123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878 |
- //===-- StatepointLowering.cpp - SDAGBuilder's statepoint code -----------===//
- //
- // The LLVM Compiler Infrastructure
- //
- // This file is distributed under the University of Illinois Open Source
- // License. See LICENSE.TXT for details.
- //
- //===----------------------------------------------------------------------===//
- //
- // This file includes support code use by SelectionDAGBuilder when lowering a
- // statepoint sequence in SelectionDAG IR.
- //
- //===----------------------------------------------------------------------===//
- #include "StatepointLowering.h"
- #include "SelectionDAGBuilder.h"
- #include "llvm/ADT/SmallSet.h"
- #include "llvm/ADT/Statistic.h"
- #include "llvm/CodeGen/FunctionLoweringInfo.h"
- #include "llvm/CodeGen/GCMetadata.h"
- #include "llvm/CodeGen/GCStrategy.h"
- #include "llvm/CodeGen/SelectionDAG.h"
- #include "llvm/CodeGen/StackMaps.h"
- #include "llvm/IR/CallingConv.h"
- #include "llvm/IR/Instructions.h"
- #include "llvm/IR/IntrinsicInst.h"
- #include "llvm/IR/Intrinsics.h"
- #include "llvm/IR/Statepoint.h"
- #include "llvm/Target/TargetLowering.h"
- #include <algorithm>
- using namespace llvm;
- #define DEBUG_TYPE "statepoint-lowering"
- STATISTIC(NumSlotsAllocatedForStatepoints,
- "Number of stack slots allocated for statepoints");
- STATISTIC(NumOfStatepoints, "Number of statepoint nodes encountered");
- STATISTIC(StatepointMaxSlotsRequired,
- "Maximum number of stack slots required for a singe statepoint");
- static void pushStackMapConstant(SmallVectorImpl<SDValue>& Ops,
- SelectionDAGBuilder &Builder, uint64_t Value) {
- SDLoc L = Builder.getCurSDLoc();
- Ops.push_back(Builder.DAG.getTargetConstant(StackMaps::ConstantOp, L,
- MVT::i64));
- Ops.push_back(Builder.DAG.getTargetConstant(Value, L, MVT::i64));
- }
- void StatepointLoweringState::startNewStatepoint(SelectionDAGBuilder &Builder) {
- // Consistency check
- assert(PendingGCRelocateCalls.empty() &&
- "Trying to visit statepoint before finished processing previous one");
- Locations.clear();
- NextSlotToAllocate = 0;
- // Need to resize this on each safepoint - we need the two to stay in
- // sync and the clear patterns of a SelectionDAGBuilder have no relation
- // to FunctionLoweringInfo.
- AllocatedStackSlots.resize(Builder.FuncInfo.StatepointStackSlots.size());
- for (size_t i = 0; i < AllocatedStackSlots.size(); i++) {
- AllocatedStackSlots[i] = false;
- }
- }
- void StatepointLoweringState::clear() {
- Locations.clear();
- AllocatedStackSlots.clear();
- assert(PendingGCRelocateCalls.empty() &&
- "cleared before statepoint sequence completed");
- }
- SDValue
- StatepointLoweringState::allocateStackSlot(EVT ValueType,
- SelectionDAGBuilder &Builder) {
- NumSlotsAllocatedForStatepoints++;
- // The basic scheme here is to first look for a previously created stack slot
- // which is not in use (accounting for the fact arbitrary slots may already
- // be reserved), or to create a new stack slot and use it.
- // If this doesn't succeed in 40000 iterations, something is seriously wrong
- for (int i = 0; i < 40000; i++) {
- assert(Builder.FuncInfo.StatepointStackSlots.size() ==
- AllocatedStackSlots.size() &&
- "broken invariant");
- const size_t NumSlots = AllocatedStackSlots.size();
- assert(NextSlotToAllocate <= NumSlots && "broken invariant");
- if (NextSlotToAllocate >= NumSlots) {
- assert(NextSlotToAllocate == NumSlots);
- // record stats
- if (NumSlots + 1 > StatepointMaxSlotsRequired) {
- StatepointMaxSlotsRequired = NumSlots + 1;
- }
- SDValue SpillSlot = Builder.DAG.CreateStackTemporary(ValueType);
- const unsigned FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex();
- Builder.FuncInfo.StatepointStackSlots.push_back(FI);
- AllocatedStackSlots.push_back(true);
- return SpillSlot;
- }
- if (!AllocatedStackSlots[NextSlotToAllocate]) {
- const int FI = Builder.FuncInfo.StatepointStackSlots[NextSlotToAllocate];
- AllocatedStackSlots[NextSlotToAllocate] = true;
- return Builder.DAG.getFrameIndex(FI, ValueType);
- }
- // Note: We deliberately choose to advance this only on the failing path.
