DxilContainerAssembler.cpp 76 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930
  1. ///////////////////////////////////////////////////////////////////////////////
  2. // //
  3. // DxilContainerAssembler.cpp //
  4. // Copyright (C) Microsoft Corporation. All rights reserved. //
  5. // This file is distributed under the University of Illinois Open Source //
  6. // License. See LICENSE.TXT for details. //
  7. // //
  8. // Provides support for serializing a module into DXIL container structures. //
  9. // //
  10. ///////////////////////////////////////////////////////////////////////////////
  11. #include "llvm/ADT/MapVector.h"
  12. #include "llvm/ADT/SetVector.h"
  13. #include "llvm/IR/Module.h"
  14. #include "llvm/IR/DebugInfo.h"
  15. #include "llvm/IR/Instructions.h"
  16. #include "llvm/Bitcode/ReaderWriter.h"
  17. #include "llvm/Support/MD5.h"
  18. #include "llvm/ADT/STLExtras.h"
  19. #include "llvm/Transforms/Utils/Cloning.h"
  20. #include "dxc/DxilContainer/DxilContainer.h"
  21. #include "dxc/DXIL/DxilModule.h"
  22. #include "dxc/DXIL/DxilShaderModel.h"
  23. #include "dxc/DxilRootSignature/DxilRootSignature.h"
  24. #include "dxc/DxilContainer/DxilContainerAssembler.h"
  25. #include "dxc/DXIL/DxilUtil.h"
  26. #include "dxc/DXIL/DxilFunctionProps.h"
  27. #include "dxc/DXIL/DxilOperations.h"
  28. #include "dxc/DXIL/DxilInstructions.h"
  29. #include "dxc/Support/Global.h"
  30. #include "dxc/Support/Unicode.h"
  31. #include "dxc/Support/WinIncludes.h"
  32. #include "dxc/Support/FileIOHelper.h"
  33. #include "dxc/Support/dxcapi.impl.h"
  34. #include <assert.h> // Needed for DxilPipelineStateValidation.h
  35. #include "dxc/DxilContainer/DxilPipelineStateValidation.h"
  36. #include "dxc/DxilContainer/DxilRuntimeReflection.h"
  37. #include "dxc/DXIL/DxilCounters.h"
  38. #include <algorithm>
  39. #include <functional>
  40. using namespace llvm;
  41. using namespace hlsl;
  42. using namespace hlsl::RDAT;
  43. static_assert((unsigned)PSVShaderKind::Invalid == (unsigned)DXIL::ShaderKind::Invalid,
  44. "otherwise, PSVShaderKind enum out of sync.");
  45. static DxilProgramSigSemantic KindToSystemValue(Semantic::Kind kind, DXIL::TessellatorDomain domain) {
  46. switch (kind) {
  47. case Semantic::Kind::Arbitrary: return DxilProgramSigSemantic::Undefined;
  48. case Semantic::Kind::VertexID: return DxilProgramSigSemantic::VertexID;
  49. case Semantic::Kind::InstanceID: return DxilProgramSigSemantic::InstanceID;
  50. case Semantic::Kind::Position: return DxilProgramSigSemantic::Position;
  51. case Semantic::Kind::Coverage: return DxilProgramSigSemantic::Coverage;
  52. case Semantic::Kind::InnerCoverage: return DxilProgramSigSemantic::InnerCoverage;
  53. case Semantic::Kind::PrimitiveID: return DxilProgramSigSemantic::PrimitiveID;
  54. case Semantic::Kind::SampleIndex: return DxilProgramSigSemantic::SampleIndex;
  55. case Semantic::Kind::IsFrontFace: return DxilProgramSigSemantic::IsFrontFace;
  56. case Semantic::Kind::RenderTargetArrayIndex: return DxilProgramSigSemantic::RenderTargetArrayIndex;
  57. case Semantic::Kind::ViewPortArrayIndex: return DxilProgramSigSemantic::ViewPortArrayIndex;
  58. case Semantic::Kind::ClipDistance: return DxilProgramSigSemantic::ClipDistance;
  59. case Semantic::Kind::CullDistance: return DxilProgramSigSemantic::CullDistance;
  60. case Semantic::Kind::Barycentrics: return DxilProgramSigSemantic::Barycentrics;
  61. case Semantic::Kind::ShadingRate: return DxilProgramSigSemantic::ShadingRate;
  62. case Semantic::Kind::CullPrimitive: return DxilProgramSigSemantic::CullPrimitive;
  63. case Semantic::Kind::TessFactor: {
  64. switch (domain) {
  65. case DXIL::TessellatorDomain::IsoLine:
  66. // Will bu updated to DetailTessFactor in next row.
  67. return DxilProgramSigSemantic::FinalLineDensityTessfactor;
  68. case DXIL::TessellatorDomain::Tri:
  69. return DxilProgramSigSemantic::FinalTriEdgeTessfactor;
  70. case DXIL::TessellatorDomain::Quad:
  71. return DxilProgramSigSemantic::FinalQuadEdgeTessfactor;
  72. default:
  73. // No other valid TesselatorDomain options.
  74. return DxilProgramSigSemantic::Undefined;
  75. }
  76. }
  77. case Semantic::Kind::InsideTessFactor: {
  78. switch (domain) {
  79. case DXIL::TessellatorDomain::IsoLine:
  80. DXASSERT(0, "invalid semantic");
  81. return DxilProgramSigSemantic::Undefined;
  82. case DXIL::TessellatorDomain::Tri:
  83. return DxilProgramSigSemantic::FinalTriInsideTessfactor;
  84. case DXIL::TessellatorDomain::Quad:
  85. return DxilProgramSigSemantic::FinalQuadInsideTessfactor;
  86. default:
  87. // No other valid DxilProgramSigSemantic options.
  88. return DxilProgramSigSemantic::Undefined;
  89. }
  90. }
  91. case Semantic::Kind::Invalid:
  92. return DxilProgramSigSemantic::Undefined;
  93. case Semantic::Kind::Target: return DxilProgramSigSemantic::Target;
  94. case Semantic::Kind::Depth: return DxilProgramSigSemantic::Depth;
  95. case Semantic::Kind::DepthLessEqual: return DxilProgramSigSemantic::DepthLE;
  96. case Semantic::Kind::DepthGreaterEqual: return DxilProgramSigSemantic::DepthGE;
  97. case Semantic::Kind::StencilRef:
  98. __fallthrough;
  99. default:
  100. DXASSERT(kind == Semantic::Kind::StencilRef, "else Invalid or switch is missing a case");
  101. return DxilProgramSigSemantic::StencilRef;
  102. }
  103. // TODO: Final_* values need mappings
  104. }
  105. static DxilProgramSigCompType CompTypeToSigCompType(hlsl::CompType value, bool i1ToUnknownCompat) {
  106. switch (value.GetKind()) {
  107. case CompType::Kind::I32: return DxilProgramSigCompType::SInt32;
  108. case CompType::Kind::I1:
  109. // Validator 1.4 and below returned Unknown for i1
  110. if (i1ToUnknownCompat) return DxilProgramSigCompType::Unknown;
  111. else return DxilProgramSigCompType::UInt32;
  112. case CompType::Kind::U32: return DxilProgramSigCompType::UInt32;
  113. case CompType::Kind::F32: return DxilProgramSigCompType::Float32;
  114. case CompType::Kind::I16: return DxilProgramSigCompType::SInt16;
  115. case CompType::Kind::I64: return DxilProgramSigCompType::SInt64;
  116. case CompType::Kind::U16: return DxilProgramSigCompType::UInt16;
  117. case CompType::Kind::U64: return DxilProgramSigCompType::UInt64;
  118. case CompType::Kind::F16: return DxilProgramSigCompType::Float16;
  119. case CompType::Kind::F64: return DxilProgramSigCompType::Float64;
  120. case CompType::Kind::Invalid: __fallthrough;
  121. default:
  122. return DxilProgramSigCompType::Unknown;
  123. }
  124. }
  125. static DxilProgramSigMinPrecision CompTypeToSigMinPrecision(hlsl::CompType value) {
  126. switch (value.GetKind()) {
  127. case CompType::Kind::I32: return DxilProgramSigMinPrecision::Default;
  128. case CompType::Kind::U32: return DxilProgramSigMinPrecision::Default;
  129. case CompType::Kind::F32: return DxilProgramSigMinPrecision::Default;
  130. case CompType::Kind::I1: return DxilProgramSigMinPrecision::Default;
  131. case CompType::Kind::U64: __fallthrough;
  132. case CompType::Kind::I64: __fallthrough;
  133. case CompType::Kind::F64: return DxilProgramSigMinPrecision::Default;
  134. case CompType::Kind::I16: return DxilProgramSigMinPrecision::SInt16;
  135. case CompType::Kind::U16: return DxilProgramSigMinPrecision::UInt16;
  136. case CompType::Kind::F16: return DxilProgramSigMinPrecision::Float16; // Float2_8 is not supported in DXIL.
  137. case CompType::Kind::Invalid: __fallthrough;
  138. default:
  139. return DxilProgramSigMinPrecision::Default;
  140. }
  141. }
  142. template <typename T>
  143. struct sort_second {
  144. bool operator()(const T &a, const T &b) {
  145. return std::less<decltype(a.second)>()(a.second, b.second);
  146. }
  147. };
  148. struct sort_sig {
  149. bool operator()(const DxilProgramSignatureElement &a,
  150. const DxilProgramSignatureElement &b) {
  151. return (a.Stream < b.Stream) ||
  152. ((a.Stream == b.Stream) && (a.Register < b.Register)) ||
  153. ((a.Stream == b.Stream) && (a.Register == b.Register) &&
  154. (a.SemanticName < b.SemanticName));
  155. }
  156. };
  157. static uint8_t NegMask(uint8_t V) {
  158. V ^= 0xF;
  159. return V & 0xF;
  160. }
  161. class DxilProgramSignatureWriter : public DxilPartWriter {
  162. private:
  163. const DxilSignature &m_signature;
  164. DXIL::TessellatorDomain m_domain;
  165. bool m_isInput;
  166. bool m_useMinPrecision;
  167. bool m_bCompat_1_4;
  168. size_t m_fixedSize;
  169. typedef std::pair<const char *, uint32_t> NameOffsetPair;
  170. typedef llvm::SmallMapVector<const char *, uint32_t, 8> NameOffsetMap;
  171. uint32_t m_lastOffset;
  172. NameOffsetMap m_semanticNameOffsets;
  173. unsigned m_paramCount;
  174. const char *GetSemanticName(const hlsl::DxilSignatureElement *pElement) {
  175. DXASSERT_NOMSG(pElement != nullptr);
  176. DXASSERT(pElement->GetName() != nullptr, "else sig is malformed");
  177. return pElement->GetName();
  178. }
  179. uint32_t GetSemanticOffset(const hlsl::DxilSignatureElement *pElement) {
  180. const char *pName = GetSemanticName(pElement);
  181. NameOffsetMap::iterator nameOffset = m_semanticNameOffsets.find(pName);
  182. uint32_t result;
  183. if (nameOffset == m_semanticNameOffsets.end()) {
  184. result = m_lastOffset;
  185. m_semanticNameOffsets.insert(NameOffsetPair(pName, result));
  186. m_lastOffset += strlen(pName) + 1;
  187. }
  188. else {
  189. result = nameOffset->second;
  190. }
  191. return result;
  192. }
  193. void write(std::vector<DxilProgramSignatureElement> &orderedSig,
  194. const hlsl::DxilSignatureElement *pElement) {
  195. const std::vector<unsigned> &indexVec = pElement->GetSemanticIndexVec();
  196. unsigned eltCount = pElement->GetSemanticIndexVec().size();
  197. unsigned eltRows = 1;
  198. if (eltCount)
  199. eltRows = pElement->GetRows() / eltCount;
  200. DXASSERT_NOMSG(eltRows == 1);
  201. DxilProgramSignatureElement sig;
  202. memset(&sig, 0, sizeof(DxilProgramSignatureElement));
  203. sig.Stream = pElement->GetOutputStream();
  204. sig.SemanticName = GetSemanticOffset(pElement);
  205. sig.SystemValue = KindToSystemValue(pElement->GetKind(), m_domain);
  206. sig.CompType = CompTypeToSigCompType(pElement->GetCompType(), m_bCompat_1_4);
  207. sig.Register = pElement->GetStartRow();
  208. sig.Mask = pElement->GetColsAsMask();
  209. if (m_bCompat_1_4) {
  210. // Match what validator 1.4 and below expects
  211. // Only mark exist channel write for output.
  212. // All channel not used for input.
