round the size of the allocation up to the stack alignment size
- // by add SA-1 to the size.
- AllocSize = DAG.getNode(ISD::ADD, dl,
- AllocSize.getValueType(), AllocSize,
- DAG.getIntPtrConstant(StackAlign - 1, dl));
- // Mask out the low bits for alignment purposes.
- AllocSize = DAG.getNode(ISD::AND, dl,
- AllocSize.getValueType(), AllocSize,
- DAG.getIntPtrConstant(~(uint64_t)(StackAlign - 1),
- dl));
- SDValue Ops[] = { getRoot(), AllocSize, DAG.getIntPtrConstant(Align, dl) };
- SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other);
- SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, dl, VTs, Ops);
- setValue(&I, DSA);
- DAG.setRoot(DSA.getValue(1));
- assert(FuncInfo.MF->getFrameInfo()->hasVarSizedObjects());
- }
- void SelectionDAGBuilder::visitLoad(const LoadInst &I) {
- if (I.isAtomic())
- return visitAtomicLoad(I);
- const Value *SV = I.getOperand(0);
- SDValue Ptr = getValue(SV);
- Type *Ty = I.getType();
- bool isVolatile = I.isVolatile();
- bool isNonTemporal = I.getMetadata(LLVMContext::MD_nontemporal) != nullptr;
- // The IR notion of invariant_load only guarantees that all *non-faulting*
- // invariant loads result in the same value. The MI notion of invariant load
- // guarantees that the load can be legally moved to any location within its
- // containing function. The MI notion of invariant_load is stronger than the
- // IR notion of invariant_load -- an MI invariant_load is an IR invariant_load
- // with a guarantee that the location being loaded from is dereferenceable
- // throughout the function's lifetime.
- bool isInvariant = I.getMetadata(LLVMContext::MD_invariant_load) != nullptr &&
- isDereferenceablePointer(SV, *DAG.getTarget().getDataLayout());
- unsigned Alignment = I.getAlignment();
- AAMDNodes AAInfo;
- I.getAAMetadata(AAInfo);
- const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
- const TargetLowering &TLI = DAG.getTargetLoweringInfo();
- SmallVector<EVT, 4> ValueVTs;
- SmallVector<uint64_t, 4> Offsets;
- ComputeValueVTs(TLI, DAG.getDataLayout(), Ty, ValueVTs, &Offsets);
- unsigned NumValues = ValueVTs.size();
- if (NumValues == 0)
- return;
- SDValue Root;
- bool ConstantMemory = false;
- if (isVolatile || NumValues > MaxParallelChains)
- // Serialize volatile loads with other side effects.
- Root = getRoot();
- else if (AA->pointsToConstantMemory(
- MemoryLocation(SV, AA->getTypeStoreSize(Ty), AAInfo))) {
- // Do not serialize (non-volatile) loads of constant memory with anything.
- Root = DAG.getEntryNode();
- ConstantMemory = true;
- } else {
- // Do not serialize non-volatile loads against each other.
- Root = DAG.getRoot();
- }
- SDLoc dl = getCurSDLoc();
- if (isVolatile)
- Root = TLI.prepareVolatileOrAtomicLoad(Root, dl, DAG);
- SmallVector<SDValue, 4> Values(NumValues);
- SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues));
- EVT PtrVT = Ptr.getValueType();
- unsigned ChainI = 0;
- for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
- // Serializing loads here may result in excessive register pressure, and
- // TokenFactor places arbitrary choke points on the scheduler. SD scheduling
- // could recover a bit by hoisting nodes upward in the chain by recognizing
- // they are side-effect free or do not alias. The optimizer should really
- // avoid this case by converting large object/array copies to llvm.memcpy
- // (MaxParallelChains should always remain as failsafe).
- if (ChainI == MaxParallelChains) {
- assert(PendingLoads.empty() && "PendingLoads must be serialized first");
- SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
- makeArrayRef(Chains.data(), ChainI));
- Root = Chain;
- ChainI = 0;
- }
- SDValue A = DAG.getNode(ISD::ADD, dl,
- PtrVT, Ptr,
- DAG.getConstant(Offsets[i], dl, PtrVT));
- SDValue L = DAG.getLoad(ValueVTs[i], dl, Root,
- A, MachinePointerInfo(SV, Offsets[i]), isVolatile,
- isNonTemporal, isInvariant, Alignment, AAInfo,
- Ranges);
- Values[i] = L;
- Chains[ChainI] = L.getValue(1);
- }
- if (!ConstantMemory) {
- SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
- makeArrayRef(Chains.data(), ChainI));
- if (isVolatile)
- DAG.setRoot(Chain);
- else
- PendingLoads.push_back(Chain);
- }
- setValue(&I, DAG.getNode(ISD::MERGE_VALUES, dl,
- DAG.getVTList(ValueVTs), Values));
- }
- void SelectionDAGBuilder::visitStore(const StoreInst &I) {
- if (I.isAtomic())
- return visitAtomicStore(I);
- const Value *SrcV = I.getOperand(0);
- const Value *PtrV = I.getOperand(1);
- SmallVector<EVT, 4> ValueVTs;
- SmallVector<uint64_t, 4> Offsets;
- ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(),
- SrcV->getType(), ValueVTs, &Offsets);
- unsigned NumValues = ValueVTs.size();
- if (NumValues == 0)
- return;
- // Get the lowered operands. Note that we do this after
- // checking if NumResults is zero, because with zero results
- // the operands won't have values in the map.
- SDValue Src = getValue(SrcV);
- SDValue Ptr = getValue(PtrV);
- SDValue Root = getRoot();
- SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues));
- EVT PtrVT = Ptr.getValueType();
- bool isVolatile = I.isVolatile();
- bool isNonTemporal = I.getMetadata(LLVMContext::MD_nontemporal) != nullptr;
- unsigned Alignment = I.getAlignment();
- SDLoc dl = getCurSDLoc();
- AAMDNodes AAInfo;
- I.getAAMetadata(AAInfo);
- unsigned ChainI = 0;
- for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
- // See visitLoad comments.
- if (ChainI == MaxParallelChains) {
- SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
- makeArrayRef(Chains.data(), ChainI));
- Root = Chain;
- ChainI = 0;
- }
- SDValue Add = DAG.getNode(ISD::ADD, dl, PtrVT, Ptr,
- DAG.getConstant(Offsets[i], dl, PtrVT));
- SDValue St = DAG.getStore(Root, dl,
- SDValue(Src.getNode(), Src.getResNo() + i),
- Add, MachinePointerInfo(PtrV, Offsets[i]),
- isVolatile, isNonTemporal, Alignment, AAInfo);
- Chains[ChainI] = St;
- }
- SDValue StoreNode = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
- makeArrayRef(Chains.data(), ChainI));
- DAG.setRoot(StoreNode);
- }
- void SelectionDAGBuilder::visitMaskedStore(const CallInst &I) {
- SDLoc sdl = getCurSDLoc();
- // llvm.masked.store.*(Src0, Ptr, alignemt, Mask)
- Value *PtrOperand = I.getArgOperand(1);
- SDValue Ptr = getValue(PtrOperand);
- SDValue Src0 = getValue(I.getArgOperand(0));
- SDValue Mask = getValue(I.getArgOperand(3));
- EVT VT = Src0.getValueType();
- unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(2)))->getZExtValue();
- if (!Alignment)
- Alignment = DAG.getEVTAlignment(VT);
- AAMDNodes AAInfo;
- I.getAAMetadata(AAInfo);
- MachineMemOperand *MMO =
- DAG.getMachineFunction().
- getMachineMemOperand(MachinePointerInfo(PtrOperand),
- MachineMemOperand::MOStore, VT.getStoreSize(),
- Alignment, AAInfo);
- SDValue StoreNode = DAG.getMaskedStore(getRoot(), sdl, Src0, Ptr, Mask, VT,
- MMO, false);
- DAG.setRoot(StoreNode);
- setValue(&I, StoreNode);
- }
- // Gather/scatter receive a vector of pointers.
- // This vector of pointers may be represented as a base pointer + vector of
- // indices, it depends on GEP and instruction preceeding GEP
- // that calculates indices
- static bool getUniformBase(Value *& Ptr, SDValue& Base, SDValue& Index,
- SelectionDAGBuilder* SDB) {
- assert (Ptr->getType()->isVectorTy() && "Uexpected pointer type");
- GetElementPtrInst *Gep = dyn_cast<GetElementPtrInst>(Ptr);
- if (!Gep || Gep->getNumOperands() > 2)
- return false;
- ShuffleVectorInst *ShuffleInst =
- dyn_cast<ShuffleVectorInst>(Gep->getPointerOperand());
- if (!ShuffleInst || !ShuffleInst->getMask()->isNullValue() ||
- cast<Instruction>(ShuffleInst->getOperand(0))->getOpcode() !=
- Instruction::InsertElement)
- return false;
- Ptr = cast<InsertElementInst>(ShuffleInst->getOperand(0))->getOperand(1);
- SelectionDAG& DAG = SDB->DAG;
- const TargetLowering &TLI = DAG.getTargetLoweringInfo();
- // Check is the Ptr is inside current basic block
- // If not, look for the shuffle instruction
- if (SDB->findValue(Ptr))
- Base = SDB->getValue(Ptr);
- else if (SDB->findValue(ShuffleInst)) {
- SDValue ShuffleNode = SDB->getValue(ShuffleInst);
- SDLoc sdl = ShuffleNode;
- Base = DAG.getNode(
- ISD::EXTRACT_VECTOR_ELT, sdl,
- ShuffleNode.getValueType().getScalarType(), ShuffleNode,
- DAG.getConstant(0, sdl, TLI.getVectorIdxTy(DAG.getDataLayout())));
- SDB->setValue(Ptr, Base);
- }
- else
- return false;
- Value *IndexVal = Gep->getOperand(1);
- if (SDB->findValue(IndexVal)) {
- Index = SDB->getValue(IndexVal);
- if (SExtInst* Sext = dyn_cast<SExtInst>(IndexVal)) {
- IndexVal = Sext->getOperand(0);
- if (SDB->findValue(IndexVal))
- Index = SDB->getValue(IndexVal);
- }
- return true;
- }
- return false;
- }
- void SelectionDAGBuilder::visitMaskedScatter(const CallInst &I) {
- SDLoc sdl = getCurSDLoc();
- // llvm.masked.scatter.*(Src0, Ptrs, alignemt, Mask)
- Value *Ptr = I.getArgOperand(1);
- SDValue Src0 = getValue(I.getArgOperand(0));
- SDValue Mask = getValue(I.getArgOperand(3));
- EVT VT = Src0.getValueType();
- unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(2)))->getZExtValue();
- if (!Alignment)
- Alignment = DAG.getEVTAlignment(VT);
- const TargetLowering &TLI = DAG.getTargetLoweringInfo();
- AAMDNodes AAInfo;
- I.getAAMetadata(AAInfo);
- SDValue Base;
- SDValue Index;
- Value *BasePtr = Ptr;
- bool UniformBase = getUniformBase(BasePtr, Base, Index, this);
- Value *MemOpBasePtr = UniformBase ? BasePtr : nullptr;
- MachineMemOperand *MMO = DAG.getMachineFunction().
- getMachineMemOperand(MachinePointerInfo(MemOpBasePtr),
- MachineMemOperand::MOStore, VT.getStoreSize(),
- Alignment, AAInfo);
- if (!UniformBase) {
- Base = DAG.getTargetConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()));
- Index = getValue(Ptr);
- }
- SDValue Ops[] = { getRoot(), Src0, Mask, Base, Index };
- SDValue Scatter = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), VT, sdl,
- Ops, MMO);
- DAG.setRoot(Scatter);
- setValue(&I, Scatter);
- }
- void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I) {
- SDLoc sdl = getCurSDLoc();
- // @llvm.masked.load.*(Ptr, alignment, Mask, Src0)
- Value *PtrOperand = I.getArgOperand(0);
- SDValue Ptr = getValue(PtrOperand);
- SDValue Src0 = getValue(I.getArgOperand(3));
- SDValue Mask = getValue(I.getArgOperand(2));
- const TargetLowering &TLI = DAG.getTargetLoweringInfo();
- EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
- unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(1)))->getZExtValue();
- if (!Alignment)
- Alignment = DAG.getEVTAlignment(VT);
- AAMDNodes AAInfo;
- I.getAAMetadata(AAInfo);
- const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
- SDValue InChain = DAG.getRoot();
- if (AA->pointsToConstantMemory(MemoryLocation(
- PtrOperand, AA->getTypeStoreSize(I.getType()), AAInfo))) {
- // Do not serialize (non-volatile) loads of constant memory with anything.
- InChain = DAG.getEntryNode();
- }
- MachineMemOperand *MMO =
- DAG.getMachineFunction().
- getMachineMemOperand(MachinePointerInfo(PtrOperand),
- MachineMemOperand::MOLoad, VT.getStoreSize(),
- Alignment, AAInfo, Ranges);
- SDValue Load = DAG.getMaskedLoad(VT, sdl, InChain, Ptr, Mask, Src0, VT, MMO,
- ISD::NON_EXTLOAD);
- SDValue OutChain = Load.getValue(1);
- DAG.setRoot(OutChain);
- setValue(&I, Load);
- }
- void SelectionDAGBuilder::visitMaskedGather(const CallInst &I) {
- SDLoc sdl = getCurSDLoc();
- // @llvm.masked.gather.*(Ptrs, alignment, Mask, Src0)
- Value *Ptr = I.getArgOperand(0);
- SDValue Src0 = getValue(I.getArgOperand(3));
- SDValue Mask = getValue(I.getArgOperand(2));
- const TargetLowering &TLI = DAG.getTargetLoweringInfo();
- EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
- unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(1)))->getZExtValue();
- if (!Alignment)
- Alignment = DAG.getEVTAlignment(VT);
- AAMDNodes AAInfo;
- I.getAAMetadata(AAInfo);
- const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
- SDValue Root = DAG.getRoot();
- SDValue Base;
- SDValue Index;
- Value *BasePtr = Ptr;
- bool UniformBase = getUniformBase(BasePtr, Base, Index, this);
- bool ConstantMemory = false;
- if (UniformBase &&
- AA->pointsToConstantMemory(
- MemoryLocation(BasePtr, AA->getTypeStoreSize(I.getType()), AAInfo))) {
- // Do not serialize (non-volatile) loads of constant memory with anything.
- Root = DAG.getEntryNode();
- ConstantMemory = true;
- }
- MachineMemOperand *MMO =
- DAG.getMachineFunction().
- getMachineMemOperand(MachinePointerInfo(UniformBase ? BasePtr : nullptr),
- MachineMemOperand::MOLoad, VT.getStoreSize(),
- Alignment, AAInfo, Ranges);
- if (!UniformBase) {
- Base = DAG.getTargetConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()));
- Index = getValue(Ptr);
- }
- SDValue Ops[] = { Root, Src0, Mask, Base, Index };
- SDValue Gather = DAG.getMaskedGather(DAG.getVTList(VT, MVT::Other), VT, sdl,
- Ops, MMO);
- SDValue OutChain = Gather.getValue(1);
- if (!ConstantMemory)
- PendingLoads.push_back(OutChain);
- setValue(&I, Gather);
- }
- void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) {
- SDLoc dl = getCurSDLoc();
- AtomicOrdering SuccessOrder = I.getSuccessOrdering();
- AtomicOrdering FailureOrder = I.getFailureOrdering();
- SynchronizationScope Scope = I.getSynchScope();
- SDValue InChain = getRoot();
- MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType();
- SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other);
- SDValue L = DAG.getAtomicCmpSwap(
- ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, dl, MemVT, VTs, InChain,
- getValue(I.getPointerOperand()), getValue(I.getCompareOperand()),
- getValue(I.getNewValOperand()), MachinePointerInfo(I.getPointerOperand()),
- /*Alignment=*/ 0, SuccessOrder, FailureOrder, Scope);
- SDValue OutChain = L.getValue(2);
- setValue(&I, L);
- DAG.setRoot(OutChain);
- }
- void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) {
- SDLoc dl = getCurSDLoc();
- ISD::NodeType NT;
- switch (I.getOperation()) {
- default: llvm_unreachable("Unknown atomicrmw operation");
- case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break;
- case AtomicRMWInst::Add: NT = ISD::ATOMIC_LOAD_ADD; break;
- case AtomicRMWInst::Sub: NT = ISD::ATOMIC_LOAD_SUB; break;
- case AtomicRMWInst::And: NT = ISD::ATOMIC_LOAD_AND; break;
- case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break;
- case AtomicRMWInst::Or: NT = ISD::ATOMIC_LOAD_OR; break;
- case AtomicRMWInst::Xor: NT = ISD::ATOMIC_LOAD_XOR; break;
- case AtomicRMWInst::Max: NT = ISD::ATOMIC_LOAD_MAX; break;
- case AtomicRMWInst::Min: NT = ISD::ATOMIC_LOAD_MIN; break;
- case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break;
- case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break;
- }
- AtomicOrdering Order = I.getOrdering();
- SynchronizationScope Scope = I.getSynchScope();
- SDValue InChain = getRoot();
- SDValue L =
- DAG.getAtomic(NT, dl,
- getValue(I.getValOperand()).getSimpleValueType(),
- InChain,
- getValue(I.getPointerOperand()),
- getValue(I.getValOperand()),
- I.getPointerOperand(),
- /* Alignment=*/ 0, Order, Scope);
- SDValue OutChain = L.getValue(1);
- setValue(&I, L);
- DAG.setRoot(OutChain);
- }
- void SelectionDAGBuilder::visitFence(const FenceInst &I) {
- SDLoc dl = getCurSDLoc();
- const TargetLowering &TLI = DAG.getTargetLoweringInfo();
- SDValue Ops[3];
- Ops[0] = getRoot();
- Ops[1] = DAG.getConstant(I.getOrdering(), dl,
- TLI.getPointerTy(DAG.getDataLayout()));
- Ops[2] = DAG.getConstant(I.getSynchScope(), dl,
- TLI.getPointerTy(DAG.getDataLayout()));
- DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops));
- }
- void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) {
- SDLoc dl = getCurSDLoc();
- AtomicOrdering Order = I.getOrdering();
- SynchronizationScope Scope = I.getSynchScope();
- SDValue InChain = getRoot();
- const TargetLowering &TLI = DAG.getTargetLoweringInfo();
- EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
- if (I.getAlignment() < VT.getSizeInBits() / 8)
- report_fatal_error("Cannot generate unaligned atomic load");
- MachineMemOperand *MMO =
- DAG.getMachineFunction().
- getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()),
- MachineMemOperand::MOVolatile |
- MachineMemOperand::MOLoad,
- VT.getStoreSize(),
- I.getAlignment() ? I.getAlignment() :
- DAG.getEVTAlignment(VT));
- InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG);
- SDValue L =
- DAG.getAtomic(ISD::ATOMIC_LOAD, dl, VT, VT, InChain,
- getValue(I.getPointerOperand()), MMO,
- Order, Scope);
- SDValue OutChain = L.getValue(1);
- setValue(&I, L);
- DAG.setRoot(OutChain);
- }
- void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) {
- SDLoc dl = getCurSDLoc();
- AtomicOrdering Order = I.getOrdering();
- SynchronizationScope Scope = I.getSynchScope();
- SDValue InChain = getRoot();
- const TargetLowering &TLI = DAG.getTargetLoweringInfo();
- EVT VT =
- TLI.getValueType(DAG.getDataLayout(), I.getValueOperand()->getType());
- if (I.getAlignment() < VT.getSizeInBits() / 8)
- report_fatal_error("Cannot generate unaligned atomic store");
- SDValue OutChain =
- DAG.getAtomic(ISD::ATOMIC_STORE, dl, VT,
- InChain,
- getValue(I.getPointerOperand()),
- getValue(I.getValueOperand()),
- I.getPointerOperand(), I.getAlignment(),
- Order, Scope);
- DAG.setRoot(OutChain);
- }
- /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC
- /// node.
- void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I,
- unsigned Intrinsic) {
- bool HasChain = !I.doesNotAccessMemory();
- bool OnlyLoad = HasChain && I.onlyReadsMemory();
- // Build the operand list.
- SmallVector<SDValue, 8> Ops;
- if (HasChain) { // If this intrinsic has side-effects, chainify it.
- if (OnlyLoad) {
- // We don't need to serialize loads against other loads.
- Ops.push_back(DAG.getRoot());
- } else {
- Ops.push_back(getRoot());
- }
- }
- // Info is set by getTgtMemInstrinsic
- TargetLowering::IntrinsicInfo Info;
- const TargetLowering &TLI = DAG.getTargetLoweringInfo();
- bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, Intrinsic);
- // Add the intrinsic ID as an integer operand if it's not a target intrinsic.
- if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID ||
- Info.opc == ISD::INTRINSIC_W_CHAIN)
- Ops.push_back(DAG.getTargetConstant(Intrinsic, getCurSDLoc(),
- TLI.getPointerTy(DAG.getDataLayout())));
- // Add all operands of the call to the operand list.
- for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) {
- SDValue Op = getValue(I.getArgOperand(i));
- Ops.push_back(Op);
- }
- SmallVector<EVT, 4> ValueVTs;
- ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs);
- if (HasChain)
- ValueVTs.push_back(MVT::Other);
- SDVTList VTs = DAG.getVTList(ValueVTs);
- // Create the node.
- SDValue Result;
- if (IsTgtIntrinsic) {
- // This is target intrinsic that touches memory
- Result = DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(),
- VTs, Ops, Info.memVT,
- MachinePointerInfo(Info.ptrVal, Info.offset),
- Info.align, Info.vol,
- Info.readMem, Info.writeMem, Info.size);
- } else if (!HasChain) {
- Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops);
- } else if (!I.getType()->isVoidTy()) {
- Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops);
- } else {
- Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops);
- }
- if (HasChain) {
- SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1);
- if (OnlyLoad)
- PendingLoads.push_back(Chain);
- else
- DAG.setRoot(Chain);
- }
- if (!I.getType()->isVoidTy()) {
- if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) {
- EVT VT = TLI.getValueType(DAG.getDataLayout(), PTy);
- Result = DAG.getNode(ISD::BITCAST, getCurSDLoc(), VT, Result);
- }
- setValue(&I, Result);
- }
- }
- /// GetSignificand - Get the significand and build it into a floating-point
- /// number with exponent of 1:
- ///
- /// Op = (Op & 0x007fffff) | 0x3f800000;
- ///
- /// where Op is the hexadecimal representation of floating point value.
- static SDValue
- GetSignificand(SelectionDAG &DAG, SDValue Op, SDLoc dl) {
- SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
- DAG.getConstant(0x007fffff, dl, MVT::i32));
- SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1,
- DAG.getConstant(0x3f800000, dl, MVT::i32));
- return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2);
- }
- /// GetExponent - Get the exponent:
- ///
- /// (float)(int)(((Op & 0x7f800000) >> 23) - 127);
- ///
- /// where Op is the hexadecimal representation of floating point value.
- static SDValue
- GetExponent(SelectionDAG &DAG, SDValue Op, const TargetLowering &TLI,
- SDLoc dl) {
- SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
- DAG.getConstant(0x7f800000, dl, MVT::i32));
- SDValue t1 = DAG.getNode(
- ISD::SRL, dl, MVT::i32, t0,
- DAG.getConstant(23, dl, TLI.getPointerTy(DAG.getDataLayout())));
- SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1,
- DAG.getConstant(127, dl, MVT::i32));
- return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2);
- }
- /// getF32Constant - Get 32-bit floating point constant.
- static SDValue
- getF32Constant(SelectionDAG &DAG, unsigned Flt, SDLoc dl) {
- return DAG.getConstantFP(APFloat(APFloat::IEEEsingle, APInt(32, Flt)), dl,
- MVT::f32);
- }
- static SDValue getLimitedPrecisionExp2(SDValue t0, SDLoc dl,
- SelectionDAG &DAG) {
- // IntegerPartOfX = ((int32_t)(t0);
- SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
- // FractionalPartOfX = t0 - (float)IntegerPartOfX;
- SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
- SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
- // IntegerPartOfX <<= 23;
- IntegerPartOfX = DAG.getNode(
- ISD::SHL, dl, MVT::i32, IntegerPartOfX,
- DAG.getConstant(23, dl, DAG.getTargetLoweringInfo().getPointerTy(
- DAG.getDataLayout())));
- SDValue TwoToFractionalPartOfX;
- if (LimitFloatPrecision <= 6) {
- // For floating-point precision of 6:
- //
- // TwoToFractionalPartOfX =
- // 0.997535578f +
- // (0.735607626f + 0.252464424f * x) * x;
- //
- // error 0.0144103317, which is 6 bits
- SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
- getF32Constant(DAG, 0x3e814304, dl));
- SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
- getF32Constant(DAG, 0x3f3c50c8, dl));
- SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
- TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
- getF32Constant(DAG, 0x3f7f5e7e, dl));
- } else if (LimitFloatPrecision <= 12) {
- // For floating-point precision of 12:
- //
- // TwoToFractionalPartOfX =
- // 0.999892986f +
- // (0.696457318f +
- // (0.224338339f + 0.792043434e-1f * x) * x) * x;
- //
- // error 0.000107046256, which is 13 to 14 bits
- SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
- getF32Constant(DAG, 0x3da235e3, dl));
- SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
- getF32Constant(DAG, 0x3e65b8f3, dl));
- SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
- SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
- getF32Constant(DAG, 0x3f324b07, dl));
- SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
- TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
- getF32Constant(DAG, 0x3f7ff8fd, dl));
- } else { // LimitFloatPrecision <= 18
- // For floating-point precision of 18:
- //
- // TwoToFractionalPartOfX =
- // 0.999999982f +
- // (0.693148872f +
- // (0.240227044f +
- // (0.554906021e-1f +
- // (0.961591928e-2f +
- // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
- // error 2.47208000*10^(-7), which is better than 18 bits
- SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
- getF32Constant(DAG, 0x3924b03e, dl));
- SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
- getF32Constant(DAG, 0x3ab24b87, dl));
- SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
- SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
- getF32Constant(DAG, 0x3c1d8c17, dl));
- SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
- SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
- getF32Constant(DAG, 0x3d634a1d, dl));
- SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
- SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
- getF32Constant(DAG, 0x3e75fe14, dl));
- SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
- SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
- getF32Constant(DAG, 0x3f317234, dl));
- SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
- TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
- getF32Constant(DAG, 0x3f800000, dl));
- }
- // Add the exponent into the result in integer domain.
- SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFractionalPartOfX);
- return DAG.getNode(ISD::BITCAST, dl, MVT::f32,
- DAG.getNode(ISD::ADD, dl, MVT::i32, t13, IntegerPartOfX));
- }
- /// expandExp - Lower an exp intrinsic. Handles the special sequences for
- /// limited-precision mode.
- static SDValue expandExp(SDLoc dl, SDValue Op, SelectionDAG &DAG,
- const TargetLowering &TLI) {
- if (Op.getValueType() == MVT::f32 &&
- LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
- // Put the exponent in the right bit position for later addition to the
- // final result:
- //
- // #define LOG2OFe 1.4426950f
- // t0 = Op * LOG2OFe
- SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op,
- getF32Constant(DAG, 0x3fb8aa3b, dl));
- return getLimitedPrecisionExp2(t0, dl, DAG);
- }
- // No special expansion.
- return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op);
- }
- /// expandLog - Lower a log intrinsic. Handles the special sequences for
- /// limited-precision mode.
- static SDValue expandLog(SDLoc dl, SDValue Op, SelectionDAG &DAG,
- const TargetLowering &TLI) {
- if (Op.getValueType() == MVT::f32 &&
- LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
- SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
- // Scale the exponent by log(2) [0.69314718f].
- SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
- SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
- getF32Constant(DAG, 0x3f317218, dl));
- // Get the significand and build it into a floating-point number with
- // exponent of 1.
- SDValue X = GetSignificand(DAG, Op1, dl);
- SDValue LogOfMantissa;
- if (LimitFloatPrecision <= 6) {
- // For floating-point precision of 6:
- //
- // LogofMantissa =
- // -1.1609546f +
- // (1.4034025f - 0.23903021f * x) * x;
- //
- // error 0.0034276066, which is better than 8 bits
- SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
- getF32Constant(DAG, 0xbe74c456, dl));
- SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
- getF32Constant(DAG, 0x3fb3a2b1, dl));
- SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
- LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
- getF32Constant(DAG, 0x3f949a29, dl));
- } else if (LimitFloatPrecision <= 12) {
- // For floating-point precision of 12:
- //
- // LogOfMantissa =
- // -1.7417939f +
- // (2.8212026f +
- // (-1.4699568f +
- // (0.44717955f - 0.56570851e-1f * x) * x) * x) * x;
- //
- // error 0.000061011436, which is 14 bits
- SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
- getF32Constant(DAG, 0xbd67b6d6, dl));
- SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
- getF32Constant(DAG, 0x3ee4f4b8, dl));
- SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
- SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
- getF32Constant(DAG, 0x3fbc278b, dl));
- SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
- SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
- getF32Constant(DAG, 0x40348e95, dl));
- SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
- LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
- getF32Constant(DAG, 0x3fdef31a, dl));
- } else { // LimitFloatPrecision <= 18
- // For floating-point precision of 18:
- //
- // LogOfMantissa =
- // -2.1072184f +
- // (4.2372794f +
- // (-3.7029485f +
- // (2.2781945f +
- // (-0.87823314f +
- // (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x;
- //
- // error 0.0000023660568, which is better than 18 bits
- SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
- getF32Constant(DAG, 0xbc91e5ac, dl));
- SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
- getF32Constant(DAG, 0x3e4350aa, dl));
- SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
- SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
- getF32Constant(DAG, 0x3f60d3e3, dl));
- SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
- SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
- getF32Constant(DAG, 0x4011cdf0, dl));
- SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
- SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
- getF32Constant(DAG, 0x406cfd1c, dl));
- SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
- SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
- getF32Constant(DAG, 0x408797cb, dl));
- SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
- LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
- getF32Constant(DAG, 0x4006dcab, dl));
- }
- return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa);
- }
- // No special expansion.
- return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op);
- }
- /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for
- /// limited-precision mode.
- static SDValue expandLog2(SDLoc dl, SDValue Op, SelectionDAG &DAG,
- const TargetLowering &TLI) {
- if (Op.getValueType() == MVT::f32 &&
- LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
- SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
- // Get the exponent.
- SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl);
- // Get the significand and build it into a floating-point number with
- // exponent of 1.
- SDValue X = GetSignificand(DAG, Op1, dl);
- // Different possible minimax approximations of significand in
- // floating-point for various degrees of accuracy over [1,2].
- SDValue Log2ofMantissa;
- if (LimitFloatPrecision <= 6) {
- // For floating-point precision of 6:
- //
- // Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x;
- //
- // error 0.0049451742, which is more than 7 bits
- SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
- getF32Constant(DAG, 0xbeb08fe0, dl));
- SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
- getF32Constant(DAG, 0x40019463, dl));
- SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
- Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
- getF32Constant(DAG, 0x3fd6633d, dl));
- } else if (LimitFloatPrecision <= 12) {
- // For floating-point precision of 12:
- //
- // Log2ofMantissa =
- // -2.51285454f +
- // (4.07009056f +
- // (-2.12067489f +
- // (.645142248f - 0.816157886e-1f * x) * x) * x) * x;
- //
- // error 0.0000876136000, which is better than 13 bits
- SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
- getF32Constant(DAG, 0xbda7262e, dl));
- SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
- getF32Constant(DAG, 0x3f25280b, dl));
- SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
- SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
- getF32Constant(DAG, 0x4007b923, dl));
- SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
- SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
- getF32Constant(DAG, 0x40823e2f, dl));
- SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
- Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
- getF32Constant(DAG, 0x4020d29c, dl));
- } else { // LimitFloatPrecision <= 18
- // For floating-point precision of 18:
- //
- // Log2ofMantissa =
- // -3.0400495f +
- // (6.1129976f +
- // (-5.3420409f +
- // (3.2865683f +
- // (-1.2669343f +
- // (0.27515199f -
- // 0.25691327e-1f * x) * x) * x) * x) * x) * x;
- //
- // error 0.0000018516, which is better than 18 bits
- SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
- getF32Constant(DAG, 0xbcd2769e, dl));
- SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
- getF32Constant(DAG, 0x3e8ce0b9, dl));
- SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
- SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
- getF32Constant(DAG, 0x3fa22ae7, dl));
- SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
- SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
- getF32Constant(DAG, 0x40525723, dl));
- SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
- SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
- getF32Constant(DAG, 0x40aaf200, dl));
- SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
- SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
- getF32Constant(DAG, 0x40c39dad, dl));
- SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
- Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
- getF32Constant(DAG, 0x4042902c, dl));
- }
- return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa);
- }
- // No special expansion.
- return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op);
- }
- /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for
- /// limited-precision mode.
- static SDValue expandLog10(SDLoc dl, SDValue Op, SelectionDAG &DAG,
- const TargetLowering &TLI) {
- if (Op.getValueType() == MVT::f32 &&
- LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
- SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
- // Scale the exponent by log10(2) [0.30102999f].
- SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
- SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
- getF32Constant(DAG, 0x3e9a209a, dl));
- // Get the significand and build it into a floating-point number with
- // exponent of 1.
- SDValue X = GetSignificand(DAG, Op1, dl);
- SDValue Log10ofMantissa;
- if (LimitFloatPrecision <= 6) {
- // For floating-point precision of 6:
- //
- // Log10ofMantissa =
- // -0.50419619f +
- // (0.60948995f - 0.10380950f * x) * x;
- //
- // error 0.0014886165, which is 6 bits
- SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
- getF32Constant(DAG, 0xbdd49a13, dl));
- SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
- getF32Constant(DAG, 0x3f1c0789, dl));
- SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
- Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
- getF32Constant(DAG, 0x3f011300, dl));
- } else if (LimitFloatPrecision <= 12) {
- // For floating-point precision of 12:
- //
- // Log10ofMantissa =
- // -0.64831180f +
- // (0.91751397f +
- // (-0.31664806f + 0.47637168e-1f * x) * x) * x;
- //
- // error 0.00019228036, which is better than 12 bits
- SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
- getF32Constant(DAG, 0x3d431f31, dl));
- SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
- getF32Constant(DAG, 0x3ea21fb2, dl));
- SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
- SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
- getF32Constant(DAG, 0x3f6ae232, dl));
- SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
- Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
- getF32Constant(DAG, 0x3f25f7c3, dl));
- } else { // LimitFloatPrecision <= 18
- // For floating-point precision of 18:
- //
- // Log10ofMantissa =
- // -0.84299375f +
- // (1.5327582f +
- // (-1.0688956f +
- // (0.49102474f +
- // (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x;
- //
- // error 0.0000037995730, which is better than 18 bits
- SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
- getF32Constant(DAG, 0x3c5d51ce, dl));
- SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
- getF32Constant(DAG, 0x3e00685a, dl));
- SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
- SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
- getF32Constant(DAG, 0x3efb6798, dl));
- SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
- SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
- getF32Constant(DAG, 0x3f88d192, dl));
- SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
- SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
- getF32Constant(DAG, 0x3fc4316c, dl));
- SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
- Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8,
- getF32Constant(DAG, 0x3f57ce70, dl));
- }
- return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa);
- }
- // No special expansion.
- return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op);
- }
- /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for
- /// limited-precision mode.
- static SDValue expandExp2(SDLoc dl, SDValue Op, SelectionDAG &DAG,
- const TargetLowering &TLI) {
- if (Op.getValueType() == MVT::f32 &&
- LimitFloatPrecision > 0 && LimitFloatPrecision <= 18)
- return getLimitedPrecisionExp2(Op, dl, DAG);
- // No special expansion.
- return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op);
- }
- /// visitPow - Lower a pow intrinsic. Handles the special sequences for
- /// limited-precision mode with x == 10.0f.
- static SDValue expandPow(SDLoc dl, SDValue LHS, SDValue RHS,
- SelectionDAG &DAG, const TargetLowering &TLI) {
- bool IsExp10 = false;
- if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 &&
- LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
- if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) {
- APFloat Ten(10.0f);
- IsExp10 = LHSC->isExactlyValue(Ten);
- }
- }
- if (IsExp10) {
- // Put the exponent in the right bit position for later addition to the
- // final result:
- //
- // #define LOG2OF10 3.3219281f
- // t0 = Op * LOG2OF10;
- SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS,
- getF32Constant(DAG, 0x40549a78, dl));
- return getLimitedPrecisionExp2(t0, dl, DAG);
- }
- // No special expansion.
- return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS);
- }
- /// ExpandPowI - Expand a llvm.powi intrinsic.
- static SDValue ExpandPowI(SDLoc DL, SDValue LHS, SDValue RHS,
- SelectionDAG &DAG) {
- // If RHS is a constant, we can expand this out to a multiplication tree,
- // otherwise we end up lowering to a call to __powidf2 (for example). When
- // optimizing for size, we only want to do this if the expansion would produce
- // a small number of multiplies, otherwise we do the full expansion.
- if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
- // Get the exponent as a positive value.
- unsigned Val = RHSC->getSExtValue();
- if ((int)Val < 0) Val = -Val;
- // powi(x, 0) -> 1.0
- if (Val == 0)
- return DAG.getConstantFP(1.0, DL, LHS.getValueType());
- const Function *F = DAG.getMachineFunction().getFunction();
- if (!F->hasFnAttribute(Attribute::OptimizeForSize) ||
- // If optimizing for size, don't insert too many multiplies. This
- // inserts up to 5 multiplies.
- countPopulation(Val) + Log2_32(Val) < 7) {
- // We use the simple binary decomposition method to generate the multiply
- // sequence. There are more optimal ways to do this (for example,
- // powi(x,15) generates one more multiply than it should), but this has
- // the benefit of being both really simple and much better than a libcall.
- SDValue Res; // Logically starts equal to 1.0
- SDValue CurSquare = LHS;
- while (Val) {
- if (Val & 1) {
- if (Res.getNode())
- Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare);
- else
- Res = CurSquare; // 1.0*CurSquare.
- }
- CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(),
- CurSquare, CurSquare);
- Val >>= 1;
- }
- // If the original was negative, invert the result, producing 1/(x*x*x).
- if (RHSC->getSExtValue() < 0)
- Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(),
- DAG.getConstantFP(1.0, DL, LHS.getValueType()), Res);
- return Res;
- }
- }
- // Otherwise, expand to a libcall.
- return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS);
- }
- // getTruncatedArgReg - Find underlying register used for an truncated
- // argument.
- static unsigned getTruncatedArgReg(const SDValue &N) {
- if (N.getOpcode() != ISD::TRUNCATE)
- return 0;
- const SDValue &Ext = N.getOperand(0);
- if (Ext.getOpcode() == ISD::AssertZext ||
- Ext.getOpcode() == ISD::AssertSext) {
- const SDValue &CFR = Ext.getOperand(0);
- if (CFR.getOpcode() == ISD::CopyFromReg)
- return cast<RegisterSDNode>(CFR.getOperand(1))->getReg();
- if (CFR.getOpcode() == ISD::TRUNCATE)
- return getTruncatedArgReg(CFR);
- }
- return 0;
- }
- /// EmitFuncArgumentDbgValue - If the DbgValueInst is a dbg_value of a function
- /// argument, create the corresponding DBG_VALUE machine instruction for it now.
- /// At the end of instruction selection, they will be inserted to the entry BB.
- bool SelectionDAGBuilder::EmitFuncArgumentDbgValue(
- const Value *V, DILocalVariable *Variable, DIExpression *Expr,
- DILocation *DL, int64_t Offset, bool IsIndirect, const SDValue &N) {
- const Argument *Arg = dyn_cast<Argument>(V);
- if (!Arg)
- return false;
- MachineFunction &MF = DAG.getMachineFunction();
- const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo();
- // Ignore inlined function arguments here.
- //
- // FIXME: Should we be checking DL->inlinedAt() to determine this?
- if (!Variable->getScope()->getSubprogram()->describes(MF.getFunction()))
- return false;
- Optional<MachineOperand> Op;
- // Some arguments' frame index is recorded during argument lowering.
- if (int FI = FuncInfo.getArgumentFrameIndex(Arg))
- Op = MachineOperand::CreateFI(FI);
- if (!Op && N.getNode()) {
- unsigned Reg;
- if (N.getOpcode() == ISD::CopyFromReg)
- Reg = cast<RegisterSDNode>(N.getOperand(1))->getReg();
- else
- Reg = getTruncatedArgReg(N);
- if (Reg && TargetRegisterInfo::isVirtualRegister(Reg)) {
- MachineRegisterInfo &RegInfo = MF.getRegInfo();
- unsigned PR = RegInfo.getLiveInPhysReg(Reg);
- if (PR)
- Reg = PR;
- }
- if (Reg)
- Op = MachineOperand::CreateReg(Reg, false);
- }
- if (!Op) {
- // Check if ValueMap has reg number.
- DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V);
- if (VMI != FuncInfo.ValueMap.end())
- Op = MachineOperand::CreateReg(VMI->second, false);
- }
- if (!Op && N.getNode())
- // Check if frame index is available.
- if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(N.getNode()))
- if (FrameIndexSDNode *FINode =
- dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
- Op = MachineOperand::CreateFI(FINode->getIndex());
- if (!Op)
- return false;
- assert(Variable->isValidLocationForIntrinsic(DL) &&
- "Expected inlined-at fields to agree");
- if (Op->isReg())
- FuncInfo.ArgDbgValues.push_back(
- BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsIndirect,
- Op->getReg(), Offset, Variable, Expr));
- else
- FuncInfo.ArgDbgValues.push_back(
- BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE))
- .addOperand(*Op)
- .addImm(Offset)
- .addMetadata(Variable)
- .addMetadata(Expr));
- return true;
- }
- // VisualStudio defines setjmp as _setjmp
- #if defined(_MSC_VER) && defined(setjmp) && \
- !defined(setjmp_undefined_for_msvc)
- # pragma push_macro("setjmp")
- # undef setjmp
- # define setjmp_undefined_for_msvc
- #endif
- /// visitIntrinsicCall - Lower the call to the specified intrinsic function. If
- /// we want to emit this as a call to a named external function, return the name
- /// otherwise lower it and return null.
- const char *
- SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) {
- const TargetLowering &TLI = DAG.getTargetLoweringInfo();
- SDLoc sdl = getCurSDLoc();
- DebugLoc dl = getCurDebugLoc();
- SDValue Res;
- switch (Intrinsic) {
- default:
- // By default, turn this into a target intrinsic node.
- visitTargetIntrinsic(I, Intrinsic);
- return nullptr;
- case Intrinsic::vastart: visitVAStart(I); return nullptr;
- case Intrinsic::vaend: visitVAEnd(I); return nullptr;
- case Intrinsic::vacopy: visitVACopy(I); return nullptr;
- case Intrinsic::returnaddress:
- setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl,
- TLI.getPointerTy(DAG.getDataLayout()),
- getValue(I.getArgOperand(0))));
- return nullptr;
- case Intrinsic::frameaddress:
- setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl,
- TLI.getPointerTy(DAG.getDataLayout()),
- getValue(I.getArgOperand(0))));
- return nullptr;
- case Intrinsic::read_register: {
- Value *Reg = I.getArgOperand(0);
- SDValue Chain = getRoot();
- SDValue RegName =
- DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata()));
- EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
- Res = DAG.getNode(ISD::READ_REGISTER, sdl,
- DAG.getVTList(VT, MVT::Other), Chain, RegName);
- setValue(&I, Res);
- DAG.setRoot(Res.getValue(1));
- return nullptr;
- }
- case Intrinsic::write_register: {
- Value *Reg = I.getArgOperand(0);
- Value *RegValue = I.getArgOperand(1);
- SDValue Chain = getRoot();
- SDValue RegName =
- DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata()));
- DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain,
- RegName, getValue(RegValue)));
- return nullptr;
- }
- case Intrinsic::setjmp:
- return &"_setjmp"[!TLI.usesUnderscoreSetJmp()];
- case Intrinsic::longjmp:
- return &"_longjmp"[!TLI.usesUnderscoreLongJmp()];
- case Intrinsic::memcpy: {
- // FIXME: this definition of "user defined address space" is x86-specific
- // Assert for address < 256 since we support only user defined address
- // spaces.
- assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace()
- < 256 &&
- cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace()
- < 256 &&
- "Unknown address space");
- SDValue Op1 = getValue(I.getArgOperand(0));
- SDValue Op2 = getValue(I.getArgOperand(1));
- SDValue Op3 = getValue(I.getArgOperand(2));
- unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
- if (!Align)
- Align = 1; // @llvm.memcpy defines 0 and 1 to both mean no alignment.
- bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue();
- bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget());
- SDValue MC = DAG.getMemcpy(getRoot(), sdl, Op1, Op2, Op3, Align, isVol,
- false, isTC,
- MachinePointerInfo(I.getArgOperand(0)),
- MachinePointerInfo(I.getArgOperand(1)));
- updateDAGForMaybeTailCall(MC);
- return nullptr;
- }
- case Intrinsic::memset: {
- // FIXME: this definition of "user defined address space" is x86-specific
- // Assert for address < 256 since we support only user defined address
- // spaces.
- assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace()
- < 256 &&
- "Unknown address space");
- SDValue Op1 = getValue(I.getArgOperand(0));
- SDValue Op2 = getValue(I.getArgOperand(1));
- SDValue Op3 = getValue(I.getArgOperand(2));
- unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
- if (!Align)
- Align = 1; // @llvm.memset defines 0 and 1 to both mean no alignment.
- bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue();
- bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget());
- SDValue MS = DAG.getMemset(getRoot(), sdl, Op1, Op2, Op3, Align, isVol,
- isTC, MachinePointerInfo(I.getArgOperand(0)));
- updateDAGForMaybeTailCall(MS);
- return nullptr;
- }
- case Intrinsic::memmove: {
- // FIXME: this definition of "user defined address space" is x86-specific
- // Assert for address < 256 since we support only user defined address
- // spaces.
- assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace()
- < 256 &&
- cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace()
- < 256 &&
- "Unknown address space");
- SDValue Op1 = getValue(I.getArgOperand(0));
- SDValue Op2 = getValue(I.getArgOperand(1));
- SDValue Op3 = getValue(I.getArgOperand(2));
- unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
- if (!Align)
- Align = 1; // @llvm.memmove defines 0 and 1 to both mean no alignment.
- bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue();
- bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget());
- SDValue MM = DAG.getMemmove(getRoot(), sdl, Op1, Op2, Op3, Align, isVol,
- isTC, MachinePointerInfo(I.getArgOperand(0)),
- MachinePointerInfo(I.getArgOperand(1)));
- updateDAGForMaybeTailCall(MM);
- return nullptr;
- }
- case Intrinsic::dbg_declare: {
- const DbgDeclareInst &DI = cast<DbgDeclareInst>(I);
- DILocalVariable *Variable = DI.getVariable();
- DIExpression *Expression = DI.getExpression();
- const Value *Address = DI.getAddress();
- assert(Variable && "Missing variable");
- if (!Address) {
- DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
- return nullptr;
- }
- // Check if address has undef value.
- if (isa<UndefValue>(Address) ||
- (Address->use_empty() && !isa<Argument>(Address))) {
- DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
- return nullptr;
- }
- SDValue &N = NodeMap[Address];
- if (!N.getNode() && isa<Argument>(Address))
- // Check unused arguments map.
- N = UnusedArgNodeMap[Address];
- SDDbgValue *SDV;
- if (N.getNode()) {
- if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address))
- Address = BCI->getOperand(0);
- // Parameters are handled specially.
- bool isParameter = Variable->getTag() == dwarf::DW_TAG_arg_variable ||
- isa<Argument>(Address);
- const AllocaInst *AI = dyn_cast<AllocaInst>(Address);
- if (isParameter && !AI) {
- FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(N.getNode());
- if (FINode)
- // Byval parameter. We have a frame index at this point.
- SDV = DAG.getFrameIndexDbgValue(
- Variable, Expression, FINode->getIndex(), 0, dl, SDNodeOrder);
- else {
- // Address is an argument, so try to emit its dbg value using
- // virtual register info from the FuncInfo.ValueMap.
- EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, 0, false,
- N);
- return nullptr;
- }
- } else if (AI)
- SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(),
- true, 0, dl, SDNodeOrder);
- else {
- // Can't do anything with other non-AI cases yet.
- DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
- DEBUG(dbgs() << "non-AllocaInst issue for Address: \n\t");
- DEBUG(Address->dump());
- return nullptr;
- }
- DAG.AddDbgValue(SDV, N.getNode(), isParameter);
- } else {
- // If Address is an argument then try to emit its dbg value using
- // virtual register info from the FuncInfo.ValueMap.
- if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, 0, false,
- N)) {
- // If variable is pinned by a alloca in dominating bb then
- // use StaticAllocaMap.
- if (const AllocaInst *AI = dyn_cast<AllocaInst>(Address)) {
- if (AI->getParent() != DI.getParent()) {
- DenseMap<const AllocaInst*, int>::iterator SI =
- FuncInfo.StaticAllocaMap.find(AI);
- if (SI != FuncInfo.StaticAllocaMap.end()) {
- SDV = DAG.getFrameIndexDbgValue(Variable, Expression, SI->second,
- 0, dl, SDNodeOrder);
- DAG.AddDbgValue(SDV, nullptr, false);
- return nullptr;
- }
- }
- }
- DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
- }
- }
- return nullptr;
- }
- case Intrinsic::dbg_value: {
- const DbgValueInst &DI = cast<DbgValueInst>(I);
- assert(DI.getVariable() && "Missing variable");
- DILocalVariable *Variable = DI.getVariable();
- DIExpression *Expression = DI.getExpression();
- uint64_t Offset = DI.getOffset();
- const Value *V = DI.getValue();
- if (!V)
- return nullptr;
- SDDbgValue *SDV;
- if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V)) {
- SDV = DAG.getConstantDbgValue(Variable, Expression, V, Offset, dl,
- SDNodeOrder);
- DAG.AddDbgValue(SDV, nullptr, false);
- } else {
- // Do not use getValue() in here; we don't want to generate code at
- // this point if it hasn't been done yet.
