1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024 |
- //===-- LegalizeVectorOps.cpp - Implement SelectionDAG::LegalizeVectors ---===//
- //
- // The LLVM Compiler Infrastructure
- //
- // This file is distributed under the University of Illinois Open Source
- // License. See LICENSE.TXT for details.
- //
- //===----------------------------------------------------------------------===//
- //
- // This file implements the SelectionDAG::LegalizeVectors method.
- //
- // The vector legalizer looks for vector operations which might need to be
- // scalarized and legalizes them. This is a separate step from Legalize because
- // scalarizing can introduce illegal types. For example, suppose we have an
- // ISD::SDIV of type v2i64 on x86-32. The type is legal (for example, addition
- // on a v2i64 is legal), but ISD::SDIV isn't legal, so we have to unroll the
- // operation, which introduces nodes with the illegal type i64 which must be
- // expanded. Similarly, suppose we have an ISD::SRA of type v16i8 on PowerPC;
- // the operation must be unrolled, which introduces nodes with the illegal
- // type i8 which must be promoted.
- //
- // This does not legalize vector manipulations like ISD::BUILD_VECTOR,
- // or operations that happen to take a vector which are custom-lowered;
- // the legalization for such operations never produces nodes
- // with illegal types, so it's okay to put off legalizing them until
- // SelectionDAG::Legalize runs.
- //
- //===----------------------------------------------------------------------===//
- #include "llvm/CodeGen/SelectionDAG.h"
- #include "llvm/Target/TargetLowering.h"
- using namespace llvm;
- namespace {
- class VectorLegalizer {
- SelectionDAG& DAG;
- const TargetLowering &TLI;
- bool Changed; // Keep track of whether anything changed
- /// For nodes that are of legal width, and that have more than one use, this
- /// map indicates what regularized operand to use. This allows us to avoid
- /// legalizing the same thing more than once.
- SmallDenseMap<SDValue, SDValue, 64> LegalizedNodes;
- /// \brief Adds a node to the translation cache.
- void AddLegalizedOperand(SDValue From, SDValue To) {
- LegalizedNodes.insert(std::make_pair(From, To));
- // If someone requests legalization of the new node, return itself.
- if (From != To)
- LegalizedNodes.insert(std::make_pair(To, To));
- }
- /// \brief Legalizes the given node.
- SDValue LegalizeOp(SDValue Op);
- /// \brief Assuming the node is legal, "legalize" the results.
- SDValue TranslateLegalizeResults(SDValue Op, SDValue Result);
- /// \brief Implements unrolling a VSETCC.
- SDValue UnrollVSETCC(SDValue Op);
- /// \brief Implement expand-based legalization of vector operations.
- ///
- /// This is just a high-level routine to dispatch to specific code paths for
- /// operations to legalize them.
- SDValue Expand(SDValue Op);
- /// \brief Implements expansion for FNEG; falls back to UnrollVectorOp if
- /// FSUB isn't legal.
- ///
- /// Implements expansion for UINT_TO_FLOAT; falls back to UnrollVectorOp if
- /// SINT_TO_FLOAT and SHR on vectors isn't legal.
- SDValue ExpandUINT_TO_FLOAT(SDValue Op);
- /// \brief Implement expansion for SIGN_EXTEND_INREG using SRL and SRA.
- SDValue ExpandSEXTINREG(SDValue Op);
- /// \brief Implement expansion for ANY_EXTEND_VECTOR_INREG.
- ///
- /// Shuffles the low lanes of the operand into place and bitcasts to the proper
- /// type. The contents of the bits in the extended part of each element are
- /// undef.
- SDValue ExpandANY_EXTEND_VECTOR_INREG(SDValue Op);
- /// \brief Implement expansion for SIGN_EXTEND_VECTOR_INREG.
- ///
- /// Shuffles the low lanes of the operand into place, bitcasts to the proper
- /// type, then shifts left and arithmetic shifts right to introduce a sign
- /// extension.
- SDValue ExpandSIGN_EXTEND_VECTOR_INREG(SDValue Op);
- /// \brief Implement expansion for ZERO_EXTEND_VECTOR_INREG.
- ///
- /// Shuffles the low lanes of the operand into place and blends zeros into
- /// the remaining lanes, finally bitcasting to the proper type.
- SDValue ExpandZERO_EXTEND_VECTOR_INREG(SDValue Op);
- /// \brief Expand bswap of vectors into a shuffle if legal.
- SDValue ExpandBSWAP(SDValue Op);
- /// \brief Implement vselect in terms of XOR, AND, OR when blend is not
- /// supported by the target.
- SDValue ExpandVSELECT(SDValue Op);
- SDValue ExpandSELECT(SDValue Op);
- SDValue ExpandLoad(SDValue Op);
- SDValue ExpandStore(SDValue Op);
- SDValue ExpandFNEG(SDValue Op);
- /// \brief Implements vector promotion.
- ///
- /// This is essentially just bitcasting the operands to a different type and
- /// bitcasting the result back to the original type.
- SDValue Promote(SDValue Op);
- /// \brief Implements [SU]INT_TO_FP vector promotion.
- ///
- /// This is a [zs]ext of the input operand to the next size up.
- SDValue PromoteINT_TO_FP(SDValue Op);
- /// \brief Implements FP_TO_[SU]INT vector promotion of the result type.
- ///
- /// It is promoted to the next size up integer type. The result is then
- /// truncated back to the original type.
- SDValue PromoteFP_TO_INT(SDValue Op, bool isSigned);
- public:
- /// \brief Begin legalizer the vector operations in the DAG.
- bool Run();
- VectorLegalizer(SelectionDAG& dag) :
- DAG(dag), TLI(dag.getTargetLoweringInfo()), Changed(false) {}
- };
- bool VectorLegalizer::Run() {
- // Before we start legalizing vector nodes, check if there are any vectors.