  213. if (!m_isInput)
  214. sig.NeverWrites_Mask = ~sig.Mask;
  215. else
  216. sig.AlwaysReads_Mask = 0;
  217. } else {
  218. unsigned UsageMask = pElement->GetUsageMask();
  219. if (pElement->IsAllocated())
  220. UsageMask <<= pElement->GetStartCol();
  221. if (!m_isInput)
  222. sig.NeverWrites_Mask = NegMask(UsageMask);
  223. else
  224. sig.AlwaysReads_Mask = UsageMask;
  225. }
  226. sig.MinPrecision = m_useMinPrecision
  227. ? CompTypeToSigMinPrecision(pElement->GetCompType())
  228. : DxilProgramSigMinPrecision::Default;
  229. for (unsigned i = 0; i < eltCount; ++i) {
  230. sig.SemanticIndex = indexVec[i];
  231. orderedSig.emplace_back(sig);
  232. if (pElement->IsAllocated())
  233. sig.Register += eltRows;
  234. if (sig.SystemValue == DxilProgramSigSemantic::FinalLineDensityTessfactor)
  235. sig.SystemValue = DxilProgramSigSemantic::FinalLineDetailTessfactor;
  236. }
  237. }
  238. void calcSizes() {
  239. // Calculate size for signature elements.
  240. const std::vector<std::unique_ptr<hlsl::DxilSignatureElement>> &elements = m_signature.GetElements();
  241. uint32_t result = sizeof(DxilProgramSignature);
  242. m_paramCount = 0;
  243. for (size_t i = 0; i < elements.size(); ++i) {
  244. DXIL::SemanticInterpretationKind I = elements[i]->GetInterpretation();
  245. if (I == DXIL::SemanticInterpretationKind::NA || I == DXIL::SemanticInterpretationKind::NotInSig)
  246. continue;
  247. unsigned semanticCount = elements[i]->GetSemanticIndexVec().size();
  248. result += semanticCount * sizeof(DxilProgramSignatureElement);
  249. m_paramCount += semanticCount;
  250. }
  251. m_fixedSize = result;
  252. m_lastOffset = m_fixedSize;
  253. // Calculate size for semantic strings.
  254. for (size_t i = 0; i < elements.size(); ++i) {
  255. GetSemanticOffset(elements[i].get());
  256. }
  257. }
  258. public:
  259. DxilProgramSignatureWriter(const DxilSignature &signature,
  260. DXIL::TessellatorDomain domain,
  261. bool isInput, bool UseMinPrecision,
  262. bool bCompat_1_4)
  263. : m_signature(signature), m_domain(domain),
  264. m_isInput(isInput), m_useMinPrecision(UseMinPrecision),
  265. m_bCompat_1_4(bCompat_1_4) {
  266. calcSizes();
  267. }
  268. uint32_t size() const override {
  269. return m_lastOffset;
  270. }
  271. void write(AbstractMemoryStream *pStream) override {
  272. UINT64 startPos = pStream->GetPosition();
  273. const std::vector<std::unique_ptr<hlsl::DxilSignatureElement>> &elements = m_signature.GetElements();
  274. DxilProgramSignature programSig;
  275. programSig.ParamCount = m_paramCount;
  276. programSig.ParamOffset = sizeof(DxilProgramSignature);
  277. IFT(WriteStreamValue(pStream, programSig));
  278. // Write structures in register order.
  279. std::vector<DxilProgramSignatureElement> orderedSig;
  280. for (size_t i = 0; i < elements.size(); ++i) {
  281. DXIL::SemanticInterpretationKind I = elements[i]->GetInterpretation();
  282. if (I == DXIL::SemanticInterpretationKind::NA || I == DXIL::SemanticInterpretationKind::NotInSig)
  283. continue;
  284. write(orderedSig, elements[i].get());
  285. }
  286. std::sort(orderedSig.begin(), orderedSig.end(), sort_sig());
  287. for (size_t i = 0; i < orderedSig.size(); ++i) {
  288. DxilProgramSignatureElement &sigElt = orderedSig[i];
  289. IFT(WriteStreamValue(pStream, sigElt));
  290. }
  291. // Write strings in the offset order.
  292. std::vector<NameOffsetPair> ordered;
  293. ordered.assign(m_semanticNameOffsets.begin(), m_semanticNameOffsets.end());
  294. std::sort(ordered.begin(), ordered.end(), sort_second<NameOffsetPair>());
  295. for (size_t i = 0; i < ordered.size(); ++i) {
  296. const char *pName = ordered[i].first;
  297. ULONG cbWritten;
  298. UINT64 offsetPos = pStream->GetPosition();
  299. DXASSERT_LOCALVAR(offsetPos, offsetPos - startPos == ordered[i].second, "else str offset is incorrect");
  300. IFT(pStream->Write(pName, strlen(pName) + 1, &cbWritten));
  301. }
  302. // Verify we wrote the bytes we though we would.
  303. UINT64 endPos = pStream->GetPosition();
  304. DXASSERT_LOCALVAR(endPos - startPos, endPos - startPos == size(), "else size is incorrect");
  305. }
  306. };
  307. DxilPartWriter *hlsl::NewProgramSignatureWriter(const DxilModule &M, DXIL::SignatureKind Kind) {
  308. DXIL::TessellatorDomain domain = DXIL::TessellatorDomain::Undefined;
  309. if (M.GetShaderModel()->IsHS() || M.GetShaderModel()->IsDS())
  310. domain = M.GetTessellatorDomain();
  311. unsigned ValMajor, ValMinor;
  312. M.GetValidatorVersion(ValMajor, ValMinor);
  313. bool bCompat_1_4 = DXIL::CompareVersions(ValMajor, ValMinor, 1, 5) < 0;
  314. switch (Kind) {
  315. case DXIL::SignatureKind::Input:
  316. return new DxilProgramSignatureWriter(
  317. M.GetInputSignature(), domain, true,
  318. M.GetUseMinPrecision(),
  319. bCompat_1_4);
  320. case DXIL::SignatureKind::Output:
  321. return new DxilProgramSignatureWriter(
  322. M.GetOutputSignature(), domain, false,
  323. M.GetUseMinPrecision(),
  324. bCompat_1_4);
  325. case DXIL::SignatureKind::PatchConstOrPrim:
  326. return new DxilProgramSignatureWriter(
  327. M.GetPatchConstOrPrimSignature(), domain,
  328. /*IsInput*/ M.GetShaderModel()->IsDS(),
  329. /*UseMinPrecision*/M.GetUseMinPrecision(),
  330. bCompat_1_4);
  331. case DXIL::SignatureKind::Invalid:
  332. return nullptr;
  333. }
  334. return nullptr;
  335. }
  336. class DxilProgramRootSignatureWriter : public DxilPartWriter {
  337. private:
  338. const RootSignatureHandle &m_Sig;
  339. public:
  340. DxilProgramRootSignatureWriter(const RootSignatureHandle &S) : m_Sig(S) {}
  341. uint32_t size() const {
  342. return m_Sig.GetSerializedSize();
  343. }
  344. void write(AbstractMemoryStream *pStream) {
  345. ULONG cbWritten;
  346. IFT(pStream->Write(m_Sig.GetSerializedBytes(), size(), &cbWritten));
  347. }
  348. };
  349. DxilPartWriter *hlsl::NewRootSignatureWriter(const RootSignatureHandle &S) {
  350. return new DxilProgramRootSignatureWriter(S);
  351. }
  352. class DxilFeatureInfoWriter : public DxilPartWriter {
  353. private:
  354. // Only save the shader properties after create class for it.
  355. DxilShaderFeatureInfo featureInfo;
  356. public:
  357. DxilFeatureInfoWriter(const DxilModule &M) {
  358. featureInfo.FeatureFlags = M.m_ShaderFlags.GetFeatureInfo();
  359. }
  360. uint32_t size() const override {
  361. return sizeof(DxilShaderFeatureInfo);
  362. }
  363. void write(AbstractMemoryStream *pStream) override {
  364. IFT(WriteStreamValue(pStream, featureInfo.FeatureFlags));
  365. }
  366. };
  367. DxilPartWriter *hlsl::NewFeatureInfoWriter(const DxilModule &M) {
  368. return new DxilFeatureInfoWriter(M);
  369. }
  370. class DxilPSVWriter : public DxilPartWriter {
  371. private:
  372. const DxilModule &m_Module;
  373. unsigned m_ValMajor, m_ValMinor;
  374. PSVInitInfo m_PSVInitInfo;
  375. DxilPipelineStateValidation m_PSV;
  376. uint32_t m_PSVBufferSize;
  377. SmallVector<char, 512> m_PSVBuffer;
  378. SmallVector<char, 256> m_StringBuffer;
  379. SmallVector<uint32_t, 8> m_SemanticIndexBuffer;
  380. std::vector<PSVSignatureElement0> m_SigInputElements;
  381. std::vector<PSVSignatureElement0> m_SigOutputElements;
  382. std::vector<PSVSignatureElement0> m_SigPatchConstOrPrimElements;
  383. void SetPSVSigElement(PSVSignatureElement0 &E, const DxilSignatureElement &SE) {
  384. memset(&E, 0, sizeof(PSVSignatureElement0));
  385. if (SE.GetKind() == DXIL::SemanticKind::Arbitrary && strlen(SE.GetName()) > 0) {
  386. E.SemanticName = (uint32_t)m_StringBuffer.size();
  387. StringRef Name(SE.GetName());
  388. m_StringBuffer.append(Name.size()+1, '\0');
  389. memcpy(m_StringBuffer.data() + E.SemanticName, Name.data(), Name.size());
  390. } else {
  391. // m_StringBuffer always starts with '\0' so offset 0 is empty string:
  392. E.SemanticName = 0;
  393. }
  394. // Search index buffer for matching semantic index sequence
  395. DXASSERT_NOMSG(SE.GetRows() == SE.GetSemanticIndexVec().size());
  396. auto &SemIdx = SE.GetSemanticIndexVec();
  397. bool match = false;
  398. for (uint32_t offset = 0; offset + SE.GetRows() - 1 < m_SemanticIndexBuffer.size(); offset++) {
  399. match = true;
  400. for (uint32_t row = 0; row < SE.GetRows(); row++) {
  401. if ((uint32_t)SemIdx[row] != m_SemanticIndexBuffer[offset + row]) {
  402. match = false;