- SDValue N = NodeMap[V];
- if (!N.getNode() && isa<Argument>(V))
- // Check unused arguments map.
- N = UnusedArgNodeMap[V];
- if (N.getNode()) {
- // A dbg.value for an alloca is always indirect.
- bool IsIndirect = isa<AllocaInst>(V) || Offset != 0;
- if (!EmitFuncArgumentDbgValue(V, Variable, Expression, dl, Offset,
- IsIndirect, N)) {
- SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(),
- IsIndirect, Offset, dl, SDNodeOrder);
- DAG.AddDbgValue(SDV, N.getNode(), false);
- }
- } else if (!V->use_empty() ) {
- // Do not call getValue(V) yet, as we don't want to generate code.
- // Remember it for later.
- DanglingDebugInfo DDI(&DI, dl, SDNodeOrder);
- DanglingDebugInfoMap[V] = DDI;
- } else {
- // We may expand this to cover more cases. One case where we have no
- // data available is an unreferenced parameter.
- DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
- }
- }
- // Build a debug info table entry.
- if (const BitCastInst *BCI = dyn_cast<BitCastInst>(V))
- V = BCI->getOperand(0);
- const AllocaInst *AI = dyn_cast<AllocaInst>(V);
- // Don't handle byval struct arguments or VLAs, for example.
- if (!AI) {
- DEBUG(dbgs() << "Dropping debug location info for:\n " << DI << "\n");
- DEBUG(dbgs() << " Last seen at:\n " << *V << "\n");
- return nullptr;
- }
- DenseMap<const AllocaInst*, int>::iterator SI =
- FuncInfo.StaticAllocaMap.find(AI);
- if (SI == FuncInfo.StaticAllocaMap.end())
- return nullptr; // VLAs.
- return nullptr;
- }
- case Intrinsic::eh_typeid_for: {
- // Find the type id for the given typeinfo.
- GlobalValue *GV = ExtractTypeInfo(I.getArgOperand(0));
- unsigned TypeID = DAG.getMachineFunction().getMMI().getTypeIDFor(GV);
- Res = DAG.getConstant(TypeID, sdl, MVT::i32);
- setValue(&I, Res);
- return nullptr;
- }
- case Intrinsic::eh_return_i32:
- case Intrinsic::eh_return_i64:
- DAG.getMachineFunction().getMMI().setCallsEHReturn(true);
- DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl,
- MVT::Other,
- getControlRoot(),
- getValue(I.getArgOperand(0)),
- getValue(I.getArgOperand(1))));
- return nullptr;
- case Intrinsic::eh_unwind_init:
- DAG.getMachineFunction().getMMI().setCallsUnwindInit(true);
- return nullptr;
- case Intrinsic::eh_dwarf_cfa: {
- SDValue CfaArg = DAG.getSExtOrTrunc(getValue(I.getArgOperand(0)), sdl,
- TLI.getPointerTy(DAG.getDataLayout()));
- SDValue Offset = DAG.getNode(ISD::ADD, sdl,
- CfaArg.getValueType(),
- DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET, sdl,
- CfaArg.getValueType()),
- CfaArg);
- SDValue FA = DAG.getNode(
- ISD::FRAMEADDR, sdl, TLI.getPointerTy(DAG.getDataLayout()),
- DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())));
- setValue(&I, DAG.getNode(ISD::ADD, sdl, FA.getValueType(),
- FA, Offset));
- return nullptr;
- }
- case Intrinsic::eh_sjlj_callsite: {
- MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
- ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0));
- assert(CI && "Non-constant call site value in eh.sjlj.callsite!");
- assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!");
- MMI.setCurrentCallSite(CI->getZExtValue());
- return nullptr;
- }
- case Intrinsic::eh_sjlj_functioncontext: {
- // Get and store the index of the function context.
- MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
- AllocaInst *FnCtx =
- cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts());
- int FI = FuncInfo.StaticAllocaMap[FnCtx];
- MFI->setFunctionContextIndex(FI);
- return nullptr;
- }
- case Intrinsic::eh_sjlj_setjmp: {
- SDValue Ops[2];
- Ops[0] = getRoot();
- Ops[1] = getValue(I.getArgOperand(0));
- SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl,
- DAG.getVTList(MVT::i32, MVT::Other), Ops);
- setValue(&I, Op.getValue(0));
- DAG.setRoot(Op.getValue(1));
- return nullptr;
- }
- case Intrinsic::eh_sjlj_longjmp: {
- DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other,
- getRoot(), getValue(I.getArgOperand(0))));
- return nullptr;
- }
- case Intrinsic::masked_gather:
- visitMaskedGather(I);
- return nullptr;
- case Intrinsic::masked_load:
- visitMaskedLoad(I);
- return nullptr;
- case Intrinsic::masked_scatter:
- visitMaskedScatter(I);
- return nullptr;
- case Intrinsic::masked_store:
- visitMaskedStore(I);
- return nullptr;
- #if 0 // HLSL Change - remove platform intrinsics
- case Intrinsic::x86_mmx_pslli_w:
- case Intrinsic::x86_mmx_pslli_d:
- case Intrinsic::x86_mmx_pslli_q:
- case Intrinsic::x86_mmx_psrli_w:
- case Intrinsic::x86_mmx_psrli_d:
- case Intrinsic::x86_mmx_psrli_q:
- case Intrinsic::x86_mmx_psrai_w:
- case Intrinsic::x86_mmx_psrai_d: {
- SDValue ShAmt = getValue(I.getArgOperand(1));
- if (isa<ConstantSDNode>(ShAmt)) {
- visitTargetIntrinsic(I, Intrinsic);
- return nullptr;
- }
- unsigned NewIntrinsic = 0;
- EVT ShAmtVT = MVT::v2i32;
- switch (Intrinsic) {
- case Intrinsic::x86_mmx_pslli_w:
- NewIntrinsic = Intrinsic::x86_mmx_psll_w;
- break;
- case Intrinsic::x86_mmx_pslli_d:
- NewIntrinsic = Intrinsic::x86_mmx_psll_d;
- break;
- case Intrinsic::x86_mmx_pslli_q:
- NewIntrinsic = Intrinsic::x86_mmx_psll_q;
- break;
- case Intrinsic::x86_mmx_psrli_w:
- NewIntrinsic = Intrinsic::x86_mmx_psrl_w;
- break;
- case Intrinsic::x86_mmx_psrli_d:
- NewIntrinsic = Intrinsic::x86_mmx_psrl_d;
- break;
- case Intrinsic::x86_mmx_psrli_q:
- NewIntrinsic = Intrinsic::x86_mmx_psrl_q;
- break;
- case Intrinsic::x86_mmx_psrai_w:
- NewIntrinsic = Intrinsic::x86_mmx_psra_w;
- break;
- case Intrinsic::x86_mmx_psrai_d:
- NewIntrinsic = Intrinsic::x86_mmx_psra_d;
- break;
- default: llvm_unreachable("Impossible intrinsic"); // Can't reach here.
- }
- // The vector shift intrinsics with scalars uses 32b shift amounts but
- // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits
- // to be zero.
- // We must do this early because v2i32 is not a legal type.
- SDValue ShOps[2];
- ShOps[0] = ShAmt;
- ShOps[1] = DAG.getConstant(0, sdl, MVT::i32);
- ShAmt = DAG.getNode(ISD::BUILD_VECTOR, sdl, ShAmtVT, ShOps);
- EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
- ShAmt = DAG.getNode(ISD::BITCAST, sdl, DestVT, ShAmt);
- Res = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, sdl, DestVT,
- DAG.getConstant(NewIntrinsic, sdl, MVT::i32),
- getValue(I.getArgOperand(0)), ShAmt);
- setValue(&I, Res);
- return nullptr;
- }
- #endif // HLSL Change - remove platform intrinsics
- case Intrinsic::convertff:
- case Intrinsic::convertfsi:
- case Intrinsic::convertfui:
- case Intrinsic::convertsif:
- case Intrinsic::convertuif:
- case Intrinsic::convertss:
- case Intrinsic::convertsu:
- case Intrinsic::convertus:
- case Intrinsic::convertuu: {
- ISD::CvtCode Code = ISD::CVT_INVALID;
- switch (Intrinsic) {
- default: llvm_unreachable("Impossible intrinsic"); // Can't reach here.
- case Intrinsic::convertff: Code = ISD::CVT_FF; break;
- case Intrinsic::convertfsi: Code = ISD::CVT_FS; break;
- case Intrinsic::convertfui: Code = ISD::CVT_FU; break;
- case Intrinsic::convertsif: Code = ISD::CVT_SF; break;
- case Intrinsic::convertuif: Code = ISD::CVT_UF; break;
- case Intrinsic::convertss: Code = ISD::CVT_SS; break;
- case Intrinsic::convertsu: Code = ISD::CVT_SU; break;
- case Intrinsic::convertus: Code = ISD::CVT_US; break;
- case Intrinsic::convertuu: Code = ISD::CVT_UU; break;
- }
- EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
- const Value *Op1 = I.getArgOperand(0);
- Res = DAG.getConvertRndSat(DestVT, sdl, getValue(Op1),
- DAG.getValueType(DestVT),
- DAG.getValueType(getValue(Op1).getValueType()),
- getValue(I.getArgOperand(1)),
- getValue(I.getArgOperand(2)),
- Code);
- setValue(&I, Res);
- return nullptr;
- }
- case Intrinsic::powi:
- setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)),
- getValue(I.getArgOperand(1)), DAG));
- return nullptr;
- case Intrinsic::log:
- setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
- return nullptr;
- case Intrinsic::log2:
- setValue(&I, expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
- return nullptr;
- case Intrinsic::log10:
- setValue(&I, expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
- return nullptr;
- case Intrinsic::exp:
- setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
- return nullptr;
- case Intrinsic::exp2:
- setValue(&I, expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
- return nullptr;
- case Intrinsic::pow:
- setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)),
- getValue(I.getArgOperand(1)), DAG, TLI));
- return nullptr;
- case Intrinsic::sqrt:
- case Intrinsic::fabs:
- case Intrinsic::sin:
- case Intrinsic::cos:
- case Intrinsic::floor:
- case Intrinsic::ceil:
- case Intrinsic::trunc:
- case Intrinsic::rint:
- case Intrinsic::nearbyint:
- case Intrinsic::round: {
- unsigned Opcode;
- switch (Intrinsic) {
- default: llvm_unreachable("Impossible intrinsic"); // Can't reach here.
- case Intrinsic::sqrt: Opcode = ISD::FSQRT; break;
- case Intrinsic::fabs: Opcode = ISD::FABS; break;
- case Intrinsic::sin: Opcode = ISD::FSIN; break;
- case Intrinsic::cos: Opcode = ISD::FCOS; break;
- case Intrinsic::floor: Opcode = ISD::FFLOOR; break;
- case Intrinsic::ceil: Opcode = ISD::FCEIL; break;
- case Intrinsic::trunc: Opcode = ISD::FTRUNC; break;
- case Intrinsic::rint: Opcode = ISD::FRINT; break;
- case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break;
- case Intrinsic::round: Opcode = ISD::FROUND; break;
- }
- setValue(&I, DAG.getNode(Opcode, sdl,
- getValue(I.getArgOperand(0)).getValueType(),
- getValue(I.getArgOperand(0))));
- return nullptr;
- }
- case Intrinsic::minnum:
- setValue(&I, DAG.getNode(ISD::FMINNUM, sdl,
- getValue(I.getArgOperand(0)).getValueType(),
- getValue(I.getArgOperand(0)),
- getValue(I.getArgOperand(1))));
- return nullptr;
- case Intrinsic::maxnum:
- setValue(&I, DAG.getNode(ISD::FMAXNUM, sdl,
- getValue(I.getArgOperand(0)).getValueType(),
- getValue(I.getArgOperand(0)),
- getValue(I.getArgOperand(1))));
- return nullptr;
- case Intrinsic::copysign:
- setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl,
- getValue(I.getArgOperand(0)).getValueType(),
- getValue(I.getArgOperand(0)),
- getValue(I.getArgOperand(1))));
- return nullptr;
- case Intrinsic::fma:
- setValue(&I, DAG.getNode(ISD::FMA, sdl,
- getValue(I.getArgOperand(0)).getValueType(),
- getValue(I.getArgOperand(0)),
- getValue(I.getArgOperand(1)),
- getValue(I.getArgOperand(2))));
- return nullptr;
- case Intrinsic::fmuladd: {
- EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
- if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict &&
- TLI.isFMAFasterThanFMulAndFAdd(VT)) {
- setValue(&I, DAG.getNode(ISD::FMA, sdl,
- getValue(I.getArgOperand(0)).getValueType(),
- getValue(I.getArgOperand(0)),
- getValue(I.getArgOperand(1)),
- getValue(I.getArgOperand(2))));
- } else {
- SDValue Mul = DAG.getNode(ISD::FMUL, sdl,
- getValue(I.getArgOperand(0)).getValueType(),
- getValue(I.getArgOperand(0)),
- getValue(I.getArgOperand(1)));
- SDValue Add = DAG.getNode(ISD::FADD, sdl,
- getValue(I.getArgOperand(0)).getValueType(),
- Mul,
- getValue(I.getArgOperand(2)));
- setValue(&I, Add);
- }
- return nullptr;
- }
- case Intrinsic::convert_to_fp16:
- setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16,
- DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16,
- getValue(I.getArgOperand(0)),
- DAG.getTargetConstant(0, sdl,
- MVT::i32))));
- return nullptr;
- case Intrinsic::convert_from_fp16:
- setValue(&I, DAG.getNode(ISD::FP_EXTEND, sdl,
- TLI.getValueType(DAG.getDataLayout(), I.getType()),
- DAG.getNode(ISD::BITCAST, sdl, MVT::f16,
- getValue(I.getArgOperand(0)))));
- return nullptr;
- case Intrinsic::pcmarker: {
- SDValue Tmp = getValue(I.getArgOperand(0));
- DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp));
- return nullptr;
- }
- case Intrinsic::readcyclecounter: {
- SDValue Op = getRoot();
- Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl,
- DAG.getVTList(MVT::i64, MVT::Other), Op);
- setValue(&I, Res);
- DAG.setRoot(Res.getValue(1));
- return nullptr;
- }
- case Intrinsic::bswap:
- setValue(&I, DAG.getNode(ISD::BSWAP, sdl,
- getValue(I.getArgOperand(0)).getValueType(),
- getValue(I.getArgOperand(0))));
- return nullptr;
- case Intrinsic::cttz: {
- SDValue Arg = getValue(I.getArgOperand(0));
- ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
- EVT Ty = Arg.getValueType();
- setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF,
- sdl, Ty, Arg));
- return nullptr;
- }
- case Intrinsic::ctlz: {
- SDValue Arg = getValue(I.getArgOperand(0));
- ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
- EVT Ty = Arg.getValueType();
- setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF,
- sdl, Ty, Arg));
- return nullptr;
- }
- case Intrinsic::ctpop: {
- SDValue Arg = getValue(I.getArgOperand(0));
- EVT Ty = Arg.getValueType();
- setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg));
- return nullptr;
- }
- case Intrinsic::stacksave: {
- SDValue Op = getRoot();
- Res = DAG.getNode(
- ISD::STACKSAVE, sdl,
- DAG.getVTList(TLI.getPointerTy(DAG.getDataLayout()), MVT::Other), Op);
- setValue(&I, Res);
- DAG.setRoot(Res.getValue(1));
- return nullptr;
- }
- case Intrinsic::stackrestore: {
- Res = getValue(I.getArgOperand(0));
- DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res));
- return nullptr;
- }
- case Intrinsic::stackprotector: {
- // Emit code into the DAG to store the stack guard onto the stack.
- MachineFunction &MF = DAG.getMachineFunction();
- MachineFrameInfo *MFI = MF.getFrameInfo();
- EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
- SDValue Src, Chain = getRoot();
- const Value *Ptr = cast<LoadInst>(I.getArgOperand(0))->getPointerOperand();
- const GlobalVariable *GV = dyn_cast<GlobalVariable>(Ptr);
- // See if Ptr is a bitcast. If it is, look through it and see if we can get
- // global variable __stack_chk_guard.
- if (!GV)
- if (const Operator *BC = dyn_cast<Operator>(Ptr))
- if (BC->getOpcode() == Instruction::BitCast)
- GV = dyn_cast<GlobalVariable>(BC->getOperand(0));
- if (GV && TLI.useLoadStackGuardNode()) {
- // Emit a LOAD_STACK_GUARD node.
- MachineSDNode *Node = DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD,
- sdl, PtrTy, Chain);
- MachinePointerInfo MPInfo(GV);
- MachineInstr::mmo_iterator MemRefs = MF.allocateMemRefsArray(1);
- unsigned Flags = MachineMemOperand::MOLoad |
- MachineMemOperand::MOInvariant;
- *MemRefs = MF.getMachineMemOperand(MPInfo, Flags,
- PtrTy.getSizeInBits() / 8,
- DAG.getEVTAlignment(PtrTy));
- Node->setMemRefs(MemRefs, MemRefs + 1);
- // Copy the guard value to a virtual register so that it can be
- // retrieved in the epilogue.
- Src = SDValue(Node, 0);
- const TargetRegisterClass *RC =
- TLI.getRegClassFor(Src.getSimpleValueType());
- unsigned Reg = MF.getRegInfo().createVirtualRegister(RC);
- SPDescriptor.setGuardReg(Reg);
- Chain = DAG.getCopyToReg(Chain, sdl, Reg, Src);
- } else {
- Src = getValue(I.getArgOperand(0)); // The guard's value.
- }
- AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1));
- int FI = FuncInfo.StaticAllocaMap[Slot];
- MFI->setStackProtectorIndex(FI);
- SDValue FIN = DAG.getFrameIndex(FI, PtrTy);
- // Store the stack protector onto the stack.
- Res = DAG.getStore(Chain, sdl, Src, FIN,
- MachinePointerInfo::getFixedStack(FI),
- true, false, 0);
- setValue(&I, Res);
- DAG.setRoot(Res);
- return nullptr;
- }
- case Intrinsic::objectsize: {
- // If we don't know by now, we're never going to know.
- ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(1));
- assert(CI && "Non-constant type in __builtin_object_size?");
- SDValue Arg = getValue(I.getCalledValue());
- EVT Ty = Arg.getValueType();
- if (CI->isZero())
- Res = DAG.getConstant(-1ULL, sdl, Ty);
- else
- Res = DAG.getConstant(0, sdl, Ty);
- setValue(&I, Res);
- return nullptr;
- }
- case Intrinsic::annotation:
- case Intrinsic::ptr_annotation:
- // Drop the intrinsic, but forward the value
- setValue(&I, getValue(I.getOperand(0)));
- return nullptr;
- case Intrinsic::assume:
- case Intrinsic::var_annotation:
- // Discard annotate attributes and assumptions
- return nullptr;
- case Intrinsic::init_trampoline: {
- const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts());
- SDValue Ops[6];
- Ops[0] = getRoot();
- Ops[1] = getValue(I.getArgOperand(0));
- Ops[2] = getValue(I.getArgOperand(1));
- Ops[3] = getValue(I.getArgOperand(2));
- Ops[4] = DAG.getSrcValue(I.getArgOperand(0));
- Ops[5] = DAG.getSrcValue(F);
- Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops);
- DAG.setRoot(Res);
- return nullptr;
- }
- case Intrinsic::adjust_trampoline: {
- setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl,
- TLI.getPointerTy(DAG.getDataLayout()),
- getValue(I.getArgOperand(0))));
- return nullptr;
- }
- case Intrinsic::gcroot:
- if (GFI) {
- const Value *Alloca = I.getArgOperand(0)->stripPointerCasts();
- const Constant *TypeMap = cast<Constant>(I.getArgOperand(1));
- FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode());
- GFI->addStackRoot(FI->getIndex(), TypeMap);
- }
- return nullptr;
- case Intrinsic::gcread:
- case Intrinsic::gcwrite:
- llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!");
- case Intrinsic::flt_rounds:
- setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, sdl, MVT::i32));
- return nullptr;
- case Intrinsic::expect: {
- // Just replace __builtin_expect(exp, c) with EXP.
- setValue(&I, getValue(I.getArgOperand(0)));
- return nullptr;
- }
- case Intrinsic::debugtrap:
- case Intrinsic::trap: {
- StringRef TrapFuncName =
- I.getAttributes()
- .getAttribute(AttributeSet::FunctionIndex, "trap-func-name")
- .getValueAsString();
- if (TrapFuncName.empty()) {
- ISD::NodeType Op = (Intrinsic == Intrinsic::trap) ?
- ISD::TRAP : ISD::DEBUGTRAP;
- DAG.setRoot(DAG.getNode(Op, sdl,MVT::Other, getRoot()));
- return nullptr;
- }
- TargetLowering::ArgListTy Args;
- TargetLowering::CallLoweringInfo CLI(DAG);
- CLI.setDebugLoc(sdl).setChain(getRoot()).setCallee(
- CallingConv::C, I.getType(),
- DAG.getExternalSymbol(TrapFuncName.data(),
- TLI.getPointerTy(DAG.getDataLayout())),
- std::move(Args), 0);
- std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
- DAG.setRoot(Result.second);
- return nullptr;
- }
- case Intrinsic::uadd_with_overflow:
- case Intrinsic::sadd_with_overflow:
- case Intrinsic::usub_with_overflow:
- case Intrinsic::ssub_with_overflow:
- case Intrinsic::umul_with_overflow:
- case Intrinsic::smul_with_overflow: {
- ISD::NodeType Op;
- switch (Intrinsic) {
- default: llvm_unreachable("Impossible intrinsic"); // Can't reach here.
- case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break;
- case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break;
- case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break;
- case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break;
- case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break;
- case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break;
- }
- SDValue Op1 = getValue(I.getArgOperand(0));
- SDValue Op2 = getValue(I.getArgOperand(1));
- SDVTList VTs = DAG.getVTList(Op1.getValueType(), MVT::i1);
- setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2));
- return nullptr;
- }
- case Intrinsic::prefetch: {
- SDValue Ops[5];
- unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
- Ops[0] = getRoot();
- Ops[1] = getValue(I.getArgOperand(0));
- Ops[2] = getValue(I.getArgOperand(1));
- Ops[3] = getValue(I.getArgOperand(2));
- Ops[4] = getValue(I.getArgOperand(3));
- DAG.setRoot(DAG.getMemIntrinsicNode(ISD::PREFETCH, sdl,
- DAG.getVTList(MVT::Other), Ops,
- EVT::getIntegerVT(*Context, 8),
- MachinePointerInfo(I.getArgOperand(0)),
- 0, /* align */
- false, /* volatile */
- rw==0, /* read */
- rw==1)); /* write */
- return nullptr;
- }
- case Intrinsic::lifetime_start:
- case Intrinsic::lifetime_end: {
- bool IsStart = (Intrinsic == Intrinsic::lifetime_start);
- // Stack coloring is not enabled in O0, discard region information.
- if (TM.getOptLevel() == CodeGenOpt::None)
- return nullptr;
- SmallVector<Value *, 4> Allocas;
- GetUnderlyingObjects(I.getArgOperand(1), Allocas, *DL);
- for (SmallVectorImpl<Value*>::iterator Object = Allocas.begin(),
- E = Allocas.end(); Object != E; ++Object) {
- AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(*Object);
- // Could not find an Alloca.
- if (!LifetimeObject)
- continue;
- // First check that the Alloca is static, otherwise it won't have a
- // valid frame index.
- auto SI = FuncInfo.StaticAllocaMap.find(LifetimeObject);
- if (SI == FuncInfo.StaticAllocaMap.end())
- return nullptr;
- int FI = SI->second;
- SDValue Ops[2];
- Ops[0] = getRoot();
- Ops[1] =
- DAG.getFrameIndex(FI, TLI.getPointerTy(DAG.getDataLayout()), true);
- unsigned Opcode = (IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END);
- Res = DAG.getNode(Opcode, sdl, MVT::Other, Ops);
- DAG.setRoot(Res);
- }
- return nullptr;
- }
- case Intrinsic::invariant_start:
- // Discard region information.
- setValue(&I, DAG.getUNDEF(TLI.getPointerTy(DAG.getDataLayout())));
- return nullptr;
- case Intrinsic::invariant_end:
- // Discard region information.
- return nullptr;
- case Intrinsic::stackprotectorcheck: {
- // Do not actually emit anything for this basic block. Instead we initialize
- // the stack protector descriptor and export the guard variable so we can
- // access it in FinishBasicBlock.
- const BasicBlock *BB = I.getParent();
- SPDescriptor.initialize(BB, FuncInfo.MBBMap[BB], I);
- ExportFromCurrentBlock(SPDescriptor.getGuard());
- // Flush our exports since we are going to process a terminator.
