12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722 |
- //===-- Verifier.cpp - Implement the Module Verifier -----------------------==//
- //
- // The LLVM Compiler Infrastructure
- //
- // This file is distributed under the University of Illinois Open Source
- // License. See LICENSE.TXT for details.
- //
- //===----------------------------------------------------------------------===//
- //
- // This file defines the function verifier interface, that can be used for some
- // sanity checking of input to the system.
- //
- // Note that this does not provide full `Java style' security and verifications,
- // instead it just tries to ensure that code is well-formed.
- //
- // * Both of a binary operator's parameters are of the same type
- // * Verify that the indices of mem access instructions match other operands
- // * Verify that arithmetic and other things are only performed on first-class
- // types. Verify that shifts & logicals only happen on integrals f.e.
- // * All of the constants in a switch statement are of the correct type
- // * The code is in valid SSA form
- // * It should be illegal to put a label into any other type (like a structure)
- // or to return one. [except constant arrays!]
- // * Only phi nodes can be self referential: 'add i32 %0, %0 ; <int>:0' is bad
- // * PHI nodes must have an entry for each predecessor, with no extras.
- // * PHI nodes must be the first thing in a basic block, all grouped together
- // * PHI nodes must have at least one entry
- // * All basic blocks should only end with terminator insts, not contain them
- // * The entry node to a function must not have predecessors
- // * All Instructions must be embedded into a basic block
- // * Functions cannot take a void-typed parameter
- // * Verify that a function's argument list agrees with it's declared type.
- // * It is illegal to specify a name for a void value.
- // * It is illegal to have a internal global value with no initializer
- // * It is illegal to have a ret instruction that returns a value that does not
- // agree with the function return value type.
- // * Function call argument types match the function prototype
- // * A landing pad is defined by a landingpad instruction, and can be jumped to
- // only by the unwind edge of an invoke instruction.
- // * A landingpad instruction must be the first non-PHI instruction in the
- // block.
- // * All landingpad instructions must use the same personality function with
- // the same function.
- // * All other things that are tested by asserts spread about the code...
- //
- //===----------------------------------------------------------------------===//
- #include "llvm/IR/Verifier.h"
- #include "llvm/ADT/STLExtras.h"
- #include "llvm/ADT/SetVector.h"
- #include "llvm/ADT/SmallPtrSet.h"
- #include "llvm/ADT/SmallVector.h"
- #include "llvm/ADT/StringExtras.h"
- #include "llvm/IR/CFG.h"
- #include "llvm/IR/CallSite.h"
- #include "llvm/IR/CallingConv.h"
- #include "llvm/IR/ConstantRange.h"
- #include "llvm/IR/Constants.h"
- #include "llvm/IR/DataLayout.h"
- #include "llvm/IR/DebugInfo.h"
- #include "llvm/IR/DerivedTypes.h"
- #include "llvm/IR/Dominators.h"
- #include "llvm/IR/InlineAsm.h"
- #include "llvm/IR/InstIterator.h"
- #include "llvm/IR/InstVisitor.h"
- #include "llvm/IR/IntrinsicInst.h"
- #include "llvm/IR/LLVMContext.h"
- #include "llvm/IR/Metadata.h"
- #include "llvm/IR/Module.h"
- #include "llvm/IR/PassManager.h"
- #include "llvm/IR/Statepoint.h"
- #include "llvm/Pass.h"
- #include "llvm/Support/CommandLine.h"
- #include "llvm/Support/Debug.h"
- #include "llvm/Support/ErrorHandling.h"
- #include "llvm/Support/raw_ostream.h"
- #include <algorithm>
- #include <cstdarg>
- using namespace llvm;
- #if 0 // HLSL Change Starts - option pending
- static cl::opt<bool> VerifyDebugInfo("verify-debug-info", cl::init(true));
- #endif // HLSL Change Ends
- namespace {
- struct VerifierSupport {
- raw_ostream &OS;
- const Module *M;
- /// \brief Track the brokenness of the module while recursively visiting.
- bool Broken;
- explicit VerifierSupport(raw_ostream &OS)
- : OS(OS), M(nullptr), Broken(false) {}
- private:
- void Write(const Value *V) {
- if (!V)
- return;
- if (isa<Instruction>(V)) {
- OS << *V << '\n';
- } else {
- V->printAsOperand(OS, true, M);
- OS << '\n';
- }
- }
- void Write(ImmutableCallSite CS) {
- Write(CS.getInstruction());
- }
- void Write(const Metadata *MD) {
- if (!MD)
- return;
- MD->print(OS, M);
- OS << '\n';
- }
- template <class T> void Write(const MDTupleTypedArrayWrapper<T> &MD) {
- Write(MD.get());
- }
- void Write(const NamedMDNode *NMD) {
- if (!NMD)
- return;
- NMD->print(OS);
- OS << '\n';
- }
- void Write(Type *T) {
- if (!T)
- return;
- OS << ' ' << *T;
- }
- void Write(const Comdat *C) {
- if (!C)
- return;
- OS << *C;
- }
- template <typename T1, typename... Ts>
- void WriteTs(const T1 &V1, const Ts &... Vs) {
- Write(V1);
- WriteTs(Vs...);
- }
- template <typename... Ts> void WriteTs() {}
- public:
- /// \brief A check failed, so printout out the condition and the message.
- ///
- /// This provides a nice place to put a breakpoint if you want to see why
- /// something is not correct.
- void CheckFailed(const Twine &Message) {
- OS << Message << '\n';
- Broken = true;
- }
- /// \brief A check failed (with values to print).
- ///
- /// This calls the Message-only version so that the above is easier to set a
- /// breakpoint on.
- template <typename T1, typename... Ts>
- void CheckFailed(const Twine &Message, const T1 &V1, const Ts &... Vs) {
- CheckFailed(Message);
- WriteTs(V1, Vs...);
- }
- };
- class Verifier : public InstVisitor<Verifier>, VerifierSupport {
- friend class InstVisitor<Verifier>;
- LLVMContext *Context;
- DominatorTree DT;
- /// \brief When verifying a basic block, keep track of all of the
- /// instructions we have seen so far.
- ///
- /// This allows us to do efficient dominance checks for the case when an
- /// instruction has an operand that is an instruction in the same block.
- SmallPtrSet<Instruction *, 16> InstsInThisBlock;
- /// \brief Keep track of the metadata nodes that have been checked already.
- SmallPtrSet<const Metadata *, 32> MDNodes;
- /// \brief Track unresolved string-based type references.
- SmallDenseMap<const MDString *, const MDNode *, 32> UnresolvedTypeRefs;
- /// \brief Whether we've seen a call to @llvm.localescape in this function
- /// already.
- bool SawFrameEscape;
- /// Stores the count of how many objects were passed to llvm.localescape for a
- /// given function and the largest index passed to llvm.localrecover.
- DenseMap<Function *, std::pair<unsigned, unsigned>> FrameEscapeInfo;
- public:
- explicit Verifier(raw_ostream &OS)
- : VerifierSupport(OS), Context(nullptr), SawFrameEscape(false) {}
- bool verify(const Function &F) {
- M = F.getParent();
- Context = &M->getContext();
- // First ensure the function is well-enough formed to compute dominance
- // information.
- if (F.empty()) {
- OS << "Function '" << F.getName()
- << "' does not contain an entry block!\n";
- return false;
- }
- for (Function::const_iterator I = F.begin(), E = F.end(); I != E; ++I) {
- if (I->empty() || !I->back().isTerminator()) {
- OS << "Basic Block in function '" << F.getName()
- << "' does not have terminator!\n";
- I->printAsOperand(OS, true);
- OS << "\n";
- return false;
- }
- }
- // Now directly compute a dominance tree. We don't rely on the pass
- // manager to provide this as it isolates us from a potentially
- // out-of-date dominator tree and makes it significantly more complex to
- // run this code outside of a pass manager.
- // FIXME: It's really gross that we have to cast away constness here.
- DT.recalculate(const_cast<Function &>(F));
- Broken = false;
- // FIXME: We strip const here because the inst visitor strips const.
- visit(const_cast<Function &>(F));
- InstsInThisBlock.clear();
- SawFrameEscape = false;
- return !Broken;
- }
- bool verify(const Module &M) {
- this->M = &M;
- Context = &M.getContext();
- Broken = false;
- // Scan through, checking all of the external function's linkage now...
- for (Module::const_iterator I = M.begin(), E = M.end(); I != E; ++I) {
- visitGlobalValue(*I);
- // Check to make sure function prototypes are okay.
- if (I->isDeclaration())
- visitFunction(*I);
- }
- // Now that we've visited every function, verify that we never asked to
- // recover a frame index that wasn't escaped.
- verifyFrameRecoverIndices();
- for (Module::const_global_iterator I = M.global_begin(), E = M.global_end();
- I != E; ++I)
- visitGlobalVariable(*I);
- for (Module::const_alias_iterator I = M.alias_begin(), E = M.alias_end();
- I != E; ++I)
- visitGlobalAlias(*I);
- for (Module::const_named_metadata_iterator I = M.named_metadata_begin(),
- E = M.named_metadata_end();
- I != E; ++I)
- visitNamedMDNode(*I);
- for (const StringMapEntry<Comdat> &SMEC : M.getComdatSymbolTable())
- visitComdat(SMEC.getValue());
- visitModuleFlags(M);
- visitModuleIdents(M);
- // Verify type referneces last.
- verifyTypeRefs();
- return !Broken;
- }
- private:
- // Verification methods...
- void visitGlobalValue(const GlobalValue &GV);
- void visitGlobalVariable(const GlobalVariable &GV);
- void visitGlobalAlias(const GlobalAlias &GA);
- void visitAliaseeSubExpr(const GlobalAlias &A, const Constant &C);
- void visitAliaseeSubExpr(SmallPtrSetImpl<const GlobalAlias *> &Visited,
- const GlobalAlias &A, const Constant &C);
- void visitNamedMDNode(const NamedMDNode &NMD);
- void visitMDNode(const MDNode &MD);
- void visitMetadataAsValue(const MetadataAsValue &MD, Function *F);
- void visitValueAsMetadata(const ValueAsMetadata &MD, Function *F);
- void visitComdat(const Comdat &C);
- void visitModuleIdents(const Module &M);
- void visitModuleFlags(const Module &M);
- void visitModuleFlag(const MDNode *Op,
- DenseMap<const MDString *, const MDNode *> &SeenIDs,
- SmallVectorImpl<const MDNode *> &Requirements);
- void visitFunction(const Function &F);
- void visitBasicBlock(BasicBlock &BB);
- void visitRangeMetadata(Instruction& I, MDNode* Range, Type* Ty);
- template <class Ty> bool isValidMetadataArray(const MDTuple &N);
- #define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS) void visit##CLASS(const CLASS &N);
- #include "llvm/IR/Metadata.def"
- void visitDIScope(const DIScope &N);
- void visitDIDerivedTypeBase(const DIDerivedTypeBase &N);
- void visitDIVariable(const DIVariable &N);
- void visitDILexicalBlockBase(const DILexicalBlockBase &N);
- void visitDITemplateParameter(const DITemplateParameter &N);
- void visitTemplateParams(const MDNode &N, const Metadata &RawParams);
- /// \brief Check for a valid string-based type reference.