- // Doing so on the suceeding path involes a bit of complexity that caused a
- // minor bug previously. Unless performance shows this matters, please
- // keep this code as simple as possible.
- NextSlotToAllocate++;
- }
- llvm_unreachable("infinite loop?");
- }
- /// Utility function for reservePreviousStackSlotForValue. Tries to find
- /// stack slot index to which we have spilled value for previous statepoints.
- /// LookUpDepth specifies maximum DFS depth this function is allowed to look.
- static Optional<int> findPreviousSpillSlot(const Value *Val,
- SelectionDAGBuilder &Builder,
- int LookUpDepth) {
- // Can not look any futher - give up now
- if (LookUpDepth <= 0)
- return Optional<int>();
- // Spill location is known for gc relocates
- if (isGCRelocate(Val)) {
- GCRelocateOperands RelocOps(cast<Instruction>(Val));
- FunctionLoweringInfo::StatepointSpilledValueMapTy &SpillMap =
- Builder.FuncInfo.StatepointRelocatedValues[RelocOps.getStatepoint()];
- auto It = SpillMap.find(RelocOps.getDerivedPtr());
- if (It == SpillMap.end())
- return Optional<int>();
- return It->second;
- }
- // Look through bitcast instructions.
- if (const BitCastInst *Cast = dyn_cast<BitCastInst>(Val)) {
- return findPreviousSpillSlot(Cast->getOperand(0), Builder, LookUpDepth - 1);
- }
- // Look through phi nodes
- // All incoming values should have same known stack slot, otherwise result
- // is unknown.
- if (const PHINode *Phi = dyn_cast<PHINode>(Val)) {
- Optional<int> MergedResult = None;
- for (auto &IncomingValue : Phi->incoming_values()) {
- Optional<int> SpillSlot =
- findPreviousSpillSlot(IncomingValue, Builder, LookUpDepth - 1);
- if (!SpillSlot.hasValue())
- return Optional<int>();
- if (MergedResult.hasValue() && *MergedResult != *SpillSlot)
- return Optional<int>();
- MergedResult = SpillSlot;
- }
- return MergedResult;
- }
- // TODO: We can do better for PHI nodes. In cases like this:
- // ptr = phi(relocated_pointer, not_relocated_pointer)
- // statepoint(ptr)
- // We will return that stack slot for ptr is unknown. And later we might
- // assign different stack slots for ptr and relocated_pointer. This limits
- // llvm's ability to remove redundant stores.
- // Unfortunately it's hard to accomplish in current infrastructure.
- // We use this function to eliminate spill store completely, while
- // in example we still need to emit store, but instead of any location
- // we need to use special "preferred" location.
- // TODO: handle simple updates. If a value is modified and the original
- // value is no longer live, it would be nice to put the modified value in the
- // same slot. This allows folding of the memory accesses for some
- // instructions types (like an increment).
- // statepoint (i)
- // i1 = i+1
- // statepoint (i1)
- // However we need to be careful for cases like this:
- // statepoint(i)
- // i1 = i+1
- // statepoint(i, i1)
- // Here we want to reserve spill slot for 'i', but not for 'i+1'. If we just
- // put handling of simple modifications in this function like it's done
- // for bitcasts we might end up reserving i's slot for 'i+1' because order in
- // which we visit values is unspecified.
- // Don't know any information about this instruction
- return Optional<int>();
- }
- /// Try to find existing copies of the incoming values in stack slots used for
- /// statepoint spilling. If we can find a spill slot for the incoming value,
- /// mark that slot as allocated, and reuse the same slot for this safepoint.
- /// This helps to avoid series of loads and stores that only serve to resuffle
- /// values on the stack between calls.
- static void reservePreviousStackSlotForValue(const Value *IncomingValue,
- SelectionDAGBuilder &Builder) {
- SDValue Incoming = Builder.getValue(IncomingValue);
- if (isa<ConstantSDNode>(Incoming) || isa<FrameIndexSDNode>(Incoming)) {
- // We won't need to spill this, so no need to check for previously
- // allocated stack slots
- return;
- }
- SDValue OldLocation = Builder.StatepointLowering.getLocation(Incoming);
- if (OldLocation.getNode())
- // duplicates in input
- return;
- const int LookUpDepth = 6;
- Optional<int> Index =
- findPreviousSpillSlot(IncomingValue, Builder, LookUpDepth);
- if (!Index.hasValue())
- return;
- auto Itr = std::find(Builder.FuncInfo.StatepointStackSlots.begin(),
- Builder.FuncInfo.StatepointStackSlots.end(), *Index);
- assert(Itr != Builder.FuncInfo.StatepointStackSlots.end() &&
- "value spilled to the unknown stack slot");
- // This is one of our dedicated lowering slots
- const int Offset =
- std::distance(Builder.FuncInfo.StatepointStackSlots.begin(), Itr);
- if (Builder.StatepointLowering.isStackSlotAllocated(Offset)) {
- // stack slot already assigned to someone else, can't use it!