- bool HasVectors = false;
- for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(),
- E = std::prev(DAG.allnodes_end()); I != std::next(E); ++I) {
- // Check if the values of the nodes contain vectors. We don't need to check
- // the operands because we are going to check their values at some point.
- for (SDNode::value_iterator J = I->value_begin(), E = I->value_end();
- J != E; ++J)
- HasVectors |= J->isVector();
- // If we found a vector node we can start the legalization.
- if (HasVectors)
- break;
- }
- // If this basic block has no vectors then no need to legalize vectors.
- if (!HasVectors)
- return false;
- // The legalize process is inherently a bottom-up recursive process (users
- // legalize their uses before themselves). Given infinite stack space, we
- // could just start legalizing on the root and traverse the whole graph. In
- // practice however, this causes us to run out of stack space on large basic
- // blocks. To avoid this problem, compute an ordering of the nodes where each
- // node is only legalized after all of its operands are legalized.
- DAG.AssignTopologicalOrder();
- for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(),
- E = std::prev(DAG.allnodes_end()); I != std::next(E); ++I)
- LegalizeOp(SDValue(I, 0));
- // Finally, it's possible the root changed. Get the new root.
- SDValue OldRoot = DAG.getRoot();
- assert(LegalizedNodes.count(OldRoot) && "Root didn't get legalized?");
- DAG.setRoot(LegalizedNodes[OldRoot]);
- LegalizedNodes.clear();
- // Remove dead nodes now.
- DAG.RemoveDeadNodes();
- return Changed;
- }
- SDValue VectorLegalizer::TranslateLegalizeResults(SDValue Op, SDValue Result) {
- // Generic legalization: just pass the operand through.
- for (unsigned i = 0, e = Op.getNode()->getNumValues(); i != e; ++i)
- AddLegalizedOperand(Op.getValue(i), Result.getValue(i));
- return Result.getValue(Op.getResNo());
- }
- SDValue VectorLegalizer::LegalizeOp(SDValue Op) {
- // Note that LegalizeOp may be reentered even from single-use nodes, which
- // means that we always must cache transformed nodes.
- DenseMap<SDValue, SDValue>::iterator I = LegalizedNodes.find(Op);
- if (I != LegalizedNodes.end()) return I->second;
- SDNode* Node = Op.getNode();
- // Legalize the operands
- SmallVector<SDValue, 8> Ops;
- for (const SDValue &Op : Node->op_values())
- Ops.push_back(LegalizeOp(Op));
- SDValue Result = SDValue(DAG.UpdateNodeOperands(Op.getNode(), Ops), 0);
- bool HasVectorValue = false;
- if (Op.getOpcode() == ISD::LOAD) {
- LoadSDNode *LD = cast<LoadSDNode>(Op.getNode());
- ISD::LoadExtType ExtType = LD->getExtensionType();
- if (LD->getMemoryVT().isVector() && ExtType != ISD::NON_EXTLOAD)
- switch (TLI.getLoadExtAction(LD->getExtensionType(), LD->getValueType(0),
- LD->getMemoryVT())) {
- default: llvm_unreachable("This action is not supported yet!");
- case TargetLowering::Legal:
- return TranslateLegalizeResults(Op, Result);
- case TargetLowering::Custom:
- if (SDValue Lowered = TLI.LowerOperation(Result, DAG)) {
- if (Lowered == Result)
- return TranslateLegalizeResults(Op, Lowered);
- Changed = true;
- if (Lowered->getNumValues() != Op->getNumValues()) {
- // This expanded to something other than the load. Assume the
- // lowering code took care of any chain values, and just handle the
- // returned value.
- assert(Result.getValue(1).use_empty() &&
- "There are still live users of the old chain!");
- return LegalizeOp(Lowered);
- } else {
- return TranslateLegalizeResults(Op, Lowered);
- }
- }
- case TargetLowering::Expand:
- Changed = true;
- return LegalizeOp(ExpandLoad(Op));
- }
- } else if (Op.getOpcode() == ISD::STORE) {
- StoreSDNode *ST = cast<StoreSDNode>(Op.getNode());
- EVT StVT = ST->getMemoryVT();
- MVT ValVT = ST->getValue().getSimpleValueType();
- if (StVT.isVector() && ST->isTruncatingStore())
- switch (TLI.getTruncStoreAction(ValVT, StVT.getSimpleVT())) {
- default: llvm_unreachable("This action is not supported yet!");
- case TargetLowering::Legal:
- return TranslateLegalizeResults(Op, Result);
- case TargetLowering::Custom: {
- SDValue Lowered = TLI.LowerOperation(Result, DAG);
- Changed = Lowered != Result;
- return TranslateLegalizeResults(Op, Lowered);
- }
- case TargetLowering::Expand:
- Changed = true;
- return LegalizeOp(ExpandStore(Op));
- }
- } else if (Op.getOpcode() == ISD::MSCATTER)
- HasVectorValue = true;
- for (SDNode::value_iterator J = Node->value_begin(), E = Node->value_end();
- J != E;
- ++J)
- HasVectorValue |= J->isVector();
- if (!HasVectorValue)
- return TranslateLegalizeResults(Op, Result);
- EVT QueryType;
- switch (Op.getOpcode()) {
- default:
- return TranslateLegalizeResults(Op, Result);
- case ISD::ADD:
- case ISD::SUB:
- case ISD::MUL:
- case ISD::SDIV:
- case ISD::UDIV:
- case ISD::SREM:
- case ISD::UREM:
- case ISD::FADD:
- case ISD::FSUB:
- case ISD::FMUL:
- case ISD::FDIV:
- case ISD::FREM:
- case ISD::AND:
- case ISD::OR:
- case ISD::XOR:
- case ISD::SHL:
- case ISD::SRA:
- case ISD::SRL:
- case ISD::ROTL:
- case ISD::ROTR:
- case ISD::BSWAP:
- case ISD::CTLZ:
- case ISD::CTTZ:
- case ISD::CTLZ_ZERO_UNDEF:
- case ISD::CTTZ_ZERO_UNDEF:
- case ISD::CTPOP:
- case ISD::SELECT:
- case ISD::VSELECT:
- case ISD::SELECT_CC:
- case ISD::SETCC:
- case ISD::ZERO_EXTEND:
- case ISD::ANY_EXTEND:
- case ISD::TRUNCATE:
- case ISD::SIGN_EXTEND:
- case ISD::FP_TO_SINT:
- case ISD::FP_TO_UINT:
- case ISD::FNEG:
- case ISD::FABS:
- case ISD::FMINNUM:
- case ISD::FMAXNUM:
- case ISD::FCOPYSIGN:
- case ISD::FSQRT:
- case ISD::FSIN:
- case ISD::FCOS:
- case ISD::FPOWI:
- case ISD::FPOW:
- case ISD::FLOG:
- case ISD::FLOG2:
- case ISD::FLOG10:
- case ISD::FEXP:
- case ISD::FEXP2:
- case ISD::FCEIL:
- case ISD::FTRUNC:
- case ISD::FRINT:
- case ISD::FNEARBYINT:
- case ISD::FROUND:
- case ISD::FFLOOR:
- case ISD::FP_ROUND:
- case ISD::FP_EXTEND:
- case ISD::FMA:
- case ISD::SIGN_EXTEND_INREG:
- case ISD::ANY_EXTEND_VECTOR_INREG:
- case ISD::SIGN_EXTEND_VECTOR_INREG:
- case ISD::ZERO_EXTEND_VECTOR_INREG:
- case ISD::SMIN:
- case ISD::SMAX:
- case ISD::UMIN:
- case ISD::UMAX:
- QueryType = Node->getValueType(0);
- break;
- case ISD::FP_ROUND_INREG:
- QueryType = cast<VTSDNode>(Node->getOperand(1))->getVT();
- break;
- case ISD::SINT_TO_FP:
- case ISD::UINT_TO_FP:
- QueryType = Node->getOperand(0).getValueType();
- break;
- case ISD::MSCATTER:
- QueryType = cast<MaskedScatterSDNode>(Node)->getValue().getValueType();
- break;
- }
- switch (TLI.getOperationAction(Node->getOpcode(), QueryType)) {
- case TargetLowering::Promote:
- Result = Promote(Op);
- Changed = true;
- break;
- case TargetLowering::Legal:
- break;
- case TargetLowering::Custom: {
- SDValue Tmp1 = TLI.LowerOperation(Op, DAG);
- if (Tmp1.getNode()) {
- Result = Tmp1;
- break;
- }
- // FALL THROUGH
- }
- case TargetLowering::Expand:
- Result = Expand(Op);
- }
- // Make sure that the generated code is itself legal.
- if (Result != Op) {
- Result = LegalizeOp(Result);
- Changed = true;
- }
- // Note that LegalizeOp may be reentered even from single-use nodes, which
- // means that we always must cache transformed nodes.
- AddLegalizedOperand(Op, Result);
- return Result;
- }
- SDValue VectorLegalizer::Promote(SDValue Op) {
- // For a few operations there is a specific concept for promotion based on
- // the operand's type.
- switch (Op.getOpcode()) {
- case ISD::SINT_TO_FP:
- case ISD::UINT_TO_FP:
- // "Promote" the operation by extending the operand.
- return PromoteINT_TO_FP(Op);
- case ISD::FP_TO_UINT:
- case ISD::FP_TO_SINT:
- // Promote the operation by extending the operand.
- return PromoteFP_TO_INT(Op, Op->getOpcode() == ISD::FP_TO_SINT);
- }
- // There are currently two cases of vector promotion:
- // 1) Bitcasting a vector of integers to a different type to a vector of the
- // same overall length. For example, x86 promotes ISD::AND v2i32 to v1i64.
- // 2) Extending a vector of floats to a vector of the same number of larger
- // floats. For example, AArch64 promotes ISD::FADD on v4f16 to v4f32.
- MVT VT = Op.getSimpleValueType();
- assert(Op.getNode()->getNumValues() == 1 &&
- "Can't promote a vector with multiple results!");
- MVT NVT = TLI.getTypeToPromoteTo(Op.getOpcode(), VT);
- SDLoc dl(Op);
- SmallVector<SDValue, 4> Operands(Op.getNumOperands());
- for (unsigned j = 0; j != Op.getNumOperands(); ++j) {
- if (Op.getOperand(j).getValueType().isVector())
- if (Op.getOperand(j)
- .getValueType()
- .getVectorElementType()
- .isFloatingPoint() &&
- NVT.isVector() && NVT.getVectorElementType().isFloatingPoint())
- Operands[j] = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Op.getOperand(j));
- else
- Operands[j] = DAG.getNode(ISD::BITCAST, dl, NVT, Op.getOperand(j));
- else
- Operands[j] = Op.getOperand(j);
- }
- Op = DAG.getNode(Op.getOpcode(), dl, NVT, Operands);
- if ((VT.isFloatingPoint() && NVT.isFloatingPoint()) ||
- (VT.isVector() && VT.getVectorElementType().isFloatingPoint() &&
- NVT.isVector() && NVT.getVectorElementType().isFloatingPoint()))
- return DAG.getNode(ISD::FP_ROUND, dl, VT, Op, DAG.getIntPtrConstant(0, dl));
- else
- return DAG.getNode(ISD::BITCAST, dl, VT, Op);
- }
- SDValue VectorLegalizer::PromoteINT_TO_FP(SDValue Op) {
- // INT_TO_FP operations may require the input operand be promoted even
- // when the type is otherwise legal.
- EVT VT = Op.getOperand(0).getValueType();
- assert(Op.getNode()->getNumValues() == 1 &&
- "Can't promote a vector with multiple results!");
- // Normal getTypeToPromoteTo() doesn't work here, as that will promote
- // by widening the vector w/ the same element width and twice the number
- // of elements. We want the other way around, the same number of elements,
- // each twice the width.