- (void)getControlRoot();
- return nullptr;
- }
- case Intrinsic::clear_cache:
- return TLI.getClearCacheBuiltinName();
- case Intrinsic::eh_actions:
- setValue(&I, DAG.getUNDEF(TLI.getPointerTy(DAG.getDataLayout())));
- return nullptr;
- case Intrinsic::donothing:
- // ignore
- return nullptr;
- case Intrinsic::experimental_stackmap: {
- visitStackmap(I);
- return nullptr;
- }
- case Intrinsic::experimental_patchpoint_void:
- case Intrinsic::experimental_patchpoint_i64: {
- visitPatchpoint(&I);
- return nullptr;
- }
- case Intrinsic::experimental_gc_statepoint: {
- visitStatepoint(I);
- return nullptr;
- }
- case Intrinsic::experimental_gc_result_int:
- case Intrinsic::experimental_gc_result_float:
- case Intrinsic::experimental_gc_result_ptr:
- case Intrinsic::experimental_gc_result: {
- visitGCResult(I);
- return nullptr;
- }
- case Intrinsic::experimental_gc_relocate: {
- visitGCRelocate(I);
- return nullptr;
- }
- case Intrinsic::instrprof_increment:
- llvm_unreachable("instrprof failed to lower an increment");
- case Intrinsic::localescape: {
- MachineFunction &MF = DAG.getMachineFunction();
- const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo();
- // Directly emit some LOCAL_ESCAPE machine instrs. Label assignment emission
- // is the same on all targets.
- for (unsigned Idx = 0, E = I.getNumArgOperands(); Idx < E; ++Idx) {
- Value *Arg = I.getArgOperand(Idx)->stripPointerCasts();
- if (isa<ConstantPointerNull>(Arg))
- continue; // Skip null pointers. They represent a hole in index space.
- AllocaInst *Slot = cast<AllocaInst>(Arg);
- assert(FuncInfo.StaticAllocaMap.count(Slot) &&
- "can only escape static allocas");
- int FI = FuncInfo.StaticAllocaMap[Slot];
- MCSymbol *FrameAllocSym =
- MF.getMMI().getContext().getOrCreateFrameAllocSymbol(
- GlobalValue::getRealLinkageName(MF.getName()), Idx);
- BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, dl,
- TII->get(TargetOpcode::LOCAL_ESCAPE))
- .addSym(FrameAllocSym)
- .addFrameIndex(FI);
- }
- return nullptr;
- }
- case Intrinsic::localrecover: {
- // i8* @llvm.localrecover(i8* %fn, i8* %fp, i32 %idx)
- MachineFunction &MF = DAG.getMachineFunction();
- MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout(), 0);
- // Get the symbol that defines the frame offset.
- auto *Fn = cast<Function>(I.getArgOperand(0)->stripPointerCasts());
- auto *Idx = cast<ConstantInt>(I.getArgOperand(2));
- unsigned IdxVal = unsigned(Idx->getLimitedValue(INT_MAX));
- MCSymbol *FrameAllocSym =
- MF.getMMI().getContext().getOrCreateFrameAllocSymbol(
- GlobalValue::getRealLinkageName(Fn->getName()), IdxVal);
- // Create a MCSymbol for the label to avoid any target lowering
- // that would make this PC relative.
- SDValue OffsetSym = DAG.getMCSymbol(FrameAllocSym, PtrVT);
- SDValue OffsetVal =
- DAG.getNode(ISD::LOCAL_RECOVER, sdl, PtrVT, OffsetSym);
- // Add the offset to the FP.
- Value *FP = I.getArgOperand(1);
- SDValue FPVal = getValue(FP);
- SDValue Add = DAG.getNode(ISD::ADD, sdl, PtrVT, FPVal, OffsetVal);
- setValue(&I, Add);
- return nullptr;
- }
- case Intrinsic::eh_begincatch:
- case Intrinsic::eh_endcatch:
- llvm_unreachable("begin/end catch intrinsics not lowered in codegen");
- case Intrinsic::eh_exceptioncode: {
- unsigned Reg = TLI.getExceptionPointerRegister();
- assert(Reg && "cannot get exception code on this platform");
- MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout());
- const TargetRegisterClass *PtrRC = TLI.getRegClassFor(PtrVT);
- assert(FuncInfo.MBB->isLandingPad() && "eh.exceptioncode in non-lpad");
- unsigned VReg = FuncInfo.MBB->addLiveIn(Reg, PtrRC);
- SDValue N =
- DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), VReg, PtrVT);
- N = DAG.getZExtOrTrunc(N, getCurSDLoc(), MVT::i32);
- setValue(&I, N);
- return nullptr;
- }
- }
- }
- std::pair<SDValue, SDValue>
- SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo &CLI,
- MachineBasicBlock *LandingPad) {
- MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
- MCSymbol *BeginLabel = nullptr;
- if (LandingPad) {
- // Insert a label before the invoke call to mark the try range. This can be
- // used to detect deletion of the invoke via the MachineModuleInfo.
- BeginLabel = MMI.getContext().createTempSymbol();
- // For SjLj, keep track of which landing pads go with which invokes
- // so as to maintain the ordering of pads in the LSDA.
- unsigned CallSiteIndex = MMI.getCurrentCallSite();
- if (CallSiteIndex) {
- MMI.setCallSiteBeginLabel(BeginLabel, CallSiteIndex);
- LPadToCallSiteMap[LandingPad].push_back(CallSiteIndex);
- // Now that the call site is handled, stop tracking it.
- MMI.setCurrentCallSite(0);
- }
- // Both PendingLoads and PendingExports must be flushed here;
- // this call might not return.
- (void)getRoot();
- DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getControlRoot(), BeginLabel));
- CLI.setChain(getRoot());
- }
- const TargetLowering &TLI = DAG.getTargetLoweringInfo();
- std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
- assert((CLI.IsTailCall || Result.second.getNode()) &&
- "Non-null chain expected with non-tail call!");
- assert((Result.second.getNode() || !Result.first.getNode()) &&
- "Null value expected with tail call!");
- if (!Result.second.getNode()) {
- // As a special case, a null chain means that a tail call has been emitted
- // and the DAG root is already updated.
- HasTailCall = true;
- // Since there's no actual continuation from this block, nothing can be
- // relying on us setting vregs for them.
- PendingExports.clear();
- } else {
- DAG.setRoot(Result.second);
- }
- if (LandingPad) {
- // Insert a label at the end of the invoke call to mark the try range. This
- // can be used to detect deletion of the invoke via the MachineModuleInfo.
- MCSymbol *EndLabel = MMI.getContext().createTempSymbol();
- DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getRoot(), EndLabel));
- // Inform MachineModuleInfo of range.
- MMI.addInvoke(LandingPad, BeginLabel, EndLabel);
- }
- return Result;
- }
- void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee,
- bool isTailCall,
- MachineBasicBlock *LandingPad) {
- PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType());
- FunctionType *FTy = cast<FunctionType>(PT->getElementType());
- Type *RetTy = FTy->getReturnType();
- TargetLowering::ArgListTy Args;
- TargetLowering::ArgListEntry Entry;
- Args.reserve(CS.arg_size());
- for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end();
- i != e; ++i) {
- const Value *V = *i;
- // Skip empty types
- if (V->getType()->isEmptyTy())
- continue;
- SDValue ArgNode = getValue(V);
- Entry.Node = ArgNode; Entry.Ty = V->getType();
- // Skip the first return-type Attribute to get to params.
- Entry.setAttributes(&CS, i - CS.arg_begin() + 1);
- Args.push_back(Entry);
- // If we have an explicit sret argument that is an Instruction, (i.e., it
- // might point to function-local memory), we can't meaningfully tail-call.
- if (Entry.isSRet && isa<Instruction>(V))
- isTailCall = false;
- }
- // Check if target-independent constraints permit a tail call here.
- // Target-dependent constraints are checked within TLI->LowerCallTo.
- if (isTailCall && !isInTailCallPosition(CS, DAG.getTarget()))
- isTailCall = false;
- TargetLowering::CallLoweringInfo CLI(DAG);
- CLI.setDebugLoc(getCurSDLoc()).setChain(getRoot())
- .setCallee(RetTy, FTy, Callee, std::move(Args), CS)
- .setTailCall(isTailCall);
- std::pair<SDValue,SDValue> Result = lowerInvokable(CLI, LandingPad);
- if (Result.first.getNode())
- setValue(CS.getInstruction(), Result.first);
- }
- /// IsOnlyUsedInZeroEqualityComparison - Return true if it only matters that the
- /// value is equal or not-equal to zero.
- static bool IsOnlyUsedInZeroEqualityComparison(const Value *V) {
- for (const User *U : V->users()) {
- if (const ICmpInst *IC = dyn_cast<ICmpInst>(U))
- if (IC->isEquality())
- if (const Constant *C = dyn_cast<Constant>(IC->getOperand(1)))
- if (C->isNullValue())
- continue;
- // Unknown instruction.
- return false;
- }
- return true;
- }
- static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT,
- Type *LoadTy,
- SelectionDAGBuilder &Builder) {
- // Check to see if this load can be trivially constant folded, e.g. if the
- // input is from a string literal.
- if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) {
- // Cast pointer to the type we really want to load.
- LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput),
- PointerType::getUnqual(LoadTy));
- if (const Constant *LoadCst = ConstantFoldLoadFromConstPtr(
- const_cast<Constant *>(LoadInput), *Builder.DL))
- return Builder.getValue(LoadCst);
- }
- // Otherwise, we have to emit the load. If the pointer is to unfoldable but
- // still constant memory, the input chain can be the entry node.
- SDValue Root;
- bool ConstantMemory = false;
- // Do not serialize (non-volatile) loads of constant memory with anything.
- if (Builder.AA->pointsToConstantMemory(PtrVal)) {
- Root = Builder.DAG.getEntryNode();
- ConstantMemory = true;
- } else {
- // Do not serialize non-volatile loads against each other.
- Root = Builder.DAG.getRoot();
- }
- SDValue Ptr = Builder.getValue(PtrVal);
- SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root,
- Ptr, MachinePointerInfo(PtrVal),
- false /*volatile*/,
- false /*nontemporal*/,
- false /*isinvariant*/, 1 /* align=1 */);
- if (!ConstantMemory)
- Builder.PendingLoads.push_back(LoadVal.getValue(1));
- return LoadVal;
- }
- /// processIntegerCallValue - Record the value for an instruction that
- /// produces an integer result, converting the type where necessary.
- void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I,
- SDValue Value,
- bool IsSigned) {
- EVT VT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
- I.getType(), true);
- if (IsSigned)
- Value = DAG.getSExtOrTrunc(Value, getCurSDLoc(), VT);
- else
- Value = DAG.getZExtOrTrunc(Value, getCurSDLoc(), VT);
- setValue(&I, Value);
- }
- /// visitMemCmpCall - See if we can lower a call to memcmp in an optimized form.
- /// If so, return true and lower it, otherwise return false and it will be
- /// lowered like a normal call.
- bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) {
- // Verify that the prototype makes sense. int memcmp(void*,void*,size_t)
- if (I.getNumArgOperands() != 3)
- return false;
- const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1);
- if (!LHS->getType()->isPointerTy() || !RHS->getType()->isPointerTy() ||
- !I.getArgOperand(2)->getType()->isIntegerTy() ||
- !I.getType()->isIntegerTy())
- return false;
- const Value *Size = I.getArgOperand(2);
- const ConstantInt *CSize = dyn_cast<ConstantInt>(Size);
- if (CSize && CSize->getZExtValue() == 0) {
- EVT CallVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
- I.getType(), true);
- setValue(&I, DAG.getConstant(0, getCurSDLoc(), CallVT));
- return true;
- }
- const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo();
- std::pair<SDValue, SDValue> Res =
- TSI.EmitTargetCodeForMemcmp(DAG, getCurSDLoc(), DAG.getRoot(),
- getValue(LHS), getValue(RHS), getValue(Size),
- MachinePointerInfo(LHS),
- MachinePointerInfo(RHS));
- if (Res.first.getNode()) {
- processIntegerCallValue(I, Res.first, true);
- PendingLoads.push_back(Res.second);
- return true;
- }
- // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS) != 0
- // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS) != 0
- if (CSize && IsOnlyUsedInZeroEqualityComparison(&I)) {
- bool ActuallyDoIt = true;
- MVT LoadVT;
- Type *LoadTy;
- switch (CSize->getZExtValue()) {
- default:
- LoadVT = MVT::Other;
- LoadTy = nullptr;
- ActuallyDoIt = false;
- break;
- case 2:
- LoadVT = MVT::i16;
- LoadTy = Type::getInt16Ty(CSize->getContext());
- break;
- case 4:
- LoadVT = MVT::i32;
- LoadTy = Type::getInt32Ty(CSize->getContext());
- break;
- case 8:
- LoadVT = MVT::i64;
- LoadTy = Type::getInt64Ty(CSize->getContext());
- break;
- /*
- case 16:
- LoadVT = MVT::v4i32;
- LoadTy = Type::getInt32Ty(CSize->getContext());
- LoadTy = VectorType::get(LoadTy, 4);
- break;
- */
- }
- // This turns into unaligned loads. We only do this if the target natively
- // supports the MVT we'll be loading or if it is small enough (<= 4) that
- // we'll only produce a small number of byte loads.
- // Require that we can find a legal MVT, and only do this if the target
- // supports unaligned loads of that type. Expanding into byte loads would
- // bloat the code.
- const TargetLowering &TLI = DAG.getTargetLoweringInfo();
- if (ActuallyDoIt && CSize->getZExtValue() > 4) {
- unsigned DstAS = LHS->getType()->getPointerAddressSpace();
- unsigned SrcAS = RHS->getType()->getPointerAddressSpace();
- // TODO: Handle 5 byte compare as 4-byte + 1 byte.
- // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads.
- // TODO: Check alignment of src and dest ptrs.
- if (!TLI.isTypeLegal(LoadVT) ||
- !TLI.allowsMisalignedMemoryAccesses(LoadVT, SrcAS) ||
- !TLI.allowsMisalignedMemoryAccesses(LoadVT, DstAS))
- ActuallyDoIt = false;
- }
- if (ActuallyDoIt) {
- SDValue LHSVal = getMemCmpLoad(LHS, LoadVT, LoadTy, *this);
- SDValue RHSVal = getMemCmpLoad(RHS, LoadVT, LoadTy, *this);
- SDValue Res = DAG.getSetCC(getCurSDLoc(), MVT::i1, LHSVal, RHSVal,
- ISD::SETNE);
- processIntegerCallValue(I, Res, false);
- return true;
- }
- }
- return false;
- }
- /// visitMemChrCall -- See if we can lower a memchr call into an optimized
- /// form. If so, return true and lower it, otherwise return false and it
- /// will be lowered like a normal call.
- bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) {
- // Verify that the prototype makes sense. void *memchr(void *, int, size_t)
- if (I.getNumArgOperands() != 3)
- return false;
- const Value *Src = I.getArgOperand(0);
- const Value *Char = I.getArgOperand(1);
- const Value *Length = I.getArgOperand(2);
- if (!Src->getType()->isPointerTy() ||
- !Char->getType()->isIntegerTy() ||
- !Length->getType()->isIntegerTy() ||
- !I.getType()->isPointerTy())
- return false;
- const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo();
- std::pair<SDValue, SDValue> Res =
- TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(),
- getValue(Src), getValue(Char), getValue(Length),
- MachinePointerInfo(Src));
- if (Res.first.getNode()) {
- setValue(&I, Res.first);
- PendingLoads.push_back(Res.second);
- return true;
- }
- return false;
- }
- /// visitStrCpyCall -- See if we can lower a strcpy or stpcpy call into an
- /// optimized form. If so, return true and lower it, otherwise return false
- /// and it will be lowered like a normal call.
- bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) {
- // Verify that the prototype makes sense. char *strcpy(char *, char *)
- if (I.getNumArgOperands() != 2)
- return false;
- const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
- if (!Arg0->getType()->isPointerTy() ||
- !Arg1->getType()->isPointerTy() ||
- !I.getType()->isPointerTy())
- return false;
- const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo();
- std::pair<SDValue, SDValue> Res =
- TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(),
- getValue(Arg0), getValue(Arg1),
- MachinePointerInfo(Arg0),
- MachinePointerInfo(Arg1), isStpcpy);
- if (Res.first.getNode()) {
- setValue(&I, Res.first);
- DAG.setRoot(Res.second);
- return true;
- }
- return false;
- }
- /// visitStrCmpCall - See if we can lower a call to strcmp in an optimized form.
- /// If so, return true and lower it, otherwise return false and it will be
- /// lowered like a normal call.
- bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) {
- // Verify that the prototype makes sense. int strcmp(void*,void*)
- if (I.getNumArgOperands() != 2)
- return false;
- const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
- if (!Arg0->getType()->isPointerTy() ||
- !Arg1->getType()->isPointerTy() ||
- !I.getType()->isIntegerTy())
- return false;
- const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo();
- std::pair<SDValue, SDValue> Res =
- TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(),
- getValue(Arg0), getValue(Arg1),
- MachinePointerInfo(Arg0),
- MachinePointerInfo(Arg1));
- if (Res.first.getNode()) {
- processIntegerCallValue(I, Res.first, true);
- PendingLoads.push_back(Res.second);
- return true;
- }
- return false;
- }
- /// visitStrLenCall -- See if we can lower a strlen call into an optimized
- /// form. If so, return true and lower it, otherwise return false and it
- /// will be lowered like a normal call.
- bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) {
- // Verify that the prototype makes sense. size_t strlen(char *)
- if (I.getNumArgOperands() != 1)
- return false;
- const Value *Arg0 = I.getArgOperand(0);
- if (!Arg0->getType()->isPointerTy() || !I.getType()->isIntegerTy())
- return false;
- const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo();
- std::pair<SDValue, SDValue> Res =
- TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(),
- getValue(Arg0), MachinePointerInfo(Arg0));
- if (Res.first.getNode()) {
- processIntegerCallValue(I, Res.first, false);
- PendingLoads.push_back(Res.second);
- return true;
- }
- return false;
- }
- /// visitStrNLenCall -- See if we can lower a strnlen call into an optimized
- /// form. If so, return true and lower it, otherwise return false and it
- /// will be lowered like a normal call.
- bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) {
- // Verify that the prototype makes sense. size_t strnlen(char *, size_t)
- if (I.getNumArgOperands() != 2)
- return false;
- const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
- if (!Arg0->getType()->isPointerTy() ||
- !Arg1->getType()->isIntegerTy() ||
- !I.getType()->isIntegerTy())
- return false;
- const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo();
- std::pair<SDValue, SDValue> Res =
- TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(),
- getValue(Arg0), getValue(Arg1),
- MachinePointerInfo(Arg0));
- if (Res.first.getNode()) {
- processIntegerCallValue(I, Res.first, false);
- PendingLoads.push_back(Res.second);
- return true;
- }
- return false;
- }
- /// visitUnaryFloatCall - If a call instruction is a unary floating-point
- /// operation (as expected), translate it to an SDNode with the specified opcode
- /// and return true.
- bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I,
- unsigned Opcode) {
- // Sanity check that it really is a unary floating-point call.
- if (I.getNumArgOperands() != 1 ||
- !I.getArgOperand(0)->getType()->isFloatingPointTy() ||
- I.getType() != I.getArgOperand(0)->getType() ||
- !I.onlyReadsMemory())
- return false;
- SDValue Tmp = getValue(I.getArgOperand(0));
- setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp));
- return true;
- }
- /// visitBinaryFloatCall - If a call instruction is a binary floating-point
- /// operation (as expected), translate it to an SDNode with the specified opcode
- /// and return true.
- bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst &I,
- unsigned Opcode) {
- // Sanity check that it really is a binary floating-point call.
- if (I.getNumArgOperands() != 2 ||
- !I.getArgOperand(0)->getType()->isFloatingPointTy() ||
- I.getType() != I.getArgOperand(0)->getType() ||
- I.getType() != I.getArgOperand(1)->getType() ||
- !I.onlyReadsMemory())
- return false;
- SDValue Tmp0 = getValue(I.getArgOperand(0));
- SDValue Tmp1 = getValue(I.getArgOperand(1));
- EVT VT = Tmp0.getValueType();
- setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), VT, Tmp0, Tmp1));
- return true;
- }
- void SelectionDAGBuilder::visitCall(const CallInst &I) {
- // Handle inline assembly differently.
- if (isa<InlineAsm>(I.getCalledValue())) {
- visitInlineAsm(&I);
- return;
- }
- MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
- ComputeUsesVAFloatArgument(I, &MMI);
- const char *RenameFn = nullptr;
- if (Function *F = I.getCalledFunction()) {
- if (F->isDeclaration()) {
- if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) {
- if (unsigned IID = II->getIntrinsicID(F)) {
- RenameFn = visitIntrinsicCall(I, IID);
- if (!RenameFn)
- return;
- }
- }
- if (Intrinsic::ID IID = F->getIntrinsicID()) {
- RenameFn = visitIntrinsicCall(I, IID);
- if (!RenameFn)
- return;
- }
- }
- // Check for well-known libc/libm calls. If the function is internal, it
- // can't be a library call.
- LibFunc::Func Func;
- if (!F->hasLocalLinkage() && F->hasName() &&
- LibInfo->getLibFunc(F->getName(), Func) &&
- LibInfo->hasOptimizedCodeGen(Func)) {
- switch (Func) {
- default: break;
- case LibFunc::copysign:
- case LibFunc::copysignf:
- case LibFunc::copysignl:
- if (I.getNumArgOperands() == 2 && // Basic sanity checks.
- I.getArgOperand(0)->getType()->isFloatingPointTy() &&
- I.getType() == I.getArgOperand(0)->getType() &&
- I.getType() == I.getArgOperand(1)->getType() &&
- I.onlyReadsMemory()) {
- SDValue LHS = getValue(I.getArgOperand(0));
- SDValue RHS = getValue(I.getArgOperand(1));
- setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(),
- LHS.getValueType(), LHS, RHS));
- return;
- }
- break;
- case LibFunc::fabs:
- case LibFunc::fabsf:
- case LibFunc::fabsl:
- if (visitUnaryFloatCall(I, ISD::FABS))
- return;
- break;
- case LibFunc::fmin:
- case LibFunc::fminf:
- case LibFunc::fminl:
- if (visitBinaryFloatCall(I, ISD::FMINNUM))
- return;
- break;
- case LibFunc::fmax:
- case LibFunc::fmaxf:
- case LibFunc::fmaxl:
- if (visitBinaryFloatCall(I, ISD::FMAXNUM))
- return;
- break;
- case LibFunc::sin:
- case LibFunc::sinf:
- case LibFunc::sinl:
- if (visitUnaryFloatCall(I, ISD::FSIN))
- return;
- break;
- case LibFunc::cos:
- case LibFunc::cosf:
- case LibFunc::cosl:
- if (visitUnaryFloatCall(I, ISD::FCOS))
- return;
- break;
- case LibFunc::sqrt:
- case LibFunc::sqrtf:
- case LibFunc::sqrtl:
- case LibFunc::sqrt_finite:
- case LibFunc::sqrtf_finite:
- case LibFunc::sqrtl_finite:
- if (visitUnaryFloatCall(I, ISD::FSQRT))
- return;
- break;
- case LibFunc::floor:
- case LibFunc::floorf:
- case LibFunc::floorl:
- if (visitUnaryFloatCall(I, ISD::FFLOOR))
- return;
- break;
- case LibFunc::nearbyint:
- case LibFunc::nearbyintf:
- case LibFunc::nearbyintl:
- if (visitUnaryFloatCall(I, ISD::FNEARBYINT))
- return;
- break;
- case LibFunc::ceil:
- case LibFunc::ceilf:
- case LibFunc::ceill:
- if (visitUnaryFloatCall(I, ISD::FCEIL))
- return;
- break;
- case LibFunc::rint:
- case LibFunc::rintf:
- case LibFunc::rintl:
- if (visitUnaryFloatCall(I, ISD::FRINT))
- return;
- break;
- case LibFunc::round:
- case LibFunc::roundf:
- case LibFunc::roundl:
- if (visitUnaryFloatCall(I, ISD::FROUND))
- return;
- break;
- case LibFunc::trunc:
- case LibFunc::truncf:
- case LibFunc::truncl:
- if (visitUnaryFloatCall(I, ISD::FTRUNC))
- return;
- break;
- case LibFunc::log2:
- case LibFunc::log2f:
- case LibFunc::log2l:
- if (visitUnaryFloatCall(I, ISD::FLOG2))
- return;
- break;
- case LibFunc::exp2:
- case LibFunc::exp2f:
- case LibFunc::exp2l:
- if (visitUnaryFloatCall(I, ISD::FEXP2))
- return;
- break;
- case LibFunc::memcmp:
- if (visitMemCmpCall(I))
- return;
- break;
- case LibFunc::memchr:
- if (visitMemChrCall(I))
- return;
- break;
- case LibFunc::strcpy:
- if (visitStrCpyCall(I, false))
- return;
- break;
- case LibFunc::stpcpy:
- if (visitStrCpyCall(I, true))
- return;
- break;
- case LibFunc::strcmp:
- if (visitStrCmpCall(I))
- return;
- break;
- case LibFunc::strlen:
- if (visitStrLenCall(I))
- return;
- break;
- case LibFunc::strnlen:
- if (visitStrNLenCall(I))
- return;
- break;
- }
- }
- }
- SDValue Callee;
- if (!RenameFn)
- Callee = getValue(I.getCalledValue());
- else
- Callee = DAG.getExternalSymbol(
- RenameFn,
- DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()));
- // Check if we can potentially perform a tail call. More detailed checking is
- // be done within LowerCallTo, after more information about the call is known.
