123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391 |
- //===-- SpillPlacement.cpp - Optimal Spill Code Placement -----------------===//
- //
- // The LLVM Compiler Infrastructure
- //
- // This file is distributed under the University of Illinois Open Source
- // License. See LICENSE.TXT for details.
- //
- //===----------------------------------------------------------------------===//
- //
- // This file implements the spill code placement analysis.
- //
- // Each edge bundle corresponds to a node in a Hopfield network. Constraints on
- // basic blocks are weighted by the block frequency and added to become the node
- // bias.
- //
- // Transparent basic blocks have the variable live through, but don't care if it
- // is spilled or in a register. These blocks become connections in the Hopfield
- // network, again weighted by block frequency.
- //
- // The Hopfield network minimizes (possibly locally) its energy function:
- //
- // E = -sum_n V_n * ( B_n + sum_{n, m linked by b} V_m * F_b )
- //
- // The energy function represents the expected spill code execution frequency,
- // or the cost of spilling. This is a Lyapunov function which never increases
- // when a node is updated. It is guaranteed to converge to a local minimum.
- //
- //===----------------------------------------------------------------------===//
- #include "SpillPlacement.h"
- #include "llvm/ADT/BitVector.h"
- #include "llvm/CodeGen/EdgeBundles.h"
- #include "llvm/CodeGen/MachineBasicBlock.h"
- #include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
- #include "llvm/CodeGen/MachineFunction.h"
- #include "llvm/CodeGen/MachineLoopInfo.h"
- #include "llvm/CodeGen/Passes.h"
- #include "llvm/Support/Debug.h"
- #include "llvm/Support/Format.h"
- #include "llvm/Support/ManagedStatic.h"
- using namespace llvm;
- #define DEBUG_TYPE "spillplacement"
- char SpillPlacement::ID = 0;
- INITIALIZE_PASS_BEGIN(SpillPlacement, "spill-code-placement",
- "Spill Code Placement Analysis", true, true)
- INITIALIZE_PASS_DEPENDENCY(EdgeBundles)
- INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
- INITIALIZE_PASS_END(SpillPlacement, "spill-code-placement",
- "Spill Code Placement Analysis", true, true)
- char &llvm::SpillPlacementID = SpillPlacement::ID;
- void SpillPlacement::getAnalysisUsage(AnalysisUsage &AU) const {
- AU.setPreservesAll();
- AU.addRequired<MachineBlockFrequencyInfo>();
- AU.addRequiredTransitive<EdgeBundles>();
- AU.addRequiredTransitive<MachineLoopInfo>();
- MachineFunctionPass::getAnalysisUsage(AU);
- }
- /// Node - Each edge bundle corresponds to a Hopfield node.
- ///
- /// The node contains precomputed frequency data that only depends on the CFG,
- /// but Bias and Links are computed each time placeSpills is called.
- ///
- /// The node Value is positive when the variable should be in a register. The
- /// value can change when linked nodes change, but convergence is very fast
- /// because all weights are positive.
- ///
- struct SpillPlacement::Node {
- /// BiasN - Sum of blocks that prefer a spill.
- BlockFrequency BiasN;
- /// BiasP - Sum of blocks that prefer a register.
- BlockFrequency BiasP;
- /// Value - Output value of this node computed from the Bias and links.
- /// This is always on of the values {-1, 0, 1}. A positive number means the
- /// variable should go in a register through this bundle.
- int Value;
- typedef SmallVector<std::pair<BlockFrequency, unsigned>, 4> LinkVector;
- /// Links - (Weight, BundleNo) for all transparent blocks connecting to other
- /// bundles. The weights are all positive block frequencies.
- LinkVector Links;
- /// SumLinkWeights - Cached sum of the weights of all links + ThresHold.
- BlockFrequency SumLinkWeights;
- /// preferReg - Return true when this node prefers to be in a register.
- bool preferReg() const {
- // Undecided nodes (Value==0) go on the stack.
- return Value > 0;
- }
- /// mustSpill - Return True if this node is so biased that it must spill.
- bool mustSpill() const {
- // We must spill if Bias < -sum(weights) or the MustSpill flag was set.
- // BiasN is saturated when MustSpill is set, make sure this still returns
- // true when the RHS saturates. Note that SumLinkWeights includes Threshold.
- return BiasN >= BiasP + SumLinkWeights;
- }
- /// clear - Reset per-query data, but preserve frequencies that only depend on
- // the CFG.
- void clear(const BlockFrequency &Threshold) {
- BiasN = BiasP = Value = 0;
- SumLinkWeights = Threshold;
- Links.clear();
- }
- /// addLink - Add a link to bundle b with weight w.
- void addLink(unsigned b, BlockFrequency w) {
- // Update cached sum.
- SumLinkWeights += w;
- // There can be multiple links to the same bundle, add them up.
- for (LinkVector::iterator I = Links.begin(), E = Links.end(); I != E; ++I)
- if (I->second == b) {
- I->first += w;
- return;
- }
- // This must be the first link to b.