- ///
- /// Checks if \c MD is a string-based type reference. If it is, keeps track
- /// of it (and its user, \c N) for error messages later.
- bool isValidUUID(const MDNode &N, const Metadata *MD);
- /// \brief Check for a valid type reference.
- ///
- /// Checks for subclasses of \a DIType, or \a isValidUUID().
- bool isTypeRef(const MDNode &N, const Metadata *MD);
- /// \brief Check for a valid scope reference.
- ///
- /// Checks for subclasses of \a DIScope, or \a isValidUUID().
- bool isScopeRef(const MDNode &N, const Metadata *MD);
- /// \brief Check for a valid debug info reference.
- ///
- /// Checks for subclasses of \a DINode, or \a isValidUUID().
- bool isDIRef(const MDNode &N, const Metadata *MD);
- // InstVisitor overrides...
- using InstVisitor<Verifier>::visit;
- void visit(Instruction &I);
- void visitTruncInst(TruncInst &I);
- void visitZExtInst(ZExtInst &I);
- void visitSExtInst(SExtInst &I);
- void visitFPTruncInst(FPTruncInst &I);
- void visitFPExtInst(FPExtInst &I);
- void visitFPToUIInst(FPToUIInst &I);
- void visitFPToSIInst(FPToSIInst &I);
- void visitUIToFPInst(UIToFPInst &I);
- void visitSIToFPInst(SIToFPInst &I);
- void visitIntToPtrInst(IntToPtrInst &I);
- void visitPtrToIntInst(PtrToIntInst &I);
- void visitBitCastInst(BitCastInst &I);
- void visitAddrSpaceCastInst(AddrSpaceCastInst &I);
- void visitPHINode(PHINode &PN);
- void visitBinaryOperator(BinaryOperator &B);
- void visitICmpInst(ICmpInst &IC);
- void visitFCmpInst(FCmpInst &FC);
- void visitExtractElementInst(ExtractElementInst &EI);
- void visitInsertElementInst(InsertElementInst &EI);
- void visitShuffleVectorInst(ShuffleVectorInst &EI);
- void visitVAArgInst(VAArgInst &VAA) { visitInstruction(VAA); }
- void visitCallInst(CallInst &CI);
- void visitInvokeInst(InvokeInst &II);
- void visitGetElementPtrInst(GetElementPtrInst &GEP);
- void visitLoadInst(LoadInst &LI);
- void visitStoreInst(StoreInst &SI);
- void verifyDominatesUse(Instruction &I, unsigned i);
- void visitInstruction(Instruction &I);
- void visitTerminatorInst(TerminatorInst &I);
- void visitBranchInst(BranchInst &BI);
- void visitReturnInst(ReturnInst &RI);
- void visitSwitchInst(SwitchInst &SI);
- void visitIndirectBrInst(IndirectBrInst &BI);
- void visitSelectInst(SelectInst &SI);
- void visitUserOp1(Instruction &I);
- void visitUserOp2(Instruction &I) { visitUserOp1(I); }
- void visitIntrinsicCallSite(Intrinsic::ID ID, CallSite CS);
- template <class DbgIntrinsicTy>
- void visitDbgIntrinsic(StringRef Kind, DbgIntrinsicTy &DII);
- void visitAtomicCmpXchgInst(AtomicCmpXchgInst &CXI);
- void visitAtomicRMWInst(AtomicRMWInst &RMWI);
- void visitFenceInst(FenceInst &FI);
- void visitAllocaInst(AllocaInst &AI);
- void visitExtractValueInst(ExtractValueInst &EVI);
- void visitInsertValueInst(InsertValueInst &IVI);
- void visitLandingPadInst(LandingPadInst &LPI);
- void VerifyCallSite(CallSite CS);
- void verifyMustTailCall(CallInst &CI);
- bool PerformTypeCheck(Intrinsic::ID ID, Function *F, Type *Ty, int VT,
- unsigned ArgNo, std::string &Suffix);
- bool VerifyIntrinsicType(Type *Ty, ArrayRef<Intrinsic::IITDescriptor> &Infos,
- SmallVectorImpl<Type *> &ArgTys);
- bool VerifyIntrinsicIsVarArg(bool isVarArg,
- ArrayRef<Intrinsic::IITDescriptor> &Infos);
- bool VerifyAttributeCount(AttributeSet Attrs, unsigned Params);
- void VerifyAttributeTypes(AttributeSet Attrs, unsigned Idx, bool isFunction,
- const Value *V);
- void VerifyParameterAttrs(AttributeSet Attrs, unsigned Idx, Type *Ty,
- bool isReturnValue, const Value *V);
- void VerifyFunctionAttrs(FunctionType *FT, AttributeSet Attrs,
- const Value *V);
- void VerifyFunctionMetadata(
- const SmallVector<std::pair<unsigned, MDNode *>, 4> MDs);
- void VerifyConstantExprBitcastType(const ConstantExpr *CE);
- void VerifyStatepoint(ImmutableCallSite CS);
- void verifyFrameRecoverIndices();
- // Module-level debug info verification...
- void verifyTypeRefs();
- template <class MapTy>
- void verifyBitPieceExpression(const DbgInfoIntrinsic &I,
- const MapTy &TypeRefs);
- void visitUnresolvedTypeRef(const MDString *S, const MDNode *N);
- };
- } // End anonymous namespace
- // Assert - We know that cond should be true, if not print an error message.
- #define Assert(C, ...) \
- do { if (!(C)) { CheckFailed(__VA_ARGS__); return; } } while (0)
- void Verifier::visit(Instruction &I) {
- for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
- Assert(I.getOperand(i) != nullptr, "Operand is null", &I);
- InstVisitor<Verifier>::visit(I);
- }
- void Verifier::visitGlobalValue(const GlobalValue &GV) {
- Assert(!GV.isDeclaration() || GV.hasExternalLinkage() ||
- GV.hasExternalWeakLinkage(),
- "Global is external, but doesn't have external or weak linkage!", &GV);
- Assert(GV.getAlignment() <= Value::MaximumAlignment,
- "huge alignment values are unsupported", &GV);
- Assert(!GV.hasAppendingLinkage() || isa<GlobalVariable>(GV),
- "Only global variables can have appending linkage!", &GV);
- if (GV.hasAppendingLinkage()) {
- const GlobalVariable *GVar = dyn_cast<GlobalVariable>(&GV);
- Assert(GVar && GVar->getValueType()->isArrayTy(),
- "Only global arrays can have appending linkage!", GVar);
- }
- if (GV.isDeclarationForLinker())
- Assert(!GV.hasComdat(), "Declaration may not be in a Comdat!", &GV);
- }
- void Verifier::visitGlobalVariable(const GlobalVariable &GV) {
- if (GV.hasInitializer()) {
- Assert(GV.getInitializer()->getType() == GV.getType()->getElementType(),
- "Global variable initializer type does not match global "
- "variable type!",
- &GV);
- // If the global has common linkage, it must have a zero initializer and
- // cannot be constant.
- if (GV.hasCommonLinkage()) {
- Assert(GV.getInitializer()->isNullValue(),
- "'common' global must have a zero initializer!", &GV);
- Assert(!GV.isConstant(), "'common' global may not be marked constant!",
- &GV);
- Assert(!GV.hasComdat(), "'common' global may not be in a Comdat!", &GV);
- }
- } else {
- Assert(GV.hasExternalLinkage() || GV.hasExternalWeakLinkage(),
- "invalid linkage type for global declaration", &GV);
- }
- if (GV.hasName() && (GV.getName() == "llvm.global_ctors" ||
- GV.getName() == "llvm.global_dtors")) {
- Assert(!GV.hasInitializer() || GV.hasAppendingLinkage(),
- "invalid linkage for intrinsic global variable", &GV);
- // Don't worry about emitting an error for it not being an array,
- // visitGlobalValue will complain on appending non-array.
- if (ArrayType *ATy = dyn_cast<ArrayType>(GV.getValueType())) {
- StructType *STy = dyn_cast<StructType>(ATy->getElementType());
- PointerType *FuncPtrTy =
- FunctionType::get(Type::getVoidTy(*Context), false)->getPointerTo();
- // FIXME: Reject the 2-field form in LLVM 4.0.
- Assert(STy &&
- (STy->getNumElements() == 2 || STy->getNumElements() == 3) &&
- STy->getTypeAtIndex(0u)->isIntegerTy(32) &&
- STy->getTypeAtIndex(1) == FuncPtrTy,
- "wrong type for intrinsic global variable", &GV);
- if (STy->getNumElements() == 3) {
- Type *ETy = STy->getTypeAtIndex(2);
- Assert(ETy->isPointerTy() &&
- cast<PointerType>(ETy)->getElementType()->isIntegerTy(8),
- "wrong type for intrinsic global variable", &GV);
- }
- }
- }
- if (GV.hasName() && (GV.getName() == "llvm.used" ||
- GV.getName() == "llvm.compiler.used")) {
- Assert(!GV.hasInitializer() || GV.hasAppendingLinkage(),
- "invalid linkage for intrinsic global variable", &GV);
- Type *GVType = GV.getValueType();
- if (ArrayType *ATy = dyn_cast<ArrayType>(GVType)) {
- PointerType *PTy = dyn_cast<PointerType>(ATy->getElementType());
- Assert(PTy, "wrong type for intrinsic global variable", &GV);
- if (GV.hasInitializer()) {
- const Constant *Init = GV.getInitializer();
- const ConstantArray *InitArray = dyn_cast<ConstantArray>(Init);
- Assert(InitArray, "wrong initalizer for intrinsic global variable",
- Init);
- for (unsigned i = 0, e = InitArray->getNumOperands(); i != e; ++i) {
- Value *V = Init->getOperand(i)->stripPointerCastsNoFollowAliases();
- Assert(isa<GlobalVariable>(V) || isa<Function>(V) ||
- isa<GlobalAlias>(V),
- "invalid llvm.used member", V);
- Assert(V->hasName(), "members of llvm.used must be named", V);
- }
- }
- }
- }
- Assert(!GV.hasDLLImportStorageClass() ||
- (GV.isDeclaration() && GV.hasExternalLinkage()) ||
- GV.hasAvailableExternallyLinkage(),
- "Global is marked as dllimport, but not external", &GV);
- if (!GV.hasInitializer()) {
- visitGlobalValue(GV);
- return;
- }
- // Walk any aggregate initializers looking for bitcasts between address spaces
- SmallPtrSet<const Value *, 4> Visited;
- SmallVector<const Value *, 4> WorkStack;
- WorkStack.push_back(cast<Value>(GV.getInitializer()));
- while (!WorkStack.empty()) {
- const Value *V = WorkStack.pop_back_val();
- if (!Visited.insert(V).second)
- continue;
- if (const User *U = dyn_cast<User>(V)) {
- WorkStack.append(U->op_begin(), U->op_end());
- }
- if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
- VerifyConstantExprBitcastType(CE);
- if (Broken)
- return;
- }
- }
- visitGlobalValue(GV);
- }
- void Verifier::visitAliaseeSubExpr(const GlobalAlias &GA, const Constant &C) {
- SmallPtrSet<const GlobalAlias*, 4> Visited;
- Visited.insert(&GA);
- visitAliaseeSubExpr(Visited, GA, C);
- }
- void Verifier::visitAliaseeSubExpr(SmallPtrSetImpl<const GlobalAlias*> &Visited,
- const GlobalAlias &GA, const Constant &C) {
- if (const auto *GV = dyn_cast<GlobalValue>(&C)) {
- Assert(!GV->isDeclaration(), "Alias must point to a definition", &GA);
- if (const auto *GA2 = dyn_cast<GlobalAlias>(GV)) {
- Assert(Visited.insert(GA2).second, "Aliases cannot form a cycle", &GA);
- Assert(!GA2->mayBeOverridden(), "Alias cannot point to a weak alias",
- &GA);
- } else {
- // Only continue verifying subexpressions of GlobalAliases.