  403. break;
  404. }
  405. }
  406. if (match) {
  407. E.SemanticIndexes = offset;
  408. break;
  409. }
  410. }
  411. if (!match) {
  412. E.SemanticIndexes = m_SemanticIndexBuffer.size();
  413. for (uint32_t row = 0; row < SemIdx.size(); row++) {
  414. m_SemanticIndexBuffer.push_back((uint32_t)SemIdx[row]);
  415. }
  416. }
  417. DXASSERT_NOMSG(SE.GetRows() <= 32);
  418. E.Rows = (uint8_t)SE.GetRows();
  419. DXASSERT_NOMSG(SE.GetCols() <= 4);
  420. E.ColsAndStart = (uint8_t)SE.GetCols() & 0xF;
  421. if (SE.IsAllocated()) {
  422. DXASSERT_NOMSG(SE.GetStartCol() < 4);
  423. DXASSERT_NOMSG(SE.GetStartRow() < 32);
  424. E.ColsAndStart |= 0x40 | (SE.GetStartCol() << 4);
  425. E.StartRow = (uint8_t)SE.GetStartRow();
  426. }
  427. E.SemanticKind = (uint8_t)SE.GetKind();
  428. E.ComponentType = (uint8_t)CompTypeToSigCompType(SE.GetCompType(),
  429. /*i1ToUnknownCompat*/DXIL::CompareVersions(m_ValMajor, m_ValMinor, 1, 5) < 0);
  430. E.InterpolationMode = (uint8_t)SE.GetInterpolationMode()->GetKind();
  431. DXASSERT_NOMSG(SE.GetOutputStream() < 4);
  432. E.DynamicMaskAndStream = (uint8_t)((SE.GetOutputStream() & 0x3) << 4);
  433. E.DynamicMaskAndStream |= (SE.GetDynIdxCompMask()) & 0xF;
  434. }
  435. const uint32_t *CopyViewIDState(const uint32_t *pSrc, uint32_t InputScalars, uint32_t OutputScalars, PSVComponentMask ViewIDMask, PSVDependencyTable IOTable) {
  436. unsigned MaskDwords = PSVComputeMaskDwordsFromVectors(PSVALIGN4(OutputScalars) / 4);
  437. if (ViewIDMask.IsValid()) {
  438. DXASSERT_NOMSG(!IOTable.Table || ViewIDMask.NumVectors == IOTable.OutputVectors);
  439. memcpy(ViewIDMask.Mask, pSrc, 4 * MaskDwords);
  440. pSrc += MaskDwords;
  441. }
  442. if (IOTable.IsValid() && IOTable.InputVectors && IOTable.OutputVectors) {
  443. DXASSERT_NOMSG((InputScalars <= IOTable.InputVectors * 4) && (IOTable.InputVectors * 4 - InputScalars < 4));
  444. DXASSERT_NOMSG((OutputScalars <= IOTable.OutputVectors * 4) && (IOTable.OutputVectors * 4 - OutputScalars < 4));
  445. memcpy(IOTable.Table, pSrc, 4 * MaskDwords * InputScalars);
  446. pSrc += MaskDwords * InputScalars;
  447. }
  448. return pSrc;
  449. }
  450. public:
  451. DxilPSVWriter(const DxilModule &mod, uint32_t PSVVersion = UINT_MAX)
  452. : m_Module(mod),
  453. m_PSVInitInfo(PSVVersion)
  454. {
  455. m_Module.GetValidatorVersion(m_ValMajor, m_ValMinor);
  456. // Constraint PSVVersion based on validator version
  457. if (PSVVersion > 0 && DXIL::CompareVersions(m_ValMajor, m_ValMinor, 1, 1) < 0)
  458. m_PSVInitInfo.PSVVersion = 0;
  459. else if (PSVVersion > 1 && DXIL::CompareVersions(m_ValMajor, m_ValMinor, 1, 6) < 0)
  460. m_PSVInitInfo.PSVVersion = 1;
  461. else if (PSVVersion > MAX_PSV_VERSION)
  462. m_PSVInitInfo.PSVVersion = MAX_PSV_VERSION;
  463. const ShaderModel *SM = m_Module.GetShaderModel();
  464. UINT uCBuffers = m_Module.GetCBuffers().size();
  465. UINT uSamplers = m_Module.GetSamplers().size();
  466. UINT uSRVs = m_Module.GetSRVs().size();
  467. UINT uUAVs = m_Module.GetUAVs().size();
  468. m_PSVInitInfo.ResourceCount = uCBuffers + uSamplers + uSRVs + uUAVs;
  469. // TODO: for >= 6.2 version, create more efficient structure
  470. if (m_PSVInitInfo.PSVVersion > 0) {
  471. m_PSVInitInfo.ShaderStage = (PSVShaderKind)SM->GetKind();
  472. // Copy Dxil Signatures
  473. m_StringBuffer.push_back('\0'); // For empty semantic name (system value)
  474. m_PSVInitInfo.SigInputElements = m_Module.GetInputSignature().GetElements().size();
  475. m_SigInputElements.resize(m_PSVInitInfo.SigInputElements);
  476. m_PSVInitInfo.SigOutputElements = m_Module.GetOutputSignature().GetElements().size();
  477. m_SigOutputElements.resize(m_PSVInitInfo.SigOutputElements);
  478. m_PSVInitInfo.SigPatchConstOrPrimElements = m_Module.GetPatchConstOrPrimSignature().GetElements().size();
  479. m_SigPatchConstOrPrimElements.resize(m_PSVInitInfo.SigPatchConstOrPrimElements);
  480. uint32_t i = 0;
  481. for (auto &SE : m_Module.GetInputSignature().GetElements()) {
  482. SetPSVSigElement(m_SigInputElements[i++], *(SE.get()));
  483. }
  484. i = 0;
  485. for (auto &SE : m_Module.GetOutputSignature().GetElements()) {
  486. SetPSVSigElement(m_SigOutputElements[i++], *(SE.get()));
  487. }
  488. i = 0;
  489. for (auto &SE : m_Module.GetPatchConstOrPrimSignature().GetElements()) {
  490. SetPSVSigElement(m_SigPatchConstOrPrimElements[i++], *(SE.get()));
  491. }
  492. // Set String and SemanticInput Tables
  493. m_PSVInitInfo.StringTable.Table = m_StringBuffer.data();
  494. m_PSVInitInfo.StringTable.Size = m_StringBuffer.size();
  495. m_PSVInitInfo.SemanticIndexTable.Table = m_SemanticIndexBuffer.data();
  496. m_PSVInitInfo.SemanticIndexTable.Entries = m_SemanticIndexBuffer.size();
  497. // Set up ViewID and signature dependency info
  498. m_PSVInitInfo.UsesViewID = m_Module.m_ShaderFlags.GetViewID() ? true : false;
  499. m_PSVInitInfo.SigInputVectors = m_Module.GetInputSignature().NumVectorsUsed(0);
  500. for (unsigned streamIndex = 0; streamIndex < 4; streamIndex++) {
  501. m_PSVInitInfo.SigOutputVectors[streamIndex] = m_Module.GetOutputSignature().NumVectorsUsed(streamIndex);
  502. }
  503. m_PSVInitInfo.SigPatchConstOrPrimVectors = 0;
  504. if (SM->IsHS() || SM->IsDS() || SM->IsMS()) {
  505. m_PSVInitInfo.SigPatchConstOrPrimVectors = m_Module.GetPatchConstOrPrimSignature().NumVectorsUsed(0);
  506. }
  507. }
  508. if (!m_PSV.InitNew(m_PSVInitInfo, nullptr, &m_PSVBufferSize)) {
  509. DXASSERT(false, "PSV InitNew failed computing size!");
  510. }
  511. }
  512. uint32_t size() const override {
  513. return m_PSVBufferSize;
  514. }
  515. void write(AbstractMemoryStream *pStream) override {
  516. m_PSVBuffer.resize(m_PSVBufferSize);
  517. if (!m_PSV.InitNew(m_PSVInitInfo, m_PSVBuffer.data(), &m_PSVBufferSize)) {
  518. DXASSERT(false, "PSV InitNew failed!");
  519. }
  520. DXASSERT_NOMSG(m_PSVBuffer.size() == m_PSVBufferSize);
  521. // Set DxilRuntimeInfo
  522. PSVRuntimeInfo0* pInfo = m_PSV.GetPSVRuntimeInfo0();
  523. PSVRuntimeInfo1* pInfo1 = m_PSV.GetPSVRuntimeInfo1();
  524. PSVRuntimeInfo2* pInfo2 = m_PSV.GetPSVRuntimeInfo2();
  525. const ShaderModel* SM = m_Module.GetShaderModel();
  526. pInfo->MinimumExpectedWaveLaneCount = 0;
  527. pInfo->MaximumExpectedWaveLaneCount = (UINT)-1;
  528. switch (SM->GetKind()) {
  529. case ShaderModel::Kind::Vertex: {
  530. pInfo->VS.OutputPositionPresent = 0;
  531. const DxilSignature &S = m_Module.GetOutputSignature();
  532. for (auto &&E : S.GetElements()) {
  533. if (E->GetKind() == Semantic::Kind::Position) {
  534. // Ideally, we might check never writes mask here,
  535. // but this is not yet part of the signature element in Dxil
  536. pInfo->VS.OutputPositionPresent = 1;
  537. break;
  538. }
  539. }
  540. break;
  541. }
  542. case ShaderModel::Kind::Hull: {
  543. pInfo->HS.InputControlPointCount = (UINT)m_Module.GetInputControlPointCount();
  544. pInfo->HS.OutputControlPointCount = (UINT)m_Module.GetOutputControlPointCount();
  545. pInfo->HS.TessellatorDomain = (UINT)m_Module.GetTessellatorDomain();
  546. pInfo->HS.TessellatorOutputPrimitive = (UINT)m_Module.GetTessellatorOutputPrimitive();
  547. break;
  548. }
  549. case ShaderModel::Kind::Domain: {
  550. pInfo->DS.InputControlPointCount = (UINT)m_Module.GetInputControlPointCount();
  551. pInfo->DS.OutputPositionPresent = 0;
  552. const DxilSignature &S = m_Module.GetOutputSignature();
  553. for (auto &&E : S.GetElements()) {
  554. if (E->GetKind() == Semantic::Kind::Position) {
  555. // Ideally, we might check never writes mask here,
  556. // but this is not yet part of the signature element in Dxil
  557. pInfo->DS.OutputPositionPresent = 1;
  558. break;
  559. }
  560. }
  561. pInfo->DS.TessellatorDomain = (UINT)m_Module.GetTessellatorDomain();
  562. break;
  563. }
  564. case ShaderModel::Kind::Geometry: {
  565. pInfo->GS.InputPrimitive = (UINT)m_Module.GetInputPrimitive();
  566. // NOTE: For OutputTopology, pick one from a used stream, or if none
  567. // are used, use stream 0, and set OutputStreamMask to 1.
  568. pInfo->GS.OutputTopology = (UINT)m_Module.GetStreamPrimitiveTopology();
  569. pInfo->GS.OutputStreamMask = m_Module.GetActiveStreamMask();
  570. if (pInfo->GS.OutputStreamMask == 0) {
  571. pInfo->GS.OutputStreamMask = 1; // This is what runtime expects.