- Links.push_back(std::make_pair(w, b));
- }
- /// addBias - Bias this node.
- void addBias(BlockFrequency freq, BorderConstraint direction) {
- switch (direction) {
- default:
- break;
- case PrefReg:
- BiasP += freq;
- break;
- case PrefSpill:
- BiasN += freq;
- break;
- case MustSpill:
- BiasN = BlockFrequency::getMaxFrequency();
- break;
- }
- }
- /// update - Recompute Value from Bias and Links. Return true when node
- /// preference changes.
- bool update(const Node nodes[], const BlockFrequency &Threshold) {
- // Compute the weighted sum of inputs.
- BlockFrequency SumN = BiasN;
- BlockFrequency SumP = BiasP;
- for (LinkVector::iterator I = Links.begin(), E = Links.end(); I != E; ++I) {
- if (nodes[I->second].Value == -1)
- SumN += I->first;
- else if (nodes[I->second].Value == 1)
- SumP += I->first;
- }
- // Each weighted sum is going to be less than the total frequency of the
- // bundle. Ideally, we should simply set Value = sign(SumP - SumN), but we
- // will add a dead zone around 0 for two reasons:
- //
- // 1. It avoids arbitrary bias when all links are 0 as is possible during
- // initial iterations.
- // 2. It helps tame rounding errors when the links nominally sum to 0.
- //
- bool Before = preferReg();
- if (SumN >= SumP + Threshold)
- Value = -1;
- else if (SumP >= SumN + Threshold)
- Value = 1;
- else
- Value = 0;
- return Before != preferReg();
- }
- };
- bool SpillPlacement::runOnMachineFunction(MachineFunction &mf) {
- MF = &mf;
- bundles = &getAnalysis<EdgeBundles>();
- loops = &getAnalysis<MachineLoopInfo>();
- assert(!nodes && "Leaking node array");
- nodes = new Node[bundles->getNumBundles()];
- // Compute total ingoing and outgoing block frequencies for all bundles.
- BlockFrequencies.resize(mf.getNumBlockIDs());
- MBFI = &getAnalysis<MachineBlockFrequencyInfo>();
- setThreshold(MBFI->getEntryFreq());
- for (MachineFunction::iterator I = mf.begin(), E = mf.end(); I != E; ++I) {
- unsigned Num = I->getNumber();
- BlockFrequencies[Num] = MBFI->getBlockFreq(I);
- }
- // We never change the function.
- return false;
- }
- void SpillPlacement::releaseMemory() {
- delete[] nodes;
- nodes = nullptr;
- }
- /// activate - mark node n as active if it wasn't already.
- void SpillPlacement::activate(unsigned n) {
- if (ActiveNodes->test(n))
- return;
- ActiveNodes->set(n);
- nodes[n].clear(Threshold);
- // Very large bundles usually come from big switches, indirect branches,
- // landing pads, or loops with many 'continue' statements. It is difficult to
- // allocate registers when so many different blocks are involved.
- //
- // Give a small negative bias to large bundles such that a substantial
- // fraction of the connected blocks need to be interested before we consider
- // expanding the region through the bundle. This helps compile time by
- // limiting the number of blocks visited and the number of links in the
- // Hopfield network.
- if (bundles->getBlocks(n).size() > 100) {
- nodes[n].BiasP = 0;
- nodes[n].BiasN = (MBFI->getEntryFreq() / 16);
- }
- }
- /// \brief Set the threshold for a given entry frequency.
- ///
- /// Set the threshold relative to \c Entry. Since the threshold is used as a
- /// bound on the open interval (-Threshold;Threshold), 1 is the minimum
- /// threshold.
- void SpillPlacement::setThreshold(const BlockFrequency &Entry) {
- // Apparently 2 is a good threshold when Entry==2^14, but we need to scale
- // it. Divide by 2^13, rounding as appropriate.
- uint64_t Freq = Entry.getFrequency();
- uint64_t Scaled = (Freq >> 13) + bool(Freq & (1 << 12));
- Threshold = std::max(UINT64_C(1), Scaled);
- }
- /// addConstraints - Compute node biases and weights from a set of constraints.
- /// Set a bit in NodeMask for each active node.
- void SpillPlacement::addConstraints(ArrayRef<BlockConstraint> LiveBlocks) {
- for (ArrayRef<BlockConstraint>::iterator I = LiveBlocks.begin(),
- E = LiveBlocks.end(); I != E; ++I) {
- BlockFrequency Freq = BlockFrequencies[I->Number];
- // Live-in to block?
- if (I->Entry != DontCare) {
- unsigned ib = bundles->getBundle(I->Number, 0);
- activate(ib);
- nodes[ib].addBias(Freq, I->Entry);
- }
- // Live-out from block?