- LowerCallTo(&I, Callee, I.isTailCall());
- }
- namespace {
- /// AsmOperandInfo - This contains information for each constraint that we are
- /// lowering.
- class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo {
- public:
- /// CallOperand - If this is the result output operand or a clobber
- /// this is null, otherwise it is the incoming operand to the CallInst.
- /// This gets modified as the asm is processed.
- SDValue CallOperand;
- /// AssignedRegs - If this is a register or register class operand, this
- /// contains the set of register corresponding to the operand.
- RegsForValue AssignedRegs;
- explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info)
- : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr,0) {
- }
- /// getCallOperandValEVT - Return the EVT of the Value* that this operand
- /// corresponds to. If there is no Value* for this operand, it returns
- /// MVT::Other.
- EVT getCallOperandValEVT(LLVMContext &Context, const TargetLowering &TLI,
- const DataLayout &DL) const {
- if (!CallOperandVal) return MVT::Other;
- if (isa<BasicBlock>(CallOperandVal))
- return TLI.getPointerTy(DL);
- llvm::Type *OpTy = CallOperandVal->getType();
- // FIXME: code duplicated from TargetLowering::ParseConstraints().
- // If this is an indirect operand, the operand is a pointer to the
- // accessed type.
- if (isIndirect) {
- llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy);
- if (!PtrTy)
- report_fatal_error("Indirect operand for inline asm not a pointer!");
- OpTy = PtrTy->getElementType();
- }
- // Look for vector wrapped in a struct. e.g. { <16 x i8> }.
- if (StructType *STy = dyn_cast<StructType>(OpTy))
- if (STy->getNumElements() == 1)
- OpTy = STy->getElementType(0);
- // If OpTy is not a single value, it may be a struct/union that we
- // can tile with integers.
- if (!OpTy->isSingleValueType() && OpTy->isSized()) {
- unsigned BitSize = DL.getTypeSizeInBits(OpTy);
- switch (BitSize) {
- default: break;
- case 1:
- case 8:
- case 16:
- case 32:
- case 64:
- case 128:
- OpTy = IntegerType::get(Context, BitSize);
- break;
- }
- }
- return TLI.getValueType(DL, OpTy, true);
- }
- };
- typedef SmallVector<SDISelAsmOperandInfo,16> SDISelAsmOperandInfoVector;
- } // end anonymous namespace
- /// GetRegistersForValue - Assign registers (virtual or physical) for the
- /// specified operand. We prefer to assign virtual registers, to allow the
- /// register allocator to handle the assignment process. However, if the asm
- /// uses features that we can't model on machineinstrs, we have SDISel do the
- /// allocation. This produces generally horrible, but correct, code.
- ///
- /// OpInfo describes the operand.
- ///
- static void GetRegistersForValue(SelectionDAG &DAG,
- const TargetLowering &TLI,
- SDLoc DL,
- SDISelAsmOperandInfo &OpInfo) {
- LLVMContext &Context = *DAG.getContext();
- MachineFunction &MF = DAG.getMachineFunction();
- SmallVector<unsigned, 4> Regs;
- // If this is a constraint for a single physreg, or a constraint for a
- // register class, find it.
- std::pair<unsigned, const TargetRegisterClass *> PhysReg =
- TLI.getRegForInlineAsmConstraint(MF.getSubtarget().getRegisterInfo(),
- OpInfo.ConstraintCode,
- OpInfo.ConstraintVT);
- unsigned NumRegs = 1;
- if (OpInfo.ConstraintVT != MVT::Other) {
- // If this is a FP input in an integer register (or visa versa) insert a bit
- // cast of the input value. More generally, handle any case where the input
- // value disagrees with the register class we plan to stick this in.
- if (OpInfo.Type == InlineAsm::isInput &&
- PhysReg.second && !PhysReg.second->hasType(OpInfo.ConstraintVT)) {
- // Try to convert to the first EVT that the reg class contains. If the
- // types are identical size, use a bitcast to convert (e.g. two differing
- // vector types).
- MVT RegVT = *PhysReg.second->vt_begin();
- if (RegVT.getSizeInBits() == OpInfo.CallOperand.getValueSizeInBits()) {
- OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL,
- RegVT, OpInfo.CallOperand);
- OpInfo.ConstraintVT = RegVT;
- } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) {
- // If the input is a FP value and we want it in FP registers, do a
- // bitcast to the corresponding integer type. This turns an f64 value
- // into i64, which can be passed with two i32 values on a 32-bit
- // machine.
- RegVT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits());
- OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL,
- RegVT, OpInfo.CallOperand);
- OpInfo.ConstraintVT = RegVT;
- }
- }
- NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT);
- }
- MVT RegVT;
- EVT ValueVT = OpInfo.ConstraintVT;
- // If this is a constraint for a specific physical register, like {r17},
- // assign it now.
- if (unsigned AssignedReg = PhysReg.first) {
- const TargetRegisterClass *RC = PhysReg.second;
- if (OpInfo.ConstraintVT == MVT::Other)
- ValueVT = *RC->vt_begin();
- // Get the actual register value type. This is important, because the user
- // may have asked for (e.g.) the AX register in i32 type. We need to
- // remember that AX is actually i16 to get the right extension.
- RegVT = *RC->vt_begin();
- // This is a explicit reference to a physical register.
- Regs.push_back(AssignedReg);
- // If this is an expanded reference, add the rest of the regs to Regs.
- if (NumRegs != 1) {
- TargetRegisterClass::iterator I = RC->begin();
- for (; *I != AssignedReg; ++I)
- assert(I != RC->end() && "Didn't find reg!");
- // Already added the first reg.
- --NumRegs; ++I;
- for (; NumRegs; --NumRegs, ++I) {
- assert(I != RC->end() && "Ran out of registers to allocate!");
- Regs.push_back(*I);
- }
- }
- OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
- return;
- }
- // Otherwise, if this was a reference to an LLVM register class, create vregs
- // for this reference.
- if (const TargetRegisterClass *RC = PhysReg.second) {
- RegVT = *RC->vt_begin();
- if (OpInfo.ConstraintVT == MVT::Other)
- ValueVT = RegVT;
- // Create the appropriate number of virtual registers.
- MachineRegisterInfo &RegInfo = MF.getRegInfo();
- for (; NumRegs; --NumRegs)
- Regs.push_back(RegInfo.createVirtualRegister(RC));
- OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
- return;
- }
- // Otherwise, we couldn't allocate enough registers for this.
- }
- /// visitInlineAsm - Handle a call to an InlineAsm object.
- ///
- void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) {
- const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
- /// ConstraintOperands - Information about all of the constraints.
- SDISelAsmOperandInfoVector ConstraintOperands;
- const TargetLowering &TLI = DAG.getTargetLoweringInfo();
- TargetLowering::AsmOperandInfoVector TargetConstraints = TLI.ParseConstraints(
- DAG.getDataLayout(), DAG.getSubtarget().getRegisterInfo(), CS);
- bool hasMemory = false;
- unsigned ArgNo = 0; // ArgNo - The argument of the CallInst.
- unsigned ResNo = 0; // ResNo - The result number of the next output.
- for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) {
- ConstraintOperands.push_back(SDISelAsmOperandInfo(TargetConstraints[i]));
- SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back();
- MVT OpVT = MVT::Other;
- // Compute the value type for each operand.
- switch (OpInfo.Type) {
- case InlineAsm::isOutput:
- // Indirect outputs just consume an argument.
- if (OpInfo.isIndirect) {
- OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
- break;
- }
- // The return value of the call is this value. As such, there is no
- // corresponding argument.
- assert(!CS.getType()->isVoidTy() && "Bad inline asm!");
- if (StructType *STy = dyn_cast<StructType>(CS.getType())) {
- OpVT = TLI.getSimpleValueType(DAG.getDataLayout(),
- STy->getElementType(ResNo));
- } else {
- assert(ResNo == 0 && "Asm only has one result!");
- OpVT = TLI.getSimpleValueType(DAG.getDataLayout(), CS.getType());
- }
- ++ResNo;
- break;
- case InlineAsm::isInput:
- OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
- break;
- case InlineAsm::isClobber:
- // Nothing to do.
- break;
- }
- // If this is an input or an indirect output, process the call argument.
- // BasicBlocks are labels, currently appearing only in asm's.
- if (OpInfo.CallOperandVal) {
- if (const BasicBlock *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) {
- OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]);
- } else {
- OpInfo.CallOperand = getValue(OpInfo.CallOperandVal);
- }
- OpVT = OpInfo.getCallOperandValEVT(*DAG.getContext(), TLI,
- DAG.getDataLayout()).getSimpleVT();
- }
- OpInfo.ConstraintVT = OpVT;
- // Indirect operand accesses access memory.
- if (OpInfo.isIndirect)
- hasMemory = true;
- else {
- for (unsigned j = 0, ee = OpInfo.Codes.size(); j != ee; ++j) {
- TargetLowering::ConstraintType
- CType = TLI.getConstraintType(OpInfo.Codes[j]);
- if (CType == TargetLowering::C_Memory) {
- hasMemory = true;
- break;
- }
- }
- }
- }
- SDValue Chain, Flag;
- // We won't need to flush pending loads if this asm doesn't touch
- // memory and is nonvolatile.
- if (hasMemory || IA->hasSideEffects())
- Chain = getRoot();
- else
- Chain = DAG.getRoot();
- // Second pass over the constraints: compute which constraint option to use
- // and assign registers to constraints that want a specific physreg.
- for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
- SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
- // If this is an output operand with a matching input operand, look up the
- // matching input. If their types mismatch, e.g. one is an integer, the
- // other is floating point, or their sizes are different, flag it as an
- // error.
- if (OpInfo.hasMatchingInput()) {
- SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
- if (OpInfo.ConstraintVT != Input.ConstraintVT) {
- const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo();
- std::pair<unsigned, const TargetRegisterClass *> MatchRC =
- TLI.getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode,
- OpInfo.ConstraintVT);
- std::pair<unsigned, const TargetRegisterClass *> InputRC =
- TLI.getRegForInlineAsmConstraint(TRI, Input.ConstraintCode,
- Input.ConstraintVT);
- if ((OpInfo.ConstraintVT.isInteger() !=
- Input.ConstraintVT.isInteger()) ||
- (MatchRC.second != InputRC.second)) {
- report_fatal_error("Unsupported asm: input constraint"
- " with a matching output constraint of"
- " incompatible type!");
- }
- Input.ConstraintVT = OpInfo.ConstraintVT;
- }
- }
- // Compute the constraint code and ConstraintType to use.
- TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG);
- if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
- OpInfo.Type == InlineAsm::isClobber)
- continue;
- // If this is a memory input, and if the operand is not indirect, do what we
- // need to to provide an address for the memory input.
- if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
- !OpInfo.isIndirect) {
- assert((OpInfo.isMultipleAlternative ||
- (OpInfo.Type == InlineAsm::isInput)) &&
- "Can only indirectify direct input operands!");
- // Memory operands really want the address of the value. If we don't have
- // an indirect input, put it in the constpool if we can, otherwise spill
- // it to a stack slot.
- // TODO: This isn't quite right. We need to handle these according to
- // the addressing mode that the constraint wants. Also, this may take
- // an additional register for the computation and we don't want that
- // either.
- // If the operand is a float, integer, or vector constant, spill to a
- // constant pool entry to get its address.
- const Value *OpVal = OpInfo.CallOperandVal;
- if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) ||
- isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) {
- OpInfo.CallOperand = DAG.getConstantPool(
- cast<Constant>(OpVal), TLI.getPointerTy(DAG.getDataLayout()));
- } else {
- // Otherwise, create a stack slot and emit a store to it before the
- // asm.
- Type *Ty = OpVal->getType();
- auto &DL = DAG.getDataLayout();
- uint64_t TySize = DL.getTypeAllocSize(Ty);
- unsigned Align = DL.getPrefTypeAlignment(Ty);
- MachineFunction &MF = DAG.getMachineFunction();
- int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align, false);
- SDValue StackSlot =
- DAG.getFrameIndex(SSFI, TLI.getPointerTy(DAG.getDataLayout()));
- Chain = DAG.getStore(Chain, getCurSDLoc(),
- OpInfo.CallOperand, StackSlot,
- MachinePointerInfo::getFixedStack(SSFI),
- false, false, 0);
- OpInfo.CallOperand = StackSlot;
- }
- // There is no longer a Value* corresponding to this operand.
- OpInfo.CallOperandVal = nullptr;
- // It is now an indirect operand.
- OpInfo.isIndirect = true;
- }
- // If this constraint is for a specific register, allocate it before
- // anything else.
- if (OpInfo.ConstraintType == TargetLowering::C_Register)
- GetRegistersForValue(DAG, TLI, getCurSDLoc(), OpInfo);
- }
- // Second pass - Loop over all of the operands, assigning virtual or physregs
- // to register class operands.
- for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
- SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
- // C_Register operands have already been allocated, Other/Memory don't need
- // to be.
- if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass)
- GetRegistersForValue(DAG, TLI, getCurSDLoc(), OpInfo);
- }
- // AsmNodeOperands - The operands for the ISD::INLINEASM node.
- std::vector<SDValue> AsmNodeOperands;
- AsmNodeOperands.push_back(SDValue()); // reserve space for input chain
- AsmNodeOperands.push_back(DAG.getTargetExternalSymbol(
- IA->getAsmString().c_str(), TLI.getPointerTy(DAG.getDataLayout())));
- // If we have a !srcloc metadata node associated with it, we want to attach
- // this to the ultimately generated inline asm machineinstr. To do this, we
- // pass in the third operand as this (potentially null) inline asm MDNode.
- const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc");
- AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc));
- // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore
- // bits as operand 3.
- unsigned ExtraInfo = 0;
- if (IA->hasSideEffects())
- ExtraInfo |= InlineAsm::Extra_HasSideEffects;
- if (IA->isAlignStack())
- ExtraInfo |= InlineAsm::Extra_IsAlignStack;
- // Set the asm dialect.
- ExtraInfo |= IA->getDialect() * InlineAsm::Extra_AsmDialect;
- // Determine if this InlineAsm MayLoad or MayStore based on the constraints.
- for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) {
- TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i];
- // Compute the constraint code and ConstraintType to use.
- TLI.ComputeConstraintToUse(OpInfo, SDValue());
- // Ideally, we would only check against memory constraints. However, the
- // meaning of an other constraint can be target-specific and we can't easily
- // reason about it. Therefore, be conservative and set MayLoad/MayStore
- // for other constriants as well.
- if (OpInfo.ConstraintType == TargetLowering::C_Memory ||
- OpInfo.ConstraintType == TargetLowering::C_Other) {
- if (OpInfo.Type == InlineAsm::isInput)
- ExtraInfo |= InlineAsm::Extra_MayLoad;
- else if (OpInfo.Type == InlineAsm::isOutput)
- ExtraInfo |= InlineAsm::Extra_MayStore;
- else if (OpInfo.Type == InlineAsm::isClobber)
- ExtraInfo |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore);
- }
- }
- AsmNodeOperands.push_back(DAG.getTargetConstant(
- ExtraInfo, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
- // Loop over all of the inputs, copying the operand values into the
- // appropriate registers and processing the output regs.
- RegsForValue RetValRegs;
- // IndirectStoresToEmit - The set of stores to emit after the inline asm node.
- std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit;
- for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
- SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
- switch (OpInfo.Type) {
- case InlineAsm::isOutput: {
- if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass &&
- OpInfo.ConstraintType != TargetLowering::C_Register) {
- // Memory output, or 'other' output (e.g. 'X' constraint).
- assert(OpInfo.isIndirect && "Memory output must be indirect operand");
- unsigned ConstraintID =
- TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode);
- assert(ConstraintID != InlineAsm::Constraint_Unknown &&
- "Failed to convert memory constraint code to constraint id.");
- // Add information to the INLINEASM node to know about this output.
- unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
- OpFlags = InlineAsm::getFlagWordForMem(OpFlags, ConstraintID);
- AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, getCurSDLoc(),
- MVT::i32));
- AsmNodeOperands.push_back(OpInfo.CallOperand);
- break;
- }
- // Otherwise, this is a register or register class output.
- // Copy the output from the appropriate register. Find a register that
- // we can use.
- if (OpInfo.AssignedRegs.Regs.empty()) {
- LLVMContext &Ctx = *DAG.getContext();
- Ctx.emitError(CS.getInstruction(),
- "couldn't allocate output register for constraint '" +
- Twine(OpInfo.ConstraintCode) + "'");
- return;
- }
- // If this is an indirect operand, store through the pointer after the
- // asm.
- if (OpInfo.isIndirect) {
- IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs,
- OpInfo.CallOperandVal));
- } else {
- // This is the result value of the call.
- assert(!CS.getType()->isVoidTy() && "Bad inline asm!");
- // Concatenate this output onto the outputs list.
- RetValRegs.append(OpInfo.AssignedRegs);
- }
- // Add information to the INLINEASM node to know that this register is
- // set.
- OpInfo.AssignedRegs
- .AddInlineAsmOperands(OpInfo.isEarlyClobber
- ? InlineAsm::Kind_RegDefEarlyClobber
- : InlineAsm::Kind_RegDef,
- false, 0, getCurSDLoc(), DAG, AsmNodeOperands);
- break;
- }
- case InlineAsm::isInput: {
- SDValue InOperandVal = OpInfo.CallOperand;
- if (OpInfo.isMatchingInputConstraint()) { // Matching constraint?
- // If this is required to match an output register we have already set,
- // just use its register.
- unsigned OperandNo = OpInfo.getMatchedOperand();
- // Scan until we find the definition we already emitted of this operand.
- // When we find it, create a RegsForValue operand.
- unsigned CurOp = InlineAsm::Op_FirstOperand;
- for (; OperandNo; --OperandNo) {
- // Advance to the next operand.
- unsigned OpFlag =
- cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
- assert((InlineAsm::isRegDefKind(OpFlag) ||
- InlineAsm::isRegDefEarlyClobberKind(OpFlag) ||
- InlineAsm::isMemKind(OpFlag)) && "Skipped past definitions?");
- CurOp += InlineAsm::getNumOperandRegisters(OpFlag)+1;
- }
- unsigned OpFlag =
- cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
- if (InlineAsm::isRegDefKind(OpFlag) ||
- InlineAsm::isRegDefEarlyClobberKind(OpFlag)) {
- // Add (OpFlag&0xffff)>>3 registers to MatchedRegs.
- if (OpInfo.isIndirect) {
- // This happens on gcc/testsuite/gcc.dg/pr8788-1.c
- LLVMContext &Ctx = *DAG.getContext();
- Ctx.emitError(CS.getInstruction(), "inline asm not supported yet:"
- " don't know how to handle tied "
- "indirect register inputs");
- return;
- }
- RegsForValue MatchedRegs;
- MatchedRegs.ValueVTs.push_back(InOperandVal.getValueType());
- MVT RegVT = AsmNodeOperands[CurOp+1].getSimpleValueType();
- MatchedRegs.RegVTs.push_back(RegVT);
- MachineRegisterInfo &RegInfo = DAG.getMachineFunction().getRegInfo();
- for (unsigned i = 0, e = InlineAsm::getNumOperandRegisters(OpFlag);
- i != e; ++i) {
- if (const TargetRegisterClass *RC = TLI.getRegClassFor(RegVT))
- MatchedRegs.Regs.push_back(RegInfo.createVirtualRegister(RC));
- else {
- LLVMContext &Ctx = *DAG.getContext();
- Ctx.emitError(CS.getInstruction(),
- "inline asm error: This value"
- " type register class is not natively supported!");
- return;
- }
- }
- SDLoc dl = getCurSDLoc();
- // Use the produced MatchedRegs object to
- MatchedRegs.getCopyToRegs(InOperandVal, DAG, dl,
- Chain, &Flag, CS.getInstruction());
- MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse,
- true, OpInfo.getMatchedOperand(), dl,
- DAG, AsmNodeOperands);
- break;
- }
- assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!");
- assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 &&
- "Unexpected number of operands");
- // Add information to the INLINEASM node to know about this input.
- // See InlineAsm.h isUseOperandTiedToDef.
- OpFlag = InlineAsm::convertMemFlagWordToMatchingFlagWord(OpFlag);
- OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag,
- OpInfo.getMatchedOperand());
- AsmNodeOperands.push_back(DAG.getTargetConstant(
- OpFlag, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
- AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]);
- break;
- }
- // Treat indirect 'X' constraint as memory.
- if (OpInfo.ConstraintType == TargetLowering::C_Other &&
- OpInfo.isIndirect)
- OpInfo.ConstraintType = TargetLowering::C_Memory;
- if (OpInfo.ConstraintType == TargetLowering::C_Other) {
- std::vector<SDValue> Ops;
- TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode,
- Ops, DAG);
- if (Ops.empty()) {
- LLVMContext &Ctx = *DAG.getContext();
- Ctx.emitError(CS.getInstruction(),
- "invalid operand for inline asm constraint '" +
- Twine(OpInfo.ConstraintCode) + "'");
- return;
- }
- // Add information to the INLINEASM node to know about this input.
- unsigned ResOpType =
- InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size());
- AsmNodeOperands.push_back(DAG.getTargetConstant(
- ResOpType, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
- AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end());
- break;
- }
- if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
- assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!");
- assert(InOperandVal.getValueType() ==
- TLI.getPointerTy(DAG.getDataLayout()) &&
- "Memory operands expect pointer values");
- unsigned ConstraintID =
- TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode);
- assert(ConstraintID != InlineAsm::Constraint_Unknown &&
- "Failed to convert memory constraint code to constraint id.");
- // Add information to the INLINEASM node to know about this input.
- unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
- ResOpType = InlineAsm::getFlagWordForMem(ResOpType, ConstraintID);
- AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
- getCurSDLoc(),
- MVT::i32));
- AsmNodeOperands.push_back(InOperandVal);
- break;
- }
- assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass ||
- OpInfo.ConstraintType == TargetLowering::C_Register) &&
- "Unknown constraint type!");
- // TODO: Support this.
- if (OpInfo.isIndirect) {
- LLVMContext &Ctx = *DAG.getContext();
- Ctx.emitError(CS.getInstruction(),
- "Don't know how to handle indirect register inputs yet "
- "for constraint '" +
- Twine(OpInfo.ConstraintCode) + "'");
- return;
- }
- // Copy the input into the appropriate registers.
- if (OpInfo.AssignedRegs.Regs.empty()) {
- LLVMContext &Ctx = *DAG.getContext();
- Ctx.emitError(CS.getInstruction(),
- "couldn't allocate input reg for constraint '" +
- Twine(OpInfo.ConstraintCode) + "'");
- return;
- }
- SDLoc dl = getCurSDLoc();
- OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, dl,
- Chain, &Flag, CS.getInstruction());
- OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0,
- dl, DAG, AsmNodeOperands);
- break;
- }
- case InlineAsm::isClobber: {
- // Add the clobbered value to the operand list, so that the register
- // allocator is aware that the physreg got clobbered.
- if (!OpInfo.AssignedRegs.Regs.empty())
- OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber,
- false, 0, getCurSDLoc(), DAG,
- AsmNodeOperands);
- break;
- }
- }
- }
- // Finish up input operands. Set the input chain and add the flag last.
- AsmNodeOperands[InlineAsm::Op_InputChain] = Chain;
- if (Flag.getNode()) AsmNodeOperands.push_back(Flag);
- Chain = DAG.getNode(ISD::INLINEASM, getCurSDLoc(),
- DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands);
- Flag = Chain.getValue(1);
- // If this asm returns a register value, copy the result from that register
- // and set it as the value of the call.
- if (!RetValRegs.Regs.empty()) {
- SDValue Val = RetValRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(),
- Chain, &Flag, CS.getInstruction());
- // FIXME: Why don't we do this for inline asms with MRVs?
- if (CS.getType()->isSingleValueType() && CS.getType()->isSized()) {
- EVT ResultType = TLI.getValueType(DAG.getDataLayout(), CS.getType());
- // If any of the results of the inline asm is a vector, it may have the
- // wrong width/num elts. This can happen for register classes that can
- // contain multiple different value types. The preg or vreg allocated may
- // not have the same VT as was expected. Convert it to the right type
- // with bit_convert.
- if (ResultType != Val.getValueType() && Val.getValueType().isVector()) {
- Val = DAG.getNode(ISD::BITCAST, getCurSDLoc(),
- ResultType, Val);
- } else if (ResultType != Val.getValueType() &&
- ResultType.isInteger() && Val.getValueType().isInteger()) {
- // If a result value was tied to an input value, the computed result may
- // have a wider width than the expected result. Extract the relevant
- // portion.
- Val = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultType, Val);
- }
- assert(ResultType == Val.getValueType() && "Asm result value mismatch!");
- }
- setValue(CS.getInstruction(), Val);
- // Don't need to use this as a chain in this case.
- if (!IA->hasSideEffects() && !hasMemory && IndirectStoresToEmit.empty())
- return;
- }
- std::vector<std::pair<SDValue, const Value *> > StoresToEmit;
- // Process indirect outputs, first output all of the flagged copies out of
- // physregs.