- // Do not recurse into global initializers.
- return;
- }
- }
- if (const auto *CE = dyn_cast<ConstantExpr>(&C))
- VerifyConstantExprBitcastType(CE);
- for (const Use &U : C.operands()) {
- Value *V = &*U;
- if (const auto *GA2 = dyn_cast<GlobalAlias>(V))
- visitAliaseeSubExpr(Visited, GA, *GA2->getAliasee());
- else if (const auto *C2 = dyn_cast<Constant>(V))
- visitAliaseeSubExpr(Visited, GA, *C2);
- }
- }
- void Verifier::visitGlobalAlias(const GlobalAlias &GA) {
- Assert(GlobalAlias::isValidLinkage(GA.getLinkage()),
- "Alias should have private, internal, linkonce, weak, linkonce_odr, "
- "weak_odr, or external linkage!",
- &GA);
- const Constant *Aliasee = GA.getAliasee();
- Assert(Aliasee, "Aliasee cannot be NULL!", &GA);
- Assert(GA.getType() == Aliasee->getType(),
- "Alias and aliasee types should match!", &GA);
- Assert(isa<GlobalValue>(Aliasee) || isa<ConstantExpr>(Aliasee),
- "Aliasee should be either GlobalValue or ConstantExpr", &GA);
- visitAliaseeSubExpr(GA, *Aliasee);
- visitGlobalValue(GA);
- }
- void Verifier::visitNamedMDNode(const NamedMDNode &NMD) {
- for (unsigned i = 0, e = NMD.getNumOperands(); i != e; ++i) {
- MDNode *MD = NMD.getOperand(i);
- if (NMD.getName() == "llvm.dbg.cu") {
- Assert(MD && isa<DICompileUnit>(MD), "invalid compile unit", &NMD, MD);
- }
- if (!MD)
- continue;
- visitMDNode(*MD);
- }
- }
- void Verifier::visitMDNode(const MDNode &MD) {
- // Only visit each node once. Metadata can be mutually recursive, so this
- // avoids infinite recursion here, as well as being an optimization.
- if (!MDNodes.insert(&MD).second)
- return;
- switch (MD.getMetadataID()) {
- default:
- llvm_unreachable("Invalid MDNode subclass");
- case Metadata::MDTupleKind:
- break;
- #define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS) \
- case Metadata::CLASS##Kind: \
- visit##CLASS(cast<CLASS>(MD)); \
- break;
- #include "llvm/IR/Metadata.def"
- }
- for (unsigned i = 0, e = MD.getNumOperands(); i != e; ++i) {
- Metadata *Op = MD.getOperand(i);
- if (!Op)
- continue;
- Assert(!isa<LocalAsMetadata>(Op), "Invalid operand for global metadata!",
- &MD, Op);
- if (auto *N = dyn_cast<MDNode>(Op)) {
- visitMDNode(*N);
- continue;
- }
- if (auto *V = dyn_cast<ValueAsMetadata>(Op)) {
- visitValueAsMetadata(*V, nullptr);
- continue;
- }
- }
- // Check these last, so we diagnose problems in operands first.
- Assert(!MD.isTemporary(), "Expected no forward declarations!", &MD);
- Assert(MD.isResolved(), "All nodes should be resolved!", &MD);
- }
- void Verifier::visitValueAsMetadata(const ValueAsMetadata &MD, Function *F) {
- Assert(MD.getValue(), "Expected valid value", &MD);
- Assert(!MD.getValue()->getType()->isMetadataTy(),
- "Unexpected metadata round-trip through values", &MD, MD.getValue());
- auto *L = dyn_cast<LocalAsMetadata>(&MD);
- if (!L)
- return;
- Assert(F, "function-local metadata used outside a function", L);
- // If this was an instruction, bb, or argument, verify that it is in the
- // function that we expect.
- Function *ActualF = nullptr;
- if (Instruction *I = dyn_cast<Instruction>(L->getValue())) {
- Assert(I->getParent(), "function-local metadata not in basic block", L, I);
- ActualF = I->getParent()->getParent();
- } else if (BasicBlock *BB = dyn_cast<BasicBlock>(L->getValue()))
- ActualF = BB->getParent();
- else if (Argument *A = dyn_cast<Argument>(L->getValue()))
- ActualF = A->getParent();
- assert(ActualF && "Unimplemented function local metadata case!");
- Assert(ActualF == F, "function-local metadata used in wrong function", L);
- }
- void Verifier::visitMetadataAsValue(const MetadataAsValue &MDV, Function *F) {
- Metadata *MD = MDV.getMetadata();
- if (auto *N = dyn_cast<MDNode>(MD)) {
- visitMDNode(*N);
- return;
- }
- // Only visit each node once. Metadata can be mutually recursive, so this
- // avoids infinite recursion here, as well as being an optimization.
- if (!MDNodes.insert(MD).second)
- return;
- if (auto *V = dyn_cast<ValueAsMetadata>(MD))
- visitValueAsMetadata(*V, F);
- }
- bool Verifier::isValidUUID(const MDNode &N, const Metadata *MD) {
- auto *S = dyn_cast<MDString>(MD);
- if (!S)
- return false;
- if (S->getString().empty())
- return false;
- // Keep track of names of types referenced via UUID so we can check that they
- // actually exist.
- UnresolvedTypeRefs.insert(std::make_pair(S, &N));
- return true;
- }
- /// \brief Check if a value can be a reference to a type.
- bool Verifier::isTypeRef(const MDNode &N, const Metadata *MD) {
- return !MD || isValidUUID(N, MD) || isa<DIType>(MD);
- }
- /// \brief Check if a value can be a ScopeRef.
- bool Verifier::isScopeRef(const MDNode &N, const Metadata *MD) {
- return !MD || isValidUUID(N, MD) || isa<DIScope>(MD);
- }
- /// \brief Check if a value can be a debug info ref.
- bool Verifier::isDIRef(const MDNode &N, const Metadata *MD) {
- return !MD || isValidUUID(N, MD) || isa<DINode>(MD);
- }
- template <class Ty>
- bool isValidMetadataArrayImpl(const MDTuple &N, bool AllowNull) {
- for (Metadata *MD : N.operands()) {
- if (MD) {
- if (!isa<Ty>(MD))
- return false;
- } else {
- if (!AllowNull)
- return false;
- }
- }
- return true;
- }
- template <class Ty>
- bool isValidMetadataArray(const MDTuple &N) {
- return isValidMetadataArrayImpl<Ty>(N, /* AllowNull */ false);
- }
- template <class Ty>
- bool isValidMetadataNullArray(const MDTuple &N) {
- return isValidMetadataArrayImpl<Ty>(N, /* AllowNull */ true);
- }
- void Verifier::visitDILocation(const DILocation &N) {
- Assert(N.getRawScope() && isa<DILocalScope>(N.getRawScope()),
- "location requires a valid scope", &N, N.getRawScope());
- if (auto *IA = N.getRawInlinedAt())
- Assert(isa<DILocation>(IA), "inlined-at should be a location", &N, IA);
- }
- void Verifier::visitGenericDINode(const GenericDINode &N) {
- Assert(N.getTag(), "invalid tag", &N);
- }
- void Verifier::visitDIScope(const DIScope &N) {
- if (auto *F = N.getRawFile())
- Assert(isa<DIFile>(F), "invalid file", &N, F);
- }
- void Verifier::visitDISubrange(const DISubrange &N) {
- Assert(N.getTag() == dwarf::DW_TAG_subrange_type, "invalid tag", &N);
- Assert(N.getCount() >= -1, "invalid subrange count", &N);
- }
- void Verifier::visitDIEnumerator(const DIEnumerator &N) {
- Assert(N.getTag() == dwarf::DW_TAG_enumerator, "invalid tag", &N);
- }
- void Verifier::visitDIBasicType(const DIBasicType &N) {
- Assert(N.getTag() == dwarf::DW_TAG_base_type ||
- N.getTag() == dwarf::DW_TAG_unspecified_type,
- "invalid tag", &N);
- }
- void Verifier::visitDIDerivedTypeBase(const DIDerivedTypeBase &N) {
- // Common scope checks.
- visitDIScope(N);
- Assert(isScopeRef(N, N.getScope()), "invalid scope", &N, N.getScope());
- Assert(isTypeRef(N, N.getBaseType()), "invalid base type", &N,
- N.getBaseType());
- // FIXME: Sink this into the subclass verifies.
- if (!N.getFile() || N.getFile()->getFilename().empty()) {
- // Check whether the filename is allowed to be empty.
- uint16_t Tag = N.getTag();
- Assert(
- Tag == dwarf::DW_TAG_const_type || Tag == dwarf::DW_TAG_volatile_type ||
- Tag == dwarf::DW_TAG_pointer_type ||
- Tag == dwarf::DW_TAG_ptr_to_member_type ||
- Tag == dwarf::DW_TAG_reference_type ||
- Tag == dwarf::DW_TAG_rvalue_reference_type ||
- Tag == dwarf::DW_TAG_restrict_type ||
- Tag == dwarf::DW_TAG_array_type ||
- Tag == dwarf::DW_TAG_enumeration_type ||
- Tag == dwarf::DW_TAG_subroutine_type ||
- Tag == dwarf::DW_TAG_inheritance || Tag == dwarf::DW_TAG_friend ||
- Tag == dwarf::DW_TAG_structure_type ||
- Tag == dwarf::DW_TAG_member || Tag == dwarf::DW_TAG_typedef,
- "derived/composite type requires a filename", &N, N.getFile());
- }
- }
- void Verifier::visitDIDerivedType(const DIDerivedType &N) {
- // Common derived type checks.