- //
- // Increase the bitwidth of the element to the next pow-of-two
- // (which is greater than 8 bits).
- EVT NVT = VT.widenIntegerVectorElementType(*DAG.getContext());
- assert(NVT.isSimple() && "Promoting to a non-simple vector type!");
- SDLoc dl(Op);
- SmallVector<SDValue, 4> Operands(Op.getNumOperands());
- unsigned Opc = Op.getOpcode() == ISD::UINT_TO_FP ? ISD::ZERO_EXTEND :
- ISD::SIGN_EXTEND;
- for (unsigned j = 0; j != Op.getNumOperands(); ++j) {
- if (Op.getOperand(j).getValueType().isVector())
- Operands[j] = DAG.getNode(Opc, dl, NVT, Op.getOperand(j));
- else
- Operands[j] = Op.getOperand(j);
- }
- return DAG.getNode(Op.getOpcode(), dl, Op.getValueType(), Operands);
- }
- // For FP_TO_INT we promote the result type to a vector type with wider
- // elements and then truncate the result. This is different from the default
- // PromoteVector which uses bitcast to promote thus assumning that the
- // promoted vector type has the same overall size.
- SDValue VectorLegalizer::PromoteFP_TO_INT(SDValue Op, bool isSigned) {
- assert(Op.getNode()->getNumValues() == 1 &&
- "Can't promote a vector with multiple results!");
- EVT VT = Op.getValueType();
- EVT NewVT;
- unsigned NewOpc;
- while (1) {
- NewVT = VT.widenIntegerVectorElementType(*DAG.getContext());
- assert(NewVT.isSimple() && "Promoting to a non-simple vector type!");
- if (TLI.isOperationLegalOrCustom(ISD::FP_TO_SINT, NewVT)) {
- NewOpc = ISD::FP_TO_SINT;
- break;
- }
- if (!isSigned && TLI.isOperationLegalOrCustom(ISD::FP_TO_UINT, NewVT)) {
- NewOpc = ISD::FP_TO_UINT;
- break;
- }
- }
- SDLoc loc(Op);
- SDValue promoted = DAG.getNode(NewOpc, SDLoc(Op), NewVT, Op.getOperand(0));
- return DAG.getNode(ISD::TRUNCATE, SDLoc(Op), VT, promoted);
- }
- SDValue VectorLegalizer::ExpandLoad(SDValue Op) {
- SDLoc dl(Op);
- LoadSDNode *LD = cast<LoadSDNode>(Op.getNode());
- SDValue Chain = LD->getChain();
- SDValue BasePTR = LD->getBasePtr();
- EVT SrcVT = LD->getMemoryVT();
- ISD::LoadExtType ExtType = LD->getExtensionType();
- SmallVector<SDValue, 8> Vals;
- SmallVector<SDValue, 8> LoadChains;
- unsigned NumElem = SrcVT.getVectorNumElements();
- EVT SrcEltVT = SrcVT.getScalarType();
- EVT DstEltVT = Op.getNode()->getValueType(0).getScalarType();
- if (SrcVT.getVectorNumElements() > 1 && !SrcEltVT.isByteSized()) {
- // When elements in a vector is not byte-addressable, we cannot directly
- // load each element by advancing pointer, which could only address bytes.
- // Instead, we load all significant words, mask bits off, and concatenate
- // them to form each element. Finally, they are extended to destination
- // scalar type to build the destination vector.
- EVT WideVT = TLI.getPointerTy(DAG.getDataLayout());
- assert(WideVT.isRound() &&
- "Could not handle the sophisticated case when the widest integer is"
- " not power of 2.");
- assert(WideVT.bitsGE(SrcEltVT) &&
- "Type is not legalized?");
- unsigned WideBytes = WideVT.getStoreSize();
- unsigned Offset = 0;
- unsigned RemainingBytes = SrcVT.getStoreSize();
- SmallVector<SDValue, 8> LoadVals;
- while (RemainingBytes > 0) {
- SDValue ScalarLoad;
- unsigned LoadBytes = WideBytes;
- if (RemainingBytes >= LoadBytes) {
- ScalarLoad = DAG.getLoad(WideVT, dl, Chain, BasePTR,
- LD->getPointerInfo().getWithOffset(Offset),
- LD->isVolatile(), LD->isNonTemporal(),
- LD->isInvariant(),
- MinAlign(LD->getAlignment(), Offset),
- LD->getAAInfo());
- } else {
- EVT LoadVT = WideVT;
- while (RemainingBytes < LoadBytes) {
- LoadBytes >>= 1; // Reduce the load size by half.
- LoadVT = EVT::getIntegerVT(*DAG.getContext(), LoadBytes << 3);
- }
- ScalarLoad = DAG.getExtLoad(ISD::EXTLOAD, dl, WideVT, Chain, BasePTR,
- LD->getPointerInfo().getWithOffset(Offset),
- LoadVT, LD->isVolatile(),
- LD->isNonTemporal(), LD->isInvariant(),
- MinAlign(LD->getAlignment(), Offset),
- LD->getAAInfo());
- }
- RemainingBytes -= LoadBytes;
- Offset += LoadBytes;
- BasePTR = DAG.getNode(ISD::ADD, dl, BasePTR.getValueType(), BasePTR,
- DAG.getConstant(LoadBytes, dl,
- BasePTR.getValueType()));
- LoadVals.push_back(ScalarLoad.getValue(0));
- LoadChains.push_back(ScalarLoad.getValue(1));
- }
- // Extract bits, pack and extend/trunc them into destination type.