- // TODO: currently we reserve space for gc arguments after doing
- // normal allocation for deopt arguments. We should reserve for
- // _all_ deopt and gc arguments, then start allocating. This
- // will prevent some moves being inserted when vm state changes,
- // but gc state doesn't between two calls.
- return;
- }
- // Reserve this stack slot
- Builder.StatepointLowering.reserveStackSlot(Offset);
- // Cache this slot so we find it when going through the normal
- // assignment loop.
- SDValue Loc = Builder.DAG.getTargetFrameIndex(*Index, Incoming.getValueType());
- Builder.StatepointLowering.setLocation(Incoming, Loc);
- }
- /// Remove any duplicate (as SDValues) from the derived pointer pairs. This
- /// is not required for correctness. It's purpose is to reduce the size of
- /// StackMap section. It has no effect on the number of spill slots required
- /// or the actual lowering.
- static void removeDuplicatesGCPtrs(SmallVectorImpl<const Value *> &Bases,
- SmallVectorImpl<const Value *> &Ptrs,
- SmallVectorImpl<const Value *> &Relocs,
- SelectionDAGBuilder &Builder) {
- // This is horribly ineffecient, but I don't care right now
- SmallSet<SDValue, 64> Seen;
- SmallVector<const Value *, 64> NewBases, NewPtrs, NewRelocs;
- for (size_t i = 0; i < Ptrs.size(); i++) {
- SDValue SD = Builder.getValue(Ptrs[i]);
- // Only add non-duplicates
- if (Seen.count(SD) == 0) {
- NewBases.push_back(Bases[i]);
- NewPtrs.push_back(Ptrs[i]);
- NewRelocs.push_back(Relocs[i]);
- }
- Seen.insert(SD);
- }
- assert(Bases.size() >= NewBases.size());
- assert(Ptrs.size() >= NewPtrs.size());
- assert(Relocs.size() >= NewRelocs.size());
- Bases = NewBases;
- Ptrs = NewPtrs;
- Relocs = NewRelocs;
- assert(Ptrs.size() == Bases.size());
- assert(Ptrs.size() == Relocs.size());
- }
- /// Extract call from statepoint, lower it and return pointer to the
- /// call node. Also update NodeMap so that getValue(statepoint) will
- /// reference lowered call result
- static SDNode *
- lowerCallFromStatepoint(ImmutableStatepoint ISP, MachineBasicBlock *LandingPad,
- SelectionDAGBuilder &Builder,
- SmallVectorImpl<SDValue> &PendingExports) {
- ImmutableCallSite CS(ISP.getCallSite());
- SDValue ActualCallee = Builder.getValue(ISP.getCalledValue());
- assert(CS.getCallingConv() != CallingConv::AnyReg &&
- "anyregcc is not supported on statepoints!");
- Type *DefTy = ISP.getActualReturnType();
- bool HasDef = !DefTy->isVoidTy();
- SDValue ReturnValue, CallEndVal;
- std::tie(ReturnValue, CallEndVal) = Builder.lowerCallOperands(
- ISP.getCallSite(), ImmutableStatepoint::CallArgsBeginPos,
- ISP.getNumCallArgs(), ActualCallee, DefTy, LandingPad,
- false /* IsPatchPoint */);
- SDNode *CallEnd = CallEndVal.getNode();
- // Get a call instruction from the call sequence chain. Tail calls are not
- // allowed. The following code is essentially reverse engineering X86's
- // LowerCallTo.
- //
- // We are expecting DAG to have the following form:
- //
- // ch = eh_label (only in case of invoke statepoint)
- // ch, glue = callseq_start ch
- // ch, glue = X86::Call ch, glue
- // ch, glue = callseq_end ch, glue
- // get_return_value ch, glue
- //
- // get_return_value can either be a CopyFromReg to grab the return value from
- // %RAX, or it can be a LOAD to load a value returned by reference via a stack
- // slot.