- visitDIDerivedTypeBase(N);
- Assert(N.getTag() == dwarf::DW_TAG_typedef ||
- N.getTag() == dwarf::DW_TAG_pointer_type ||
- N.getTag() == dwarf::DW_TAG_ptr_to_member_type ||
- N.getTag() == dwarf::DW_TAG_reference_type ||
- N.getTag() == dwarf::DW_TAG_rvalue_reference_type ||
- N.getTag() == dwarf::DW_TAG_const_type ||
- N.getTag() == dwarf::DW_TAG_volatile_type ||
- N.getTag() == dwarf::DW_TAG_restrict_type ||
- N.getTag() == dwarf::DW_TAG_member ||
- N.getTag() == dwarf::DW_TAG_inheritance ||
- N.getTag() == dwarf::DW_TAG_friend,
- "invalid tag", &N);
- if (N.getTag() == dwarf::DW_TAG_ptr_to_member_type) {
- Assert(isTypeRef(N, N.getExtraData()), "invalid pointer to member type", &N,
- N.getExtraData());
- }
- }
- static bool hasConflictingReferenceFlags(unsigned Flags) {
- return (Flags & DINode::FlagLValueReference) &&
- (Flags & DINode::FlagRValueReference);
- }
- void Verifier::visitTemplateParams(const MDNode &N, const Metadata &RawParams) {
- auto *Params = dyn_cast<MDTuple>(&RawParams);
- Assert(Params, "invalid template params", &N, &RawParams);
- for (Metadata *Op : Params->operands()) {
- Assert(Op && isa<DITemplateParameter>(Op), "invalid template parameter", &N,
- Params, Op);
- }
- }
- void Verifier::visitDICompositeType(const DICompositeType &N) {
- // Common derived type checks.
- visitDIDerivedTypeBase(N);
- Assert(N.getTag() == dwarf::DW_TAG_array_type ||
- N.getTag() == dwarf::DW_TAG_structure_type ||
- N.getTag() == dwarf::DW_TAG_union_type ||
- N.getTag() == dwarf::DW_TAG_enumeration_type ||
- N.getTag() == dwarf::DW_TAG_subroutine_type ||
- N.getTag() == dwarf::DW_TAG_class_type,
- "invalid tag", &N);
- Assert(!N.getRawElements() || isa<MDTuple>(N.getRawElements()),
- "invalid composite elements", &N, N.getRawElements());
- Assert(isTypeRef(N, N.getRawVTableHolder()), "invalid vtable holder", &N,
- N.getRawVTableHolder());
- Assert(!N.getRawElements() || isa<MDTuple>(N.getRawElements()),
- "invalid composite elements", &N, N.getRawElements());
- Assert(!hasConflictingReferenceFlags(N.getFlags()), "invalid reference flags",
- &N);
- if (auto *Params = N.getRawTemplateParams())
- visitTemplateParams(N, *Params);
- }
- void Verifier::visitDISubroutineType(const DISubroutineType &N) {
- Assert(N.getTag() == dwarf::DW_TAG_subroutine_type, "invalid tag", &N);
- if (auto *Types = N.getRawTypeArray()) {
- Assert(isa<MDTuple>(Types), "invalid composite elements", &N, Types);
- for (Metadata *Ty : N.getTypeArray()->operands()) {
- Assert(isTypeRef(N, Ty), "invalid subroutine type ref", &N, Types, Ty);
- }
- }
- Assert(!hasConflictingReferenceFlags(N.getFlags()), "invalid reference flags",
- &N);
- }
- void Verifier::visitDIFile(const DIFile &N) {
- Assert(N.getTag() == dwarf::DW_TAG_file_type, "invalid tag", &N);
- }
- void Verifier::visitDICompileUnit(const DICompileUnit &N) {
- Assert(N.getTag() == dwarf::DW_TAG_compile_unit, "invalid tag", &N);
- // Don't bother verifying the compilation directory or producer string
- // as those could be empty.
- Assert(N.getRawFile() && isa<DIFile>(N.getRawFile()), "invalid file", &N,
- N.getRawFile());
- Assert(!N.getFile()->getFilename().empty(), "invalid filename", &N,
- N.getFile());
- if (auto *Array = N.getRawEnumTypes()) {
- Assert(isa<MDTuple>(Array), "invalid enum list", &N, Array);
- for (Metadata *Op : N.getEnumTypes()->operands()) {
- auto *Enum = dyn_cast_or_null<DICompositeType>(Op);
- Assert(Enum && Enum->getTag() == dwarf::DW_TAG_enumeration_type,
- "invalid enum type", &N, N.getEnumTypes(), Op);
- }
- }
- if (auto *Array = N.getRawRetainedTypes()) {
- Assert(isa<MDTuple>(Array), "invalid retained type list", &N, Array);
- for (Metadata *Op : N.getRetainedTypes()->operands()) {
- Assert(Op && isa<DIType>(Op), "invalid retained type", &N, Op);
- }
- }
- if (auto *Array = N.getRawSubprograms()) {
- Assert(isa<MDTuple>(Array), "invalid subprogram list", &N, Array);
- for (Metadata *Op : N.getSubprograms()->operands()) {
- Assert(Op && isa<DISubprogram>(Op), "invalid subprogram ref", &N, Op);
- }
- }
- if (auto *Array = N.getRawGlobalVariables()) {
- Assert(isa<MDTuple>(Array), "invalid global variable list", &N, Array);
- for (Metadata *Op : N.getGlobalVariables()->operands()) {
- Assert(Op && isa<DIGlobalVariable>(Op), "invalid global variable ref", &N,
- Op);
- }
- }
- if (auto *Array = N.getRawImportedEntities()) {
- Assert(isa<MDTuple>(Array), "invalid imported entity list", &N, Array);
- for (Metadata *Op : N.getImportedEntities()->operands()) {
- Assert(Op && isa<DIImportedEntity>(Op), "invalid imported entity ref", &N,
- Op);
- }
- }
- }
- void Verifier::visitDISubprogram(const DISubprogram &N) {
- Assert(N.getTag() == dwarf::DW_TAG_subprogram, "invalid tag", &N);
- Assert(isScopeRef(N, N.getRawScope()), "invalid scope", &N, N.getRawScope());
- if (auto *T = N.getRawType())
- Assert(isa<DISubroutineType>(T), "invalid subroutine type", &N, T);
- Assert(isTypeRef(N, N.getRawContainingType()), "invalid containing type", &N,
- N.getRawContainingType());
- if (auto *RawF = N.getRawFunction()) {
- auto *FMD = dyn_cast<ConstantAsMetadata>(RawF);
- auto *F = FMD ? FMD->getValue() : nullptr;
- auto *FT = F ? dyn_cast<PointerType>(F->getType()) : nullptr;
- Assert(F && FT && isa<FunctionType>(FT->getElementType()),
- "invalid function", &N, F, FT);
- }
- if (auto *Params = N.getRawTemplateParams())
- visitTemplateParams(N, *Params);
- if (auto *S = N.getRawDeclaration()) {
- Assert(isa<DISubprogram>(S) && !cast<DISubprogram>(S)->isDefinition(),
- "invalid subprogram declaration", &N, S);
- }
- if (auto *RawVars = N.getRawVariables()) {
- auto *Vars = dyn_cast<MDTuple>(RawVars);
- Assert(Vars, "invalid variable list", &N, RawVars);
- for (Metadata *Op : Vars->operands()) {
- Assert(Op && isa<DILocalVariable>(Op), "invalid local variable", &N, Vars,
- Op);
- }
- }
- Assert(!hasConflictingReferenceFlags(N.getFlags()), "invalid reference flags",
- &N);
- auto *F = N.getFunction();
- if (!F)
- return;
- // Check that all !dbg attachments lead to back to N (or, at least, another
- // subprogram that describes the same function).
- //
- // FIXME: Check this incrementally while visiting !dbg attachments.
- // FIXME: Only check when N is the canonical subprogram for F.
- SmallPtrSet<const MDNode *, 32> Seen;
- for (auto &BB : *F)
- for (auto &I : BB) {
- // Be careful about using DILocation here since we might be dealing with
- // broken code (this is the Verifier after all).
- DILocation *DL =
- dyn_cast_or_null<DILocation>(I.getDebugLoc().getAsMDNode());
- if (!DL)
- continue;
- if (!Seen.insert(DL).second)
- continue;
- DILocalScope *Scope = DL->getInlinedAtScope();
- if (Scope && !Seen.insert(Scope).second)
- continue;
- DISubprogram *SP = Scope ? Scope->getSubprogram() : nullptr;
- if (SP && !Seen.insert(SP).second)
- continue;
- // FIXME: Once N is canonical, check "SP == &N".
- Assert(SP->describes(F),
- "!dbg attachment points at wrong subprogram for function", &N, F,
- &I, DL, Scope, SP);
- }
- }
- void Verifier::visitDILexicalBlockBase(const DILexicalBlockBase &N) {
- Assert(N.getTag() == dwarf::DW_TAG_lexical_block, "invalid tag", &N);
- Assert(N.getRawScope() && isa<DILocalScope>(N.getRawScope()),
- "invalid local scope", &N, N.getRawScope());
- }
- void Verifier::visitDILexicalBlock(const DILexicalBlock &N) {
- visitDILexicalBlockBase(N);
- Assert(N.getLine() || !N.getColumn(),
- "cannot have column info without line info", &N);
- }
- void Verifier::visitDILexicalBlockFile(const DILexicalBlockFile &N) {
- visitDILexicalBlockBase(N);
- }
- void Verifier::visitDINamespace(const DINamespace &N) {
- Assert(N.getTag() == dwarf::DW_TAG_namespace, "invalid tag", &N);
- if (auto *S = N.getRawScope())
- Assert(isa<DIScope>(S), "invalid scope ref", &N, S);
- }
- void Verifier::visitDIModule(const DIModule &N) {
- Assert(N.getTag() == dwarf::DW_TAG_module, "invalid tag", &N);
- Assert(!N.getName().empty(), "anonymous module", &N);
- }
- void Verifier::visitDITemplateParameter(const DITemplateParameter &N) {
- Assert(isTypeRef(N, N.getType()), "invalid type ref", &N, N.getType());
- }
- void Verifier::visitDITemplateTypeParameter(const DITemplateTypeParameter &N) {
- visitDITemplateParameter(N);
- Assert(N.getTag() == dwarf::DW_TAG_template_type_parameter, "invalid tag",
- &N);
- }
- void Verifier::visitDITemplateValueParameter(
- const DITemplateValueParameter &N) {
- visitDITemplateParameter(N);
- Assert(N.getTag() == dwarf::DW_TAG_template_value_parameter ||
- N.getTag() == dwarf::DW_TAG_GNU_template_template_param ||
- N.getTag() == dwarf::DW_TAG_GNU_template_parameter_pack,
- "invalid tag", &N);
- }
- void Verifier::visitDIVariable(const DIVariable &N) {
- if (auto *S = N.getRawScope())
- Assert(isa<DIScope>(S), "invalid scope", &N, S);
- Assert(isTypeRef(N, N.getRawType()), "invalid type ref", &N, N.getRawType());
- if (auto *F = N.getRawFile())
- Assert(isa<DIFile>(F), "invalid file", &N, F);
- }
- void Verifier::visitDIGlobalVariable(const DIGlobalVariable &N) {
- // Checks common to all variables.