- for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) {
- RegsForValue &OutRegs = IndirectStoresToEmit[i].first;
- const Value *Ptr = IndirectStoresToEmit[i].second;
- SDValue OutVal = OutRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(),
- Chain, &Flag, IA);
- StoresToEmit.push_back(std::make_pair(OutVal, Ptr));
- }
- // Emit the non-flagged stores from the physregs.
- SmallVector<SDValue, 8> OutChains;
- for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i) {
- SDValue Val = DAG.getStore(Chain, getCurSDLoc(),
- StoresToEmit[i].first,
- getValue(StoresToEmit[i].second),
- MachinePointerInfo(StoresToEmit[i].second),
- false, false, 0);
- OutChains.push_back(Val);
- }
- if (!OutChains.empty())
- Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains);
- DAG.setRoot(Chain);
- }
- void SelectionDAGBuilder::visitVAStart(const CallInst &I) {
- DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(),
- MVT::Other, getRoot(),
- getValue(I.getArgOperand(0)),
- DAG.getSrcValue(I.getArgOperand(0))));
- }
- void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) {
- const TargetLowering &TLI = DAG.getTargetLoweringInfo();
- const DataLayout &DL = DAG.getDataLayout();
- SDValue V = DAG.getVAArg(TLI.getValueType(DAG.getDataLayout(), I.getType()),
- getCurSDLoc(), getRoot(), getValue(I.getOperand(0)),
- DAG.getSrcValue(I.getOperand(0)),
- DL.getABITypeAlignment(I.getType()));
- setValue(&I, V);
- DAG.setRoot(V.getValue(1));
- }
- void SelectionDAGBuilder::visitVAEnd(const CallInst &I) {
- DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(),
- MVT::Other, getRoot(),
- getValue(I.getArgOperand(0)),
- DAG.getSrcValue(I.getArgOperand(0))));
- }
- void SelectionDAGBuilder::visitVACopy(const CallInst &I) {
- DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(),
- MVT::Other, getRoot(),
- getValue(I.getArgOperand(0)),
- getValue(I.getArgOperand(1)),
- DAG.getSrcValue(I.getArgOperand(0)),
- DAG.getSrcValue(I.getArgOperand(1))));
- }
- /// \brief Lower an argument list according to the target calling convention.
- ///
- /// \return A tuple of <return-value, token-chain>
- ///
- /// This is a helper for lowering intrinsics that follow a target calling
- /// convention or require stack pointer adjustment. Only a subset of the
- /// intrinsic's operands need to participate in the calling convention.
- std::pair<SDValue, SDValue>
- SelectionDAGBuilder::lowerCallOperands(ImmutableCallSite CS, unsigned ArgIdx,
- unsigned NumArgs, SDValue Callee,
- Type *ReturnTy,
- MachineBasicBlock *LandingPad,
- bool IsPatchPoint) {
- TargetLowering::ArgListTy Args;
- Args.reserve(NumArgs);
- // Populate the argument list.
- // Attributes for args start at offset 1, after the return attribute.
- for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs, AttrI = ArgIdx + 1;
- ArgI != ArgE; ++ArgI) {
- const Value *V = CS->getOperand(ArgI);
- assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic.");
- TargetLowering::ArgListEntry Entry;
- Entry.Node = getValue(V);
- Entry.Ty = V->getType();
- Entry.setAttributes(&CS, AttrI);
- Args.push_back(Entry);
- }
- TargetLowering::CallLoweringInfo CLI(DAG);
- CLI.setDebugLoc(getCurSDLoc()).setChain(getRoot())
- .setCallee(CS.getCallingConv(), ReturnTy, Callee, std::move(Args), NumArgs)
- .setDiscardResult(CS->use_empty()).setIsPatchPoint(IsPatchPoint);
- return lowerInvokable(CLI, LandingPad);
- }
- /// \brief Add a stack map intrinsic call's live variable operands to a stackmap
- /// or patchpoint target node's operand list.
- ///
- /// Constants are converted to TargetConstants purely as an optimization to
- /// avoid constant materialization and register allocation.
- ///
- /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not
- /// generate addess computation nodes, and so ExpandISelPseudo can convert the
- /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids
- /// address materialization and register allocation, but may also be required
- /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an
- /// alloca in the entry block, then the runtime may assume that the alloca's
- /// StackMap location can be read immediately after compilation and that the
- /// location is valid at any point during execution (this is similar to the
- /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were
- /// only available in a register, then the runtime would need to trap when
- /// execution reaches the StackMap in order to read the alloca's location.
- static void addStackMapLiveVars(ImmutableCallSite CS, unsigned StartIdx,
- SDLoc DL, SmallVectorImpl<SDValue> &Ops,
- SelectionDAGBuilder &Builder) {
- for (unsigned i = StartIdx, e = CS.arg_size(); i != e; ++i) {
- SDValue OpVal = Builder.getValue(CS.getArgument(i));
- if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(OpVal)) {
- Ops.push_back(
- Builder.DAG.getTargetConstant(StackMaps::ConstantOp, DL, MVT::i64));
- Ops.push_back(
- Builder.DAG.getTargetConstant(C->getSExtValue(), DL, MVT::i64));
- } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(OpVal)) {
- const TargetLowering &TLI = Builder.DAG.getTargetLoweringInfo();
- Ops.push_back(Builder.DAG.getTargetFrameIndex(
- FI->getIndex(), TLI.getPointerTy(Builder.DAG.getDataLayout())));
- } else
- Ops.push_back(OpVal);
- }
- }
- /// \brief Lower llvm.experimental.stackmap directly to its target opcode.
- void SelectionDAGBuilder::visitStackmap(const CallInst &CI) {
- // void @llvm.experimental.stackmap(i32 <id>, i32 <numShadowBytes>,
- // [live variables...])
- assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value.");
- SDValue Chain, InFlag, Callee, NullPtr;
- SmallVector<SDValue, 32> Ops;
- SDLoc DL = getCurSDLoc();
- Callee = getValue(CI.getCalledValue());
- NullPtr = DAG.getIntPtrConstant(0, DL, true);
- // The stackmap intrinsic only records the live variables (the arguemnts
- // passed to it) and emits NOPS (if requested). Unlike the patchpoint
- // intrinsic, this won't be lowered to a function call. This means we don't
- // have to worry about calling conventions and target specific lowering code.
- // Instead we perform the call lowering right here.
- //
- // chain, flag = CALLSEQ_START(chain, 0)
- // chain, flag = STACKMAP(id, nbytes, ..., chain, flag)
- // chain, flag = CALLSEQ_END(chain, 0, 0, flag)
- //
- Chain = DAG.getCALLSEQ_START(getRoot(), NullPtr, DL);
- InFlag = Chain.getValue(1);
- // Add the <id> and <numBytes> constants.
- SDValue IDVal = getValue(CI.getOperand(PatchPointOpers::IDPos));
- Ops.push_back(DAG.getTargetConstant(
- cast<ConstantSDNode>(IDVal)->getZExtValue(), DL, MVT::i64));
- SDValue NBytesVal = getValue(CI.getOperand(PatchPointOpers::NBytesPos));
- Ops.push_back(DAG.getTargetConstant(
- cast<ConstantSDNode>(NBytesVal)->getZExtValue(), DL,
- MVT::i32));
- // Push live variables for the stack map.
- addStackMapLiveVars(&CI, 2, DL, Ops, *this);
- // We are not pushing any register mask info here on the operands list,
- // because the stackmap doesn't clobber anything.
- // Push the chain and the glue flag.
- Ops.push_back(Chain);
- Ops.push_back(InFlag);
- // Create the STACKMAP node.
- SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
- SDNode *SM = DAG.getMachineNode(TargetOpcode::STACKMAP, DL, NodeTys, Ops);
- Chain = SDValue(SM, 0);
- InFlag = Chain.getValue(1);
- Chain = DAG.getCALLSEQ_END(Chain, NullPtr, NullPtr, InFlag, DL);
- // Stackmaps don't generate values, so nothing goes into the NodeMap.
- // Set the root to the target-lowered call chain.
- DAG.setRoot(Chain);
- // Inform the Frame Information that we have a stackmap in this function.
- FuncInfo.MF->getFrameInfo()->setHasStackMap();
- }
- /// \brief Lower llvm.experimental.patchpoint directly to its target opcode.
- void SelectionDAGBuilder::visitPatchpoint(ImmutableCallSite CS,
- MachineBasicBlock *LandingPad) {
- // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>,
- // i32 <numBytes>,
- // i8* <target>,
- // i32 <numArgs>,
- // [Args...],
- // [live variables...])
- CallingConv::ID CC = CS.getCallingConv();
- bool IsAnyRegCC = CC == CallingConv::AnyReg;
- bool HasDef = !CS->getType()->isVoidTy();
- SDLoc dl = getCurSDLoc();
- SDValue Callee = getValue(CS->getOperand(PatchPointOpers::TargetPos));
- // Handle immediate and symbolic callees.
- if (auto* ConstCallee = dyn_cast<ConstantSDNode>(Callee))
- Callee = DAG.getIntPtrConstant(ConstCallee->getZExtValue(), dl,
- /*isTarget=*/true);
- else if (auto* SymbolicCallee = dyn_cast<GlobalAddressSDNode>(Callee))
- Callee = DAG.getTargetGlobalAddress(SymbolicCallee->getGlobal(),
- SDLoc(SymbolicCallee),
- SymbolicCallee->getValueType(0));
- // Get the real number of arguments participating in the call <numArgs>
- SDValue NArgVal = getValue(CS.getArgument(PatchPointOpers::NArgPos));
- unsigned NumArgs = cast<ConstantSDNode>(NArgVal)->getZExtValue();
- // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs>
- // Intrinsics include all meta-operands up to but not including CC.
- unsigned NumMetaOpers = PatchPointOpers::CCPos;
- assert(CS.arg_size() >= NumMetaOpers + NumArgs &&
- "Not enough arguments provided to the patchpoint intrinsic");
- // For AnyRegCC the arguments are lowered later on manually.
- unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs;
- Type *ReturnTy =
- IsAnyRegCC ? Type::getVoidTy(*DAG.getContext()) : CS->getType();
- std::pair<SDValue, SDValue> Result =
- lowerCallOperands(CS, NumMetaOpers, NumCallArgs, Callee, ReturnTy,
- LandingPad, true);
- SDNode *CallEnd = Result.second.getNode();
- if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg))
- CallEnd = CallEnd->getOperand(0).getNode();
- /// Get a call instruction from the call sequence chain.
- /// Tail calls are not allowed.
- assert(CallEnd->getOpcode() == ISD::CALLSEQ_END &&
- "Expected a callseq node.");
- SDNode *Call = CallEnd->getOperand(0).getNode();
- bool HasGlue = Call->getGluedNode();
- // Replace the target specific call node with the patchable intrinsic.
- SmallVector<SDValue, 8> Ops;
- // Add the <id> and <numBytes> constants.
- SDValue IDVal = getValue(CS->getOperand(PatchPointOpers::IDPos));
- Ops.push_back(DAG.getTargetConstant(
- cast<ConstantSDNode>(IDVal)->getZExtValue(), dl, MVT::i64));
- SDValue NBytesVal = getValue(CS->getOperand(PatchPointOpers::NBytesPos));
- Ops.push_back(DAG.getTargetConstant(
- cast<ConstantSDNode>(NBytesVal)->getZExtValue(), dl,
- MVT::i32));
- // Add the callee.
- Ops.push_back(Callee);
- // Adjust <numArgs> to account for any arguments that have been passed on the
- // stack instead.
- // Call Node: Chain, Target, {Args}, RegMask, [Glue]
- unsigned NumCallRegArgs = Call->getNumOperands() - (HasGlue ? 4 : 3);
- NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs;
- Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, dl, MVT::i32));
- // Add the calling convention
- Ops.push_back(DAG.getTargetConstant((unsigned)CC, dl, MVT::i32));
- // Add the arguments we omitted previously. The register allocator should
- // place these in any free register.
- if (IsAnyRegCC)
- for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i)
- Ops.push_back(getValue(CS.getArgument(i)));
- // Push the arguments from the call instruction up to the register mask.
- SDNode::op_iterator e = HasGlue ? Call->op_end()-2 : Call->op_end()-1;
- Ops.append(Call->op_begin() + 2, e);
- // Push live variables for the stack map.
- addStackMapLiveVars(CS, NumMetaOpers + NumArgs, dl, Ops, *this);
- // Push the register mask info.
- if (HasGlue)
- Ops.push_back(*(Call->op_end()-2));
- else
- Ops.push_back(*(Call->op_end()-1));
- // Push the chain (this is originally the first operand of the call, but
- // becomes now the last or second to last operand).
- Ops.push_back(*(Call->op_begin()));
- // Push the glue flag (last operand).
- if (HasGlue)
- Ops.push_back(*(Call->op_end()-1));
- SDVTList NodeTys;
- if (IsAnyRegCC && HasDef) {
- // Create the return types based on the intrinsic definition
- const TargetLowering &TLI = DAG.getTargetLoweringInfo();
- SmallVector<EVT, 3> ValueVTs;
- ComputeValueVTs(TLI, DAG.getDataLayout(), CS->getType(), ValueVTs);
- assert(ValueVTs.size() == 1 && "Expected only one return value type.");
- // There is always a chain and a glue type at the end
- ValueVTs.push_back(MVT::Other);
- ValueVTs.push_back(MVT::Glue);
- NodeTys = DAG.getVTList(ValueVTs);
- } else
- NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
- // Replace the target specific call node with a PATCHPOINT node.
- MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHPOINT,
- dl, NodeTys, Ops);
- // Update the NodeMap.
- if (HasDef) {
- if (IsAnyRegCC)
- setValue(CS.getInstruction(), SDValue(MN, 0));
- else
- setValue(CS.getInstruction(), Result.first);
- }
- // Fixup the consumers of the intrinsic. The chain and glue may be used in the
- // call sequence. Furthermore the location of the chain and glue can change
- // when the AnyReg calling convention is used and the intrinsic returns a
- // value.
- if (IsAnyRegCC && HasDef) {
- SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)};
- SDValue To[] = {SDValue(MN, 1), SDValue(MN, 2)};
- DAG.ReplaceAllUsesOfValuesWith(From, To, 2);
- } else
- DAG.ReplaceAllUsesWith(Call, MN);
- DAG.DeleteNode(Call);
- // Inform the Frame Information that we have a patchpoint in this function.
- FuncInfo.MF->getFrameInfo()->setHasPatchPoint();
- }
- /// Returns an AttributeSet representing the attributes applied to the return
- /// value of the given call.
- static AttributeSet getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) {
- SmallVector<Attribute::AttrKind, 2> Attrs;
- if (CLI.RetSExt)
- Attrs.push_back(Attribute::SExt);
- if (CLI.RetZExt)
- Attrs.push_back(Attribute::ZExt);
- if (CLI.IsInReg)
- Attrs.push_back(Attribute::InReg);
- return AttributeSet::get(CLI.RetTy->getContext(), AttributeSet::ReturnIndex,
- Attrs);
- }
- /// TargetLowering::LowerCallTo - This is the default LowerCallTo
- /// implementation, which just calls LowerCall.
- /// FIXME: When all targets are
- /// migrated to using LowerCall, this hook should be integrated into SDISel.
- std::pair<SDValue, SDValue>
- TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const {
- // Handle the incoming return values from the call.
- CLI.Ins.clear();
- Type *OrigRetTy = CLI.RetTy;
- SmallVector<EVT, 4> RetTys;
- SmallVector<uint64_t, 4> Offsets;
- auto &DL = CLI.DAG.getDataLayout();
- ComputeValueVTs(*this, DL, CLI.RetTy, RetTys, &Offsets);
- SmallVector<ISD::OutputArg, 4> Outs;
- GetReturnInfo(CLI.RetTy, getReturnAttrs(CLI), Outs, *this, DL);
- bool CanLowerReturn =
- this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(),
- CLI.IsVarArg, Outs, CLI.RetTy->getContext());
- SDValue DemoteStackSlot;
- int DemoteStackIdx = -100;
- if (!CanLowerReturn) {
- // FIXME: equivalent assert?
- // assert(!CS.hasInAllocaArgument() &&
- // "sret demotion is incompatible with inalloca");
- uint64_t TySize = DL.getTypeAllocSize(CLI.RetTy);
- unsigned Align = DL.getPrefTypeAlignment(CLI.RetTy);
- MachineFunction &MF = CLI.DAG.getMachineFunction();
- DemoteStackIdx = MF.getFrameInfo()->CreateStackObject(TySize, Align, false);
- Type *StackSlotPtrType = PointerType::getUnqual(CLI.RetTy);
- DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getPointerTy(DL));
- ArgListEntry Entry;
- Entry.Node = DemoteStackSlot;
- Entry.Ty = StackSlotPtrType;
- Entry.isSExt = false;
- Entry.isZExt = false;
- Entry.isInReg = false;
- Entry.isSRet = true;
- Entry.isNest = false;
- Entry.isByVal = false;
- Entry.isReturned = false;
- Entry.Alignment = Align;
- CLI.getArgs().insert(CLI.getArgs().begin(), Entry);
- CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext());
- // sret demotion isn't compatible with tail-calls, since the sret argument
- // points into the callers stack frame.
- CLI.IsTailCall = false;
- } else {
- for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
- EVT VT = RetTys[I];
- MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT);
- unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT);
- for (unsigned i = 0; i != NumRegs; ++i) {
- ISD::InputArg MyFlags;
- MyFlags.VT = RegisterVT;
- MyFlags.ArgVT = VT;
- MyFlags.Used = CLI.IsReturnValueUsed;
- if (CLI.RetSExt)
- MyFlags.Flags.setSExt();
- if (CLI.RetZExt)
- MyFlags.Flags.setZExt();
- if (CLI.IsInReg)
- MyFlags.Flags.setInReg();
- CLI.Ins.push_back(MyFlags);
- }
- }
- }
- // Handle all of the outgoing arguments.
- CLI.Outs.clear();
- CLI.OutVals.clear();
- ArgListTy &Args = CLI.getArgs();
- for (unsigned i = 0, e = Args.size(); i != e; ++i) {
- SmallVector<EVT, 4> ValueVTs;
- ComputeValueVTs(*this, DL, Args[i].Ty, ValueVTs);
- Type *FinalType = Args[i].Ty;
- if (Args[i].isByVal)
- FinalType = cast<PointerType>(Args[i].Ty)->getElementType();
- bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters(
- FinalType, CLI.CallConv, CLI.IsVarArg);
- for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues;
- ++Value) {
- EVT VT = ValueVTs[Value];
- Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext());
- SDValue Op = SDValue(Args[i].Node.getNode(),
- Args[i].Node.getResNo() + Value);
- ISD::ArgFlagsTy Flags;
- unsigned OriginalAlignment = DL.getABITypeAlignment(ArgTy);
- if (Args[i].isZExt)
- Flags.setZExt();
- if (Args[i].isSExt)
- Flags.setSExt();
- if (Args[i].isInReg)
- Flags.setInReg();
- if (Args[i].isSRet)
- Flags.setSRet();
- if (Args[i].isByVal)
- Flags.setByVal();
- if (Args[i].isInAlloca) {
- Flags.setInAlloca();
- // Set the byval flag for CCAssignFn callbacks that don't know about
- // inalloca. This way we can know how many bytes we should've allocated
- // and how many bytes a callee cleanup function will pop. If we port
- // inalloca to more targets, we'll have to add custom inalloca handling
- // in the various CC lowering callbacks.
- Flags.setByVal();
- }
- if (Args[i].isByVal || Args[i].isInAlloca) {
- PointerType *Ty = cast<PointerType>(Args[i].Ty);
- Type *ElementTy = Ty->getElementType();
- Flags.setByValSize(DL.getTypeAllocSize(ElementTy));
- // For ByVal, alignment should come from FE. BE will guess if this
- // info is not there but there are cases it cannot get right.
- unsigned FrameAlign;
- if (Args[i].Alignment)
- FrameAlign = Args[i].Alignment;
- else
- FrameAlign = getByValTypeAlignment(ElementTy, DL);
- Flags.setByValAlign(FrameAlign);
- }
- if (Args[i].isNest)
- Flags.setNest();
- if (NeedsRegBlock)
- Flags.setInConsecutiveRegs();
- Flags.setOrigAlign(OriginalAlignment);
- MVT PartVT = getRegisterType(CLI.RetTy->getContext(), VT);
- unsigned NumParts = getNumRegisters(CLI.RetTy->getContext(), VT);
- SmallVector<SDValue, 4> Parts(NumParts);
- ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
- if (Args[i].isSExt)
- ExtendKind = ISD::SIGN_EXTEND;
- else if (Args[i].isZExt)
- ExtendKind = ISD::ZERO_EXTEND;
- // Conservatively only handle 'returned' on non-vectors for now
- if (Args[i].isReturned && !Op.getValueType().isVector()) {
- assert(CLI.RetTy == Args[i].Ty && RetTys.size() == NumValues &&
- "unexpected use of 'returned'");
- // Before passing 'returned' to the target lowering code, ensure that
- // either the register MVT and the actual EVT are the same size or that
- // the return value and argument are extended in the same way; in these
- // cases it's safe to pass the argument register value unchanged as the
- // return register value (although it's at the target's option whether
- // to do so)
- // TODO: allow code generation to take advantage of partially preserved
- // registers rather than clobbering the entire register when the
- // parameter extension method is not compatible with the return
- // extension method
- if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) ||
- (ExtendKind != ISD::ANY_EXTEND &&
- CLI.RetSExt == Args[i].isSExt && CLI.RetZExt == Args[i].isZExt))
- Flags.setReturned();
- }
- getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT,
- CLI.CS ? CLI.CS->getInstruction() : nullptr, ExtendKind);
- for (unsigned j = 0; j != NumParts; ++j) {
- // if it isn't first piece, alignment must be 1
- ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(), VT,
- i < CLI.NumFixedArgs,
- i, j*Parts[j].getValueType().getStoreSize());
- if (NumParts > 1 && j == 0)
- MyFlags.Flags.setSplit();
- else if (j != 0)
- MyFlags.Flags.setOrigAlign(1);
- CLI.Outs.push_back(MyFlags);
- CLI.OutVals.push_back(Parts[j]);
- }
- if (NeedsRegBlock && Value == NumValues - 1)
- CLI.Outs[CLI.Outs.size() - 1].Flags.setInConsecutiveRegsLast();
- }
- }
- SmallVector<SDValue, 4> InVals;
- CLI.Chain = LowerCall(CLI, InVals);
- // Verify that the target's LowerCall behaved as expected.
- assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other &&
- "LowerCall didn't return a valid chain!");
- assert((!CLI.IsTailCall || InVals.empty()) &&
- "LowerCall emitted a return value for a tail call!");
- assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) &&
- "LowerCall didn't emit the correct number of values!");
- // For a tail call, the return value is merely live-out and there aren't
- // any nodes in the DAG representing it. Return a special value to
- // indicate that a tail call has been emitted and no more Instructions
- // should be processed in the current block.
- if (CLI.IsTailCall) {
- CLI.DAG.setRoot(CLI.Chain);
- return std::make_pair(SDValue(), SDValue());
- }
- DEBUG(for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) {
- assert(InVals[i].getNode() &&
- "LowerCall emitted a null value!");
- assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() &&
- "LowerCall emitted a value with the wrong type!");
- });
- SmallVector<SDValue, 4> ReturnValues;
- if (!CanLowerReturn) {
- // The instruction result is the result of loading from the
- // hidden sret parameter.
- SmallVector<EVT, 1> PVTs;
- Type *PtrRetTy = PointerType::getUnqual(OrigRetTy);
- ComputeValueVTs(*this, DL, PtrRetTy, PVTs);
- assert(PVTs.size() == 1 && "Pointers should fit in one register");
- EVT PtrVT = PVTs[0];
- unsigned NumValues = RetTys.size();
- ReturnValues.resize(NumValues);
- SmallVector<SDValue, 4> Chains(NumValues);
- for (unsigned i = 0; i < NumValues; ++i) {
- SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot,
- CLI.DAG.getConstant(Offsets[i], CLI.DL,
- PtrVT));
- SDValue L = CLI.DAG.getLoad(
- RetTys[i], CLI.DL, CLI.Chain, Add,
- MachinePointerInfo::getFixedStack(DemoteStackIdx, Offsets[i]), false,
- false, false, 1);
- ReturnValues[i] = L;
- Chains[i] = L.getValue(1);
- }
- CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains);
- } else {
- // Collect the legal value parts into potentially illegal values
- // that correspond to the original function's return values.
- ISD::NodeType AssertOp = ISD::DELETED_NODE;
- if (CLI.RetSExt)
- AssertOp = ISD::AssertSext;
- else if (CLI.RetZExt)
- AssertOp = ISD::AssertZext;
- unsigned CurReg = 0;
- for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
- EVT VT = RetTys[I];
- MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT);
- unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT);
- ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg],
- NumRegs, RegisterVT, VT, nullptr,
- AssertOp));
- CurReg += NumRegs;
- }
- // For a function returning void, there is no return value. We can't create
- // such a node, so we just return a null return value in that case. In
- // that case, nothing will actually look at the value.