  572. }
  573. pInfo->GS.OutputPositionPresent = 0;
  574. const DxilSignature &S = m_Module.GetOutputSignature();
  575. for (auto &&E : S.GetElements()) {
  576. if (E->GetKind() == Semantic::Kind::Position) {
  577. // Ideally, we might check never writes mask here,
  578. // but this is not yet part of the signature element in Dxil
  579. pInfo->GS.OutputPositionPresent = 1;
  580. break;
  581. }
  582. }
  583. break;
  584. }
  585. case ShaderModel::Kind::Pixel: {
  586. pInfo->PS.DepthOutput = 0;
  587. pInfo->PS.SampleFrequency = 0;
  588. {
  589. const DxilSignature &S = m_Module.GetInputSignature();
  590. for (auto &&E : S.GetElements()) {
  591. if (E->GetInterpolationMode()->IsAnySample() ||
  592. E->GetKind() == Semantic::Kind::SampleIndex) {
  593. pInfo->PS.SampleFrequency = 1;
  594. }
  595. }
  596. }
  597. {
  598. const DxilSignature &S = m_Module.GetOutputSignature();
  599. for (auto &&E : S.GetElements()) {
  600. if (E->IsAnyDepth()) {
  601. pInfo->PS.DepthOutput = 1;
  602. break;
  603. }
  604. }
  605. }
  606. break;
  607. }
  608. case ShaderModel::Kind::Compute: {
  609. UINT waveSize = (UINT)m_Module.GetWaveSize();
  610. if (waveSize != 0) {
  611. pInfo->MinimumExpectedWaveLaneCount = waveSize;
  612. pInfo->MaximumExpectedWaveLaneCount = waveSize;
  613. }
  614. break;
  615. }
  616. case ShaderModel::Kind::Library:
  617. case ShaderModel::Kind::Invalid:
  618. // Library and Invalid not relevant to PSVRuntimeInfo0
  619. break;
  620. case ShaderModel::Kind::Mesh: {
  621. pInfo->MS.MaxOutputVertices = (UINT)m_Module.GetMaxOutputVertices();
  622. pInfo->MS.MaxOutputPrimitives = (UINT)m_Module.GetMaxOutputPrimitives();
  623. pInfo1->MS1.MeshOutputTopology = (UINT)m_Module.GetMeshOutputTopology();
  624. Module *mod = m_Module.GetModule();
  625. const DataLayout &DL = mod->getDataLayout();
  626. unsigned totalByteSize = 0;
  627. for (GlobalVariable &GV : mod->globals()) {
  628. PointerType *gvPtrType = cast<PointerType>(GV.getType());
  629. if (gvPtrType->getAddressSpace() == hlsl::DXIL::kTGSMAddrSpace) {
  630. Type *gvType = gvPtrType->getPointerElementType();
  631. unsigned byteSize = DL.getTypeAllocSize(gvType);
  632. totalByteSize += byteSize;
  633. }
  634. }
  635. pInfo->MS.GroupSharedBytesUsed = totalByteSize;
  636. pInfo->MS.PayloadSizeInBytes = m_Module.GetPayloadSizeInBytes();
  637. break;
  638. }
  639. case ShaderModel::Kind::Amplification: {
  640. pInfo->AS.PayloadSizeInBytes = m_Module.GetPayloadSizeInBytes();
  641. break;
  642. }
  643. }
  644. if (pInfo2) {
  645. switch (SM->GetKind()) {
  646. case ShaderModel::Kind::Compute:
  647. case ShaderModel::Kind::Mesh:
  648. case ShaderModel::Kind::Amplification:
  649. pInfo2->NumThreadsX = m_Module.GetNumThreads(0);
  650. pInfo2->NumThreadsY = m_Module.GetNumThreads(1);
  651. pInfo2->NumThreadsZ = m_Module.GetNumThreads(2);
  652. break;
  653. }
  654. }
  655. // Set resource binding information
  656. UINT uResIndex = 0;
  657. for (auto &&R : m_Module.GetCBuffers()) {
  658. DXASSERT_NOMSG(uResIndex < m_PSVInitInfo.ResourceCount);
  659. PSVResourceBindInfo0* pBindInfo = m_PSV.GetPSVResourceBindInfo0(uResIndex);
  660. PSVResourceBindInfo1* pBindInfo1 = m_PSV.GetPSVResourceBindInfo1(uResIndex);
  661. DXASSERT_NOMSG(pBindInfo);
  662. pBindInfo->ResType = (UINT)PSVResourceType::CBV;
  663. pBindInfo->Space = R->GetSpaceID();
  664. pBindInfo->LowerBound = R->GetLowerBound();
  665. pBindInfo->UpperBound = R->GetUpperBound();
  666. if (pBindInfo1) {
  667. pBindInfo1->ResKind = (UINT)R->GetKind();
  668. }
  669. uResIndex++;
  670. }
  671. for (auto &&R : m_Module.GetSamplers()) {
  672. DXASSERT_NOMSG(uResIndex < m_PSVInitInfo.ResourceCount);
  673. PSVResourceBindInfo0* pBindInfo = m_PSV.GetPSVResourceBindInfo0(uResIndex);
  674. PSVResourceBindInfo1* pBindInfo1 = m_PSV.GetPSVResourceBindInfo1(uResIndex);
  675. DXASSERT_NOMSG(pBindInfo);
  676. pBindInfo->ResType = (UINT)PSVResourceType::Sampler;
  677. pBindInfo->Space = R->GetSpaceID();
  678. pBindInfo->LowerBound = R->GetLowerBound();
  679. pBindInfo->UpperBound = R->GetUpperBound();
  680. if (pBindInfo1) {
  681. pBindInfo1->ResKind = (UINT)R->GetKind();
  682. }
  683. uResIndex++;
  684. }
  685. for (auto &&R : m_Module.GetSRVs()) {
  686. DXASSERT_NOMSG(uResIndex < m_PSVInitInfo.ResourceCount);
  687. PSVResourceBindInfo0* pBindInfo = m_PSV.GetPSVResourceBindInfo0(uResIndex);
  688. PSVResourceBindInfo1* pBindInfo1 = m_PSV.GetPSVResourceBindInfo1(uResIndex);
  689. DXASSERT_NOMSG(pBindInfo);
  690. if (R->IsStructuredBuffer()) {
  691. pBindInfo->ResType = (UINT)PSVResourceType::SRVStructured;
  692. } else if (R->IsRawBuffer() || (R->GetKind() == DxilResourceBase::Kind::RTAccelerationStructure)) {
  693. pBindInfo->ResType = (UINT)PSVResourceType::SRVRaw;
  694. } else {
  695. pBindInfo->ResType = (UINT)PSVResourceType::SRVTyped;
  696. }
  697. pBindInfo->Space = R->GetSpaceID();
  698. pBindInfo->LowerBound = R->GetLowerBound();
  699. pBindInfo->UpperBound = R->GetUpperBound();
  700. if (pBindInfo1) {
  701. pBindInfo1->ResKind = (UINT)R->GetKind();
  702. }
  703. uResIndex++;
  704. }
  705. for (auto &&R : m_Module.GetUAVs()) {
  706. DXASSERT_NOMSG(uResIndex < m_PSVInitInfo.ResourceCount);
  707. PSVResourceBindInfo0* pBindInfo = m_PSV.GetPSVResourceBindInfo0(uResIndex);
  708. PSVResourceBindInfo1* pBindInfo1 = m_PSV.GetPSVResourceBindInfo1(uResIndex);
  709. DXASSERT_NOMSG(pBindInfo);
  710. if (R->IsStructuredBuffer()) {
  711. if (R->HasCounter())
  712. pBindInfo->ResType = (UINT)PSVResourceType::UAVStructuredWithCounter;
  713. else
  714. pBindInfo->ResType = (UINT)PSVResourceType::UAVStructured;
  715. } else if (R->IsRawBuffer()) {
  716. pBindInfo->ResType = (UINT)PSVResourceType::UAVRaw;
  717. } else {
  718. pBindInfo->ResType = (UINT)PSVResourceType::UAVTyped;
  719. }
  720. pBindInfo->Space = R->GetSpaceID();
  721. pBindInfo->LowerBound = R->GetLowerBound();
  722. pBindInfo->UpperBound = R->GetUpperBound();
  723. if (pBindInfo1) {
  724. pBindInfo1->ResKind = (UINT)R->GetKind();
  725. pBindInfo1->ResFlags |= R->HasAtomic64Use()? (UINT)PSVResourceFlag::UsedByAtomic64 : 0;
  726. }
  727. uResIndex++;
  728. }
  729. DXASSERT_NOMSG(uResIndex == m_PSVInitInfo.ResourceCount);
  730. if (m_PSVInitInfo.PSVVersion > 0) {
  731. DXASSERT_NOMSG(pInfo1);
  732. // Write MaxVertexCount
  733. if (SM->IsGS()) {
  734. DXASSERT_NOMSG(m_Module.GetMaxVertexCount() <= 1024);
  735. pInfo1->MaxVertexCount = (uint16_t)m_Module.GetMaxVertexCount();
  736. }
  737. // Write Dxil Signature Elements
  738. for (unsigned i = 0; i < m_PSV.GetSigInputElements(); i++) {
  739. PSVSignatureElement0 *pInputElement = m_PSV.GetInputElement0(i);
  740. DXASSERT_NOMSG(pInputElement);
  741. memcpy(pInputElement, &m_SigInputElements[i], sizeof(PSVSignatureElement0));
  742. }
  743. for (unsigned i = 0; i < m_PSV.GetSigOutputElements(); i++) {
  744. PSVSignatureElement0 *pOutputElement = m_PSV.GetOutputElement0(i);
  745. DXASSERT_NOMSG(pOutputElement);
  746. memcpy(pOutputElement, &m_SigOutputElements[i], sizeof(PSVSignatureElement0));
  747. }
  748. for (unsigned i = 0; i < m_PSV.GetSigPatchConstOrPrimElements(); i++) {
  749. PSVSignatureElement0 *pPatchConstOrPrimElement = m_PSV.GetPatchConstOrPrimElement0(i);
  750. DXASSERT_NOMSG(pPatchConstOrPrimElement);
  751. memcpy(pPatchConstOrPrimElement, &m_SigPatchConstOrPrimElements[i], sizeof(PSVSignatureElement0));
  752. }
  753. // Gather ViewID dependency information
  754. auto &viewState = m_Module.GetSerializedViewIdState();
  755. if (!viewState.empty()) {
  756. const uint32_t *pSrc = viewState.data();
  757. const uint32_t InputScalars = *(pSrc++);
  758. uint32_t OutputScalars[4];
  759. for (unsigned streamIndex = 0; streamIndex < 4; streamIndex++) {
  760. OutputScalars[streamIndex] = *(pSrc++);
  761. pSrc = CopyViewIDState(pSrc, InputScalars, OutputScalars[streamIndex], m_PSV.GetViewIDOutputMask(streamIndex), m_PSV.GetInputToOutputTable(streamIndex));
  762. if (!SM->IsGS())
  763. break;
  764. }
  765. if (SM->IsHS() || SM->IsMS()) {
  766. const uint32_t PCScalars = *(pSrc++);
  767. pSrc = CopyViewIDState(pSrc, InputScalars, PCScalars, m_PSV.GetViewIDPCOutputMask(), m_PSV.GetInputToPCOutputTable());
  768. } else if (SM->IsDS()) {
  769. const uint32_t PCScalars = *(pSrc++);
  770. pSrc = CopyViewIDState(pSrc, PCScalars, OutputScalars[0], PSVComponentMask(), m_PSV.GetPCInputToOutputTable());
  771. }
  772. DXASSERT_NOMSG(viewState.data() + viewState.size() == pSrc);
  773. }
  774. }
  775. ULONG cbWritten;
  776. IFT(pStream->Write(m_PSVBuffer.data(), m_PSVBufferSize, &cbWritten));
  777. DXASSERT_NOMSG(cbWritten == m_PSVBufferSize);
  778. }
  779. };
  780. // Size-checked writer
  781. // on overrun: throw buffer_overrun{};
  782. // on overlap: throw buffer_overlap{};
  783. class CheckedWriter {
  784. char *Ptr;
  785. size_t Size;
  786. size_t Offset;
  787. public:
  788. class exception : public std::exception {};
  789. class buffer_overrun : public exception {
  790. public:
  791. buffer_overrun() noexcept {}
  792. virtual const char * what() const noexcept override {
  793. return ("buffer_overrun");
  794. }
  795. };
  796. class buffer_overlap : public exception {
  797. public:
  798. buffer_overlap() noexcept {}
  799. virtual const char * what() const noexcept override {
  800. return ("buffer_overlap");
  801. }
  802. };
  803. CheckedWriter(void *ptr, size_t size) :
  804. Ptr(reinterpret_cast<char*>(ptr)), Size(size), Offset(0) {}
  805. size_t GetOffset() const { return Offset; }
  806. void Reset(size_t offset = 0) {
  807. if (offset >= Size) throw buffer_overrun{};
  808. Offset = offset;
  809. }
  810. // offset is absolute, ensure offset is >= current offset
  811. void Advance(size_t offset = 0) {
  812. if (offset < Offset) throw buffer_overlap{};
  813. if (offset >= Size) throw buffer_overrun{};
  814. Offset = offset;
  815. }
  816. void CheckBounds(size_t size) const {
  817. assert(Offset <= Size && "otherwise, offset larger than size");
  818. if (size > Size - Offset)
  819. throw buffer_overrun{};
  820. }
  821. template <typename T>
  822. T *Cast(size_t size = 0) {
  823. if (0 == size) size = sizeof(T);
  824. CheckBounds(size);
  825. return reinterpret_cast<T*>(Ptr + Offset);
  826. }
  827. // Map and Write advance Offset:
  828. template <typename T>
  829. T &Map() {
  830. const size_t size = sizeof(T);
  831. T * p = Cast<T>(size);
  832. Offset += size;
  833. return *p;
  834. }
  835. template <typename T>
  836. T *MapArray(size_t count = 1) {
  837. const size_t size = sizeof(T) * count;
  838. T *p = Cast<T>(size);
  839. Offset += size;
  840. return p;
  841. }
  842. template <typename T>
  843. void Write(const T &obj) {
  844. const size_t size = sizeof(T);
  845. *Cast<T>(size) = obj;
  846. Offset += size;
  847. }
  848. template <typename T>
  849. void WriteArray(const T *pArray, size_t count = 1) {
  850. const size_t size = sizeof(T) * count;
  851. memcpy(Cast<T>(size), pArray, size);
  852. Offset += size;
  853. }
  854. };
  855. // Like DXIL container, RDAT itself is a mini container that contains multiple RDAT parts
  856. class RDATPart {
  857. public:
  858. virtual uint32_t GetPartSize() const { return 0; }
  859. virtual void Write(void *ptr) {}
  860. virtual RuntimeDataPartType GetType() const { return RuntimeDataPartType::Invalid; }
  861. virtual ~RDATPart() {}
  862. };
  863. // Most RDAT parts are tables each containing a list of structures of same type.
  864. // Exceptions are string table and index table because each string or list of
  865. // indicies can be of different sizes.
  866. template <class T>
  867. class RDATTable : public RDATPart {
  868. protected:
  869. std::vector<T> m_rows;
  870. public:
  871. virtual void Insert(T *data) {}
  872. virtual ~RDATTable() {}
  873. void Insert(const T &data) {
  874. m_rows.push_back(data);
  875. }
  876. void Write(void *ptr) {
  877. char *pCur = (char*)ptr;
  878. RuntimeDataTableHeader &header = *reinterpret_cast<RuntimeDataTableHeader*>(pCur);
  879. header.RecordCount = m_rows.size();
  880. header.RecordStride = sizeof(T);
  881. pCur += sizeof(RuntimeDataTableHeader);
  882. memcpy(pCur, m_rows.data(), header.RecordCount * header.RecordStride);
  883. };
  884. uint32_t GetPartSize() const {
  885. if (m_rows.empty())
  886. return 0;
  887. return sizeof(RuntimeDataTableHeader) + m_rows.size() * sizeof(T);
  888. }
  889. };
  890. // Resource table will contain a list of RuntimeDataResourceInfo in order of
  891. // CBuffer, Sampler, SRV, and UAV resource classes.