- unsigned SrcEltBits = SrcEltVT.getSizeInBits();
- SDValue SrcEltBitMask = DAG.getConstant((1U << SrcEltBits) - 1, dl, WideVT);
- unsigned BitOffset = 0;
- unsigned WideIdx = 0;
- unsigned WideBits = WideVT.getSizeInBits();
- for (unsigned Idx = 0; Idx != NumElem; ++Idx) {
- SDValue Lo, Hi, ShAmt;
- if (BitOffset < WideBits) {
- ShAmt = DAG.getConstant(
- BitOffset, dl, TLI.getShiftAmountTy(WideVT, DAG.getDataLayout()));
- Lo = DAG.getNode(ISD::SRL, dl, WideVT, LoadVals[WideIdx], ShAmt);
- Lo = DAG.getNode(ISD::AND, dl, WideVT, Lo, SrcEltBitMask);
- }
- BitOffset += SrcEltBits;
- if (BitOffset >= WideBits) {
- WideIdx++;
- BitOffset -= WideBits;
- if (BitOffset > 0) {
- ShAmt = DAG.getConstant(
- SrcEltBits - BitOffset, dl,
- TLI.getShiftAmountTy(WideVT, DAG.getDataLayout()));
- Hi = DAG.getNode(ISD::SHL, dl, WideVT, LoadVals[WideIdx], ShAmt);
- Hi = DAG.getNode(ISD::AND, dl, WideVT, Hi, SrcEltBitMask);
- }
- }
- if (Hi.getNode())
- Lo = DAG.getNode(ISD::OR, dl, WideVT, Lo, Hi);
- switch (ExtType) {
- default: llvm_unreachable("Unknown extended-load op!");
- case ISD::EXTLOAD:
- Lo = DAG.getAnyExtOrTrunc(Lo, dl, DstEltVT);
- break;
- case ISD::ZEXTLOAD:
- Lo = DAG.getZExtOrTrunc(Lo, dl, DstEltVT);
- break;
- case ISD::SEXTLOAD:
- ShAmt =
- DAG.getConstant(WideBits - SrcEltBits, dl,
- TLI.getShiftAmountTy(WideVT, DAG.getDataLayout()));
- Lo = DAG.getNode(ISD::SHL, dl, WideVT, Lo, ShAmt);
- Lo = DAG.getNode(ISD::SRA, dl, WideVT, Lo, ShAmt);
- Lo = DAG.getSExtOrTrunc(Lo, dl, DstEltVT);
- break;
- }
- Vals.push_back(Lo);
- }
- } else {
- unsigned Stride = SrcVT.getScalarType().getSizeInBits()/8;
- for (unsigned Idx=0; Idx<NumElem; Idx++) {
- SDValue ScalarLoad = DAG.getExtLoad(ExtType, dl,
- Op.getNode()->getValueType(0).getScalarType(),
- Chain, BasePTR, LD->getPointerInfo().getWithOffset(Idx * Stride),
- SrcVT.getScalarType(),
- LD->isVolatile(), LD->isNonTemporal(), LD->isInvariant(),
- MinAlign(LD->getAlignment(), Idx * Stride), LD->getAAInfo());
- BasePTR = DAG.getNode(ISD::ADD, dl, BasePTR.getValueType(), BasePTR,
- DAG.getConstant(Stride, dl, BasePTR.getValueType()));
- Vals.push_back(ScalarLoad.getValue(0));
- LoadChains.push_back(ScalarLoad.getValue(1));
- }
- }
- SDValue NewChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains);
- SDValue Value = DAG.getNode(ISD::BUILD_VECTOR, dl,
- Op.getNode()->getValueType(0), Vals);
- AddLegalizedOperand(Op.getValue(0), Value);
- AddLegalizedOperand(Op.getValue(1), NewChain);
- return (Op.getResNo() ? NewChain : Value);
- }
- SDValue VectorLegalizer::ExpandStore(SDValue Op) {
- SDLoc dl(Op);
- StoreSDNode *ST = cast<StoreSDNode>(Op.getNode());
- SDValue Chain = ST->getChain();
- SDValue BasePTR = ST->getBasePtr();
- SDValue Value = ST->getValue();
- EVT StVT = ST->getMemoryVT();
- unsigned Alignment = ST->getAlignment();
- bool isVolatile = ST->isVolatile();
- bool isNonTemporal = ST->isNonTemporal();
- AAMDNodes AAInfo = ST->getAAInfo();
- unsigned NumElem = StVT.getVectorNumElements();
- // The type of the data we want to save
- EVT RegVT = Value.getValueType();
- EVT RegSclVT = RegVT.getScalarType();
- // The type of data as saved in memory.
- EVT MemSclVT = StVT.getScalarType();
- // Cast floats into integers
- unsigned ScalarSize = MemSclVT.getSizeInBits();
- // Round odd types to the next pow of two.
- if (!isPowerOf2_32(ScalarSize))
- ScalarSize = NextPowerOf2(ScalarSize);
- // Store Stride in bytes
- unsigned Stride = ScalarSize/8;
- // Extract each of the elements from the original vector
- // and save them into memory individually.
- SmallVector<SDValue, 8> Stores;
- for (unsigned Idx = 0; Idx < NumElem; Idx++) {
- SDValue Ex = DAG.getNode(
- ISD::EXTRACT_VECTOR_ELT, dl, RegSclVT, Value,
- DAG.getConstant(Idx, dl, TLI.getVectorIdxTy(DAG.getDataLayout())));
- // This scalar TruncStore may be illegal, but we legalize it later.