- if (ReturnValues.empty())
- return std::make_pair(SDValue(), CLI.Chain);
- }
- SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL,
- CLI.DAG.getVTList(RetTys), ReturnValues);
- return std::make_pair(Res, CLI.Chain);
- }
- void TargetLowering::LowerOperationWrapper(SDNode *N,
- SmallVectorImpl<SDValue> &Results,
- SelectionDAG &DAG) const {
- SDValue Res = LowerOperation(SDValue(N, 0), DAG);
- if (Res.getNode())
- Results.push_back(Res);
- }
- SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
- llvm_unreachable("LowerOperation not implemented for this target!");
- }
- void
- SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) {
- SDValue Op = getNonRegisterValue(V);
- assert((Op.getOpcode() != ISD::CopyFromReg ||
- cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) &&
- "Copy from a reg to the same reg!");
- assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg");
- const TargetLowering &TLI = DAG.getTargetLoweringInfo();
- RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg,
- V->getType());
- SDValue Chain = DAG.getEntryNode();
- ISD::NodeType ExtendType = (FuncInfo.PreferredExtendType.find(V) ==
- FuncInfo.PreferredExtendType.end())
- ? ISD::ANY_EXTEND
- : FuncInfo.PreferredExtendType[V];
- RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType);
- PendingExports.push_back(Chain);
- }
- #include "llvm/CodeGen/SelectionDAGISel.h"
- /// isOnlyUsedInEntryBlock - If the specified argument is only used in the
- /// entry block, return true. This includes arguments used by switches, since
- /// the switch may expand into multiple basic blocks.
- static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) {
- // With FastISel active, we may be splitting blocks, so force creation
- // of virtual registers for all non-dead arguments.
- if (FastISel)
- return A->use_empty();
- const BasicBlock *Entry = A->getParent()->begin();
- for (const User *U : A->users())
- if (cast<Instruction>(U)->getParent() != Entry || isa<SwitchInst>(U))
- return false; // Use not in entry block.
- return true;
- }
- void SelectionDAGISel::LowerArguments(const Function &F) {
- SelectionDAG &DAG = SDB->DAG;
- SDLoc dl = SDB->getCurSDLoc();
- const DataLayout &DL = DAG.getDataLayout();
- SmallVector<ISD::InputArg, 16> Ins;
- if (!FuncInfo->CanLowerReturn) {
- // Put in an sret pointer parameter before all the other parameters.
- SmallVector<EVT, 1> ValueVTs;
- ComputeValueVTs(*TLI, DAG.getDataLayout(),
- PointerType::getUnqual(F.getReturnType()), ValueVTs);
- // NOTE: Assuming that a pointer will never break down to more than one VT
- // or one register.
- ISD::ArgFlagsTy Flags;
- Flags.setSRet();
- MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]);
- ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true,
- ISD::InputArg::NoArgIndex, 0);
- Ins.push_back(RetArg);
- }
- // Set up the incoming argument description vector.
- unsigned Idx = 1;
- for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end();
- I != E; ++I, ++Idx) {
- SmallVector<EVT, 4> ValueVTs;
- ComputeValueVTs(*TLI, DAG.getDataLayout(), I->getType(), ValueVTs);
- bool isArgValueUsed = !I->use_empty();
- unsigned PartBase = 0;
- Type *FinalType = I->getType();
- if (F.getAttributes().hasAttribute(Idx, Attribute::ByVal))
- FinalType = cast<PointerType>(FinalType)->getElementType();
- bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters(
- FinalType, F.getCallingConv(), F.isVarArg());
- for (unsigned Value = 0, NumValues = ValueVTs.size();
- Value != NumValues; ++Value) {
- EVT VT = ValueVTs[Value];
- Type *ArgTy = VT.getTypeForEVT(*DAG.getContext());
- ISD::ArgFlagsTy Flags;
- unsigned OriginalAlignment = DL.getABITypeAlignment(ArgTy);
- if (F.getAttributes().hasAttribute(Idx, Attribute::ZExt))
- Flags.setZExt();
- if (F.getAttributes().hasAttribute(Idx, Attribute::SExt))
- Flags.setSExt();
- if (F.getAttributes().hasAttribute(Idx, Attribute::InReg))
- Flags.setInReg();
- if (F.getAttributes().hasAttribute(Idx, Attribute::StructRet))
- Flags.setSRet();
- if (F.getAttributes().hasAttribute(Idx, Attribute::ByVal))
- Flags.setByVal();
- if (F.getAttributes().hasAttribute(Idx, Attribute::InAlloca)) {
- Flags.setInAlloca();
- // Set the byval flag for CCAssignFn callbacks that don't know about
- // inalloca. This way we can know how many bytes we should've allocated
- // and how many bytes a callee cleanup function will pop. If we port
- // inalloca to more targets, we'll have to add custom inalloca handling
- // in the various CC lowering callbacks.
- Flags.setByVal();
- }
- if (Flags.isByVal() || Flags.isInAlloca()) {
- PointerType *Ty = cast<PointerType>(I->getType());
- Type *ElementTy = Ty->getElementType();
- Flags.setByValSize(DL.getTypeAllocSize(ElementTy));
- // For ByVal, alignment should be passed from FE. BE will guess if
- // this info is not there but there are cases it cannot get right.
- unsigned FrameAlign;
- if (F.getParamAlignment(Idx))
- FrameAlign = F.getParamAlignment(Idx);
- else
- FrameAlign = TLI->getByValTypeAlignment(ElementTy, DL);
- Flags.setByValAlign(FrameAlign);
- }
- if (F.getAttributes().hasAttribute(Idx, Attribute::Nest))
- Flags.setNest();
- if (NeedsRegBlock)
- Flags.setInConsecutiveRegs();
- Flags.setOrigAlign(OriginalAlignment);
- MVT RegisterVT = TLI->getRegisterType(*CurDAG->getContext(), VT);
- unsigned NumRegs = TLI->getNumRegisters(*CurDAG->getContext(), VT);
- for (unsigned i = 0; i != NumRegs; ++i) {
- ISD::InputArg MyFlags(Flags, RegisterVT, VT, isArgValueUsed,
- Idx-1, PartBase+i*RegisterVT.getStoreSize());
- if (NumRegs > 1 && i == 0)
- MyFlags.Flags.setSplit();
- // if it isn't first piece, alignment must be 1
- else if (i > 0)
- MyFlags.Flags.setOrigAlign(1);
- Ins.push_back(MyFlags);
- }
- if (NeedsRegBlock && Value == NumValues - 1)
- Ins[Ins.size() - 1].Flags.setInConsecutiveRegsLast();
- PartBase += VT.getStoreSize();
- }
- }
- // Call the target to set up the argument values.
- SmallVector<SDValue, 8> InVals;
- SDValue NewRoot = TLI->LowerFormalArguments(
- DAG.getRoot(), F.getCallingConv(), F.isVarArg(), Ins, dl, DAG, InVals);
- // Verify that the target's LowerFormalArguments behaved as expected.
- assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other &&
- "LowerFormalArguments didn't return a valid chain!");
- assert(InVals.size() == Ins.size() &&
- "LowerFormalArguments didn't emit the correct number of values!");
- DEBUG({
- for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
- assert(InVals[i].getNode() &&
- "LowerFormalArguments emitted a null value!");
- assert(EVT(Ins[i].VT) == InVals[i].getValueType() &&
- "LowerFormalArguments emitted a value with the wrong type!");
- }
- });
- // Update the DAG with the new chain value resulting from argument lowering.
- DAG.setRoot(NewRoot);
- // Set up the argument values.
- unsigned i = 0;
- Idx = 1;
- if (!FuncInfo->CanLowerReturn) {
- // Create a virtual register for the sret pointer, and put in a copy
- // from the sret argument into it.
- SmallVector<EVT, 1> ValueVTs;
- ComputeValueVTs(*TLI, DAG.getDataLayout(),
- PointerType::getUnqual(F.getReturnType()), ValueVTs);
- MVT VT = ValueVTs[0].getSimpleVT();
- MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT);
- ISD::NodeType AssertOp = ISD::DELETED_NODE;
- SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1,
- RegVT, VT, nullptr, AssertOp);
- MachineFunction& MF = SDB->DAG.getMachineFunction();
- MachineRegisterInfo& RegInfo = MF.getRegInfo();
- unsigned SRetReg = RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT));
- FuncInfo->DemoteRegister = SRetReg;
- NewRoot =
- SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), SRetReg, ArgValue);
- DAG.setRoot(NewRoot);
- // i indexes lowered arguments. Bump it past the hidden sret argument.
- // Idx indexes LLVM arguments. Don't touch it.
- ++i;
- }
- for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E;
- ++I, ++Idx) {
- SmallVector<SDValue, 4> ArgValues;
- SmallVector<EVT, 4> ValueVTs;
- ComputeValueVTs(*TLI, DAG.getDataLayout(), I->getType(), ValueVTs);
- unsigned NumValues = ValueVTs.size();
- // If this argument is unused then remember its value. It is used to generate
- // debugging information.
- if (I->use_empty() && NumValues) {
- SDB->setUnusedArgValue(I, InVals[i]);
- // Also remember any frame index for use in FastISel.
- if (FrameIndexSDNode *FI =
- dyn_cast<FrameIndexSDNode>(InVals[i].getNode()))
- FuncInfo->setArgumentFrameIndex(I, FI->getIndex());
- }
- for (unsigned Val = 0; Val != NumValues; ++Val) {
- EVT VT = ValueVTs[Val];
- MVT PartVT = TLI->getRegisterType(*CurDAG->getContext(), VT);
- unsigned NumParts = TLI->getNumRegisters(*CurDAG->getContext(), VT);
- if (!I->use_empty()) {
- ISD::NodeType AssertOp = ISD::DELETED_NODE;
- if (F.getAttributes().hasAttribute(Idx, Attribute::SExt))
- AssertOp = ISD::AssertSext;
- else if (F.getAttributes().hasAttribute(Idx, Attribute::ZExt))
- AssertOp = ISD::AssertZext;
- ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i],
- NumParts, PartVT, VT,
- nullptr, AssertOp));
- }
- i += NumParts;
- }
- // We don't need to do anything else for unused arguments.
- if (ArgValues.empty())
- continue;
- // Note down frame index.
- if (FrameIndexSDNode *FI =
- dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode()))
- FuncInfo->setArgumentFrameIndex(I, FI->getIndex());
- SDValue Res = DAG.getMergeValues(makeArrayRef(ArgValues.data(), NumValues),
- SDB->getCurSDLoc());
- SDB->setValue(I, Res);
- if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) {
- if (LoadSDNode *LNode =
- dyn_cast<LoadSDNode>(Res.getOperand(0).getNode()))
- if (FrameIndexSDNode *FI =
- dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
- FuncInfo->setArgumentFrameIndex(I, FI->getIndex());
- }
- // If this argument is live outside of the entry block, insert a copy from
- // wherever we got it to the vreg that other BB's will reference it as.
- if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::CopyFromReg) {
- // If we can, though, try to skip creating an unnecessary vreg.
- // FIXME: This isn't very clean... it would be nice to make this more
- // general. It's also subtly incompatible with the hacks FastISel
- // uses with vregs.
- unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg();
- if (TargetRegisterInfo::isVirtualRegister(Reg)) {
- FuncInfo->ValueMap[I] = Reg;
- continue;
- }
- }
- if (!isOnlyUsedInEntryBlock(I, TM.Options.EnableFastISel)) {
- FuncInfo->InitializeRegForValue(I);
- SDB->CopyToExportRegsIfNeeded(I);
- }
- }
- assert(i == InVals.size() && "Argument register count mismatch!");
- // Finally, if the target has anything special to do, allow it to do so.
- EmitFunctionEntryCode();
- }
- /// Handle PHI nodes in successor blocks. Emit code into the SelectionDAG to
- /// ensure constants are generated when needed. Remember the virtual registers
- /// that need to be added to the Machine PHI nodes as input. We cannot just
- /// directly add them, because expansion might result in multiple MBB's for one
- /// BB. As such, the start of the BB might correspond to a different MBB than
- /// the end.
- ///
- void
- SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) {
- const TerminatorInst *TI = LLVMBB->getTerminator();
- SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled;
- // Check PHI nodes in successors that expect a value to be available from this
- // block.
- for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
- const BasicBlock *SuccBB = TI->getSuccessor(succ);
- if (!isa<PHINode>(SuccBB->begin())) continue;
- MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB];
- // If this terminator has multiple identical successors (common for
- // switches), only handle each succ once.
- if (!SuccsHandled.insert(SuccMBB).second)
- continue;
- MachineBasicBlock::iterator MBBI = SuccMBB->begin();
- // At this point we know that there is a 1-1 correspondence between LLVM PHI
- // nodes and Machine PHI nodes, but the incoming operands have not been
- // emitted yet.
- for (BasicBlock::const_iterator I = SuccBB->begin();
- const PHINode *PN = dyn_cast<PHINode>(I); ++I) {
- // Ignore dead phi's.
- if (PN->use_empty()) continue;
- // Skip empty types
- if (PN->getType()->isEmptyTy())
- continue;
- unsigned Reg;
- const Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB);
- if (const Constant *C = dyn_cast<Constant>(PHIOp)) {
- unsigned &RegOut = ConstantsOut[C];
- if (RegOut == 0) {
- RegOut = FuncInfo.CreateRegs(C->getType());
- CopyValueToVirtualRegister(C, RegOut);
- }
- Reg = RegOut;
- } else {
- DenseMap<const Value *, unsigned>::iterator I =
- FuncInfo.ValueMap.find(PHIOp);
- if (I != FuncInfo.ValueMap.end())
- Reg = I->second;
- else {
- assert(isa<AllocaInst>(PHIOp) &&
- FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) &&
- "Didn't codegen value into a register!??");
- Reg = FuncInfo.CreateRegs(PHIOp->getType());
- CopyValueToVirtualRegister(PHIOp, Reg);
- }
- }
- // Remember that this register needs to added to the machine PHI node as
- // the input for this MBB.
- SmallVector<EVT, 4> ValueVTs;
- const TargetLowering &TLI = DAG.getTargetLoweringInfo();
- ComputeValueVTs(TLI, DAG.getDataLayout(), PN->getType(), ValueVTs);
- for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) {
- EVT VT = ValueVTs[vti];
- unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT);
- for (unsigned i = 0, e = NumRegisters; i != e; ++i)
- FuncInfo.PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i));
- Reg += NumRegisters;
- }
- }
- }
- ConstantsOut.clear();
- }
- /// Add a successor MBB to ParentMBB< creating a new MachineBB for BB if SuccMBB
- /// is 0.
- MachineBasicBlock *
- SelectionDAGBuilder::StackProtectorDescriptor::
- AddSuccessorMBB(const BasicBlock *BB,
- MachineBasicBlock *ParentMBB,
- bool IsLikely,
- MachineBasicBlock *SuccMBB) {
- // If SuccBB has not been created yet, create it.
- if (!SuccMBB) {
- MachineFunction *MF = ParentMBB->getParent();
- MachineFunction::iterator BBI = ParentMBB;
- SuccMBB = MF->CreateMachineBasicBlock(BB);
- MF->insert(++BBI, SuccMBB);
- }
- // Add it as a successor of ParentMBB.
- ParentMBB->addSuccessor(
- SuccMBB, BranchProbabilityInfo::getBranchWeightStackProtector(IsLikely));
- return SuccMBB;
- }
- MachineBasicBlock *SelectionDAGBuilder::NextBlock(MachineBasicBlock *MBB) {
- MachineFunction::iterator I = MBB;
- if (++I == FuncInfo.MF->end())
- return nullptr;
- return I;
- }
- /// During lowering new call nodes can be created (such as memset, etc.).
- /// Those will become new roots of the current DAG, but complications arise
- /// when they are tail calls. In such cases, the call lowering will update
- /// the root, but the builder still needs to know that a tail call has been
- /// lowered in order to avoid generating an additional return.
- void SelectionDAGBuilder::updateDAGForMaybeTailCall(SDValue MaybeTC) {
- // If the node is null, we do have a tail call.
- if (MaybeTC.getNode() != nullptr)
- DAG.setRoot(MaybeTC);
- else
- HasTailCall = true;
- }
- bool SelectionDAGBuilder::isDense(const CaseClusterVector &Clusters,
- unsigned *TotalCases, unsigned First,
- unsigned Last) {
- assert(Last >= First);
- assert(TotalCases[Last] >= TotalCases[First]);
- APInt LowCase = Clusters[First].Low->getValue();
- APInt HighCase = Clusters[Last].High->getValue();
- assert(LowCase.getBitWidth() == HighCase.getBitWidth());
- // FIXME: A range of consecutive cases has 100% density, but only requires one
- // comparison to lower. We should discriminate against such consecutive ranges
- // in jump tables.
- uint64_t Diff = (HighCase - LowCase).getLimitedValue((UINT64_MAX - 1) / 100);
- uint64_t Range = Diff + 1;
- uint64_t NumCases =
- TotalCases[Last] - (First == 0 ? 0 : TotalCases[First - 1]);
- assert(NumCases < UINT64_MAX / 100);
- assert(Range >= NumCases);
- return NumCases * 100 >= Range * MinJumpTableDensity;
- }
- static inline bool areJTsAllowed(const TargetLowering &TLI) {
- return TLI.isOperationLegalOrCustom(ISD::BR_JT, MVT::Other) ||
- TLI.isOperationLegalOrCustom(ISD::BRIND, MVT::Other);
- }
- bool SelectionDAGBuilder::buildJumpTable(CaseClusterVector &Clusters,
- unsigned First, unsigned Last,
- const SwitchInst *SI,
- MachineBasicBlock *DefaultMBB,
- CaseCluster &JTCluster) {
- assert(First <= Last);
- uint32_t Weight = 0;
- unsigned NumCmps = 0;
- std::vector<MachineBasicBlock*> Table;
- DenseMap<MachineBasicBlock*, uint32_t> JTWeights;
- for (unsigned I = First; I <= Last; ++I) {
- assert(Clusters[I].Kind == CC_Range);
- Weight += Clusters[I].Weight;
- assert(Weight >= Clusters[I].Weight && "Weight overflow!");
- APInt Low = Clusters[I].Low->getValue();
- APInt High = Clusters[I].High->getValue();
- NumCmps += (Low == High) ? 1 : 2;
- if (I != First) {
- // Fill the gap between this and the previous cluster.
- APInt PreviousHigh = Clusters[I - 1].High->getValue();
- assert(PreviousHigh.slt(Low));
- uint64_t Gap = (Low - PreviousHigh).getLimitedValue() - 1;
- for (uint64_t J = 0; J < Gap; J++)
- Table.push_back(DefaultMBB);
- }
- uint64_t ClusterSize = (High - Low).getLimitedValue() + 1;
- for (uint64_t J = 0; J < ClusterSize; ++J)
- Table.push_back(Clusters[I].MBB);
- JTWeights[Clusters[I].MBB] += Clusters[I].Weight;
- }
- unsigned NumDests = JTWeights.size();
- if (isSuitableForBitTests(NumDests, NumCmps,
- Clusters[First].Low->getValue(),
- Clusters[Last].High->getValue())) {
- // Clusters[First..Last] should be lowered as bit tests instead.
- return false;
- }
- // Create the MBB that will load from and jump through the table.
- // Note: We create it here, but it's not inserted into the function yet.
- MachineFunction *CurMF = FuncInfo.MF;
- MachineBasicBlock *JumpTableMBB =
- CurMF->CreateMachineBasicBlock(SI->getParent());
- // Add successors. Note: use table order for determinism.
- SmallPtrSet<MachineBasicBlock *, 8> Done;
- for (MachineBasicBlock *Succ : Table) {
- if (Done.count(Succ))
- continue;
- addSuccessorWithWeight(JumpTableMBB, Succ, JTWeights[Succ]);
- Done.insert(Succ);
- }
- const TargetLowering &TLI = DAG.getTargetLoweringInfo();
- unsigned JTI = CurMF->getOrCreateJumpTableInfo(TLI.getJumpTableEncoding())
- ->createJumpTableIndex(Table);
- // Set up the jump table info.
- JumpTable JT(-1U, JTI, JumpTableMBB, nullptr);
- JumpTableHeader JTH(Clusters[First].Low->getValue(),
- Clusters[Last].High->getValue(), SI->getCondition(),
- nullptr, false);
- JTCases.emplace_back(std::move(JTH), std::move(JT));
- JTCluster = CaseCluster::jumpTable(Clusters[First].Low, Clusters[Last].High,
- JTCases.size() - 1, Weight);
- return true;
- }
- void SelectionDAGBuilder::findJumpTables(CaseClusterVector &Clusters,
- const SwitchInst *SI,
- MachineBasicBlock *DefaultMBB) {
- #ifndef NDEBUG
- // Clusters must be non-empty, sorted, and only contain Range clusters.
- assert(!Clusters.empty());
- for (CaseCluster &C : Clusters)
- assert(C.Kind == CC_Range);
- for (unsigned i = 1, e = Clusters.size(); i < e; ++i)
- assert(Clusters[i - 1].High->getValue().slt(Clusters[i].Low->getValue()));
- #endif
- const TargetLowering &TLI = DAG.getTargetLoweringInfo();
- if (!areJTsAllowed(TLI))
- return;
- const int64_t N = Clusters.size();
- const unsigned MinJumpTableSize = TLI.getMinimumJumpTableEntries();
- // TotalCases[i]: Total nbr of cases in Clusters[0..i].
- SmallVector<unsigned, 8> TotalCases(N);
- for (unsigned i = 0; i < N; ++i) {
- APInt Hi = Clusters[i].High->getValue();
- APInt Lo = Clusters[i].Low->getValue();
- TotalCases[i] = (Hi - Lo).getLimitedValue() + 1;
- if (i != 0)
- TotalCases[i] += TotalCases[i - 1];
- }
- if (N >= MinJumpTableSize && isDense(Clusters, &TotalCases[0], 0, N - 1)) {
- // Cheap case: the whole range might be suitable for jump table.
- CaseCluster JTCluster;
- if (buildJumpTable(Clusters, 0, N - 1, SI, DefaultMBB, JTCluster)) {
- Clusters[0] = JTCluster;
- Clusters.resize(1);
- return;
- }
- }
- // The algorithm below is not suitable for -O0.
- if (TM.getOptLevel() == CodeGenOpt::None)
- return;
- // Split Clusters into minimum number of dense partitions. The algorithm uses
- // the same idea as Kannan & Proebsting "Correction to 'Producing Good Code
- // for the Case Statement'" (1994), but builds the MinPartitions array in
- // reverse order to make it easier to reconstruct the partitions in ascending
- // order. In the choice between two optimal partitionings, it picks the one
- // which yields more jump tables.
- // MinPartitions[i] is the minimum nbr of partitions of Clusters[i..N-1].
- SmallVector<unsigned, 8> MinPartitions(N);
- // LastElement[i] is the last element of the partition starting at i.
- SmallVector<unsigned, 8> LastElement(N);
- // NumTables[i]: nbr of >= MinJumpTableSize partitions from Clusters[i..N-1].
- SmallVector<unsigned, 8> NumTables(N);
- // Base case: There is only one way to partition Clusters[N-1].
- MinPartitions[N - 1] = 1;
- LastElement[N - 1] = N - 1;
- assert(MinJumpTableSize > 1);
- NumTables[N - 1] = 0;
- // Note: loop indexes are signed to avoid underflow.
- for (int64_t i = N - 2; i >= 0; i--) {
- // Find optimal partitioning of Clusters[i..N-1].
- // Baseline: Put Clusters[i] into a partition on its own.
- MinPartitions[i] = MinPartitions[i + 1] + 1;
- LastElement[i] = i;
- NumTables[i] = NumTables[i + 1];
- // Search for a solution that results in fewer partitions.
- for (int64_t j = N - 1; j > i; j--) {
- // Try building a partition from Clusters[i..j].
- if (isDense(Clusters, &TotalCases[0], i, j)) {
- unsigned NumPartitions = 1 + (j == N - 1 ? 0 : MinPartitions[j + 1]);
- bool IsTable = j - i + 1 >= MinJumpTableSize;
- unsigned Tables = IsTable + (j == N - 1 ? 0 : NumTables[j + 1]);
- // If this j leads to fewer partitions, or same number of partitions
- // with more lookup tables, it is a better partitioning.
- if (NumPartitions < MinPartitions[i] ||
- (NumPartitions == MinPartitions[i] && Tables > NumTables[i])) {
- MinPartitions[i] = NumPartitions;
- LastElement[i] = j;
- NumTables[i] = Tables;
- }
- }
- }
- }
- // Iterate over the partitions, replacing some with jump tables in-place.
- unsigned DstIndex = 0;
- for (unsigned First = 0, Last; First < N; First = Last + 1) {
- Last = LastElement[First];
- assert(Last >= First);
- assert(DstIndex <= First);
- unsigned NumClusters = Last - First + 1;
- CaseCluster JTCluster;
- if (NumClusters >= MinJumpTableSize &&
- buildJumpTable(Clusters, First, Last, SI, DefaultMBB, JTCluster)) {
- Clusters[DstIndex++] = JTCluster;
- } else {
- for (unsigned I = First; I <= Last; ++I)
- std::memmove(&Clusters[DstIndex++], &Clusters[I], sizeof(Clusters[I]));
- }
- }
- Clusters.resize(DstIndex);
- }
- bool SelectionDAGBuilder::rangeFitsInWord(const APInt &Low, const APInt &High) {
- // FIXME: Using the pointer type doesn't seem ideal.