- if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg ||
- CallEnd->getOpcode() == ISD::LOAD))
- CallEnd = CallEnd->getOperand(0).getNode();
- assert(CallEnd->getOpcode() == ISD::CALLSEQ_END && "expected!");
- if (HasDef) {
- if (CS.isInvoke()) {
- // Result value will be used in different basic block for invokes
- // so we need to export it now. But statepoint call has a different type
- // than the actuall call. It means that standart exporting mechanism will
- // create register of the wrong type. So instead we need to create
- // register with correct type and save value into it manually.
- // TODO: To eliminate this problem we can remove gc.result intrinsics
- // completelly and make statepoint call to return a tuple.
- unsigned Reg = Builder.FuncInfo.CreateRegs(ISP.getActualReturnType());
- RegsForValue RFV(
- *Builder.DAG.getContext(), Builder.DAG.getTargetLoweringInfo(),
- Builder.DAG.getDataLayout(), Reg, ISP.getActualReturnType());
- SDValue Chain = Builder.DAG.getEntryNode();
- RFV.getCopyToRegs(ReturnValue, Builder.DAG, Builder.getCurSDLoc(), Chain,
- nullptr);
- PendingExports.push_back(Chain);
- Builder.FuncInfo.ValueMap[CS.getInstruction()] = Reg;
- } else {
- // The value of the statepoint itself will be the value of call itself.
- // We'll replace the actually call node shortly. gc_result will grab
- // this value.
- Builder.setValue(CS.getInstruction(), ReturnValue);
- }
- } else {
- // The token value is never used from here on, just generate a poison value
- Builder.setValue(CS.getInstruction(),
- Builder.DAG.getIntPtrConstant(-1, Builder.getCurSDLoc()));
- }
- return CallEnd->getOperand(0).getNode();
- }
- /// Callect all gc pointers coming into statepoint intrinsic, clean them up,
- /// and return two arrays:
- /// Bases - base pointers incoming to this statepoint
- /// Ptrs - derived pointers incoming to this statepoint
- /// Relocs - the gc_relocate corresponding to each base/ptr pair
- /// Elements of this arrays should be in one-to-one correspondence with each
- /// other i.e Bases[i], Ptrs[i] are from the same gcrelocate call
- static void getIncomingStatepointGCValues(
- SmallVectorImpl<const Value *> &Bases, SmallVectorImpl<const Value *> &Ptrs,
- SmallVectorImpl<const Value *> &Relocs, ImmutableStatepoint StatepointSite,
- SelectionDAGBuilder &Builder) {
- for (GCRelocateOperands relocateOpers : StatepointSite.getRelocates()) {
- Relocs.push_back(relocateOpers.getUnderlyingCallSite().getInstruction());
- Bases.push_back(relocateOpers.getBasePtr());
- Ptrs.push_back(relocateOpers.getDerivedPtr());
- }
- // Remove any redundant llvm::Values which map to the same SDValue as another
- // input. Also has the effect of removing duplicates in the original
- // llvm::Value input list as well. This is a useful optimization for
- // reducing the size of the StackMap section. It has no other impact.
- removeDuplicatesGCPtrs(Bases, Ptrs, Relocs, Builder);
- assert(Bases.size() == Ptrs.size() && Ptrs.size() == Relocs.size());
- }
- /// Spill a value incoming to the statepoint. It might be either part of
- /// vmstate
- /// or gcstate. In both cases unconditionally spill it on the stack unless it
- /// is a null constant. Return pair with first element being frame index
- /// containing saved value and second element with outgoing chain from the
- /// emitted store
- static std::pair<SDValue, SDValue>
- spillIncomingStatepointValue(SDValue Incoming, SDValue Chain,
- SelectionDAGBuilder &Builder) {
- SDValue Loc = Builder.StatepointLowering.getLocation(Incoming);
- // Emit new store if we didn't do it for this ptr before
- if (!Loc.getNode()) {
- Loc = Builder.StatepointLowering.allocateStackSlot(Incoming.getValueType(),
- Builder);
- assert(isa<FrameIndexSDNode>(Loc));
- int Index = cast<FrameIndexSDNode>(Loc)->getIndex();
- // We use TargetFrameIndex so that isel will not select it into LEA
- Loc = Builder.DAG.getTargetFrameIndex(Index, Incoming.getValueType());
- // TODO: We can create TokenFactor node instead of
- // chaining stores one after another, this may allow
- // a bit more optimal scheduling for them
- Chain = Builder.DAG.getStore(Chain, Builder.getCurSDLoc(), Incoming, Loc,
- MachinePointerInfo::getFixedStack(Index),
- false, false, 0);
- Builder.StatepointLowering.setLocation(Incoming, Loc);
- }
- assert(Loc.getNode());
- return std::make_pair(Loc, Chain);
- }
- /// Lower a single value incoming to a statepoint node. This value can be
- /// either a deopt value or a gc value, the handling is the same. We special
- /// case constants and allocas, then fall back to spilling if required.