  892. class ResourceTable : public RDATTable<RuntimeDataResourceInfo> {
  893. public:
  894. RuntimeDataPartType GetType() const { return RuntimeDataPartType::ResourceTable; }
  895. };
  896. class FunctionTable : public RDATTable<RuntimeDataFunctionInfo> {
  897. public:
  898. RuntimeDataPartType GetType() const { return RuntimeDataPartType::FunctionTable; }
  899. };
  900. class StringBufferPart : public RDATPart {
  901. private:
  902. StringMap<uint32_t> m_StringMap;
  903. SmallVector<char, 256> m_StringBuffer;
  904. public:
  905. StringBufferPart() : m_StringMap(), m_StringBuffer() {
  906. // Always start string table with null so empty/null strings have offset of zero
  907. m_StringBuffer.push_back('\0');
  908. }
  909. // returns the offset of the name inserted
  910. uint32_t Insert(StringRef name) {
  911. if (name.empty())
  912. return 0;
  913. // Don't add duplicate strings
  914. auto found = m_StringMap.find(name);
  915. if (found != m_StringMap.end())
  916. return found->second;
  917. uint32_t prevIndex = (uint32_t)m_StringBuffer.size();
  918. m_StringMap[name] = prevIndex;
  919. m_StringBuffer.reserve(m_StringBuffer.size() + name.size() + 1);
  920. m_StringBuffer.append(name.begin(), name.end());
  921. m_StringBuffer.push_back('\0');
  922. return prevIndex;
  923. }
  924. RuntimeDataPartType GetType() const { return RuntimeDataPartType::StringBuffer; }
  925. uint32_t GetPartSize() const { return m_StringBuffer.size(); }
  926. void Write(void *ptr) { memcpy(ptr, m_StringBuffer.data(), m_StringBuffer.size()); }
  927. };
  928. struct IndexArraysPart : public RDATPart {
  929. private:
  930. std::vector<uint32_t> m_IndexBuffer;
  931. // Use m_IndexSet with CmpIndices to avoid duplicate index arrays
  932. struct CmpIndices {
  933. const IndexArraysPart &Table;
  934. CmpIndices(const IndexArraysPart &table) : Table(table) {}
  935. bool operator()(uint32_t left, uint32_t right) const {
  936. const uint32_t *pLeft = Table.m_IndexBuffer.data() + left;
  937. const uint32_t *pRight = Table.m_IndexBuffer.data() + right;
  938. if (*pLeft != *pRight)
  939. return (*pLeft < *pRight);
  940. uint32_t count = *pLeft;
  941. for (unsigned i = 0; i < count; i++) {
  942. ++pLeft; ++pRight;
  943. if (*pLeft != *pRight)
  944. return (*pLeft < *pRight);
  945. }
  946. return false;
  947. }
  948. };
  949. std::set<uint32_t, CmpIndices> m_IndexSet;
  950. public:
  951. IndexArraysPart() : m_IndexBuffer(), m_IndexSet(*this) {}
  952. template <class iterator>
  953. uint32_t AddIndex(iterator begin, iterator end) {
  954. uint32_t newOffset = m_IndexBuffer.size();
  955. m_IndexBuffer.push_back(0); // Size: update after insertion
  956. m_IndexBuffer.insert(m_IndexBuffer.end(), begin, end);
  957. m_IndexBuffer[newOffset] = (m_IndexBuffer.size() - newOffset) - 1;
  958. // Check for duplicate, return new offset if not duplicate
  959. auto insertResult = m_IndexSet.insert(newOffset);
  960. if (insertResult.second)
  961. return newOffset;
  962. // Otherwise it was a duplicate, so chop off the size and return the original
  963. m_IndexBuffer.resize(newOffset);
  964. return *insertResult.first;
  965. }
  966. RuntimeDataPartType GetType() const { return RuntimeDataPartType::IndexArrays; }
  967. uint32_t GetPartSize() const {
  968. return sizeof(uint32_t) * m_IndexBuffer.size();
  969. }
  970. void Write(void *ptr) {
  971. memcpy(ptr, m_IndexBuffer.data(), m_IndexBuffer.size() * sizeof(uint32_t));
  972. }
  973. };
  974. class RawBytesPart : public RDATPart {
  975. private:
  976. std::unordered_map<const void *, uint32_t> m_PtrMap;
  977. std::vector<char> m_DataBuffer;
  978. public:
  979. RawBytesPart() : m_DataBuffer() {}
  980. uint32_t Insert(const void *pData, size_t dataSize) {
  981. auto it = m_PtrMap.find(pData);
  982. if (it != m_PtrMap.end())
  983. return it->second;
  984. if (dataSize + m_DataBuffer.size() > UINT_MAX)
  985. return UINT_MAX;
  986. uint32_t offset = (uint32_t)m_DataBuffer.size();
  987. m_DataBuffer.reserve(m_DataBuffer.size() + dataSize);
  988. m_DataBuffer.insert(m_DataBuffer.end(),
  989. (const char*)pData, (const char*)pData + dataSize);
  990. return offset;
  991. }
  992. RuntimeDataPartType GetType() const { return RuntimeDataPartType::RawBytes; }
  993. uint32_t GetPartSize() const { return m_DataBuffer.size(); }
  994. void Write(void *ptr) { memcpy(ptr, m_DataBuffer.data(), m_DataBuffer.size()); }
  995. };
  996. class SubobjectTable : public RDATTable<RuntimeDataSubobjectInfo> {
  997. public:
  998. RuntimeDataPartType GetType() const { return RuntimeDataPartType::SubobjectTable; }
  999. };
  1000. using namespace DXIL;
  1001. class DxilRDATWriter : public DxilPartWriter {
  1002. private:
  1003. SmallVector<char, 1024> m_RDATBuffer;
  1004. std::vector<std::unique_ptr<RDATPart>> m_Parts;
  1005. typedef llvm::SmallSetVector<uint32_t, 8> Indices;
  1006. typedef std::unordered_map<const llvm::Function *, Indices> FunctionIndexMap;
  1007. FunctionIndexMap m_FuncToResNameOffset; // list of resources used
  1008. FunctionIndexMap m_FuncToDependencies; // list of unresolved functions used
  1009. unsigned m_ValMajor, m_ValMinor;
  1010. struct ShaderCompatInfo {
  1011. ShaderCompatInfo()
  1012. : minMajor(6), minMinor(0),
  1013. mask(((unsigned)1 << (unsigned)DXIL::ShaderKind::Invalid) - 1)
  1014. {}
  1015. unsigned minMajor, minMinor, mask;
  1016. };
  1017. typedef std::unordered_map<const llvm::Function*, ShaderCompatInfo> FunctionShaderCompatMap;
  1018. FunctionShaderCompatMap m_FuncToShaderCompat;
  1019. void UpdateFunctionToShaderCompat(const llvm::Function* dxilFunc) {
  1020. for (const auto &user : dxilFunc->users()) {
  1021. if (const llvm::CallInst *CI = dyn_cast<const llvm::CallInst>(user)) {
  1022. // Find calling function
  1023. const llvm::Function *F = cast<const llvm::Function>(CI->getParent()->getParent());
  1024. // Insert or lookup info
  1025. ShaderCompatInfo &info = m_FuncToShaderCompat[F];
  1026. unsigned major, minor, mask;
  1027. // bWithTranslation = true for library modules
  1028. OP::GetMinShaderModelAndMask(CI, /*bWithTranslation*/true,
  1029. m_ValMajor, m_ValMinor,
  1030. major, minor, mask);
  1031. if (major > info.minMajor) {
  1032. info.minMajor = major;
  1033. info.minMinor = minor;
  1034. } else if (major == info.minMajor && minor > info.minMinor) {
  1035. info.minMinor = minor;
  1036. }
  1037. info.mask &= mask;
  1038. } else if (const llvm::LoadInst *LI = dyn_cast<LoadInst>(user)) {
  1039. // If loading a groupshared variable, limit to CS/AS/MS
  1040. #define SFLAG(stage) ((unsigned)1 << (unsigned)DXIL::ShaderKind::stage)
  1041. if (LI->getPointerAddressSpace() == DXIL::kTGSMAddrSpace) {
  1042. const llvm::Function *F = cast<const llvm::Function>(CI->getParent()->getParent());
  1043. ShaderCompatInfo &info = m_FuncToShaderCompat[F];
  1044. info.mask &= (SFLAG(Compute) | SFLAG(Mesh) | SFLAG(Amplification));
  1045. }
  1046. #undef SFLAG
  1047. }
  1048. }
  1049. }
  1050. const llvm::Function *FindUsingFunction(const llvm::Value *User) {
  1051. if (const llvm::Instruction *I = dyn_cast<const llvm::Instruction>(User)) {
  1052. // Instruction should be inside a basic block, which is in a function
  1053. return cast<const llvm::Function>(I->getParent()->getParent());
  1054. }
  1055. // User can be either instruction, constant, or operator. But User is an
  1056. // operator only if constant is a scalar value, not resource pointer.
  1057. const llvm::Constant *CU = cast<const llvm::Constant>(User);
  1058. if (!CU->user_empty())
  1059. return FindUsingFunction(*CU->user_begin());
  1060. else
  1061. return nullptr;
  1062. }
  1063. void UpdateFunctionToResourceInfo(const DxilResourceBase *resource,
  1064. uint32_t offset) {
  1065. Constant *var = resource->GetGlobalSymbol();
  1066. if (var) {
  1067. for (auto user : var->users()) {
  1068. // Find the function.
  1069. const llvm::Function *F = FindUsingFunction(user);
  1070. if (!F)
  1071. continue;
  1072. if (m_FuncToResNameOffset.find(F) == m_FuncToResNameOffset.end()) {
  1073. m_FuncToResNameOffset[F] = Indices();
  1074. }
  1075. m_FuncToResNameOffset[F].insert(offset);
  1076. }
  1077. }
  1078. }
  1079. void InsertToResourceTable(DxilResourceBase &resource,
  1080. ResourceClass resourceClass,
  1081. uint32_t &resourceIndex) {
  1082. uint32_t stringIndex = m_pStringBufferPart->Insert(resource.GetGlobalName());
  1083. UpdateFunctionToResourceInfo(&resource, resourceIndex++);
  1084. RuntimeDataResourceInfo info = {};
  1085. info.ID = resource.GetID();
  1086. info.Class = static_cast<uint32_t>(resourceClass);
  1087. info.Kind = static_cast<uint32_t>(resource.GetKind());
  1088. info.Space = resource.GetSpaceID();
  1089. info.LowerBound = resource.GetLowerBound();
  1090. info.UpperBound = resource.GetUpperBound();
  1091. info.Name = stringIndex;
  1092. info.Flags = 0;
  1093. if (ResourceClass::UAV == resourceClass) {
  1094. DxilResource *pRes = static_cast<DxilResource*>(&resource);
  1095. if (pRes->HasCounter())
  1096. info.Flags |= static_cast<uint32_t>(DxilResourceFlag::UAVCounter);
  1097. if (pRes->IsGloballyCoherent())
  1098. info.Flags |= static_cast<uint32_t>(DxilResourceFlag::UAVGloballyCoherent);
  1099. if (pRes->IsROV())
  1100. info.Flags |= static_cast<uint32_t>(DxilResourceFlag::UAVRasterizerOrderedView);
  1101. if (pRes->HasAtomic64Use())
  1102. info.Flags |= static_cast<uint32_t>(DxilResourceFlag::Atomics64Use);
  1103. // TODO: add dynamic index flag
  1104. }
  1105. m_pResourceTable->Insert(info);
  1106. }
  1107. void UpdateResourceInfo(const DxilModule &DM) {
  1108. // Try to allocate string table for resources. String table is a sequence
  1109. // of strings delimited by \0
  1110. uint32_t resourceIndex = 0;
  1111. for (auto &resource : DM.GetCBuffers()) {
  1112. InsertToResourceTable(*resource.get(), ResourceClass::CBuffer, resourceIndex);
  1113. }
  1114. for (auto &resource : DM.GetSamplers()) {
  1115. InsertToResourceTable(*resource.get(), ResourceClass::Sampler, resourceIndex);
  1116. }
  1117. for (auto &resource : DM.GetSRVs()) {
  1118. InsertToResourceTable(*resource.get(), ResourceClass::SRV, resourceIndex);
  1119. }
  1120. for (auto &resource : DM.GetUAVs()) {
  1121. InsertToResourceTable(*resource.get(), ResourceClass::UAV, resourceIndex);
  1122. }
  1123. }
  1124. void UpdateFunctionDependency(llvm::Function *F) {
  1125. for (const auto &user : F->users()) {
  1126. const llvm::Function *userFunction = FindUsingFunction(user);
  1127. uint32_t index = m_pStringBufferPart->Insert(F->getName());
  1128. if (m_FuncToDependencies.find(userFunction) ==
  1129. m_FuncToDependencies.end()) {
  1130. m_FuncToDependencies[userFunction] =
  1131. Indices();
  1132. }
  1133. m_FuncToDependencies[userFunction].insert(index);
  1134. }
  1135. }
  1136. void UpdateFunctionInfo(const DxilModule &DM) {
  1137. // We must select the appropriate shader mask for the validator version,
  1138. // so we don't set any bits the validator doesn't recognize.