- uint64_t BW = DAG.getDataLayout().getPointerSizeInBits();
- uint64_t Range = (High - Low).getLimitedValue(UINT64_MAX - 1) + 1;
- return Range <= BW;
- }
- bool SelectionDAGBuilder::isSuitableForBitTests(unsigned NumDests,
- unsigned NumCmps,
- const APInt &Low,
- const APInt &High) {
- // FIXME: I don't think NumCmps is the correct metric: a single case and a
- // range of cases both require only one branch to lower. Just looking at the
- // number of clusters and destinations should be enough to decide whether to
- // build bit tests.
- // To lower a range with bit tests, the range must fit the bitwidth of a
- // machine word.
- if (!rangeFitsInWord(Low, High))
- return false;
- // Decide whether it's profitable to lower this range with bit tests. Each
- // destination requires a bit test and branch, and there is an overall range
- // check branch. For a small number of clusters, separate comparisons might be
- // cheaper, and for many destinations, splitting the range might be better.
- return (NumDests == 1 && NumCmps >= 3) ||
- (NumDests == 2 && NumCmps >= 5) ||
- (NumDests == 3 && NumCmps >= 6);
- }
- bool SelectionDAGBuilder::buildBitTests(CaseClusterVector &Clusters,
- unsigned First, unsigned Last,
- const SwitchInst *SI,
- CaseCluster &BTCluster) {
- assert(First <= Last);
- if (First == Last)
- return false;
- BitVector Dests(FuncInfo.MF->getNumBlockIDs());
- unsigned NumCmps = 0;
- for (int64_t I = First; I <= Last; ++I) {
- assert(Clusters[I].Kind == CC_Range);
- Dests.set(Clusters[I].MBB->getNumber());
- NumCmps += (Clusters[I].Low == Clusters[I].High) ? 1 : 2;
- }
- unsigned NumDests = Dests.count();
- APInt Low = Clusters[First].Low->getValue();
- APInt High = Clusters[Last].High->getValue();
- assert(Low.slt(High));
- if (!isSuitableForBitTests(NumDests, NumCmps, Low, High))
- return false;
- APInt LowBound;
- APInt CmpRange;
- const int BitWidth = DAG.getTargetLoweringInfo()
- .getPointerTy(DAG.getDataLayout())
- .getSizeInBits();
- assert(rangeFitsInWord(Low, High) && "Case range must fit in bit mask!");
- if (Low.isNonNegative() && High.slt(BitWidth)) {
- // Optimize the case where all the case values fit in a
- // word without having to subtract minValue. In this case,
- // we can optimize away the subtraction.
- LowBound = APInt::getNullValue(Low.getBitWidth());
- CmpRange = High;
- } else {
- LowBound = Low;
- CmpRange = High - Low;
- }
- CaseBitsVector CBV;
- uint32_t TotalWeight = 0;
- for (unsigned i = First; i <= Last; ++i) {
- // Find the CaseBits for this destination.
- unsigned j;
- for (j = 0; j < CBV.size(); ++j)
- if (CBV[j].BB == Clusters[i].MBB)
- break;
- if (j == CBV.size())
- CBV.push_back(CaseBits(0, Clusters[i].MBB, 0, 0));
- CaseBits *CB = &CBV[j];
- // Update Mask, Bits and ExtraWeight.
- uint64_t Lo = (Clusters[i].Low->getValue() - LowBound).getZExtValue();
- uint64_t Hi = (Clusters[i].High->getValue() - LowBound).getZExtValue();
- assert(Hi >= Lo && Hi < 64 && "Invalid bit case!");
- CB->Mask |= (-1ULL >> (63 - (Hi - Lo))) << Lo;
- CB->Bits += Hi - Lo + 1;
- CB->ExtraWeight += Clusters[i].Weight;
- TotalWeight += Clusters[i].Weight;
- assert(TotalWeight >= Clusters[i].Weight && "Weight overflow!");
- }
- BitTestInfo BTI;
- std::sort(CBV.begin(), CBV.end(), [](const CaseBits &a, const CaseBits &b) {
- // Sort by weight first, number of bits second.
- if (a.ExtraWeight != b.ExtraWeight)
- return a.ExtraWeight > b.ExtraWeight;
- return a.Bits > b.Bits;
- });
- for (auto &CB : CBV) {
- MachineBasicBlock *BitTestBB =
- FuncInfo.MF->CreateMachineBasicBlock(SI->getParent());
- BTI.push_back(BitTestCase(CB.Mask, BitTestBB, CB.BB, CB.ExtraWeight));
- }
- BitTestCases.emplace_back(std::move(LowBound), std::move(CmpRange),
- SI->getCondition(), -1U, MVT::Other, false, nullptr,
- nullptr, std::move(BTI));
- BTCluster = CaseCluster::bitTests(Clusters[First].Low, Clusters[Last].High,
- BitTestCases.size() - 1, TotalWeight);
- return true;
- }
- void SelectionDAGBuilder::findBitTestClusters(CaseClusterVector &Clusters,
- const SwitchInst *SI) {
- // Partition Clusters into as few subsets as possible, where each subset has a
- // range that fits in a machine word and has <= 3 unique destinations.
- #ifndef NDEBUG
- // Clusters must be sorted and contain Range or JumpTable clusters.
- assert(!Clusters.empty());
- assert(Clusters[0].Kind == CC_Range || Clusters[0].Kind == CC_JumpTable);
- for (const CaseCluster &C : Clusters)
- assert(C.Kind == CC_Range || C.Kind == CC_JumpTable);
- for (unsigned i = 1; i < Clusters.size(); ++i)
- assert(Clusters[i-1].High->getValue().slt(Clusters[i].Low->getValue()));
- #endif
- // The algorithm below is not suitable for -O0.
- if (TM.getOptLevel() == CodeGenOpt::None)
- return;
- // If target does not have legal shift left, do not emit bit tests at all.
- const TargetLowering &TLI = DAG.getTargetLoweringInfo();
- EVT PTy = TLI.getPointerTy(DAG.getDataLayout());
- if (!TLI.isOperationLegal(ISD::SHL, PTy))
- return;
- int BitWidth = PTy.getSizeInBits();
- const int64_t N = Clusters.size();
- // MinPartitions[i] is the minimum nbr of partitions of Clusters[i..N-1].
- SmallVector<unsigned, 8> MinPartitions(N);
- // LastElement[i] is the last element of the partition starting at i.
- SmallVector<unsigned, 8> LastElement(N);
- // FIXME: This might not be the best algorithm for finding bit test clusters.
- // Base case: There is only one way to partition Clusters[N-1].
- MinPartitions[N - 1] = 1;
- LastElement[N - 1] = N - 1;
- // Note: loop indexes are signed to avoid underflow.
- for (int64_t i = N - 2; i >= 0; --i) {
- // Find optimal partitioning of Clusters[i..N-1].
- // Baseline: Put Clusters[i] into a partition on its own.
- MinPartitions[i] = MinPartitions[i + 1] + 1;
- LastElement[i] = i;
- // Search for a solution that results in fewer partitions.
- // Note: the search is limited by BitWidth, reducing time complexity.
- for (int64_t j = std::min(N - 1, i + BitWidth - 1); j > i; --j) {
- // Try building a partition from Clusters[i..j].
- // Check the range.
- if (!rangeFitsInWord(Clusters[i].Low->getValue(),
- Clusters[j].High->getValue()))
- continue;
- // Check nbr of destinations and cluster types.
- // FIXME: This works, but doesn't seem very efficient.
- bool RangesOnly = true;
- BitVector Dests(FuncInfo.MF->getNumBlockIDs());
- for (int64_t k = i; k <= j; k++) {
- if (Clusters[k].Kind != CC_Range) {
- RangesOnly = false;
- break;
- }
- Dests.set(Clusters[k].MBB->getNumber());
- }
- if (!RangesOnly || Dests.count() > 3)
- break;
- // Check if it's a better partition.
- unsigned NumPartitions = 1 + (j == N - 1 ? 0 : MinPartitions[j + 1]);
- if (NumPartitions < MinPartitions[i]) {
- // Found a better partition.
- MinPartitions[i] = NumPartitions;
- LastElement[i] = j;
- }
- }
- }
- // Iterate over the partitions, replacing with bit-test clusters in-place.
- unsigned DstIndex = 0;
- for (unsigned First = 0, Last; First < N; First = Last + 1) {
- Last = LastElement[First];
- assert(First <= Last);
- assert(DstIndex <= First);
- CaseCluster BitTestCluster;
- if (buildBitTests(Clusters, First, Last, SI, BitTestCluster)) {
- Clusters[DstIndex++] = BitTestCluster;
- } else {
- size_t NumClusters = Last - First + 1;
- std::memmove(&Clusters[DstIndex], &Clusters[First],
- sizeof(Clusters[0]) * NumClusters);
- DstIndex += NumClusters;
- }
- }
- Clusters.resize(DstIndex);
- }
- void SelectionDAGBuilder::lowerWorkItem(SwitchWorkListItem W, Value *Cond,
- MachineBasicBlock *SwitchMBB,
- MachineBasicBlock *DefaultMBB) {
- MachineFunction *CurMF = FuncInfo.MF;
- MachineBasicBlock *NextMBB = nullptr;
- MachineFunction::iterator BBI = W.MBB;
- if (++BBI != FuncInfo.MF->end())
- NextMBB = BBI;
- unsigned Size = W.LastCluster - W.FirstCluster + 1;
- BranchProbabilityInfo *BPI = FuncInfo.BPI;
- if (Size == 2 && W.MBB == SwitchMBB) {
- // If any two of the cases has the same destination, and if one value
- // is the same as the other, but has one bit unset that the other has set,
- // use bit manipulation to do two compares at once. For example:
- // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)"
- // TODO: This could be extended to merge any 2 cases in switches with 3
- // cases.
- // TODO: Handle cases where W.CaseBB != SwitchBB.
- CaseCluster &Small = *W.FirstCluster;
- CaseCluster &Big = *W.LastCluster;
- if (Small.Low == Small.High && Big.Low == Big.High &&
- Small.MBB == Big.MBB) {
- const APInt &SmallValue = Small.Low->getValue();
- const APInt &BigValue = Big.Low->getValue();
- // Check that there is only one bit different.
- APInt CommonBit = BigValue ^ SmallValue;
- if (CommonBit.isPowerOf2()) {
- SDValue CondLHS = getValue(Cond);
- EVT VT = CondLHS.getValueType();
- SDLoc DL = getCurSDLoc();
- SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS,
- DAG.getConstant(CommonBit, DL, VT));
- SDValue Cond = DAG.getSetCC(
- DL, MVT::i1, Or, DAG.getConstant(BigValue | SmallValue, DL, VT),
- ISD::SETEQ);
- // Update successor info.
- // Both Small and Big will jump to Small.BB, so we sum up the weights.
- addSuccessorWithWeight(SwitchMBB, Small.MBB, Small.Weight + Big.Weight);
- addSuccessorWithWeight(
- SwitchMBB, DefaultMBB,
- // The default destination is the first successor in IR.
- BPI ? BPI->getEdgeWeight(SwitchMBB->getBasicBlock(), (unsigned)0)
- : 0);
- // Insert the true branch.
- SDValue BrCond =
- DAG.getNode(ISD::BRCOND, DL, MVT::Other, getControlRoot(), Cond,
- DAG.getBasicBlock(Small.MBB));
- // Insert the false branch.
- BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond,
- DAG.getBasicBlock(DefaultMBB));
- DAG.setRoot(BrCond);
- return;
- }
- }
- }
- if (TM.getOptLevel() != CodeGenOpt::None) {
- // Order cases by weight so the most likely case will be checked first.
- std::sort(W.FirstCluster, W.LastCluster + 1,
- [](const CaseCluster &a, const CaseCluster &b) {
- return a.Weight > b.Weight;
- });
- // Rearrange the case blocks so that the last one falls through if possible
- // without without changing the order of weights.
- for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster; ) {
- --I;
- if (I->Weight > W.LastCluster->Weight)
- break;
- if (I->Kind == CC_Range && I->MBB == NextMBB) {
- std::swap(*I, *W.LastCluster);
- break;
- }
- }
- }
- // Compute total weight.
- uint32_t UnhandledWeights = 0;
- for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I) {
- UnhandledWeights += I->Weight;
- assert(UnhandledWeights >= I->Weight && "Weight overflow!");
- }
- MachineBasicBlock *CurMBB = W.MBB;
- for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) {
- MachineBasicBlock *Fallthrough;
- if (I == W.LastCluster) {
- // For the last cluster, fall through to the default destination.
- Fallthrough = DefaultMBB;
- } else {
- Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock());
- CurMF->insert(BBI, Fallthrough);
- // Put Cond in a virtual register to make it available from the new blocks.
- ExportFromCurrentBlock(Cond);
- }
- switch (I->Kind) {
- case CC_JumpTable: {
- // FIXME: Optimize away range check based on pivot comparisons.
- JumpTableHeader *JTH = &JTCases[I->JTCasesIndex].first;
- JumpTable *JT = &JTCases[I->JTCasesIndex].second;
- // The jump block hasn't been inserted yet; insert it here.
- MachineBasicBlock *JumpMBB = JT->MBB;
- CurMF->insert(BBI, JumpMBB);
- addSuccessorWithWeight(CurMBB, Fallthrough);
- addSuccessorWithWeight(CurMBB, JumpMBB);
- // The jump table header will be inserted in our current block, do the
- // range check, and fall through to our fallthrough block.
- JTH->HeaderBB = CurMBB;
- JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader.
- // If we're in the right place, emit the jump table header right now.
- if (CurMBB == SwitchMBB) {
- visitJumpTableHeader(*JT, *JTH, SwitchMBB);
- JTH->Emitted = true;
- }
- break;
- }
- case CC_BitTests: {
- // FIXME: Optimize away range check based on pivot comparisons.
- BitTestBlock *BTB = &BitTestCases[I->BTCasesIndex];
- // The bit test blocks haven't been inserted yet; insert them here.
- for (BitTestCase &BTC : BTB->Cases)
- CurMF->insert(BBI, BTC.ThisBB);
- // Fill in fields of the BitTestBlock.
- BTB->Parent = CurMBB;
- BTB->Default = Fallthrough;
- // If we're in the right place, emit the bit test header header right now.
- if (CurMBB ==SwitchMBB) {
- visitBitTestHeader(*BTB, SwitchMBB);
- BTB->Emitted = true;
- }
- break;
- }
- case CC_Range: {
- const Value *RHS, *LHS, *MHS;
- ISD::CondCode CC;
- if (I->Low == I->High) {
- // Check Cond == I->Low.
- CC = ISD::SETEQ;
- LHS = Cond;
- RHS=I->Low;
- MHS = nullptr;
- } else {
- // Check I->Low <= Cond <= I->High.
- CC = ISD::SETLE;
- LHS = I->Low;
- MHS = Cond;
- RHS = I->High;
- }
- // The false weight is the sum of all unhandled cases.
- UnhandledWeights -= I->Weight;
- CaseBlock CB(CC, LHS, RHS, MHS, I->MBB, Fallthrough, CurMBB, I->Weight,
- UnhandledWeights);
- if (CurMBB == SwitchMBB)
- visitSwitchCase(CB, SwitchMBB);
- else
- SwitchCases.push_back(CB);
- break;
- }
- }
- CurMBB = Fallthrough;
- }
- }
- unsigned SelectionDAGBuilder::caseClusterRank(const CaseCluster &CC,
- CaseClusterIt First,
- CaseClusterIt Last) {
- return std::count_if(First, Last + 1, [&](const CaseCluster &X) {
- if (X.Weight != CC.Weight)
- return X.Weight > CC.Weight;
- // Ties are broken by comparing the case value.
- return X.Low->getValue().slt(CC.Low->getValue());
- });
- }
- void SelectionDAGBuilder::splitWorkItem(SwitchWorkList &WorkList,
- const SwitchWorkListItem &W,
- Value *Cond,
- MachineBasicBlock *SwitchMBB) {
- assert(W.FirstCluster->Low->getValue().slt(W.LastCluster->Low->getValue()) &&
- "Clusters not sorted?");
- assert(W.LastCluster - W.FirstCluster + 1 >= 2 && "Too small to split!");
- // Balance the tree based on branch weights to create a near-optimal (in terms
- // of search time given key frequency) binary search tree. See e.g. Kurt
- // Mehlhorn "Nearly Optimal Binary Search Trees" (1975).
- CaseClusterIt LastLeft = W.FirstCluster;
- CaseClusterIt FirstRight = W.LastCluster;
- uint32_t LeftWeight = LastLeft->Weight;
- uint32_t RightWeight = FirstRight->Weight;
- // Move LastLeft and FirstRight towards each other from opposite directions to
- // find a partitioning of the clusters which balances the weight on both
- // sides. If LeftWeight and RightWeight are equal, alternate which side is
- // taken to ensure 0-weight nodes are distributed evenly.
- unsigned I = 0;
- while (LastLeft + 1 < FirstRight) {
- if (LeftWeight < RightWeight || (LeftWeight == RightWeight && (I & 1)))
- LeftWeight += (++LastLeft)->Weight;
- else
- RightWeight += (--FirstRight)->Weight;
- I++;
- }
- for (;;) {
- // Our binary search tree differs from a typical BST in that ours can have up
- // to three values in each leaf. The pivot selection above doesn't take that
- // into account, which means the tree might require more nodes and be less
- // efficient. We compensate for this here.
- unsigned NumLeft = LastLeft - W.FirstCluster + 1;
- unsigned NumRight = W.LastCluster - FirstRight + 1;
- if (std::min(NumLeft, NumRight) < 3 && std::max(NumLeft, NumRight) > 3) {
- // If one side has less than 3 clusters, and the other has more than 3,
- // consider taking a cluster from the other side.
- if (NumLeft < NumRight) {
- // Consider moving the first cluster on the right to the left side.
- CaseCluster &CC = *FirstRight;
- unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster);
- unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft);
- if (LeftSideRank <= RightSideRank) {
- // Moving the cluster to the left does not demote it.
- ++LastLeft;
- ++FirstRight;
- continue;
- }
- } else {
- assert(NumRight < NumLeft);
- // Consider moving the last element on the left to the right side.
- CaseCluster &CC = *LastLeft;
- unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft);
- unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster);
- if (RightSideRank <= LeftSideRank) {
- // Moving the cluster to the right does not demot it.
- --LastLeft;
- --FirstRight;
- continue;
- }
- }
- }
- break;
- }
- assert(LastLeft + 1 == FirstRight);
- assert(LastLeft >= W.FirstCluster);
- assert(FirstRight <= W.LastCluster);
- // Use the first element on the right as pivot since we will make less-than
- // comparisons against it.
- CaseClusterIt PivotCluster = FirstRight;
- assert(PivotCluster > W.FirstCluster);
- assert(PivotCluster <= W.LastCluster);
- CaseClusterIt FirstLeft = W.FirstCluster;
- CaseClusterIt LastRight = W.LastCluster;
- const ConstantInt *Pivot = PivotCluster->Low;
- // New blocks will be inserted immediately after the current one.
- MachineFunction::iterator BBI = W.MBB;
- ++BBI;
- // We will branch to the LHS if Value < Pivot. If LHS is a single cluster,
- // we can branch to its destination directly if it's squeezed exactly in
- // between the known lower bound and Pivot - 1.
- MachineBasicBlock *LeftMBB;
- if (FirstLeft == LastLeft && FirstLeft->Kind == CC_Range &&
- FirstLeft->Low == W.GE &&
- (FirstLeft->High->getValue() + 1LL) == Pivot->getValue()) {
- LeftMBB = FirstLeft->MBB;
- } else {
- LeftMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock());
- FuncInfo.MF->insert(BBI, LeftMBB);
- WorkList.push_back({LeftMBB, FirstLeft, LastLeft, W.GE, Pivot});
- // Put Cond in a virtual register to make it available from the new blocks.
- ExportFromCurrentBlock(Cond);
- }
- // Similarly, we will branch to the RHS if Value >= Pivot. If RHS is a
- // single cluster, RHS.Low == Pivot, and we can branch to its destination
- // directly if RHS.High equals the current upper bound.
- MachineBasicBlock *RightMBB;
- if (FirstRight == LastRight && FirstRight->Kind == CC_Range &&
- W.LT && (FirstRight->High->getValue() + 1ULL) == W.LT->getValue()) {
- RightMBB = FirstRight->MBB;
- } else {
- RightMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock());
- FuncInfo.MF->insert(BBI, RightMBB);
- WorkList.push_back({RightMBB, FirstRight, LastRight, Pivot, W.LT});
- // Put Cond in a virtual register to make it available from the new blocks.
- ExportFromCurrentBlock(Cond);
- }
- // Create the CaseBlock record that will be used to lower the branch.
- CaseBlock CB(ISD::SETLT, Cond, Pivot, nullptr, LeftMBB, RightMBB, W.MBB,
- LeftWeight, RightWeight);
- if (W.MBB == SwitchMBB)
- visitSwitchCase(CB, SwitchMBB);
- else
- SwitchCases.push_back(CB);
- }
- void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) {
- // Extract cases from the switch.
- BranchProbabilityInfo *BPI = FuncInfo.BPI;
- CaseClusterVector Clusters;
- Clusters.reserve(SI.getNumCases());
- for (auto I : SI.cases()) {
- MachineBasicBlock *Succ = FuncInfo.MBBMap[I.getCaseSuccessor()];
- const ConstantInt *CaseVal = I.getCaseValue();
- uint32_t Weight =
- BPI ? BPI->getEdgeWeight(SI.getParent(), I.getSuccessorIndex()) : 0;
- Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Weight));
- }
- MachineBasicBlock *DefaultMBB = FuncInfo.MBBMap[SI.getDefaultDest()];
- // Cluster adjacent cases with the same destination. We do this at all
- // optimization levels because it's cheap to do and will make codegen faster
- // if there are many clusters.
- sortAndRangeify(Clusters);
- if (TM.getOptLevel() != CodeGenOpt::None) {
- // Replace an unreachable default with the most popular destination.
- // FIXME: Exploit unreachable default more aggressively.
- bool UnreachableDefault =
- isa<UnreachableInst>(SI.getDefaultDest()->getFirstNonPHIOrDbg());
- if (UnreachableDefault && !Clusters.empty()) {
- DenseMap<const BasicBlock *, unsigned> Popularity;
- unsigned MaxPop = 0;
- const BasicBlock *MaxBB = nullptr;
- for (auto I : SI.cases()) {
- const BasicBlock *BB = I.getCaseSuccessor();
- if (++Popularity[BB] > MaxPop) {
- MaxPop = Popularity[BB];
- MaxBB = BB;
- }
- }
- // Set new default.
- assert(MaxPop > 0 && MaxBB);
- DefaultMBB = FuncInfo.MBBMap[MaxBB];
- // Remove cases that were pointing to the destination that is now the
- // default.
- CaseClusterVector New;
- New.reserve(Clusters.size());
- for (CaseCluster &CC : Clusters) {
- if (CC.MBB != DefaultMBB)
- New.push_back(CC);
- }
- Clusters = std::move(New);
- }
- }
- // If there is only the default destination, jump there directly.
- MachineBasicBlock *SwitchMBB = FuncInfo.MBB;
- if (Clusters.empty()) {
- SwitchMBB->addSuccessor(DefaultMBB);
- if (DefaultMBB != NextBlock(SwitchMBB)) {
- DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other,
- getControlRoot(), DAG.getBasicBlock(DefaultMBB)));
- }
- return;
- }
- findJumpTables(Clusters, &SI, DefaultMBB);
- findBitTestClusters(Clusters, &SI);
- DEBUG({
- dbgs() << "Case clusters: ";
- for (const CaseCluster &C : Clusters) {
- if (C.Kind == CC_JumpTable) dbgs() << "JT:";
- if (C.Kind == CC_BitTests) dbgs() << "BT:";
- C.Low->getValue().print(dbgs(), true);
- if (C.Low != C.High) {
- dbgs() << '-';
- C.High->getValue().print(dbgs(), true);
- }
- dbgs() << ' ';
- }
- dbgs() << '\n';
- });
- assert(!Clusters.empty());
- SwitchWorkList WorkList;
- CaseClusterIt First = Clusters.begin();
- CaseClusterIt Last = Clusters.end() - 1;
- WorkList.push_back({SwitchMBB, First, Last, nullptr, nullptr});
- while (!WorkList.empty()) {
- SwitchWorkListItem W = WorkList.back();
- WorkList.pop_back();
- unsigned NumClusters = W.LastCluster - W.FirstCluster + 1;
- if (NumClusters > 3 && TM.getOptLevel() != CodeGenOpt::None) {
- // For optimized builds, lower large range as a balanced binary tree.
- splitWorkItem(WorkList, W, SI.getCondition(), SwitchMBB);
- continue;
- }
- lowerWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB);
- }
- }
|