- SDValue Store = DAG.getTruncStore(Chain, dl, Ex, BasePTR,
- ST->getPointerInfo().getWithOffset(Idx*Stride), MemSclVT,
- isVolatile, isNonTemporal, MinAlign(Alignment, Idx*Stride),
- AAInfo);
- BasePTR = DAG.getNode(ISD::ADD, dl, BasePTR.getValueType(), BasePTR,
- DAG.getConstant(Stride, dl, BasePTR.getValueType()));
- Stores.push_back(Store);
- }
- SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
- AddLegalizedOperand(Op, TF);
- return TF;
- }
- SDValue VectorLegalizer::Expand(SDValue Op) {
- switch (Op->getOpcode()) {
- case ISD::SIGN_EXTEND_INREG:
- return ExpandSEXTINREG(Op);
- case ISD::ANY_EXTEND_VECTOR_INREG:
- return ExpandANY_EXTEND_VECTOR_INREG(Op);
- case ISD::SIGN_EXTEND_VECTOR_INREG:
- return ExpandSIGN_EXTEND_VECTOR_INREG(Op);
- case ISD::ZERO_EXTEND_VECTOR_INREG:
- return ExpandZERO_EXTEND_VECTOR_INREG(Op);
- case ISD::BSWAP:
- return ExpandBSWAP(Op);
- case ISD::VSELECT:
- return ExpandVSELECT(Op);
- case ISD::SELECT:
- return ExpandSELECT(Op);
- case ISD::UINT_TO_FP:
- return ExpandUINT_TO_FLOAT(Op);
- case ISD::FNEG:
- return ExpandFNEG(Op);
- case ISD::SETCC:
- return UnrollVSETCC(Op);
- default:
- return DAG.UnrollVectorOp(Op.getNode());
- }
- }
- SDValue VectorLegalizer::ExpandSELECT(SDValue Op) {
- // Lower a select instruction where the condition is a scalar and the
- // operands are vectors. Lower this select to VSELECT and implement it
- // using XOR AND OR. The selector bit is broadcasted.
- EVT VT = Op.getValueType();
- SDLoc DL(Op);
- SDValue Mask = Op.getOperand(0);
- SDValue Op1 = Op.getOperand(1);
- SDValue Op2 = Op.getOperand(2);
- assert(VT.isVector() && !Mask.getValueType().isVector()
- && Op1.getValueType() == Op2.getValueType() && "Invalid type");
- unsigned NumElem = VT.getVectorNumElements();
- // If we can't even use the basic vector operations of
- // AND,OR,XOR, we will have to scalarize the op.
- // Notice that the operation may be 'promoted' which means that it is
- // 'bitcasted' to another type which is handled.
- // Also, we need to be able to construct a splat vector using BUILD_VECTOR.
- if (TLI.getOperationAction(ISD::AND, VT) == TargetLowering::Expand ||
- TLI.getOperationAction(ISD::XOR, VT) == TargetLowering::Expand ||
- TLI.getOperationAction(ISD::OR, VT) == TargetLowering::Expand ||
- TLI.getOperationAction(ISD::BUILD_VECTOR, VT) == TargetLowering::Expand)
- return DAG.UnrollVectorOp(Op.getNode());
- // Generate a mask operand.
- EVT MaskTy = VT.changeVectorElementTypeToInteger();
- // What is the size of each element in the vector mask.
- EVT BitTy = MaskTy.getScalarType();
- Mask = DAG.getSelect(DL, BitTy, Mask,
- DAG.getConstant(APInt::getAllOnesValue(BitTy.getSizeInBits()), DL,
- BitTy),
- DAG.getConstant(0, DL, BitTy));
- // Broadcast the mask so that the entire vector is all-one or all zero.
- SmallVector<SDValue, 8> Ops(NumElem, Mask);
- Mask = DAG.getNode(ISD::BUILD_VECTOR, DL, MaskTy, Ops);
- // Bitcast the operands to be the same type as the mask.
- // This is needed when we select between FP types because
- // the mask is a vector of integers.
- Op1 = DAG.getNode(ISD::BITCAST, DL, MaskTy, Op1);
- Op2 = DAG.getNode(ISD::BITCAST, DL, MaskTy, Op2);
- SDValue AllOnes = DAG.getConstant(
- APInt::getAllOnesValue(BitTy.getSizeInBits()), DL, MaskTy);
- SDValue NotMask = DAG.getNode(ISD::XOR, DL, MaskTy, Mask, AllOnes);
- Op1 = DAG.getNode(ISD::AND, DL, MaskTy, Op1, Mask);
- Op2 = DAG.getNode(ISD::AND, DL, MaskTy, Op2, NotMask);
- SDValue Val = DAG.getNode(ISD::OR, DL, MaskTy, Op1, Op2);
- return DAG.getNode(ISD::BITCAST, DL, Op.getValueType(), Val);
- }
- SDValue VectorLegalizer::ExpandSEXTINREG(SDValue Op) {
- EVT VT = Op.getValueType();
- // Make sure that the SRA and SHL instructions are available.
- if (TLI.getOperationAction(ISD::SRA, VT) == TargetLowering::Expand ||
- TLI.getOperationAction(ISD::SHL, VT) == TargetLowering::Expand)
- return DAG.UnrollVectorOp(Op.getNode());
- SDLoc DL(Op);
- EVT OrigTy = cast<VTSDNode>(Op->getOperand(1))->getVT();
- unsigned BW = VT.getScalarType().getSizeInBits();
- unsigned OrigBW = OrigTy.getScalarType().getSizeInBits();
- SDValue ShiftSz = DAG.getConstant(BW - OrigBW, DL, VT);
- Op = Op.getOperand(0);
- Op = DAG.getNode(ISD::SHL, DL, VT, Op, ShiftSz);
- return DAG.getNode(ISD::SRA, DL, VT, Op, ShiftSz);
- }
- // Generically expand a vector anyext in register to a shuffle of the relevant
- // lanes into the appropriate locations, with other lanes left undef.
- SDValue VectorLegalizer::ExpandANY_EXTEND_VECTOR_INREG(SDValue Op) {
- SDLoc DL(Op);
- EVT VT = Op.getValueType();
- int NumElements = VT.getVectorNumElements();
- SDValue Src = Op.getOperand(0);
- EVT SrcVT = Src.getValueType();
- int NumSrcElements = SrcVT.getVectorNumElements();
- // Build a base mask of undef shuffles.
