123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356 |
- //===- Dominators.cpp - Dominator Calculation -----------------------------===//
- //
- // The LLVM Compiler Infrastructure
- //
- // This file is distributed under the University of Illinois Open Source
- // License. See LICENSE.TXT for details.
- //
- //===----------------------------------------------------------------------===//
- //
- // This file implements simple dominator construction algorithms for finding
- // forward dominators. Postdominators are available in libanalysis, but are not
- // included in libvmcore, because it's not needed. Forward dominators are
- // needed to support the Verifier pass.
- //
- //===----------------------------------------------------------------------===//
- #include "llvm/IR/Dominators.h"
- #include "llvm/ADT/DepthFirstIterator.h"
- #include "llvm/ADT/SmallPtrSet.h"
- #include "llvm/ADT/SmallVector.h"
- #include "llvm/IR/CFG.h"
- #include "llvm/IR/Instructions.h"
- #include "llvm/IR/PassManager.h"
- #include "llvm/Support/CommandLine.h"
- #include "llvm/Support/Compiler.h"
- #include "llvm/Support/Debug.h"
- #include "llvm/Support/GenericDomTreeConstruction.h"
- #include "llvm/Support/raw_ostream.h"
- #include <algorithm>
- using namespace llvm;
- // Always verify dominfo if expensive checking is enabled.
- #ifdef XDEBUG
- static bool VerifyDomInfo = true;
- #else
- static bool VerifyDomInfo = false;
- #endif
- #if 0 // HLSL Change Starts - option pending
- static cl::opt<bool,true>
- VerifyDomInfoX("verify-dom-info", cl::location(VerifyDomInfo),
- cl::desc("Verify dominator info (time consuming)"));
- #endif // HLSL Change Ends
- bool BasicBlockEdge::isSingleEdge() const {
- const TerminatorInst *TI = Start->getTerminator();
- unsigned NumEdgesToEnd = 0;
- for (unsigned int i = 0, n = TI->getNumSuccessors(); i < n; ++i) {
- if (TI->getSuccessor(i) == End)
- ++NumEdgesToEnd;
- if (NumEdgesToEnd >= 2)
- return false;
- }
- assert(NumEdgesToEnd == 1);
- return true;
- }
- //===----------------------------------------------------------------------===//
- // DominatorTree Implementation
- //===----------------------------------------------------------------------===//
- //
- // Provide public access to DominatorTree information. Implementation details
- // can be found in Dominators.h, GenericDomTree.h, and
- // GenericDomTreeConstruction.h.
- //
- //===----------------------------------------------------------------------===//
- template class llvm::DomTreeNodeBase<BasicBlock>;
- template class llvm::DominatorTreeBase<BasicBlock>;
- template void llvm::Calculate<Function, BasicBlock *>(
- DominatorTreeBase<GraphTraits<BasicBlock *>::NodeType> &DT, Function &F);
- template void llvm::Calculate<Function, Inverse<BasicBlock *>>(
- DominatorTreeBase<GraphTraits<Inverse<BasicBlock *>>::NodeType> &DT,
- Function &F);
- // dominates - Return true if Def dominates a use in User. This performs
- // the special checks necessary if Def and User are in the same basic block.
- // Note that Def doesn't dominate a use in Def itself!
- bool DominatorTree::dominates(const Instruction *Def,
- const Instruction *User) const {
- const BasicBlock *UseBB = User->getParent();
- const BasicBlock *DefBB = Def->getParent();
- // Any unreachable use is dominated, even if Def == User.
- if (!isReachableFromEntry(UseBB))
- return true;
- // Unreachable definitions don't dominate anything.
- if (!isReachableFromEntry(DefBB))
- return false;
- // An instruction doesn't dominate a use in itself.
- if (Def == User)
- return false;
- // The value defined by an invoke dominates an instruction only if
- // it dominates every instruction in UseBB.
- // A PHI is dominated only if the instruction dominates every possible use
- // in the UseBB.
- if (isa<InvokeInst>(Def) || isa<PHINode>(User))
- return dominates(Def, UseBB);
- if (DefBB != UseBB)
- return dominates(DefBB, UseBB);
- // Loop through the basic block until we find Def or User.
- BasicBlock::const_iterator I = DefBB->begin();
- for (; &*I != Def && &*I != User; ++I)
- /*empty*/;
- return &*I == Def;
- }
- // true if Def would dominate a use in any instruction in UseBB.