- visitDIVariable(N);
- Assert(N.getTag() == dwarf::DW_TAG_variable, "invalid tag", &N);
- Assert(!N.getName().empty(), "missing global variable name", &N);
- if (auto *V = N.getRawVariable()) {
- Assert(isa<ConstantAsMetadata>(V) &&
- !isa<Function>(cast<ConstantAsMetadata>(V)->getValue()),
- "invalid global varaible ref", &N, V);
- }
- if (auto *Member = N.getRawStaticDataMemberDeclaration()) {
- Assert(isa<DIDerivedType>(Member), "invalid static data member declaration",
- &N, Member);
- }
- }
- void Verifier::visitDILocalVariable(const DILocalVariable &N) {
- // Checks common to all variables.
- visitDIVariable(N);
- Assert(N.getTag() == dwarf::DW_TAG_auto_variable ||
- N.getTag() == dwarf::DW_TAG_arg_variable,
- "invalid tag", &N);
- Assert(N.getRawScope() && isa<DILocalScope>(N.getRawScope()),
- "local variable requires a valid scope", &N, N.getRawScope());
- }
- void Verifier::visitDIExpression(const DIExpression &N) {
- Assert(N.isValid(), "invalid expression", &N);
- }
- void Verifier::visitDIObjCProperty(const DIObjCProperty &N) {
- Assert(N.getTag() == dwarf::DW_TAG_APPLE_property, "invalid tag", &N);
- if (auto *T = N.getRawType())
- Assert(isTypeRef(N, T), "invalid type ref", &N, T);
- if (auto *F = N.getRawFile())
- Assert(isa<DIFile>(F), "invalid file", &N, F);
- }
- void Verifier::visitDIImportedEntity(const DIImportedEntity &N) {
- Assert(N.getTag() == dwarf::DW_TAG_imported_module ||
- N.getTag() == dwarf::DW_TAG_imported_declaration,
- "invalid tag", &N);
- if (auto *S = N.getRawScope())
- Assert(isa<DIScope>(S), "invalid scope for imported entity", &N, S);
- Assert(isDIRef(N, N.getEntity()), "invalid imported entity", &N,
- N.getEntity());
- }
- void Verifier::visitComdat(const Comdat &C) {
- // The Module is invalid if the GlobalValue has private linkage. Entities
- // with private linkage don't have entries in the symbol table.
- if (const GlobalValue *GV = M->getNamedValue(C.getName()))
- Assert(!GV->hasPrivateLinkage(), "comdat global value has private linkage",
- GV);
- }
- void Verifier::visitModuleIdents(const Module &M) {
- const NamedMDNode *Idents = M.getNamedMetadata("llvm.ident");
- if (!Idents)
- return;
-
- // llvm.ident takes a list of metadata entry. Each entry has only one string.
- // Scan each llvm.ident entry and make sure that this requirement is met.
- for (unsigned i = 0, e = Idents->getNumOperands(); i != e; ++i) {
- const MDNode *N = Idents->getOperand(i);
- Assert(N->getNumOperands() == 1,
- "incorrect number of operands in llvm.ident metadata", N);
- Assert(dyn_cast_or_null<MDString>(N->getOperand(0)),
- ("invalid value for llvm.ident metadata entry operand"
- "(the operand should be a string)"),
- N->getOperand(0));
- }
- }
- void Verifier::visitModuleFlags(const Module &M) {
- const NamedMDNode *Flags = M.getModuleFlagsMetadata();
- if (!Flags) return;
- // Scan each flag, and track the flags and requirements.
- DenseMap<const MDString*, const MDNode*> SeenIDs;
- SmallVector<const MDNode*, 16> Requirements;
- for (unsigned I = 0, E = Flags->getNumOperands(); I != E; ++I) {
- visitModuleFlag(Flags->getOperand(I), SeenIDs, Requirements);
- }
- // Validate that the requirements in the module are valid.
- for (unsigned I = 0, E = Requirements.size(); I != E; ++I) {
- const MDNode *Requirement = Requirements[I];
- const MDString *Flag = cast<MDString>(Requirement->getOperand(0));
- const Metadata *ReqValue = Requirement->getOperand(1);
- const MDNode *Op = SeenIDs.lookup(Flag);
- if (!Op) {
- CheckFailed("invalid requirement on flag, flag is not present in module",
- Flag);
- continue;
- }
- if (Op->getOperand(2) != ReqValue) {
- CheckFailed(("invalid requirement on flag, "
- "flag does not have the required value"),
- Flag);
- continue;
- }
- }
- }
- void
- Verifier::visitModuleFlag(const MDNode *Op,
- DenseMap<const MDString *, const MDNode *> &SeenIDs,
- SmallVectorImpl<const MDNode *> &Requirements) {
- // Each module flag should have three arguments, the merge behavior (a
- // constant int), the flag ID (an MDString), and the value.
- Assert(Op->getNumOperands() == 3,
- "incorrect number of operands in module flag", Op);
- Module::ModFlagBehavior MFB;
- if (!Module::isValidModFlagBehavior(Op->getOperand(0), MFB)) {
- Assert(
- mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(0)),
- "invalid behavior operand in module flag (expected constant integer)",
- Op->getOperand(0));
- Assert(false,
- "invalid behavior operand in module flag (unexpected constant)",
- Op->getOperand(0));
- }
- MDString *ID = dyn_cast_or_null<MDString>(Op->getOperand(1));
- Assert(ID, "invalid ID operand in module flag (expected metadata string)",
- Op->getOperand(1));
- // Sanity check the values for behaviors with additional requirements.
- switch (MFB) {
- case Module::Error:
- case Module::Warning:
- case Module::Override:
- // These behavior types accept any value.
- break;
- case Module::Require: {
- // The value should itself be an MDNode with two operands, a flag ID (an
- // MDString), and a value.
- MDNode *Value = dyn_cast<MDNode>(Op->getOperand(2));
- Assert(Value && Value->getNumOperands() == 2,
- "invalid value for 'require' module flag (expected metadata pair)",
- Op->getOperand(2));
- Assert(isa<MDString>(Value->getOperand(0)),
- ("invalid value for 'require' module flag "
- "(first value operand should be a string)"),
- Value->getOperand(0));
- // Append it to the list of requirements, to check once all module flags are
- // scanned.
- Requirements.push_back(Value);
- break;
- }
- case Module::Append:
- case Module::AppendUnique: {
- // These behavior types require the operand be an MDNode.
- Assert(isa<MDNode>(Op->getOperand(2)),
- "invalid value for 'append'-type module flag "
- "(expected a metadata node)",
- Op->getOperand(2));
- break;
- }
- }
- // Unless this is a "requires" flag, check the ID is unique.
- if (MFB != Module::Require) {
- bool Inserted = SeenIDs.insert(std::make_pair(ID, Op)).second;
- Assert(Inserted,
- "module flag identifiers must be unique (or of 'require' type)", ID);
- }
- }
- void Verifier::VerifyAttributeTypes(AttributeSet Attrs, unsigned Idx,
- bool isFunction, const Value *V) {
- unsigned Slot = ~0U;
- for (unsigned I = 0, E = Attrs.getNumSlots(); I != E; ++I)
- if (Attrs.getSlotIndex(I) == Idx) {
- Slot = I;
- break;
- }
- assert(Slot != ~0U && "Attribute set inconsistency!");
- for (AttributeSet::iterator I = Attrs.begin(Slot), E = Attrs.end(Slot);
- I != E; ++I) {
- if (I->isStringAttribute())
- continue;
- if (I->getKindAsEnum() == Attribute::NoReturn ||
- I->getKindAsEnum() == Attribute::NoUnwind ||
- I->getKindAsEnum() == Attribute::NoInline ||
- I->getKindAsEnum() == Attribute::AlwaysInline ||
- I->getKindAsEnum() == Attribute::OptimizeForSize ||
- I->getKindAsEnum() == Attribute::StackProtect ||
- I->getKindAsEnum() == Attribute::StackProtectReq ||
- I->getKindAsEnum() == Attribute::StackProtectStrong ||
- I->getKindAsEnum() == Attribute::SafeStack ||
- I->getKindAsEnum() == Attribute::NoRedZone ||
- I->getKindAsEnum() == Attribute::NoImplicitFloat ||
- I->getKindAsEnum() == Attribute::Naked ||
- I->getKindAsEnum() == Attribute::InlineHint ||
- I->getKindAsEnum() == Attribute::StackAlignment ||
- I->getKindAsEnum() == Attribute::UWTable ||
- I->getKindAsEnum() == Attribute::NonLazyBind ||
- I->getKindAsEnum() == Attribute::ReturnsTwice ||
- I->getKindAsEnum() == Attribute::SanitizeAddress ||
- I->getKindAsEnum() == Attribute::SanitizeThread ||
- I->getKindAsEnum() == Attribute::SanitizeMemory ||
- I->getKindAsEnum() == Attribute::MinSize ||
- I->getKindAsEnum() == Attribute::NoDuplicate ||
- I->getKindAsEnum() == Attribute::Builtin ||
- I->getKindAsEnum() == Attribute::NoBuiltin ||
- I->getKindAsEnum() == Attribute::Cold ||
- I->getKindAsEnum() == Attribute::OptimizeNone ||
- I->getKindAsEnum() == Attribute::JumpTable ||
- I->getKindAsEnum() == Attribute::Convergent ||
- I->getKindAsEnum() == Attribute::ArgMemOnly) {
- if (!isFunction) {
- CheckFailed("Attribute '" + I->getAsString() +
- "' only applies to functions!", V);
- return;
- }
- } else if (I->getKindAsEnum() == Attribute::ReadOnly ||
- I->getKindAsEnum() == Attribute::ReadNone) {
- if (Idx == 0) {
- CheckFailed("Attribute '" + I->getAsString() +
- "' does not apply to function returns");
- return;
- }
- } else if (isFunction) {
- CheckFailed("Attribute '" + I->getAsString() +
- "' does not apply to functions!", V);
- return;
- }
- }
- }
- // VerifyParameterAttrs - Check the given attributes for an argument or return
- // value of the specified type. The value V is printed in error messages.
- void Verifier::VerifyParameterAttrs(AttributeSet Attrs, unsigned Idx, Type *Ty,
- bool isReturnValue, const Value *V) {
- if (!Attrs.hasAttributes(Idx))
- return;
- VerifyAttributeTypes(Attrs, Idx, false, V);
- if (isReturnValue)
- Assert(!Attrs.hasAttribute(Idx, Attribute::ByVal) &&
- !Attrs.hasAttribute(Idx, Attribute::Nest) &&
- !Attrs.hasAttribute(Idx, Attribute::StructRet) &&
- !Attrs.hasAttribute(Idx, Attribute::NoCapture) &&
- !Attrs.hasAttribute(Idx, Attribute::Returned) &&
- !Attrs.hasAttribute(Idx, Attribute::InAlloca),
- "Attributes 'byval', 'inalloca', 'nest', 'sret', 'nocapture', and "
- "'returned' do not apply to return values!",
- V);
- // Check for mutually incompatible attributes. Only inreg is compatible with
- // sret.