  1139. unsigned ValidShaderMask = (1 << ((unsigned)DXIL::ShaderKind::Amplification + 1)) - 1;
  1140. if (DXIL::CompareVersions(m_ValMajor, m_ValMinor, 1, 5) < 0) {
  1141. ValidShaderMask = (1 << ((unsigned)DXIL::ShaderKind::Callable + 1)) - 1;
  1142. }
  1143. for (auto &function : DM.GetModule()->getFunctionList()) {
  1144. if (function.isDeclaration() && !function.isIntrinsic()) {
  1145. if (OP::IsDxilOpFunc(&function)) {
  1146. // update min shader model and shader stage mask per function
  1147. UpdateFunctionToShaderCompat(&function);
  1148. } else {
  1149. // collect unresolved dependencies per function
  1150. UpdateFunctionDependency(&function);
  1151. }
  1152. }
  1153. }
  1154. for (auto &function : DM.GetModule()->getFunctionList()) {
  1155. if (!function.isDeclaration()) {
  1156. StringRef mangled = function.getName();
  1157. StringRef unmangled = hlsl::dxilutil::DemangleFunctionName(function.getName());
  1158. uint32_t mangledIndex = m_pStringBufferPart->Insert(mangled);
  1159. uint32_t unmangledIndex = m_pStringBufferPart->Insert(unmangled);
  1160. // Update resource Index
  1161. uint32_t resourceIndex = UINT_MAX;
  1162. uint32_t functionDependencies = UINT_MAX;
  1163. uint32_t payloadSizeInBytes = 0;
  1164. uint32_t attrSizeInBytes = 0;
  1165. uint32_t shaderKind = static_cast<uint32_t>(DXIL::ShaderKind::Library);
  1166. if (m_FuncToResNameOffset.find(&function) != m_FuncToResNameOffset.end())
  1167. resourceIndex =
  1168. m_pIndexArraysPart->AddIndex(m_FuncToResNameOffset[&function].begin(),
  1169. m_FuncToResNameOffset[&function].end());
  1170. if (m_FuncToDependencies.find(&function) != m_FuncToDependencies.end())
  1171. functionDependencies =
  1172. m_pIndexArraysPart->AddIndex(m_FuncToDependencies[&function].begin(),
  1173. m_FuncToDependencies[&function].end());
  1174. if (DM.HasDxilFunctionProps(&function)) {
  1175. auto props = DM.GetDxilFunctionProps(&function);
  1176. if (props.IsClosestHit() || props.IsAnyHit()) {
  1177. payloadSizeInBytes = props.ShaderProps.Ray.payloadSizeInBytes;
  1178. attrSizeInBytes = props.ShaderProps.Ray.attributeSizeInBytes;
  1179. }
  1180. else if (props.IsMiss()) {
  1181. payloadSizeInBytes = props.ShaderProps.Ray.payloadSizeInBytes;
  1182. }
  1183. else if (props.IsCallable()) {
  1184. payloadSizeInBytes = props.ShaderProps.Ray.paramSizeInBytes;
  1185. }
  1186. shaderKind = (uint32_t)props.shaderKind;
  1187. }
  1188. ShaderFlags flags = ShaderFlags::CollectShaderFlags(&function, &DM);
  1189. RuntimeDataFunctionInfo info = {};
  1190. info.Name = mangledIndex;
  1191. info.UnmangledName = unmangledIndex;
  1192. info.ShaderKind = shaderKind;
  1193. info.Resources = resourceIndex;
  1194. info.FunctionDependencies = functionDependencies;
  1195. info.PayloadSizeInBytes = payloadSizeInBytes;
  1196. info.AttributeSizeInBytes = attrSizeInBytes;
  1197. uint64_t featureFlags = flags.GetFeatureInfo();
  1198. info.FeatureInfo1 = featureFlags & 0xffffffff;
  1199. info.FeatureInfo2 = (featureFlags >> 32) & 0xffffffff;
  1200. // Init min target 6.0
  1201. unsigned minMajor = 6, minMinor = 0;
  1202. // Increase min target based on feature flags:
  1203. if (flags.GetUseNativeLowPrecision() && flags.GetLowPrecisionPresent()) {
  1204. minMinor = 2;
  1205. } else if (flags.GetBarycentrics() || flags.GetViewID()) {
  1206. minMinor = 1;
  1207. }
  1208. if ((DXIL::ShaderKind)shaderKind == DXIL::ShaderKind::Library) {
  1209. // Init mask to all kinds for library functions
  1210. info.ShaderStageFlag = ValidShaderMask;
  1211. } else {
  1212. // Init mask to current kind for shader functions
  1213. info.ShaderStageFlag = (unsigned)1 << shaderKind;
  1214. }
  1215. auto it = m_FuncToShaderCompat.find(&function);
  1216. if (it != m_FuncToShaderCompat.end()) {
  1217. auto &compatInfo = it->second;
  1218. if (compatInfo.minMajor > minMajor) {
  1219. minMajor = compatInfo.minMajor;
  1220. minMinor = compatInfo.minMinor;
  1221. } else if (compatInfo.minMinor > minMinor) {
  1222. minMinor = compatInfo.minMinor;
  1223. }
  1224. info.ShaderStageFlag &= compatInfo.mask;
  1225. }
  1226. info.MinShaderTarget = EncodeVersion((DXIL::ShaderKind)shaderKind, minMajor, minMinor);
  1227. m_pFunctionTable->Insert(info);
  1228. }
  1229. }
  1230. }
  1231. void UpdateSubobjectInfo(const DxilModule &DM) {
  1232. if (!DM.GetSubobjects())
  1233. return;
  1234. for (auto &it : DM.GetSubobjects()->GetSubobjects()) {
  1235. auto &obj = *it.second;
  1236. RuntimeDataSubobjectInfo info = {};
  1237. info.Name = m_pStringBufferPart->Insert(obj.GetName());
  1238. info.Kind = (uint32_t)obj.GetKind();
  1239. bool bLocalRS = false;
  1240. switch (obj.GetKind()) {
  1241. case DXIL::SubobjectKind::StateObjectConfig:
  1242. obj.GetStateObjectConfig(info.StateObjectConfig.Flags);
  1243. break;
  1244. case DXIL::SubobjectKind::LocalRootSignature:
  1245. bLocalRS = true;
  1246. __fallthrough;
  1247. case DXIL::SubobjectKind::GlobalRootSignature: {
  1248. const void *Data;
  1249. obj.GetRootSignature(bLocalRS, Data, info.RootSignature.SizeInBytes);
  1250. info.RootSignature.RawBytesOffset =
  1251. m_pRawBytesPart->Insert(Data, info.RootSignature.SizeInBytes);
  1252. break;
  1253. }
  1254. case DXIL::SubobjectKind::SubobjectToExportsAssociation: {
  1255. llvm::StringRef Subobject;
  1256. const char * const * Exports;
  1257. uint32_t NumExports;
  1258. std::vector<uint32_t> ExportIndices;
  1259. obj.GetSubobjectToExportsAssociation(Subobject, Exports, NumExports);
  1260. info.SubobjectToExportsAssociation.Subobject =
  1261. m_pStringBufferPart->Insert(Subobject);
  1262. ExportIndices.resize(NumExports);
  1263. for (unsigned i = 0; i < NumExports; ++i) {
  1264. ExportIndices[i] = m_pStringBufferPart->Insert(Exports[i]);
  1265. }
  1266. info.SubobjectToExportsAssociation.Exports =
  1267. m_pIndexArraysPart->AddIndex(
  1268. ExportIndices.begin(), ExportIndices.end());
  1269. break;
  1270. }
  1271. case DXIL::SubobjectKind::RaytracingShaderConfig:
  1272. obj.GetRaytracingShaderConfig(
  1273. info.RaytracingShaderConfig.MaxPayloadSizeInBytes,
  1274. info.RaytracingShaderConfig.MaxAttributeSizeInBytes);
  1275. break;
  1276. case DXIL::SubobjectKind::RaytracingPipelineConfig:
  1277. obj.GetRaytracingPipelineConfig(
  1278. info.RaytracingPipelineConfig.MaxTraceRecursionDepth);
  1279. break;
  1280. case DXIL::SubobjectKind::HitGroup:
  1281. {
  1282. HitGroupType hgType;
  1283. StringRef AnyHit;
  1284. StringRef ClosestHit;
  1285. StringRef Intersection;
  1286. obj.GetHitGroup(hgType, AnyHit, ClosestHit, Intersection);
  1287. info.HitGroup.Type = (uint32_t)hgType;
  1288. info.HitGroup.AnyHit = m_pStringBufferPart->Insert(AnyHit);
  1289. info.HitGroup.ClosestHit = m_pStringBufferPart->Insert(ClosestHit);
  1290. info.HitGroup.Intersection = m_pStringBufferPart->Insert(Intersection);
  1291. break;
  1292. }
  1293. case DXIL::SubobjectKind::RaytracingPipelineConfig1:
  1294. obj.GetRaytracingPipelineConfig1(
  1295. info.RaytracingPipelineConfig1.MaxTraceRecursionDepth,
  1296. info.RaytracingPipelineConfig1.Flags);
  1297. break;
  1298. }
  1299. m_pSubobjectTable->Insert(info);
  1300. }
  1301. }
  1302. void CreateParts() {
  1303. #define ADD_PART(type) \
  1304. m_Parts.emplace_back(llvm::make_unique<type>()); \
  1305. m_p##type = reinterpret_cast<type*>(m_Parts.back().get());
  1306. ADD_PART(StringBufferPart);
  1307. ADD_PART(ResourceTable);
  1308. ADD_PART(FunctionTable);
  1309. ADD_PART(IndexArraysPart);
  1310. ADD_PART(RawBytesPart);
  1311. ADD_PART(SubobjectTable);
  1312. #undef ADD_PART
  1313. }
  1314. StringBufferPart *m_pStringBufferPart;
  1315. IndexArraysPart *m_pIndexArraysPart;
  1316. RawBytesPart *m_pRawBytesPart;
  1317. FunctionTable *m_pFunctionTable;
  1318. ResourceTable *m_pResourceTable;
  1319. SubobjectTable *m_pSubobjectTable;
  1320. public:
  1321. DxilRDATWriter(const DxilModule &mod)
  1322. : m_RDATBuffer(), m_Parts(), m_FuncToResNameOffset() {
  1323. // Keep track of validator version so we can make a compatible RDAT
  1324. mod.GetValidatorVersion(m_ValMajor, m_ValMinor);
  1325. CreateParts();
  1326. UpdateResourceInfo(mod);
  1327. UpdateFunctionInfo(mod);
  1328. UpdateSubobjectInfo(mod);
  1329. // Delete any empty parts:
  1330. std::vector<std::unique_ptr<RDATPart>>::iterator it = m_Parts.begin();
  1331. while (it != m_Parts.end()) {
  1332. if (it->get()->GetPartSize() == 0) {
  1333. it = m_Parts.erase(it);
  1334. }
  1335. else
  1336. it++;
  1337. }
  1338. }
  1339. uint32_t size() const override {
  1340. // header + offset array
  1341. uint32_t total = sizeof(RuntimeDataHeader) + m_Parts.size() * sizeof(uint32_t);
  1342. // For each part: part header + part size
  1343. for (auto &part : m_Parts)
  1344. total += sizeof(RuntimeDataPartHeader) + PSVALIGN4(part->GetPartSize());
  1345. return total;
  1346. }
  1347. void write(AbstractMemoryStream *pStream) override {
  1348. try {
  1349. m_RDATBuffer.resize(size(), 0);
  1350. CheckedWriter W(m_RDATBuffer.data(), m_RDATBuffer.size());
  1351. // write RDAT header
  1352. RuntimeDataHeader &header = W.Map<RuntimeDataHeader>();
  1353. header.Version = RDAT_Version_10;
  1354. header.PartCount = m_Parts.size();
  1355. // map offsets
  1356. uint32_t *offsets = W.MapArray<uint32_t>(header.PartCount);
  1357. // write parts
  1358. unsigned i = 0;
  1359. for (auto &part : m_Parts) {
  1360. offsets[i++] = W.GetOffset();
  1361. RuntimeDataPartHeader &partHeader = W.Map<RuntimeDataPartHeader>();