- SmallVector<int, 16> ShuffleMask;
- ShuffleMask.resize(NumSrcElements, -1);
- // Place the extended lanes into the correct locations.
- int ExtLaneScale = NumSrcElements / NumElements;
- int EndianOffset = DAG.getDataLayout().isBigEndian() ? ExtLaneScale - 1 : 0;
- for (int i = 0; i < NumElements; ++i)
- ShuffleMask[i * ExtLaneScale + EndianOffset] = i;
- return DAG.getNode(
- ISD::BITCAST, DL, VT,
- DAG.getVectorShuffle(SrcVT, DL, Src, DAG.getUNDEF(SrcVT), ShuffleMask));
- }
- SDValue VectorLegalizer::ExpandSIGN_EXTEND_VECTOR_INREG(SDValue Op) {
- SDLoc DL(Op);
- EVT VT = Op.getValueType();
- SDValue Src = Op.getOperand(0);
- EVT SrcVT = Src.getValueType();
- // First build an any-extend node which can be legalized above when we
- // recurse through it.
- Op = DAG.getAnyExtendVectorInReg(Src, DL, VT);
- // Now we need sign extend. Do this by shifting the elements. Even if these
- // aren't legal operations, they have a better chance of being legalized
- // without full scalarization than the sign extension does.
- unsigned EltWidth = VT.getVectorElementType().getSizeInBits();
- unsigned SrcEltWidth = SrcVT.getVectorElementType().getSizeInBits();
- SDValue ShiftAmount = DAG.getConstant(EltWidth - SrcEltWidth, DL, VT);
- return DAG.getNode(ISD::SRA, DL, VT,
- DAG.getNode(ISD::SHL, DL, VT, Op, ShiftAmount),
- ShiftAmount);
- }
- // Generically expand a vector zext in register to a shuffle of the relevant
- // lanes into the appropriate locations, a blend of zero into the high bits,
- // and a bitcast to the wider element type.
- SDValue VectorLegalizer::ExpandZERO_EXTEND_VECTOR_INREG(SDValue Op) {
- SDLoc DL(Op);
- EVT VT = Op.getValueType();
- int NumElements = VT.getVectorNumElements();
- SDValue Src = Op.getOperand(0);
- EVT SrcVT = Src.getValueType();
- int NumSrcElements = SrcVT.getVectorNumElements();
- // Build up a zero vector to blend into this one.
- EVT SrcScalarVT = SrcVT.getScalarType();
- SDValue ScalarZero = DAG.getTargetConstant(0, DL, SrcScalarVT);
- SmallVector<SDValue, 4> BuildVectorOperands(NumSrcElements, ScalarZero);
- SDValue Zero = DAG.getNode(ISD::BUILD_VECTOR, DL, SrcVT, BuildVectorOperands);
- // Shuffle the incoming lanes into the correct position, and pull all other
- // lanes from the zero vector.
- SmallVector<int, 16> ShuffleMask;
- ShuffleMask.reserve(NumSrcElements);
- for (int i = 0; i < NumSrcElements; ++i)
- ShuffleMask.push_back(i);
- int ExtLaneScale = NumSrcElements / NumElements;
- int EndianOffset = DAG.getDataLayout().isBigEndian() ? ExtLaneScale - 1 : 0;
- for (int i = 0; i < NumElements; ++i)
- ShuffleMask[i * ExtLaneScale + EndianOffset] = NumSrcElements + i;
- return DAG.getNode(ISD::BITCAST, DL, VT,
- DAG.getVectorShuffle(SrcVT, DL, Zero, Src, ShuffleMask));
- }
- SDValue VectorLegalizer::ExpandBSWAP(SDValue Op) {
- EVT VT = Op.getValueType();
- // Generate a byte wise shuffle mask for the BSWAP.
- SmallVector<int, 16> ShuffleMask;
- int ScalarSizeInBytes = VT.getScalarSizeInBits() / 8;
- for (int I = 0, E = VT.getVectorNumElements(); I != E; ++I)
- for (int J = ScalarSizeInBytes - 1; J >= 0; --J)
- ShuffleMask.push_back((I * ScalarSizeInBytes) + J);
- EVT ByteVT = EVT::getVectorVT(*DAG.getContext(), MVT::i8, ShuffleMask.size());
- // Only emit a shuffle if the mask is legal.
- if (!TLI.isShuffleMaskLegal(ShuffleMask, ByteVT))
- return DAG.UnrollVectorOp(Op.getNode());
- SDLoc DL(Op);
- Op = DAG.getNode(ISD::BITCAST, DL, ByteVT, Op.getOperand(0));
- Op = DAG.getVectorShuffle(ByteVT, DL, Op, DAG.getUNDEF(ByteVT),
- ShuffleMask.data());
- return DAG.getNode(ISD::BITCAST, DL, VT, Op);
- }
- SDValue VectorLegalizer::ExpandVSELECT(SDValue Op) {
- // Implement VSELECT in terms of XOR, AND, OR
- // on platforms which do not support blend natively.
- SDLoc DL(Op);
- SDValue Mask = Op.getOperand(0);
- SDValue Op1 = Op.getOperand(1);
- SDValue Op2 = Op.getOperand(2);
- EVT VT = Mask.getValueType();
- // If we can't even use the basic vector operations of
- // AND,OR,XOR, we will have to scalarize the op.
- // Notice that the operation may be 'promoted' which means that it is
- // 'bitcasted' to another type which is handled.
- // This operation also isn't safe with AND, OR, XOR when the boolean
- // type is 0/1 as we need an all ones vector constant to mask with.
- // FIXME: Sign extend 1 to all ones if thats legal on the target.