- unsigned AttrCount = 0;
- AttrCount += Attrs.hasAttribute(Idx, Attribute::ByVal);
- AttrCount += Attrs.hasAttribute(Idx, Attribute::InAlloca);
- AttrCount += Attrs.hasAttribute(Idx, Attribute::StructRet) ||
- Attrs.hasAttribute(Idx, Attribute::InReg);
- AttrCount += Attrs.hasAttribute(Idx, Attribute::Nest);
- Assert(AttrCount <= 1, "Attributes 'byval', 'inalloca', 'inreg', 'nest', "
- "and 'sret' are incompatible!",
- V);
- Assert(!(Attrs.hasAttribute(Idx, Attribute::InAlloca) &&
- Attrs.hasAttribute(Idx, Attribute::ReadOnly)),
- "Attributes "
- "'inalloca and readonly' are incompatible!",
- V);
- Assert(!(Attrs.hasAttribute(Idx, Attribute::StructRet) &&
- Attrs.hasAttribute(Idx, Attribute::Returned)),
- "Attributes "
- "'sret and returned' are incompatible!",
- V);
- Assert(!(Attrs.hasAttribute(Idx, Attribute::ZExt) &&
- Attrs.hasAttribute(Idx, Attribute::SExt)),
- "Attributes "
- "'zeroext and signext' are incompatible!",
- V);
- Assert(!(Attrs.hasAttribute(Idx, Attribute::ReadNone) &&
- Attrs.hasAttribute(Idx, Attribute::ReadOnly)),
- "Attributes "
- "'readnone and readonly' are incompatible!",
- V);
- Assert(!(Attrs.hasAttribute(Idx, Attribute::NoInline) &&
- Attrs.hasAttribute(Idx, Attribute::AlwaysInline)),
- "Attributes "
- "'noinline and alwaysinline' are incompatible!",
- V);
- Assert(!AttrBuilder(Attrs, Idx)
- .overlaps(AttributeFuncs::typeIncompatible(Ty)),
- "Wrong types for attribute: " +
- AttributeSet::get(*Context, Idx,
- AttributeFuncs::typeIncompatible(Ty)).getAsString(Idx),
- V);
- if (PointerType *PTy = dyn_cast<PointerType>(Ty)) {
- SmallPtrSet<const Type*, 4> Visited;
- if (!PTy->getElementType()->isSized(&Visited)) {
- Assert(!Attrs.hasAttribute(Idx, Attribute::ByVal) &&
- !Attrs.hasAttribute(Idx, Attribute::InAlloca),
- "Attributes 'byval' and 'inalloca' do not support unsized types!",
- V);
- }
- } else {
- Assert(!Attrs.hasAttribute(Idx, Attribute::ByVal),
- "Attribute 'byval' only applies to parameters with pointer type!",
- V);
- }
- }
- // VerifyFunctionAttrs - Check parameter attributes against a function type.
- // The value V is printed in error messages.
- void Verifier::VerifyFunctionAttrs(FunctionType *FT, AttributeSet Attrs,
- const Value *V) {
- if (Attrs.isEmpty())
- return;
- bool SawNest = false;
- bool SawReturned = false;
- bool SawSRet = false;
- for (unsigned i = 0, e = Attrs.getNumSlots(); i != e; ++i) {
- unsigned Idx = Attrs.getSlotIndex(i);
- Type *Ty;
- if (Idx == 0)
- Ty = FT->getReturnType();
- else if (Idx-1 < FT->getNumParams())
- Ty = FT->getParamType(Idx-1);
- else
- break; // VarArgs attributes, verified elsewhere.
- VerifyParameterAttrs(Attrs, Idx, Ty, Idx == 0, V);
- if (Idx == 0)
- continue;
- if (Attrs.hasAttribute(Idx, Attribute::Nest)) {
- Assert(!SawNest, "More than one parameter has attribute nest!", V);
- SawNest = true;
- }
- if (Attrs.hasAttribute(Idx, Attribute::Returned)) {
- Assert(!SawReturned, "More than one parameter has attribute returned!",
- V);
- Assert(Ty->canLosslesslyBitCastTo(FT->getReturnType()),
- "Incompatible "
- "argument and return types for 'returned' attribute",
- V);
- SawReturned = true;
- }
- if (Attrs.hasAttribute(Idx, Attribute::StructRet)) {
- Assert(!SawSRet, "Cannot have multiple 'sret' parameters!", V);
- Assert(Idx == 1 || Idx == 2,
- "Attribute 'sret' is not on first or second parameter!", V);
- SawSRet = true;
- }
- if (Attrs.hasAttribute(Idx, Attribute::InAlloca)) {
- Assert(Idx == FT->getNumParams(), "inalloca isn't on the last parameter!",
- V);
- }
- }
- if (!Attrs.hasAttributes(AttributeSet::FunctionIndex))
- return;
- VerifyAttributeTypes(Attrs, AttributeSet::FunctionIndex, true, V);
- Assert(
- !(Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute::ReadNone) &&
- Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute::ReadOnly)),
- "Attributes 'readnone and readonly' are incompatible!", V);
- Assert(
- !(Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute::NoInline) &&
- Attrs.hasAttribute(AttributeSet::FunctionIndex,
- Attribute::AlwaysInline)),
- "Attributes 'noinline and alwaysinline' are incompatible!", V);
- if (Attrs.hasAttribute(AttributeSet::FunctionIndex,
- Attribute::OptimizeNone)) {
- Assert(Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute::NoInline),
- "Attribute 'optnone' requires 'noinline'!", V);
- Assert(!Attrs.hasAttribute(AttributeSet::FunctionIndex,
- Attribute::OptimizeForSize),
- "Attributes 'optsize and optnone' are incompatible!", V);
- Assert(!Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute::MinSize),
- "Attributes 'minsize and optnone' are incompatible!", V);
- }
- if (Attrs.hasAttribute(AttributeSet::FunctionIndex,
- Attribute::JumpTable)) {
- const GlobalValue *GV = cast<GlobalValue>(V);
- Assert(GV->hasUnnamedAddr(),
- "Attribute 'jumptable' requires 'unnamed_addr'", V);
- }
- }
- void Verifier::VerifyFunctionMetadata(
- const SmallVector<std::pair<unsigned, MDNode *>, 4> MDs) {
- if (MDs.empty())
- return;
- for (unsigned i = 0; i < MDs.size(); i++) {
- if (MDs[i].first == LLVMContext::MD_prof) {
- MDNode *MD = MDs[i].second;
- Assert(MD->getNumOperands() == 2,
- "!prof annotations should have exactly 2 operands", MD);
- // Check first operand.
- Assert(MD->getOperand(0) != nullptr, "first operand should not be null",
- MD);
- Assert(isa<MDString>(MD->getOperand(0)),
- "expected string with name of the !prof annotation", MD);
- MDString *MDS = cast<MDString>(MD->getOperand(0));
- StringRef ProfName = MDS->getString();
- Assert(ProfName.equals("function_entry_count"),
- "first operand should be 'function_entry_count'", MD);
- // Check second operand.
- Assert(MD->getOperand(1) != nullptr, "second operand should not be null",
- MD);
- Assert(isa<ConstantAsMetadata>(MD->getOperand(1)),
- "expected integer argument to function_entry_count", MD);
- }
- }
- }
- void Verifier::VerifyConstantExprBitcastType(const ConstantExpr *CE) {
- if (CE->getOpcode() != Instruction::BitCast)
- return;
- Assert(CastInst::castIsValid(Instruction::BitCast, CE->getOperand(0),
- CE->getType()),
- "Invalid bitcast", CE);
- }
- bool Verifier::VerifyAttributeCount(AttributeSet Attrs, unsigned Params) {
- if (Attrs.getNumSlots() == 0)
- return true;
- unsigned LastSlot = Attrs.getNumSlots() - 1;
- unsigned LastIndex = Attrs.getSlotIndex(LastSlot);
- if (LastIndex <= Params
- || (LastIndex == AttributeSet::FunctionIndex
- && (LastSlot == 0 || Attrs.getSlotIndex(LastSlot - 1) <= Params)))
- return true;
- return false;
- }
- /// \brief Verify that statepoint intrinsic is well formed.
- void Verifier::VerifyStatepoint(ImmutableCallSite CS) {
- assert(CS.getCalledFunction() &&
- CS.getCalledFunction()->getIntrinsicID() ==
- Intrinsic::experimental_gc_statepoint);
- const Instruction &CI = *CS.getInstruction();
- Assert(!CS.doesNotAccessMemory() && !CS.onlyReadsMemory() &&
- !CS.onlyAccessesArgMemory(),
- "gc.statepoint must read and write all memory to preserve "
- "reordering restrictions required by safepoint semantics",
- &CI);
- const Value *IDV = CS.getArgument(0);
- Assert(isa<ConstantInt>(IDV), "gc.statepoint ID must be a constant integer",
- &CI);
- const Value *NumPatchBytesV = CS.getArgument(1);
- Assert(isa<ConstantInt>(NumPatchBytesV),
- "gc.statepoint number of patchable bytes must be a constant integer",
- &CI);
- const int64_t NumPatchBytes =
- cast<ConstantInt>(NumPatchBytesV)->getSExtValue();
- assert(isInt<32>(NumPatchBytes) && "NumPatchBytesV is an i32!");
- Assert(NumPatchBytes >= 0, "gc.statepoint number of patchable bytes must be "
- "positive",
- &CI);
- const Value *Target = CS.getArgument(2);
- const PointerType *PT = dyn_cast<PointerType>(Target->getType());
- Assert(PT && PT->getElementType()->isFunctionTy(),
- "gc.statepoint callee must be of function pointer type", &CI, Target);
- FunctionType *TargetFuncType = cast<FunctionType>(PT->getElementType());
- if (NumPatchBytes)
- Assert(isa<ConstantPointerNull>(Target->stripPointerCasts()),
- "gc.statepoint must have null as call target if number of patchable "
- "bytes is non zero",
- &CI);
- const Value *NumCallArgsV = CS.getArgument(3);
- Assert(isa<ConstantInt>(NumCallArgsV),
- "gc.statepoint number of arguments to underlying call "
- "must be constant integer",
- &CI);
- const int NumCallArgs = cast<ConstantInt>(NumCallArgsV)->getZExtValue();
- Assert(NumCallArgs >= 0,
- "gc.statepoint number of arguments to underlying call "
- "must be positive",
- &CI);
- const int NumParams = (int)TargetFuncType->getNumParams();
- if (TargetFuncType->isVarArg()) {
- Assert(NumCallArgs >= NumParams,
- "gc.statepoint mismatch in number of vararg call args", &CI);
- // TODO: Remove this limitation
- Assert(TargetFuncType->getReturnType()->isVoidTy(),
- "gc.statepoint doesn't support wrapping non-void "
- "vararg functions yet",
- &CI);
- } else
- Assert(NumCallArgs == NumParams,
- "gc.statepoint mismatch in number of call args", &CI);
- const Value *FlagsV = CS.getArgument(4);
- Assert(isa<ConstantInt>(FlagsV),
- "gc.statepoint flags must be constant integer", &CI);
- const uint64_t Flags = cast<ConstantInt>(FlagsV)->getZExtValue();
- Assert((Flags & ~(uint64_t)StatepointFlags::MaskAll) == 0,
- "unknown flag used in gc.statepoint flags argument", &CI);
- // Verify that the types of the call parameter arguments match
- // the type of the wrapped callee.