- static void lowerIncomingStatepointValue(SDValue Incoming,
- SmallVectorImpl<SDValue> &Ops,
- SelectionDAGBuilder &Builder) {
- SDValue Chain = Builder.getRoot();
- if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Incoming)) {
- // If the original value was a constant, make sure it gets recorded as
- // such in the stackmap. This is required so that the consumer can
- // parse any internal format to the deopt state. It also handles null
- // pointers and other constant pointers in GC states
- pushStackMapConstant(Ops, Builder, C->getSExtValue());
- } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Incoming)) {
- // This handles allocas as arguments to the statepoint (this is only
- // really meaningful for a deopt value. For GC, we'd be trying to
- // relocate the address of the alloca itself?)
- Ops.push_back(Builder.DAG.getTargetFrameIndex(FI->getIndex(),
- Incoming.getValueType()));
- } else {
- // Otherwise, locate a spill slot and explicitly spill it so it
- // can be found by the runtime later. We currently do not support
- // tracking values through callee saved registers to their eventual
- // spill location. This would be a useful optimization, but would
- // need to be optional since it requires a lot of complexity on the
- // runtime side which not all would support.
- std::pair<SDValue, SDValue> Res =
- spillIncomingStatepointValue(Incoming, Chain, Builder);
- Ops.push_back(Res.first);
- Chain = Res.second;
- }
- Builder.DAG.setRoot(Chain);
- }
- /// Lower deopt state and gc pointer arguments of the statepoint. The actual
- /// lowering is described in lowerIncomingStatepointValue. This function is
- /// responsible for lowering everything in the right position and playing some
- /// tricks to avoid redundant stack manipulation where possible. On
- /// completion, 'Ops' will contain ready to use operands for machine code
- /// statepoint. The chain nodes will have already been created and the DAG root
- /// will be set to the last value spilled (if any were).
- static void lowerStatepointMetaArgs(SmallVectorImpl<SDValue> &Ops,
- ImmutableStatepoint StatepointSite,
- SelectionDAGBuilder &Builder) {
- // Lower the deopt and gc arguments for this statepoint. Layout will
- // be: deopt argument length, deopt arguments.., gc arguments...
- SmallVector<const Value *, 64> Bases, Ptrs, Relocations;
- getIncomingStatepointGCValues(Bases, Ptrs, Relocations, StatepointSite,
- Builder);
- #ifndef NDEBUG
- // Check that each of the gc pointer and bases we've gotten out of the
- // safepoint is something the strategy thinks might be a pointer into the GC
- // heap. This is basically just here to help catch errors during statepoint
- // insertion. TODO: This should actually be in the Verifier, but we can't get
- // to the GCStrategy from there (yet).
- GCStrategy &S = Builder.GFI->getStrategy();
- for (const Value *V : Bases) {
- auto Opt = S.isGCManagedPointer(V);
- if (Opt.hasValue()) {
- assert(Opt.getValue() &&
- "non gc managed base pointer found in statepoint");
- }
- }
- for (const Value *V : Ptrs) {
- auto Opt = S.isGCManagedPointer(V);
- if (Opt.hasValue()) {
- assert(Opt.getValue() &&
- "non gc managed derived pointer found in statepoint");
- }
- }
- for (const Value *V : Relocations) {
- auto Opt = S.isGCManagedPointer(V);
- if (Opt.hasValue()) {
- assert(Opt.getValue() && "non gc managed pointer relocated");
- }
- }
- #endif
- // Before we actually start lowering (and allocating spill slots for values),
- // reserve any stack slots which we judge to be profitable to reuse for a
- // particular value. This is purely an optimization over the code below and
- // doesn't change semantics at all. It is important for performance that we
- // reserve slots for both deopt and gc values before lowering either.
- for (const Value *V : StatepointSite.vm_state_args()) {
- reservePreviousStackSlotForValue(V, Builder);
- }
- for (unsigned i = 0; i < Bases.size(); ++i) {
- reservePreviousStackSlotForValue(Bases[i], Builder);
- reservePreviousStackSlotForValue(Ptrs[i], Builder);
- }
- // First, prefix the list with the number of unique values to be
- // lowered. Note that this is the number of *Values* not the
- // number of SDValues required to lower them.
- const int NumVMSArgs = StatepointSite.getNumTotalVMSArgs();
- pushStackMapConstant(Ops, Builder, NumVMSArgs);
- assert(NumVMSArgs == std::distance(StatepointSite.vm_state_begin(),
- StatepointSite.vm_state_end()));
- // The vm state arguments are lowered in an opaque manner. We do
- // not know what type of values are contained within. We skip the
- // first one since that happens to be the total number we lowered
- // explicitly just above. We could have left it in the loop and
- // not done it explicitly, but it's far easier to understand this
- // way.