  1362. partHeader.Type = part->GetType();
  1363. partHeader.Size = PSVALIGN4(part->GetPartSize());
  1364. DXASSERT(partHeader.Size, "otherwise, failed to remove empty part");
  1365. char *bytes = W.MapArray<char>(partHeader.Size);
  1366. part->Write(bytes);
  1367. }
  1368. }
  1369. catch (CheckedWriter::exception e) {
  1370. throw hlsl::Exception(DXC_E_GENERAL_INTERNAL_ERROR, e.what());
  1371. }
  1372. ULONG cbWritten;
  1373. IFT(pStream->Write(m_RDATBuffer.data(), m_RDATBuffer.size(), &cbWritten));
  1374. DXASSERT_NOMSG(cbWritten == m_RDATBuffer.size());
  1375. }
  1376. };
  1377. DxilPartWriter *hlsl::NewPSVWriter(const DxilModule &M, uint32_t PSVVersion) {
  1378. return new DxilPSVWriter(M, PSVVersion);
  1379. }
  1380. DxilPartWriter *hlsl::NewRDATWriter(const DxilModule &M) {
  1381. return new DxilRDATWriter(M);
  1382. }
  1383. class DxilContainerWriter_impl : public DxilContainerWriter {
  1384. private:
  1385. class DxilPart {
  1386. public:
  1387. DxilPartHeader Header;
  1388. WriteFn Write;
  1389. DxilPart(uint32_t fourCC, uint32_t size, WriteFn write) : Write(write) {
  1390. Header.PartFourCC = fourCC;
  1391. Header.PartSize = size;
  1392. }
  1393. };
  1394. llvm::SmallVector<DxilPart, 8> m_Parts;
  1395. public:
  1396. void AddPart(uint32_t FourCC, uint32_t Size, WriteFn Write) override {
  1397. m_Parts.emplace_back(FourCC, Size, Write);
  1398. }
  1399. uint32_t size() const override {
  1400. uint32_t partSize = 0;
  1401. for (auto &part : m_Parts) {
  1402. partSize += part.Header.PartSize;
  1403. }
  1404. return (uint32_t)GetDxilContainerSizeFromParts((uint32_t)m_Parts.size(), partSize);
  1405. }
  1406. void write(AbstractMemoryStream *pStream) override {
  1407. DxilContainerHeader header;
  1408. const uint32_t PartCount = (uint32_t)m_Parts.size();
  1409. uint32_t containerSizeInBytes = size();
  1410. InitDxilContainer(&header, PartCount, containerSizeInBytes);
  1411. IFT(pStream->Reserve(header.ContainerSizeInBytes));
  1412. IFT(WriteStreamValue(pStream, header));
  1413. uint32_t offset = sizeof(header) + (uint32_t)GetOffsetTableSize(PartCount);
  1414. for (auto &&part : m_Parts) {
  1415. IFT(WriteStreamValue(pStream, offset));
  1416. offset += sizeof(DxilPartHeader) + part.Header.PartSize;
  1417. }
  1418. for (auto &&part : m_Parts) {
  1419. IFT(WriteStreamValue(pStream, part.Header));
  1420. size_t start = pStream->GetPosition();
  1421. part.Write(pStream);
  1422. DXASSERT_LOCALVAR(start, pStream->GetPosition() - start == (size_t)part.Header.PartSize, "out of bound");
  1423. }
  1424. DXASSERT(containerSizeInBytes == (uint32_t)pStream->GetPosition(), "else stream size is incorrect");
  1425. }
  1426. };
  1427. DxilContainerWriter *hlsl::NewDxilContainerWriter() {
  1428. return new DxilContainerWriter_impl();
  1429. }
  1430. static bool HasDebugInfoOrLineNumbers(const Module &M) {
  1431. return
  1432. llvm::getDebugMetadataVersionFromModule(M) != 0 ||
  1433. llvm::hasDebugInfo(M);
  1434. }
  1435. static void GetPaddedProgramPartSize(AbstractMemoryStream *pStream,
  1436. uint32_t &bitcodeInUInt32,
  1437. uint32_t &bitcodePaddingBytes) {
  1438. bitcodeInUInt32 = pStream->GetPtrSize();
  1439. bitcodePaddingBytes = (bitcodeInUInt32 % 4);
  1440. bitcodeInUInt32 = (bitcodeInUInt32 / 4) + (bitcodePaddingBytes ? 1 : 0);
  1441. }
  1442. void hlsl::WriteProgramPart(const ShaderModel *pModel,
  1443. AbstractMemoryStream *pModuleBitcode,
  1444. IStream *pStream) {
  1445. DXASSERT(pModel != nullptr, "else generation should have failed");
  1446. DxilProgramHeader programHeader;
  1447. uint32_t shaderVersion =
  1448. EncodeVersion(pModel->GetKind(), pModel->GetMajor(), pModel->GetMinor());
  1449. unsigned dxilMajor, dxilMinor;
  1450. pModel->GetDxilVersion(dxilMajor, dxilMinor);
  1451. uint32_t dxilVersion = DXIL::MakeDxilVersion(dxilMajor, dxilMinor);
  1452. InitProgramHeader(programHeader, shaderVersion, dxilVersion, pModuleBitcode->GetPtrSize());
  1453. uint32_t programInUInt32, programPaddingBytes;
  1454. GetPaddedProgramPartSize(pModuleBitcode, programInUInt32,
  1455. programPaddingBytes);
  1456. ULONG cbWritten;
  1457. IFT(WriteStreamValue(pStream, programHeader));
  1458. IFT(pStream->Write(pModuleBitcode->GetPtr(), pModuleBitcode->GetPtrSize(),
  1459. &cbWritten));
  1460. if (programPaddingBytes) {
  1461. uint32_t paddingValue = 0;
  1462. IFT(pStream->Write(&paddingValue, programPaddingBytes, &cbWritten));
  1463. }
  1464. }
  1465. namespace {
  1466. class RootSignatureWriter : public DxilPartWriter {
  1467. private:
  1468. std::vector<uint8_t> m_Sig;
  1469. public:
  1470. RootSignatureWriter(std::vector<uint8_t> &&S) : m_Sig(std::move(S)) {}
  1471. uint32_t size() const { return m_Sig.size(); }
  1472. void write(AbstractMemoryStream *pStream) {
  1473. ULONG cbWritten;
  1474. IFT(pStream->Write(m_Sig.data(), size(), &cbWritten));
  1475. }
  1476. };
  1477. } // namespace
  1478. void hlsl::ReEmitLatestReflectionData(llvm::Module *pM) {
  1479. // Retain usage information in metadata for reflection by:
  1480. // Upgrade validator version, re-emit metadata
  1481. // 0,0 = Not meant to be validated, support latest
  1482. DxilModule &DM = pM->GetOrCreateDxilModule();
  1483. DM.SetValidatorVersion(0, 0);
  1484. DM.ReEmitDxilResources();
  1485. DM.EmitDxilCounters();
  1486. }
  1487. static std::unique_ptr<Module> CloneModuleForReflection(Module *pM) {
  1488. DxilModule &DM = pM->GetOrCreateDxilModule();
  1489. unsigned ValMajor = 0, ValMinor = 0;
  1490. DM.GetValidatorVersion(ValMajor, ValMinor);
  1491. // Emit the latest reflection metadata
  1492. hlsl::ReEmitLatestReflectionData(pM);
  1493. // Clone module
  1494. std::unique_ptr<Module> reflectionModule( llvm::CloneModule(pM) );
  1495. // Now restore validator version on main module and re-emit metadata.
  1496. DM.SetValidatorVersion(ValMajor, ValMinor);
  1497. DM.ReEmitDxilResources();
  1498. return reflectionModule;
  1499. }
  1500. void hlsl::StripAndCreateReflectionStream(Module *pReflectionM, uint32_t *pReflectionPartSizeInBytes, AbstractMemoryStream **ppReflectionStreamOut) {
  1501. for (Function &F : pReflectionM->functions()) {
  1502. if (!F.isDeclaration()) {
  1503. F.deleteBody();
  1504. }
  1505. }
  1506. uint32_t reflectPartSizeInBytes = 0;
  1507. CComPtr<AbstractMemoryStream> pReflectionBitcodeStream;
  1508. IFT(CreateMemoryStream(DxcGetThreadMallocNoRef(), &pReflectionBitcodeStream));
  1509. raw_stream_ostream outStream(pReflectionBitcodeStream.p);
  1510. WriteBitcodeToFile(pReflectionM, outStream, false);
  1511. outStream.flush();
  1512. uint32_t reflectInUInt32 = 0, reflectPaddingBytes = 0;
  1513. GetPaddedProgramPartSize(pReflectionBitcodeStream, reflectInUInt32, reflectPaddingBytes);
  1514. reflectPartSizeInBytes = reflectInUInt32 * sizeof(uint32_t) + sizeof(DxilProgramHeader);
  1515. *pReflectionPartSizeInBytes = reflectPartSizeInBytes;
  1516. *ppReflectionStreamOut = pReflectionBitcodeStream.Detach();
  1517. }
  1518. void hlsl::SerializeDxilContainerForModule(DxilModule *pModule,
  1519. AbstractMemoryStream *pModuleBitcode,
  1520. AbstractMemoryStream *pFinalStream,
  1521. llvm::StringRef DebugName,
  1522. SerializeDxilFlags Flags,
  1523. DxilShaderHash *pShaderHashOut,
  1524. AbstractMemoryStream *pReflectionStreamOut,
  1525. AbstractMemoryStream *pRootSigStreamOut) {
  1526. // TODO: add a flag to update the module and remove information that is not part
  1527. // of DXIL proper and is used only to assemble the container.
  1528. DXASSERT_NOMSG(pModule != nullptr);
  1529. DXASSERT_NOMSG(pModuleBitcode != nullptr);
  1530. DXASSERT_NOMSG(pFinalStream != nullptr);
  1531. unsigned ValMajor, ValMinor;
  1532. pModule->GetValidatorVersion(ValMajor, ValMinor);
  1533. if (DXIL::CompareVersions(ValMajor, ValMinor, 1, 1) < 0)
  1534. Flags &= ~SerializeDxilFlags::IncludeDebugNamePart;
  1535. bool bSupportsShaderHash = DXIL::CompareVersions(ValMajor, ValMinor, 1, 5) >= 0;
  1536. bool bCompat_1_4 = DXIL::CompareVersions(ValMajor, ValMinor, 1, 5) < 0;
  1537. bool bEmitReflection = Flags & SerializeDxilFlags::IncludeReflectionPart ||
  1538. pReflectionStreamOut;
  1539. DxilContainerWriter_impl writer;
  1540. // Write the feature part.
  1541. DxilFeatureInfoWriter featureInfoWriter(*pModule);
  1542. writer.AddPart(DFCC_FeatureInfo, featureInfoWriter.size(), [&](AbstractMemoryStream *pStream) {
  1543. featureInfoWriter.write(pStream);
  1544. });
  1545. std::unique_ptr<DxilProgramSignatureWriter> pInputSigWriter = nullptr;
  1546. std::unique_ptr<DxilProgramSignatureWriter> pOutputSigWriter = nullptr;
  1547. std::unique_ptr<DxilProgramSignatureWriter> pPatchConstOrPrimSigWriter = nullptr;
  1548. if (!pModule->GetShaderModel()->IsLib()) {
  1549. DXIL::TessellatorDomain domain = DXIL::TessellatorDomain::Undefined;
  1550. if (pModule->GetShaderModel()->IsHS() || pModule->GetShaderModel()->IsDS())
  1551. domain = pModule->GetTessellatorDomain();
  1552. pInputSigWriter = llvm::make_unique<DxilProgramSignatureWriter>(
  1553. pModule->GetInputSignature(), domain,
  1554. /*IsInput*/ true,
  1555. /*UseMinPrecision*/ pModule->GetUseMinPrecision(),
  1556. bCompat_1_4);
  1557. pOutputSigWriter = llvm::make_unique<DxilProgramSignatureWriter>(
  1558. pModule->GetOutputSignature(), domain,
  1559. /*IsInput*/ false,
  1560. /*UseMinPrecision*/ pModule->GetUseMinPrecision(),
  1561. bCompat_1_4);
  1562. // Write the input and output signature parts.