- for (int i = 0; i < NumParams; i++) {
- Type *ParamType = TargetFuncType->getParamType(i);
- Type *ArgType = CS.getArgument(5 + i)->getType();
- Assert(ArgType == ParamType,
- "gc.statepoint call argument does not match wrapped "
- "function type",
- &CI);
- }
- const int EndCallArgsInx = 4 + NumCallArgs;
- const Value *NumTransitionArgsV = CS.getArgument(EndCallArgsInx+1);
- Assert(isa<ConstantInt>(NumTransitionArgsV),
- "gc.statepoint number of transition arguments "
- "must be constant integer",
- &CI);
- const int NumTransitionArgs =
- cast<ConstantInt>(NumTransitionArgsV)->getZExtValue();
- Assert(NumTransitionArgs >= 0,
- "gc.statepoint number of transition arguments must be positive", &CI);
- const int EndTransitionArgsInx = EndCallArgsInx + 1 + NumTransitionArgs;
- const Value *NumDeoptArgsV = CS.getArgument(EndTransitionArgsInx+1);
- Assert(isa<ConstantInt>(NumDeoptArgsV),
- "gc.statepoint number of deoptimization arguments "
- "must be constant integer",
- &CI);
- const int NumDeoptArgs = cast<ConstantInt>(NumDeoptArgsV)->getZExtValue();
- Assert(NumDeoptArgs >= 0, "gc.statepoint number of deoptimization arguments "
- "must be positive",
- &CI);
- const int ExpectedNumArgs =
- 7 + NumCallArgs + NumTransitionArgs + NumDeoptArgs;
- Assert(ExpectedNumArgs <= (int)CS.arg_size(),
- "gc.statepoint too few arguments according to length fields", &CI);
- // Check that the only uses of this gc.statepoint are gc.result or
- // gc.relocate calls which are tied to this statepoint and thus part
- // of the same statepoint sequence
- for (const User *U : CI.users()) {
- const CallInst *Call = dyn_cast<const CallInst>(U);
- Assert(Call, "illegal use of statepoint token", &CI, U);
- if (!Call) continue;
- Assert(isGCRelocate(Call) || isGCResult(Call),
- "gc.result or gc.relocate are the only value uses"
- "of a gc.statepoint",
- &CI, U);
- if (isGCResult(Call)) {
- Assert(Call->getArgOperand(0) == &CI,
- "gc.result connected to wrong gc.statepoint", &CI, Call);
- } else if (isGCRelocate(Call)) {
- Assert(Call->getArgOperand(0) == &CI,
- "gc.relocate connected to wrong gc.statepoint", &CI, Call);
- }
- }
- // Note: It is legal for a single derived pointer to be listed multiple
- // times. It's non-optimal, but it is legal. It can also happen after
- // insertion if we strip a bitcast away.
- // Note: It is really tempting to check that each base is relocated and
- // that a derived pointer is never reused as a base pointer. This turns
- // out to be problematic since optimizations run after safepoint insertion
- // can recognize equality properties that the insertion logic doesn't know
- // about. See example statepoint.ll in the verifier subdirectory
- }
- void Verifier::verifyFrameRecoverIndices() {
- for (auto &Counts : FrameEscapeInfo) {
- Function *F = Counts.first;
- unsigned EscapedObjectCount = Counts.second.first;
- unsigned MaxRecoveredIndex = Counts.second.second;
- Assert(MaxRecoveredIndex <= EscapedObjectCount,
- "all indices passed to llvm.localrecover must be less than the "
- "number of arguments passed ot llvm.localescape in the parent "
- "function",
- F);
- }
- }
- // visitFunction - Verify that a function is ok.
- //
- void Verifier::visitFunction(const Function &F) {
- // Check function arguments.
- FunctionType *FT = F.getFunctionType();
- unsigned NumArgs = F.arg_size();
- Assert(Context == &F.getContext(),
- "Function context does not match Module context!", &F);
- Assert(!F.hasCommonLinkage(), "Functions may not have common linkage", &F);
- Assert(FT->getNumParams() == NumArgs,
- "# formal arguments must match # of arguments for function type!", &F,
- FT);
- Assert(F.getReturnType()->isFirstClassType() ||
- F.getReturnType()->isVoidTy() || F.getReturnType()->isStructTy(),
- "Functions cannot return aggregate values!", &F);
- Assert(!F.hasStructRetAttr() || F.getReturnType()->isVoidTy(),
- "Invalid struct return type!", &F);
- AttributeSet Attrs = F.getAttributes();
- Assert(VerifyAttributeCount(Attrs, FT->getNumParams()),
- "Attribute after last parameter!", &F);
- // Check function attributes.
- VerifyFunctionAttrs(FT, Attrs, &F);
- // On function declarations/definitions, we do not support the builtin
- // attribute. We do not check this in VerifyFunctionAttrs since that is
- // checking for Attributes that can/can not ever be on functions.
- Assert(!Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute::Builtin),
- "Attribute 'builtin' can only be applied to a callsite.", &F);
- // Check that this function meets the restrictions on this calling convention.
- // Sometimes varargs is used for perfectly forwarding thunks, so some of these
- // restrictions can be lifted.
- switch (F.getCallingConv()) {
- default:
- case CallingConv::C:
- break;
- case CallingConv::Fast:
- case CallingConv::Cold:
- case CallingConv::Intel_OCL_BI:
- case CallingConv::PTX_Kernel:
- case CallingConv::PTX_Device:
- Assert(!F.isVarArg(), "Calling convention does not support varargs or "
- "perfect forwarding!",
- &F);
- break;
- }
- bool isLLVMdotName = F.getName().size() >= 5 &&
- F.getName().substr(0, 5) == "llvm.";
- // Check that the argument values match the function type for this function...
- unsigned i = 0;
- for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E;
- ++I, ++i) {
- Assert(I->getType() == FT->getParamType(i),
- "Argument value does not match function argument type!", I,
- FT->getParamType(i));
- Assert(I->getType()->isFirstClassType(),
- "Function arguments must have first-class types!", I);
- if (!isLLVMdotName)
- Assert(!I->getType()->isMetadataTy(),
- "Function takes metadata but isn't an intrinsic", I, &F);
- }
- // Get the function metadata attachments.
- SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
- F.getAllMetadata(MDs);
- assert(F.hasMetadata() != MDs.empty() && "Bit out-of-sync");
- VerifyFunctionMetadata(MDs);
- if (F.isMaterializable()) {
- // Function has a body somewhere we can't see.
- Assert(MDs.empty(), "unmaterialized function cannot have metadata", &F,
- MDs.empty() ? nullptr : MDs.front().second);
- } else if (F.isDeclaration()) {
- Assert(F.hasExternalLinkage() || F.hasExternalWeakLinkage(),
- "invalid linkage type for function declaration", &F);
- Assert(MDs.empty(), "function without a body cannot have metadata", &F,
- MDs.empty() ? nullptr : MDs.front().second);
- Assert(!F.hasPersonalityFn(),
- "Function declaration shouldn't have a personality routine", &F);
- } else {
- // Verify that this function (which has a body) is not named "llvm.*". It
- // is not legal to define intrinsics.
- Assert(!isLLVMdotName, "llvm intrinsics cannot be defined!", &F);
- // Check the entry node
- const BasicBlock *Entry = &F.getEntryBlock();
- Assert(pred_empty(Entry),
- "Entry block to function must not have predecessors!", Entry);
- // The address of the entry block cannot be taken, unless it is dead.
- if (Entry->hasAddressTaken()) {
- Assert(!BlockAddress::lookup(Entry)->isConstantUsed(),
- "blockaddress may not be used with the entry block!", Entry);
- }
- // Visit metadata attachments.
- for (const auto &I : MDs)
- visitMDNode(*I.second);
- }
- // If this function is actually an intrinsic, verify that it is only used in
- // direct call/invokes, never having its "address taken".
- if (F.getIntrinsicID()) {
- const User *U;
- if (F.hasAddressTaken(&U))
- Assert(0, "Invalid user of intrinsic instruction!", U);
- }
- Assert(!F.hasDLLImportStorageClass() ||
- (F.isDeclaration() && F.hasExternalLinkage()) ||
- F.hasAvailableExternallyLinkage(),
- "Function is marked as dllimport, but not external.", &F);
- }
- // verifyBasicBlock - Verify that a basic block is well formed...
- //
- void Verifier::visitBasicBlock(BasicBlock &BB) {
- InstsInThisBlock.clear();
- // Ensure that basic blocks have terminators!
- Assert(BB.getTerminator(), "Basic Block does not have terminator!", &BB);
- // Check constraints that this basic block imposes on all of the PHI nodes in
- // it.
- if (isa<PHINode>(BB.front())) {
- SmallVector<BasicBlock*, 8> Preds(pred_begin(&BB), pred_end(&BB));
- SmallVector<std::pair<BasicBlock*, Value*>, 8> Values;
- std::sort(Preds.begin(), Preds.end());
- PHINode *PN;
- for (BasicBlock::iterator I = BB.begin(); (PN = dyn_cast<PHINode>(I));++I) {
- // Ensure that PHI nodes have at least one entry!
- Assert(PN->getNumIncomingValues() != 0,
- "PHI nodes must have at least one entry. If the block is dead, "
- "the PHI should be removed!",
- PN);
- Assert(PN->getNumIncomingValues() == Preds.size(),
- "PHINode should have one entry for each predecessor of its "
- "parent basic block!",
- PN);
- // Get and sort all incoming values in the PHI node...
- Values.clear();
- Values.reserve(PN->getNumIncomingValues());
- for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
- Values.push_back(std::make_pair(PN->getIncomingBlock(i),
- PN->getIncomingValue(i)));
- std::sort(Values.begin(), Values.end());
- for (unsigned i = 0, e = Values.size(); i != e; ++i) {
- // Check to make sure that if there is more than one entry for a
- // particular basic block in this PHI node, that the incoming values are
- // all identical.
- //
- Assert(i == 0 || Values[i].first != Values[i - 1].first ||
- Values[i].second == Values[i - 1].second,
- "PHI node has multiple entries for the same basic block with "
- "different incoming values!",
- PN, Values[i].first, Values[i].second, Values[i - 1].second);
- // Check to make sure that the predecessors and PHI node entries are
- // matched up.
- Assert(Values[i].first == Preds[i],
- "PHI node entries do not match predecessors!", PN,
- Values[i].first, Preds[i]);
- }
- }
- }
- // Check that all instructions have their parent pointers set up correctly.
- for (auto &I : BB)
- {
- Assert(I.getParent() == &BB, "Instruction has bogus parent pointer!");
- }
- }
- void Verifier::visitTerminatorInst(TerminatorInst &I) {
- // Ensure that terminators only exist at the end of the basic block.