- for (const Value *V : StatepointSite.vm_state_args()) {
- SDValue Incoming = Builder.getValue(V);
- lowerIncomingStatepointValue(Incoming, Ops, Builder);
- }
- // Finally, go ahead and lower all the gc arguments. There's no prefixed
- // length for this one. After lowering, we'll have the base and pointer
- // arrays interwoven with each (lowered) base pointer immediately followed by
- // it's (lowered) derived pointer. i.e
- // (base[0], ptr[0], base[1], ptr[1], ...)
- for (unsigned i = 0; i < Bases.size(); ++i) {
- const Value *Base = Bases[i];
- lowerIncomingStatepointValue(Builder.getValue(Base), Ops, Builder);
- const Value *Ptr = Ptrs[i];
- lowerIncomingStatepointValue(Builder.getValue(Ptr), Ops, Builder);
- }
- // If there are any explicit spill slots passed to the statepoint, record
- // them, but otherwise do not do anything special. These are user provided
- // allocas and give control over placement to the consumer. In this case,
- // it is the contents of the slot which may get updated, not the pointer to
- // the alloca
- for (Value *V : StatepointSite.gc_args()) {
- SDValue Incoming = Builder.getValue(V);
- if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Incoming)) {
- // This handles allocas as arguments to the statepoint
- Ops.push_back(Builder.DAG.getTargetFrameIndex(FI->getIndex(),
- Incoming.getValueType()));
- }
- }
- // Record computed locations for all lowered values.
- // This can not be embedded in lowering loops as we need to record *all*
- // values, while previous loops account only values with unique SDValues.
- const Instruction *StatepointInstr =
- StatepointSite.getCallSite().getInstruction();
- FunctionLoweringInfo::StatepointSpilledValueMapTy &SpillMap =
- Builder.FuncInfo.StatepointRelocatedValues[StatepointInstr];
- for (GCRelocateOperands RelocateOpers : StatepointSite.getRelocates()) {
- const Value *V = RelocateOpers.getDerivedPtr();
- SDValue SDV = Builder.getValue(V);
- SDValue Loc = Builder.StatepointLowering.getLocation(SDV);
- if (Loc.getNode()) {
- SpillMap[V] = cast<FrameIndexSDNode>(Loc)->getIndex();
- } else {
- // Record value as visited, but not spilled. This is case for allocas
- // and constants. For this values we can avoid emiting spill load while
- // visiting corresponding gc_relocate.
- // Actually we do not need to record them in this map at all.
- // We do this only to check that we are not relocating any unvisited value.
- SpillMap[V] = None;
- // Default llvm mechanisms for exporting values which are used in
- // different basic blocks does not work for gc relocates.
- // Note that it would be incorrect to teach llvm that all relocates are
- // uses of the corresponging values so that it would automatically
- // export them. Relocates of the spilled values does not use original
- // value.
- if (StatepointSite.getCallSite().isInvoke())
- Builder.ExportFromCurrentBlock(V);
- }
- }
- }
- void SelectionDAGBuilder::visitStatepoint(const CallInst &CI) {
- // Check some preconditions for sanity
- assert(isStatepoint(&CI) &&
- "function called must be the statepoint function");
- LowerStatepoint(ImmutableStatepoint(&CI));
- }
- void SelectionDAGBuilder::LowerStatepoint(
- ImmutableStatepoint ISP, MachineBasicBlock *LandingPad /*=nullptr*/) {
- // The basic scheme here is that information about both the original call and
- // the safepoint is encoded in the CallInst. We create a temporary call and
- // lower it, then reverse engineer the calling sequence.
- NumOfStatepoints++;
- // Clear state
- StatepointLowering.startNewStatepoint(*this);
- ImmutableCallSite CS(ISP.getCallSite());
- #ifndef NDEBUG
- // Consistency check. Don't do this for invokes. It would be too
- // expensive to preserve this information across different basic blocks
- if (!CS.isInvoke()) {
- for (const User *U : CS->users()) {
- const CallInst *Call = cast<CallInst>(U);
- if (isGCRelocate(Call))
- StatepointLowering.scheduleRelocCall(*Call);
- }
- }
- #endif
- #ifndef NDEBUG
- // If this is a malformed statepoint, report it early to simplify debugging.
- // This should catch any IR level mistake that's made when constructing or
- // transforming statepoints.
- ISP.verify();
- // Check that the associated GCStrategy expects to encounter statepoints.