- // note that dominates(Def, Def->getParent()) is false.
- bool DominatorTree::dominates(const Instruction *Def,
- const BasicBlock *UseBB) const {
- const BasicBlock *DefBB = Def->getParent();
- // Any unreachable use is dominated, even if DefBB == UseBB.
- if (!isReachableFromEntry(UseBB))
- return true;
- // Unreachable definitions don't dominate anything.
- if (!isReachableFromEntry(DefBB))
- return false;
- if (DefBB == UseBB)
- return false;
- const InvokeInst *II = dyn_cast<InvokeInst>(Def);
- if (!II)
- return dominates(DefBB, UseBB);
- // Invoke results are only usable in the normal destination, not in the
- // exceptional destination.
- BasicBlock *NormalDest = II->getNormalDest();
- BasicBlockEdge E(DefBB, NormalDest);
- return dominates(E, UseBB);
- }
- bool DominatorTree::dominates(const BasicBlockEdge &BBE,
- const BasicBlock *UseBB) const {
- // Assert that we have a single edge. We could handle them by simply
- // returning false, but since isSingleEdge is linear on the number of
- // edges, the callers can normally handle them more efficiently.
- assert(BBE.isSingleEdge());
- // If the BB the edge ends in doesn't dominate the use BB, then the
- // edge also doesn't.
- const BasicBlock *Start = BBE.getStart();
- const BasicBlock *End = BBE.getEnd();
- if (!dominates(End, UseBB))
- return false;
- // Simple case: if the end BB has a single predecessor, the fact that it
- // dominates the use block implies that the edge also does.
- if (End->getSinglePredecessor())
- return true;
- // The normal edge from the invoke is critical. Conceptually, what we would
- // like to do is split it and check if the new block dominates the use.
- // With X being the new block, the graph would look like:
- //
- // DefBB
- // /\ . .
- // / \ . .
- // / \ . .
- // / \ | |
- // A X B C
- // | \ | /
- // . \|/
- // . NormalDest
- // .
- //
- // Given the definition of dominance, NormalDest is dominated by X iff X
- // dominates all of NormalDest's predecessors (X, B, C in the example). X
- // trivially dominates itself, so we only have to find if it dominates the
- // other predecessors. Since the only way out of X is via NormalDest, X can
- // only properly dominate a node if NormalDest dominates that node too.
- for (const_pred_iterator PI = pred_begin(End), E = pred_end(End);
- PI != E; ++PI) {
- const BasicBlock *BB = *PI;
- if (BB == Start)
- continue;
- if (!dominates(End, BB))
- return false;
- }
- return true;
- }
- bool DominatorTree::dominates(const BasicBlockEdge &BBE, const Use &U) const {
- // Assert that we have a single edge. We could handle them by simply
- // returning false, but since isSingleEdge is linear on the number of
- // edges, the callers can normally handle them more efficiently.
- assert(BBE.isSingleEdge());
- Instruction *UserInst = cast<Instruction>(U.getUser());
- // A PHI in the end of the edge is dominated by it.
- PHINode *PN = dyn_cast<PHINode>(UserInst);
- if (PN && PN->getParent() == BBE.getEnd() &&
- PN->getIncomingBlock(U) == BBE.getStart())
- return true;
- // Otherwise use the edge-dominates-block query, which
- // handles the crazy critical edge cases properly.
- const BasicBlock *UseBB;
- if (PN)
- UseBB = PN->getIncomingBlock(U);
- else
- UseBB = UserInst->getParent();
- return dominates(BBE, UseBB);
- }
- bool DominatorTree::dominates(const Instruction *Def, const Use &U) const {
- Instruction *UserInst = cast<Instruction>(U.getUser());
- const BasicBlock *DefBB = Def->getParent();
- // Determine the block in which the use happens. PHI nodes use
- // their operands on edges; simulate this by thinking of the use
- // happening at the end of the predecessor block.
- const BasicBlock *UseBB;
- if (PHINode *PN = dyn_cast<PHINode>(UserInst))
- UseBB = PN->getIncomingBlock(U);
- else
- UseBB = UserInst->getParent();
- // Any unreachable use is dominated, even if Def == User.