  1563. writer.AddPart(DFCC_InputSignature, pInputSigWriter->size(),
  1564. [&](AbstractMemoryStream *pStream) {
  1565. pInputSigWriter->write(pStream);
  1566. });
  1567. writer.AddPart(DFCC_OutputSignature, pOutputSigWriter->size(),
  1568. [&](AbstractMemoryStream *pStream) {
  1569. pOutputSigWriter->write(pStream);
  1570. });
  1571. pPatchConstOrPrimSigWriter = llvm::make_unique<DxilProgramSignatureWriter>(
  1572. pModule->GetPatchConstOrPrimSignature(), domain,
  1573. /*IsInput*/ pModule->GetShaderModel()->IsDS(),
  1574. /*UseMinPrecision*/ pModule->GetUseMinPrecision(),
  1575. bCompat_1_4);
  1576. if (pModule->GetPatchConstOrPrimSignature().GetElements().size()) {
  1577. writer.AddPart(DFCC_PatchConstantSignature,
  1578. pPatchConstOrPrimSigWriter->size(),
  1579. [&](AbstractMemoryStream *pStream) {
  1580. pPatchConstOrPrimSigWriter->write(pStream);
  1581. });
  1582. }
  1583. }
  1584. std::unique_ptr<DxilRDATWriter> pRDATWriter = nullptr;
  1585. std::unique_ptr<DxilPSVWriter> pPSVWriter = nullptr;
  1586. unsigned int major, minor;
  1587. pModule->GetDxilVersion(major, minor);
  1588. RootSignatureWriter rootSigWriter(std::move(pModule->GetSerializedRootSignature())); // Grab RS here
  1589. DXASSERT_NOMSG(pModule->GetSerializedRootSignature().empty());
  1590. bool bMetadataStripped = false;
  1591. if (pModule->GetShaderModel()->IsLib()) {
  1592. DXASSERT(pModule->GetSerializedRootSignature().empty(),
  1593. "otherwise, library has root signature outside subobject definitions");
  1594. // Write the DxilRuntimeData (RDAT) part.
  1595. pRDATWriter = llvm::make_unique<DxilRDATWriter>(*pModule);
  1596. writer.AddPart(
  1597. DFCC_RuntimeData, pRDATWriter->size(),
  1598. [&](AbstractMemoryStream *pStream) { pRDATWriter->write(pStream); });
  1599. bMetadataStripped |= pModule->StripSubobjectsFromMetadata();
  1600. pModule->ResetSubobjects(nullptr);
  1601. } else {
  1602. // Write the DxilPipelineStateValidation (PSV0) part.
  1603. pPSVWriter = llvm::make_unique<DxilPSVWriter>(*pModule);
  1604. writer.AddPart(
  1605. DFCC_PipelineStateValidation, pPSVWriter->size(),
  1606. [&](AbstractMemoryStream *pStream) { pPSVWriter->write(pStream); });
  1607. // Write the root signature (RTS0) part.
  1608. if (rootSigWriter.size()) {
  1609. if (pRootSigStreamOut) {
  1610. // Write root signature wrapped in container for separate output
  1611. DxilContainerWriter_impl rootSigContainerWriter;
  1612. rootSigContainerWriter.AddPart(
  1613. DFCC_RootSignature, rootSigWriter.size(),
  1614. [&](AbstractMemoryStream *pStream) { rootSigWriter.write(pStream); });
  1615. rootSigContainerWriter.write(pRootSigStreamOut);
  1616. }
  1617. if ((Flags & SerializeDxilFlags::StripRootSignature) == 0) {
  1618. // Write embedded root signature
  1619. writer.AddPart(
  1620. DFCC_RootSignature, rootSigWriter.size(),
  1621. [&](AbstractMemoryStream *pStream) { rootSigWriter.write(pStream); });
  1622. }
  1623. bMetadataStripped |= pModule->StripRootSignatureFromMetadata();
  1624. }
  1625. }
  1626. // If metadata was stripped, re-serialize the input module.
  1627. CComPtr<AbstractMemoryStream> pInputProgramStream = pModuleBitcode;
  1628. if (bMetadataStripped) {
  1629. pInputProgramStream.Release();
  1630. IFT(CreateMemoryStream(DxcGetThreadMallocNoRef(), &pInputProgramStream));
  1631. raw_stream_ostream outStream(pInputProgramStream.p);
  1632. WriteBitcodeToFile(pModule->GetModule(), outStream, true);
  1633. }
  1634. // If we have debug information present, serialize it to a debug part, then use the stripped version as the canonical program version.
  1635. CComPtr<AbstractMemoryStream> pProgramStream = pInputProgramStream;
  1636. bool bModuleStripped = false;
  1637. if (HasDebugInfoOrLineNumbers(*pModule->GetModule())) {
  1638. uint32_t debugInUInt32, debugPaddingBytes;
  1639. GetPaddedProgramPartSize(pInputProgramStream, debugInUInt32, debugPaddingBytes);
  1640. if (Flags & SerializeDxilFlags::IncludeDebugInfoPart) {
  1641. writer.AddPart(DFCC_ShaderDebugInfoDXIL, debugInUInt32 * sizeof(uint32_t) + sizeof(DxilProgramHeader), [&](AbstractMemoryStream *pStream) {
  1642. hlsl::WriteProgramPart(pModule->GetShaderModel(), pInputProgramStream, pStream);
  1643. });
  1644. }
  1645. llvm::StripDebugInfo(*pModule->GetModule());
  1646. pModule->StripDebugRelatedCode();
  1647. bModuleStripped = true;
  1648. } else {
  1649. // If no debug info, clear DebugNameDependOnSource
  1650. // (it's default, and this scenario can happen)
  1651. Flags &= ~SerializeDxilFlags::DebugNameDependOnSource;
  1652. }
  1653. uint32_t reflectPartSizeInBytes = 0;
  1654. CComPtr<AbstractMemoryStream> pReflectionBitcodeStream;
  1655. if (bEmitReflection) {
  1656. // Clone module for reflection
  1657. std::unique_ptr<Module> reflectionModule = CloneModuleForReflection(pModule->GetModule());
  1658. hlsl::StripAndCreateReflectionStream(reflectionModule.get(), &reflectPartSizeInBytes, &pReflectionBitcodeStream);
  1659. }
  1660. if (pReflectionStreamOut) {
  1661. DxilPartHeader partSTAT;
  1662. partSTAT.PartFourCC = DFCC_ShaderStatistics;
  1663. partSTAT.PartSize = reflectPartSizeInBytes;
  1664. IFT(WriteStreamValue(pReflectionStreamOut, partSTAT));
  1665. WriteProgramPart(pModule->GetShaderModel(), pReflectionBitcodeStream, pReflectionStreamOut);
  1666. // If library, we need RDAT part as well. For now, we just append it
  1667. if (pModule->GetShaderModel()->IsLib()) {
  1668. DxilPartHeader partRDAT;
  1669. partRDAT.PartFourCC = DFCC_RuntimeData;
  1670. partRDAT.PartSize = pRDATWriter->size();
  1671. IFT(WriteStreamValue(pReflectionStreamOut, partRDAT));
  1672. pRDATWriter->write(pReflectionStreamOut);
  1673. }
  1674. }
  1675. if (Flags & SerializeDxilFlags::IncludeReflectionPart) {
  1676. writer.AddPart(DFCC_ShaderStatistics, reflectPartSizeInBytes,
  1677. [pModule, pReflectionBitcodeStream](AbstractMemoryStream *pStream) {
  1678. WriteProgramPart(pModule->GetShaderModel(), pReflectionBitcodeStream, pStream);
  1679. });
  1680. }
  1681. if (Flags & SerializeDxilFlags::StripReflectionFromDxilPart) {
  1682. bModuleStripped |= pModule->StripReflection();
  1683. }
  1684. // If debug info or reflection was stripped, re-serialize the module.
  1685. if (bModuleStripped) {
  1686. pProgramStream.Release();
  1687. IFT(CreateMemoryStream(DxcGetThreadMallocNoRef(), &pProgramStream));
  1688. raw_stream_ostream outStream(pProgramStream.p);
  1689. WriteBitcodeToFile(pModule->GetModule(), outStream, false);
  1690. }
  1691. // Compute hash if needed.
  1692. DxilShaderHash HashContent;
  1693. SmallString<32> HashStr;
  1694. if (bSupportsShaderHash || pShaderHashOut ||
  1695. (Flags & SerializeDxilFlags::IncludeDebugNamePart &&
  1696. DebugName.empty()))
  1697. {
  1698. // If the debug name should be specific to the sources, base the name on the debug
  1699. // bitcode, which will include the source references, line numbers, etc. Otherwise,
  1700. // do it exclusively on the target shader bitcode.
  1701. llvm::MD5 md5;
  1702. if (Flags & SerializeDxilFlags::DebugNameDependOnSource) {
  1703. md5.update(ArrayRef<uint8_t>(pModuleBitcode->GetPtr(), pModuleBitcode->GetPtrSize()));
  1704. HashContent.Flags = (uint32_t)DxilShaderHashFlags::IncludesSource;
  1705. } else {
  1706. md5.update(ArrayRef<uint8_t>(pProgramStream->GetPtr(), pProgramStream->GetPtrSize()));
  1707. HashContent.Flags = (uint32_t)DxilShaderHashFlags::None;
  1708. }
  1709. md5.final(HashContent.Digest);
  1710. md5.stringifyResult(HashContent.Digest, HashStr);
  1711. }
  1712. // Serialize debug name if requested.
  1713. std::string DebugNameStr; // Used if constructing name based on hash
  1714. if (Flags & SerializeDxilFlags::IncludeDebugNamePart) {
  1715. if (DebugName.empty()) {
  1716. DebugNameStr += HashStr;
  1717. DebugNameStr += ".pdb";
  1718. DebugName = DebugNameStr;
  1719. }
  1720. // Calculate the size of the blob part.
  1721. const uint32_t DebugInfoContentLen = PSVALIGN4(
  1722. sizeof(DxilShaderDebugName) + DebugName.size() + 1); // 1 for null
  1723. writer.AddPart(DFCC_ShaderDebugName, DebugInfoContentLen,
  1724. [DebugName]
  1725. (AbstractMemoryStream *pStream)
  1726. {
  1727. DxilShaderDebugName NameContent;
  1728. NameContent.Flags = 0;
  1729. NameContent.NameLength = DebugName.size();
  1730. IFT(WriteStreamValue(pStream, NameContent));
  1731. ULONG cbWritten;
  1732. IFT(pStream->Write(DebugName.begin(), DebugName.size(), &cbWritten));
  1733. const char Pad[] = { '\0','\0','\0','\0' };
  1734. // Always writes at least one null to align size
  1735. unsigned padLen = (4 - ((sizeof(DxilShaderDebugName) + cbWritten) & 0x3));
  1736. IFT(pStream->Write(Pad, padLen, &cbWritten));
  1737. });
  1738. }
  1739. // Add hash to container if supported by validator version.
  1740. if (bSupportsShaderHash) {
  1741. writer.AddPart(DFCC_ShaderHash, sizeof(HashContent),
  1742. [HashContent]
  1743. (AbstractMemoryStream *pStream)
  1744. {
  1745. IFT(WriteStreamValue(pStream, HashContent));
  1746. });
  1747. }
  1748. // Write hash to separate output if requested.
  1749. if (pShaderHashOut) {
  1750. memcpy(pShaderHashOut, &HashContent, sizeof(DxilShaderHash));
  1751. }
  1752. // Compute padded bitcode size.
  1753. uint32_t programInUInt32, programPaddingBytes;
  1754. GetPaddedProgramPartSize(pProgramStream, programInUInt32, programPaddingBytes);
  1755. // Write the program part.
  1756. writer.AddPart(DFCC_DXIL, programInUInt32 * sizeof(uint32_t) + sizeof(DxilProgramHeader), [&](AbstractMemoryStream *pStream) {
  1757. WriteProgramPart(pModule->GetShaderModel(), pProgramStream, pStream);
  1758. });
  1759. writer.write(pFinalStream);
  1760. }
  1761. void hlsl::SerializeDxilContainerForRootSignature(hlsl::RootSignatureHandle *pRootSigHandle,
  1762. AbstractMemoryStream *pFinalStream) {
  1763. DXASSERT_NOMSG(pRootSigHandle != nullptr);
  1764. DXASSERT_NOMSG(pFinalStream != nullptr);
  1765. DxilContainerWriter_impl writer;
  1766. // Write the root signature (RTS0) part.
  1767. DxilProgramRootSignatureWriter rootSigWriter(*pRootSigHandle);
  1768. if (!pRootSigHandle->IsEmpty()) {
  1769. writer.AddPart(
  1770. DFCC_RootSignature, rootSigWriter.size(),
  1771. [&](AbstractMemoryStream *pStream) { rootSigWriter.write(pStream); });
  1772. }
  1773. writer.write(pFinalStream);
  1774. }