- if (I->Exit != DontCare) {
- unsigned ob = bundles->getBundle(I->Number, 1);
- activate(ob);
- nodes[ob].addBias(Freq, I->Exit);
- }
- }
- }
- /// addPrefSpill - Same as addConstraints(PrefSpill)
- void SpillPlacement::addPrefSpill(ArrayRef<unsigned> Blocks, bool Strong) {
- for (ArrayRef<unsigned>::iterator I = Blocks.begin(), E = Blocks.end();
- I != E; ++I) {
- BlockFrequency Freq = BlockFrequencies[*I];
- if (Strong)
- Freq += Freq;
- unsigned ib = bundles->getBundle(*I, 0);
- unsigned ob = bundles->getBundle(*I, 1);
- activate(ib);
- activate(ob);
- nodes[ib].addBias(Freq, PrefSpill);
- nodes[ob].addBias(Freq, PrefSpill);
- }
- }
- void SpillPlacement::addLinks(ArrayRef<unsigned> Links) {
- for (ArrayRef<unsigned>::iterator I = Links.begin(), E = Links.end(); I != E;
- ++I) {
- unsigned Number = *I;
- unsigned ib = bundles->getBundle(Number, 0);
- unsigned ob = bundles->getBundle(Number, 1);
- // Ignore self-loops.
- if (ib == ob)
- continue;
- activate(ib);
- activate(ob);
- if (nodes[ib].Links.empty() && !nodes[ib].mustSpill())
- Linked.push_back(ib);
- if (nodes[ob].Links.empty() && !nodes[ob].mustSpill())
- Linked.push_back(ob);
- BlockFrequency Freq = BlockFrequencies[Number];
- nodes[ib].addLink(ob, Freq);
- nodes[ob].addLink(ib, Freq);
- }
- }
- bool SpillPlacement::scanActiveBundles() {
- Linked.clear();
- RecentPositive.clear();
- for (int n = ActiveNodes->find_first(); n>=0; n = ActiveNodes->find_next(n)) {
- nodes[n].update(nodes, Threshold);
- // A node that must spill, or a node without any links is not going to
- // change its value ever again, so exclude it from iterations.
- if (nodes[n].mustSpill())
- continue;
- if (!nodes[n].Links.empty())
- Linked.push_back(n);
- if (nodes[n].preferReg())
- RecentPositive.push_back(n);
- }
- return !RecentPositive.empty();
- }
- /// iterate - Repeatedly update the Hopfield nodes until stability or the
- /// maximum number of iterations is reached.
- /// @param Linked - Numbers of linked nodes that need updating.
- void SpillPlacement::iterate() {
- // First update the recently positive nodes. They have likely received new
- // negative bias that will turn them off.
- while (!RecentPositive.empty())
- nodes[RecentPositive.pop_back_val()].update(nodes, Threshold);
- if (Linked.empty())
- return;
- // Run up to 10 iterations. The edge bundle numbering is closely related to
- // basic block numbering, so there is a strong tendency towards chains of
- // linked nodes with sequential numbers. By scanning the linked nodes
- // backwards and forwards, we make it very likely that a single node can
- // affect the entire network in a single iteration. That means very fast
- // convergence, usually in a single iteration.
- for (unsigned iteration = 0; iteration != 10; ++iteration) {
- // Scan backwards, skipping the last node when iteration is not zero. When
- // iteration is not zero, the last node was just updated.
- bool Changed = false;
- for (SmallVectorImpl<unsigned>::const_reverse_iterator I =
- iteration == 0 ? Linked.rbegin() : std::next(Linked.rbegin()),
- E = Linked.rend(); I != E; ++I) {
- unsigned n = *I;
- if (nodes[n].update(nodes, Threshold)) {
- Changed = true;
- if (nodes[n].preferReg())
- RecentPositive.push_back(n);
- }
- }
- if (!Changed || !RecentPositive.empty())
- return;
- // Scan forwards, skipping the first node which was just updated.
- Changed = false;
- for (SmallVectorImpl<unsigned>::const_iterator I =
- std::next(Linked.begin()), E = Linked.end(); I != E; ++I) {
- unsigned n = *I;
- if (nodes[n].update(nodes, Threshold)) {
- Changed = true;
- if (nodes[n].preferReg())
- RecentPositive.push_back(n);
- }
- }
- if (!Changed || !RecentPositive.empty())
- return;
- }
- }
- void SpillPlacement::prepare(BitVector &RegBundles) {
- Linked.clear();
- RecentPositive.clear();
- // Reuse RegBundles as our ActiveNodes vector.
- ActiveNodes = &RegBundles;
- ActiveNodes->clear();
- ActiveNodes->resize(bundles->getNumBundles());
- }
- bool
- SpillPlacement::finish() {
- assert(ActiveNodes && "Call prepare() first");
- // Write preferences back to ActiveNodes.
- bool Perfect = true;
- for (int n = ActiveNodes->find_first(); n>=0; n = ActiveNodes->find_next(n))
- if (!nodes[n].preferReg()) {
- ActiveNodes->reset(n);
- Perfect = false;
- }
- ActiveNodes = nullptr;
- return Perfect;
- }
|