- if (!isReachableFromEntry(UseBB))
- return true;
- // Unreachable definitions don't dominate anything.
- if (!isReachableFromEntry(DefBB))
- return false;
- // Invoke instructions define their return values on the edges
- // to their normal successors, so we have to handle them specially.
- // Among other things, this means they don't dominate anything in
- // their own block, except possibly a phi, so we don't need to
- // walk the block in any case.
- if (const InvokeInst *II = dyn_cast<InvokeInst>(Def)) {
- BasicBlock *NormalDest = II->getNormalDest();
- BasicBlockEdge E(DefBB, NormalDest);
- return dominates(E, U);
- }
- // If the def and use are in different blocks, do a simple CFG dominator
- // tree query.
- if (DefBB != UseBB)
- return dominates(DefBB, UseBB);
- // Ok, def and use are in the same block. If the def is an invoke, it
- // doesn't dominate anything in the block. If it's a PHI, it dominates
- // everything in the block.
- if (isa<PHINode>(UserInst))
- return true;
- // Otherwise, just loop through the basic block until we find Def or User.
- BasicBlock::const_iterator I = DefBB->begin();
- for (; &*I != Def && &*I != UserInst; ++I)
- /*empty*/;
- return &*I != UserInst;
- }
- bool DominatorTree::isReachableFromEntry(const Use &U) const {
- Instruction *I = dyn_cast<Instruction>(U.getUser());
- // ConstantExprs aren't really reachable from the entry block, but they
- // don't need to be treated like unreachable code either.
- if (!I) return true;
- // PHI nodes use their operands on their incoming edges.
- if (PHINode *PN = dyn_cast<PHINode>(I))
- return isReachableFromEntry(PN->getIncomingBlock(U));
- // Everything else uses their operands in their own block.
- return isReachableFromEntry(I->getParent());
- }
- void DominatorTree::verifyDomTree() const {
- Function &F = *getRoot()->getParent();
- DominatorTree OtherDT;
- OtherDT.recalculate(F);
- if (compare(OtherDT)) {
- errs() << "DominatorTree is not up to date!\nComputed:\n";
- print(errs());
- errs() << "\nActual:\n";
- OtherDT.print(errs());
- abort();
- }
- }
- //===----------------------------------------------------------------------===//
- // DominatorTreeAnalysis and related pass implementations
- //===----------------------------------------------------------------------===//
- //
- // This implements the DominatorTreeAnalysis which is used with the new pass
- // manager. It also implements some methods from utility passes.
- //
- //===----------------------------------------------------------------------===//
- DominatorTree DominatorTreeAnalysis::run(Function &F) {
- DominatorTree DT;
- DT.recalculate(F);
- return DT;
- }
- char DominatorTreeAnalysis::PassID;
- DominatorTreePrinterPass::DominatorTreePrinterPass(raw_ostream &OS) : OS(OS) {}
- PreservedAnalyses DominatorTreePrinterPass::run(Function &F,
- FunctionAnalysisManager *AM) {
- OS << "DominatorTree for function: " << F.getName() << "\n";
- AM->getResult<DominatorTreeAnalysis>(F).print(OS);
- return PreservedAnalyses::all();
- }
- PreservedAnalyses DominatorTreeVerifierPass::run(Function &F,
- FunctionAnalysisManager *AM) {
- AM->getResult<DominatorTreeAnalysis>(F).verifyDomTree();
- return PreservedAnalyses::all();
- }
- //===----------------------------------------------------------------------===//
- // DominatorTreeWrapperPass Implementation
- //===----------------------------------------------------------------------===//
- //
- // The implementation details of the wrapper pass that holds a DominatorTree
- // suitable for use with the legacy pass manager.
- //
- //===----------------------------------------------------------------------===//
- char DominatorTreeWrapperPass::ID = 0;
- INITIALIZE_PASS(DominatorTreeWrapperPass, "domtree",
- "Dominator Tree Construction", true, true)
- bool DominatorTreeWrapperPass::runOnFunction(Function &F) {
- DT.recalculate(F);
- return false;
- }
- void DominatorTreeWrapperPass::verifyAnalysis() const {
- if (VerifyDomInfo)
- DT.verifyDomTree();
- }
- void DominatorTreeWrapperPass::print(raw_ostream &OS, const Module *) const {
- DT.print(OS);
- }
|