- assert(GFI->getStrategy().useStatepoints() &&
- "GCStrategy does not expect to encounter statepoints");
- #endif
- // Lower statepoint vmstate and gcstate arguments
- SmallVector<SDValue, 10> LoweredMetaArgs;
- lowerStatepointMetaArgs(LoweredMetaArgs, ISP, *this);
- // Get call node, we will replace it later with statepoint
- SDNode *CallNode =
- lowerCallFromStatepoint(ISP, LandingPad, *this, PendingExports);
- // Construct the actual GC_TRANSITION_START, STATEPOINT, and GC_TRANSITION_END
- // nodes with all the appropriate arguments and return values.
- // Call Node: Chain, Target, {Args}, RegMask, [Glue]
- SDValue Chain = CallNode->getOperand(0);
- SDValue Glue;
- bool CallHasIncomingGlue = CallNode->getGluedNode();
- if (CallHasIncomingGlue) {
- // Glue is always last operand
- Glue = CallNode->getOperand(CallNode->getNumOperands() - 1);
- }
- // Build the GC_TRANSITION_START node if necessary.
- //
- // The operands to the GC_TRANSITION_{START,END} nodes are laid out in the
- // order in which they appear in the call to the statepoint intrinsic. If
- // any of the operands is a pointer-typed, that operand is immediately
- // followed by a SRCVALUE for the pointer that may be used during lowering
- // (e.g. to form MachinePointerInfo values for loads/stores).
- const bool IsGCTransition =
- (ISP.getFlags() & (uint64_t)StatepointFlags::GCTransition) ==
- (uint64_t)StatepointFlags::GCTransition;
- if (IsGCTransition) {
- SmallVector<SDValue, 8> TSOps;
- // Add chain
- TSOps.push_back(Chain);
- // Add GC transition arguments
- for (const Value *V : ISP.gc_transition_args()) {
- TSOps.push_back(getValue(V));
- if (V->getType()->isPointerTy())
- TSOps.push_back(DAG.getSrcValue(V));
- }
- // Add glue if necessary
- if (CallHasIncomingGlue)
- TSOps.push_back(Glue);
- SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
- SDValue GCTransitionStart =
- DAG.getNode(ISD::GC_TRANSITION_START, getCurSDLoc(), NodeTys, TSOps);
- Chain = GCTransitionStart.getValue(0);
- Glue = GCTransitionStart.getValue(1);
- }
- // TODO: Currently, all of these operands are being marked as read/write in
- // PrologEpilougeInserter.cpp, we should special case the VMState arguments
- // and flags to be read-only.
- SmallVector<SDValue, 40> Ops;
- // Add the <id> and <numBytes> constants.
- Ops.push_back(DAG.getTargetConstant(ISP.getID(), getCurSDLoc(), MVT::i64));
- Ops.push_back(
- DAG.getTargetConstant(ISP.getNumPatchBytes(), getCurSDLoc(), MVT::i32));
- // Calculate and push starting position of vmstate arguments
- // Get number of arguments incoming directly into call node
- unsigned NumCallRegArgs =
- CallNode->getNumOperands() - (CallHasIncomingGlue ? 4 : 3);
- Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, getCurSDLoc(), MVT::i32));
- // Add call target
- SDValue CallTarget = SDValue(CallNode->getOperand(1).getNode(), 0);
- Ops.push_back(CallTarget);
- // Add call arguments
- // Get position of register mask in the call
- SDNode::op_iterator RegMaskIt;
- if (CallHasIncomingGlue)
- RegMaskIt = CallNode->op_end() - 2;
- else
- RegMaskIt = CallNode->op_end() - 1;
- Ops.insert(Ops.end(), CallNode->op_begin() + 2, RegMaskIt);
- // Add a constant argument for the calling convention
- pushStackMapConstant(Ops, *this, CS.getCallingConv());
- // Add a constant argument for the flags
- uint64_t Flags = ISP.getFlags();
- assert(
- ((Flags & ~(uint64_t)StatepointFlags::MaskAll) == 0)
- && "unknown flag used");
- pushStackMapConstant(Ops, *this, Flags);
- // Insert all vmstate and gcstate arguments
- Ops.insert(Ops.end(), LoweredMetaArgs.begin(), LoweredMetaArgs.end());
- // Add register mask from call node
- Ops.push_back(*RegMaskIt);
- // Add chain
- Ops.push_back(Chain);
- // Same for the glue, but we add it only if original call had it
- if (Glue.getNode())
- Ops.push_back(Glue);
- // Compute return values. Provide a glue output since we consume one as
- // input. This allows someone else to chain off us as needed.
- SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
- SDNode *StatepointMCNode =
- DAG.getMachineNode(TargetOpcode::STATEPOINT, getCurSDLoc(), NodeTys, Ops);
- SDNode *SinkNode = StatepointMCNode;
- // Build the GC_TRANSITION_END node if necessary.
- //
- // See the comment above regarding GC_TRANSITION_START for the layout of
- // the operands to the GC_TRANSITION_END node.
- if (IsGCTransition) {
- SmallVector<SDValue, 8> TEOps;
- // Add chain
- TEOps.push_back(SDValue(StatepointMCNode, 0));
- // Add GC transition arguments
- for (const Value *V : ISP.gc_transition_args()) {
- TEOps.push_back(getValue(V));
- if (V->getType()->isPointerTy())
- TEOps.push_back(DAG.getSrcValue(V));
- }
- // Add glue
- TEOps.push_back(SDValue(StatepointMCNode, 1));
- SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
- SDValue GCTransitionStart =
- DAG.getNode(ISD::GC_TRANSITION_END, getCurSDLoc(), NodeTys, TEOps);
- SinkNode = GCTransitionStart.getNode();
- }
- // Replace original call
- DAG.ReplaceAllUsesWith(CallNode, SinkNode); // This may update Root
- // Remove originall call node
- DAG.DeleteNode(CallNode);
- // DON'T set the root - under the assumption that it's already set past the
- // inserted node we created.
- // TODO: A better future implementation would be to emit a single variable
- // argument, variable return value STATEPOINT node here and then hookup the
- // return value of each gc.relocate to the respective output of the
- // previously emitted STATEPOINT value. Unfortunately, this doesn't appear
- // to actually be possible today.
- }
- void SelectionDAGBuilder::visitGCResult(const CallInst &CI) {
- // The result value of the gc_result is simply the result of the actual
- // call. We've already emitted this, so just grab the value.
- Instruction *I = cast<Instruction>(CI.getArgOperand(0));
- assert(isStatepoint(I) && "first argument must be a statepoint token");
- if (isa<InvokeInst>(I)) {
- // For invokes we should have stored call result in a virtual register.
- // We can not use default getValue() functionality to copy value from this
- // register because statepoint and actuall call return types can be
- // different, and getValue() will use CopyFromReg of the wrong type,
- // which is always i32 in our case.
- PointerType *CalleeType = cast<PointerType>(
- ImmutableStatepoint(I).getCalledValue()->getType());
- Type *RetTy =
- cast<FunctionType>(CalleeType->getElementType())->getReturnType();
- SDValue CopyFromReg = getCopyFromRegs(I, RetTy);
- assert(CopyFromReg.getNode());
- setValue(&CI, CopyFromReg);
- } else {
- setValue(&CI, getValue(I));
- }
- }
- void SelectionDAGBuilder::visitGCRelocate(const CallInst &CI) {
- GCRelocateOperands RelocateOpers(&CI);
- #ifndef NDEBUG
- // Consistency check
- // We skip this check for invoke statepoints. It would be too expensive to
- // preserve validation info through different basic blocks.
- if (!RelocateOpers.isTiedToInvoke()) {
- StatepointLowering.relocCallVisited(CI);
- }
- #endif
- const Value *DerivedPtr = RelocateOpers.getDerivedPtr();
- SDValue SD = getValue(DerivedPtr);
- FunctionLoweringInfo::StatepointSpilledValueMapTy &SpillMap =
- FuncInfo.StatepointRelocatedValues[RelocateOpers.getStatepoint()];
- // We should have recorded location for this pointer
- assert(SpillMap.count(DerivedPtr) && "Relocating not lowered gc value");
- Optional<int> DerivedPtrLocation = SpillMap[DerivedPtr];
- // We didn't need to spill these special cases (constants and allocas).
- // See the handling in spillIncomingValueForStatepoint for detail.
- if (!DerivedPtrLocation) {
- setValue(&CI, SD);
- return;
- }
- SDValue SpillSlot = DAG.getTargetFrameIndex(*DerivedPtrLocation,
- SD.getValueType());
- // Be conservative: flush all pending loads
- // TODO: Probably we can be less restrictive on this,
- // it may allow more scheduling opprtunities
- SDValue Chain = getRoot();
- SDValue SpillLoad =
- DAG.getLoad(SpillSlot.getValueType(), getCurSDLoc(), Chain, SpillSlot,
- MachinePointerInfo::getFixedStack(*DerivedPtrLocation),
- false, false, false, 0);
- // Again, be conservative, don't emit pending loads
- DAG.setRoot(SpillLoad.getValue(1));
- assert(SpillLoad.getNode());
- setValue(&CI, SpillLoad);
- }
|