- if (TLI.getOperationAction(ISD::AND, VT) == TargetLowering::Expand ||
- TLI.getOperationAction(ISD::XOR, VT) == TargetLowering::Expand ||
- TLI.getOperationAction(ISD::OR, VT) == TargetLowering::Expand ||
- TLI.getBooleanContents(Op1.getValueType()) !=
- TargetLowering::ZeroOrNegativeOneBooleanContent)
- return DAG.UnrollVectorOp(Op.getNode());
- // If the mask and the type are different sizes, unroll the vector op. This
- // can occur when getSetCCResultType returns something that is different in
- // size from the operand types. For example, v4i8 = select v4i32, v4i8, v4i8.
- if (VT.getSizeInBits() != Op1.getValueType().getSizeInBits())
- return DAG.UnrollVectorOp(Op.getNode());
- // Bitcast the operands to be the same type as the mask.
- // This is needed when we select between FP types because
- // the mask is a vector of integers.
- Op1 = DAG.getNode(ISD::BITCAST, DL, VT, Op1);
- Op2 = DAG.getNode(ISD::BITCAST, DL, VT, Op2);
- SDValue AllOnes = DAG.getConstant(
- APInt::getAllOnesValue(VT.getScalarType().getSizeInBits()), DL, VT);
- SDValue NotMask = DAG.getNode(ISD::XOR, DL, VT, Mask, AllOnes);
- Op1 = DAG.getNode(ISD::AND, DL, VT, Op1, Mask);
- Op2 = DAG.getNode(ISD::AND, DL, VT, Op2, NotMask);
- SDValue Val = DAG.getNode(ISD::OR, DL, VT, Op1, Op2);
- return DAG.getNode(ISD::BITCAST, DL, Op.getValueType(), Val);
- }
- SDValue VectorLegalizer::ExpandUINT_TO_FLOAT(SDValue Op) {
- EVT VT = Op.getOperand(0).getValueType();
- SDLoc DL(Op);
- // Make sure that the SINT_TO_FP and SRL instructions are available.
- if (TLI.getOperationAction(ISD::SINT_TO_FP, VT) == TargetLowering::Expand ||
- TLI.getOperationAction(ISD::SRL, VT) == TargetLowering::Expand)
- return DAG.UnrollVectorOp(Op.getNode());
- EVT SVT = VT.getScalarType();
- assert((SVT.getSizeInBits() == 64 || SVT.getSizeInBits() == 32) &&
- "Elements in vector-UINT_TO_FP must be 32 or 64 bits wide");
- unsigned BW = SVT.getSizeInBits();
- SDValue HalfWord = DAG.getConstant(BW/2, DL, VT);
- // Constants to clear the upper part of the word.
- // Notice that we can also use SHL+SHR, but using a constant is slightly
- // faster on x86.
- uint64_t HWMask = (SVT.getSizeInBits()==64)?0x00000000FFFFFFFF:0x0000FFFF;
- SDValue HalfWordMask = DAG.getConstant(HWMask, DL, VT);
- // Two to the power of half-word-size.
- SDValue TWOHW = DAG.getConstantFP((((uint64_t)1)<<(BW/2)), DL, Op.getValueType()); // HLSL Change: do the 64-bit conversion before shift not after
- // Clear upper part of LO, lower HI
- SDValue HI = DAG.getNode(ISD::SRL, DL, VT, Op.getOperand(0), HalfWord);
- SDValue LO = DAG.getNode(ISD::AND, DL, VT, Op.getOperand(0), HalfWordMask);
- // Convert hi and lo to floats
- // Convert the hi part back to the upper values
- SDValue fHI = DAG.getNode(ISD::SINT_TO_FP, DL, Op.getValueType(), HI);
- fHI = DAG.getNode(ISD::FMUL, DL, Op.getValueType(), fHI, TWOHW);
- SDValue fLO = DAG.getNode(ISD::SINT_TO_FP, DL, Op.getValueType(), LO);
- // Add the two halves
- return DAG.getNode(ISD::FADD, DL, Op.getValueType(), fHI, fLO);
- }
- SDValue VectorLegalizer::ExpandFNEG(SDValue Op) {
- if (TLI.isOperationLegalOrCustom(ISD::FSUB, Op.getValueType())) {
- SDLoc DL(Op);
- SDValue Zero = DAG.getConstantFP(-0.0, DL, Op.getValueType());
- return DAG.getNode(ISD::FSUB, DL, Op.getValueType(),
- Zero, Op.getOperand(0));
- }
- return DAG.UnrollVectorOp(Op.getNode());
- }
- SDValue VectorLegalizer::UnrollVSETCC(SDValue Op) {
- EVT VT = Op.getValueType();
- unsigned NumElems = VT.getVectorNumElements();
- EVT EltVT = VT.getVectorElementType();
- SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1), CC = Op.getOperand(2);
- EVT TmpEltVT = LHS.getValueType().getVectorElementType();
- SDLoc dl(Op);
- SmallVector<SDValue, 8> Ops(NumElems);
- for (unsigned i = 0; i < NumElems; ++i) {
- SDValue LHSElem = DAG.getNode(
- ISD::EXTRACT_VECTOR_ELT, dl, TmpEltVT, LHS,
- DAG.getConstant(i, dl, TLI.getVectorIdxTy(DAG.getDataLayout())));
- SDValue RHSElem = DAG.getNode(
- ISD::EXTRACT_VECTOR_ELT, dl, TmpEltVT, RHS,
- DAG.getConstant(i, dl, TLI.getVectorIdxTy(DAG.getDataLayout())));
- Ops[i] = DAG.getNode(ISD::SETCC, dl,
- TLI.getSetCCResultType(DAG.getDataLayout(),
- *DAG.getContext(), TmpEltVT),
- LHSElem, RHSElem, CC);
- Ops[i] = DAG.getSelect(dl, EltVT, Ops[i],
- DAG.getConstant(APInt::getAllOnesValue
- (EltVT.getSizeInBits()), dl, EltVT),
- DAG.getConstant(0, dl, EltVT));
- }
- return DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Ops);
- }
- }
- bool SelectionDAG::LegalizeVectors() {
- return VectorLegalizer(*this).Run();
- }
|