- Assert(&I == I.getParent()->getTerminator(),
- "Terminator found in the middle of a basic block!", I.getParent());
- visitInstruction(I);
- }
- void Verifier::visitBranchInst(BranchInst &BI) {
- if (BI.isConditional()) {
- Assert(BI.getCondition()->getType()->isIntegerTy(1),
- "Branch condition is not 'i1' type!", &BI, BI.getCondition());
- }
- visitTerminatorInst(BI);
- }
- void Verifier::visitReturnInst(ReturnInst &RI) {
- Function *F = RI.getParent()->getParent();
- unsigned N = RI.getNumOperands();
- if (F->getReturnType()->isVoidTy())
- Assert(N == 0,
- "Found return instr that returns non-void in Function of void "
- "return type!",
- &RI, F->getReturnType());
- else
- Assert(N == 1 && F->getReturnType() == RI.getOperand(0)->getType(),
- "Function return type does not match operand "
- "type of return inst!",
- &RI, F->getReturnType());
- // Check to make sure that the return value has necessary properties for
- // terminators...
- visitTerminatorInst(RI);
- }
- void Verifier::visitSwitchInst(SwitchInst &SI) {
- // Check to make sure that all of the constants in the switch instruction
- // have the same type as the switched-on value.
- Type *SwitchTy = SI.getCondition()->getType();
- SmallPtrSet<ConstantInt*, 32> Constants;
- for (SwitchInst::CaseIt i = SI.case_begin(), e = SI.case_end(); i != e; ++i) {
- Assert(i.getCaseValue()->getType() == SwitchTy,
- "Switch constants must all be same type as switch value!", &SI);
- Assert(Constants.insert(i.getCaseValue()).second,
- "Duplicate integer as switch case", &SI, i.getCaseValue());
- }
- visitTerminatorInst(SI);
- }
- void Verifier::visitIndirectBrInst(IndirectBrInst &BI) {
- Assert(BI.getAddress()->getType()->isPointerTy(),
- "Indirectbr operand must have pointer type!", &BI);
- for (unsigned i = 0, e = BI.getNumDestinations(); i != e; ++i)
- Assert(BI.getDestination(i)->getType()->isLabelTy(),
- "Indirectbr destinations must all have pointer type!", &BI);
- visitTerminatorInst(BI);
- }
- void Verifier::visitSelectInst(SelectInst &SI) {
- Assert(!SelectInst::areInvalidOperands(SI.getOperand(0), SI.getOperand(1),
- SI.getOperand(2)),
- "Invalid operands for select instruction!", &SI);
- Assert(SI.getTrueValue()->getType() == SI.getType(),
- "Select values must have same type as select instruction!", &SI);
- visitInstruction(SI);
- }
- /// visitUserOp1 - User defined operators shouldn't live beyond the lifetime of
- /// a pass, if any exist, it's an error.
- ///
- void Verifier::visitUserOp1(Instruction &I) {
- Assert(0, "User-defined operators should not live outside of a pass!", &I);
- }
- void Verifier::visitTruncInst(TruncInst &I) {
- // Get the source and destination types
- Type *SrcTy = I.getOperand(0)->getType();
- Type *DestTy = I.getType();
- // Get the size of the types in bits, we'll need this later
- unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
- unsigned DestBitSize = DestTy->getScalarSizeInBits();
- Assert(SrcTy->isIntOrIntVectorTy(), "Trunc only operates on integer", &I);
- Assert(DestTy->isIntOrIntVectorTy(), "Trunc only produces integer", &I);
- Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(),
- "trunc source and destination must both be a vector or neither", &I);
- Assert(SrcBitSize > DestBitSize, "DestTy too big for Trunc", &I);
- visitInstruction(I);
- }
- void Verifier::visitZExtInst(ZExtInst &I) {
- // Get the source and destination types
- Type *SrcTy = I.getOperand(0)->getType();
- Type *DestTy = I.getType();
- // Get the size of the types in bits, we'll need this later
- Assert(SrcTy->isIntOrIntVectorTy(), "ZExt only operates on integer", &I);
- Assert(DestTy->isIntOrIntVectorTy(), "ZExt only produces an integer", &I);
- Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(),
- "zext source and destination must both be a vector or neither", &I);
- unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
- unsigned DestBitSize = DestTy->getScalarSizeInBits();
- Assert(SrcBitSize < DestBitSize, "Type too small for ZExt", &I);
- visitInstruction(I);
- }
- void Verifier::visitSExtInst(SExtInst &I) {
- // Get the source and destination types
- Type *SrcTy = I.getOperand(0)->getType();
- Type *DestTy = I.getType();
- // Get the size of the types in bits, we'll need this later
- unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
- unsigned DestBitSize = DestTy->getScalarSizeInBits();
- Assert(SrcTy->isIntOrIntVectorTy(), "SExt only operates on integer", &I);
- Assert(DestTy->isIntOrIntVectorTy(), "SExt only produces an integer", &I);
- Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(),
- "sext source and destination must both be a vector or neither", &I);
- Assert(SrcBitSize < DestBitSize, "Type too small for SExt", &I);
- visitInstruction(I);
- }
- void Verifier::visitFPTruncInst(FPTruncInst &I) {
- // Get the source and destination types
- Type *SrcTy = I.getOperand(0)->getType();
- Type *DestTy = I.getType();
- // Get the size of the types in bits, we'll need this later
- unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
- unsigned DestBitSize = DestTy->getScalarSizeInBits();
- Assert(SrcTy->isFPOrFPVectorTy(), "FPTrunc only operates on FP", &I);
- Assert(DestTy->isFPOrFPVectorTy(), "FPTrunc only produces an FP", &I);
- Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(),
- "fptrunc source and destination must both be a vector or neither", &I);
- Assert(SrcBitSize > DestBitSize, "DestTy too big for FPTrunc", &I);
- visitInstruction(I);
- }
- void Verifier::visitFPExtInst(FPExtInst &I) {
- // Get the source and destination types
- Type *SrcTy = I.getOperand(0)->getType();
- Type *DestTy = I.getType();
- // Get the size of the types in bits, we'll need this later
- unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
- unsigned DestBitSize = DestTy->getScalarSizeInBits();
- Assert(SrcTy->isFPOrFPVectorTy(), "FPExt only operates on FP", &I);
- Assert(DestTy->isFPOrFPVectorTy(), "FPExt only produces an FP", &I);
- Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(),
- "fpext source and destination must both be a vector or neither", &I);
- Assert(SrcBitSize < DestBitSize, "DestTy too small for FPExt", &I);
- visitInstruction(I);
- }
- void Verifier::visitUIToFPInst(UIToFPInst &I) {
- // Get the source and destination types
- Type *SrcTy = I.getOperand(0)->getType();
- Type *DestTy = I.getType();
- bool SrcVec = SrcTy->isVectorTy();
- bool DstVec = DestTy->isVectorTy();
- Assert(SrcVec == DstVec,
- "UIToFP source and dest must both be vector or scalar", &I);
- Assert(SrcTy->isIntOrIntVectorTy(),
- "UIToFP source must be integer or integer vector", &I);
- Assert(DestTy->isFPOrFPVectorTy(), "UIToFP result must be FP or FP vector",
- &I);
- if (SrcVec && DstVec)
- Assert(cast<VectorType>(SrcTy)->getNumElements() ==
- cast<VectorType>(DestTy)->getNumElements(),
- "UIToFP source and dest vector length mismatch", &I);
- visitInstruction(I);
- }
- void Verifier::visitSIToFPInst(SIToFPInst &I) {
- // Get the source and destination types
- Type *SrcTy = I.getOperand(0)->getType();
- Type *DestTy = I.getType();
- bool SrcVec = SrcTy->isVectorTy();
- bool DstVec = DestTy->isVectorTy();
- Assert(SrcVec == DstVec,
- "SIToFP source and dest must both be vector or scalar", &I);
- Assert(SrcTy->isIntOrIntVectorTy(),
- "SIToFP source must be integer or integer vector", &I);
- Assert(DestTy->isFPOrFPVectorTy(), "SIToFP result must be FP or FP vector",
- &I);
- if (SrcVec && DstVec)
- Assert(cast<VectorType>(SrcTy)->getNumElements() ==
- cast<VectorType>(DestTy)->getNumElements(),
- "SIToFP source and dest vector length mismatch", &I);
- visitInstruction(I);
- }
- void Verifier::visitFPToUIInst(FPToUIInst &I) {
- // Get the source and destination types
- Type *SrcTy = I.getOperand(0)->getType();
- Type *DestTy = I.getType();
- bool SrcVec = SrcTy->isVectorTy();
- bool DstVec = DestTy->isVectorTy();
- Assert(SrcVec == DstVec,
- "FPToUI source and dest must both be vector or scalar", &I);
- Assert(SrcTy->isFPOrFPVectorTy(), "FPToUI source must be FP or FP vector",
- &I);
- Assert(DestTy->isIntOrIntVectorTy(),
- "FPToUI result must be integer or integer vector", &I);
- if (SrcVec && DstVec)
- Assert(cast<VectorType>(SrcTy)->getNumElements() ==
- cast<VectorType>(DestTy)->getNumElements(),
- "FPToUI source and dest vector length mismatch", &I);
- visitInstruction(I);
- }
- void Verifier::visitFPToSIInst(FPToSIInst &I) {
- // Get the source and destination types
- Type *SrcTy = I.getOperand(0)->getType();
- Type *DestTy = I.getType();
- bool SrcVec = SrcTy->isVectorTy();
- bool DstVec = DestTy->isVectorTy();
- Assert(SrcVec == DstVec,
- "FPToSI source and dest must both be vector or scalar", &I);
- Assert(SrcTy->isFPOrFPVectorTy(), "FPToSI source must be FP or FP vector",
- &I);
- Assert(DestTy->isIntOrIntVectorTy(),
- "FPToSI result must be integer or integer vector", &I);
- if (SrcVec && DstVec)
- Assert(cast<VectorType>(SrcTy)->getNumElements() ==
- cast<VectorType>(DestTy)->getNumElements(),
- "FPToSI source and dest vector length mismatch", &I);
- visitInstruction(I);
- }
- void Verifier::visitPtrToIntInst(PtrToIntInst &I) {
- // Get the source and destination types
- Type *SrcTy = I.getOperand(0)->getType();
- Type *DestTy = I.getType();
- Assert(SrcTy->getScalarType()->isPointerTy(),
- "PtrToInt source must be pointer", &I);
- Assert(DestTy->getScalarType()->isIntegerTy(),
- "PtrToInt result must be integral", &I);
- Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), "PtrToInt type mismatch",
- &I);
- if (SrcTy->isVectorTy()) {
- VectorType *VSrc = dyn_cast<VectorType>(SrcTy);
- VectorType *VDest = dyn_cast<VectorType>(DestTy);
- Assert(VSrc->getNumElements() == VDest->getNumElements(),
- "PtrToInt Vector width mismatch", &I);
- }
- visitInstruction(I);
- }
- void Verifier::visitIntToPtrInst(IntToPtrInst &I) {
- // Get the source and destination types
- Type *SrcTy = I.getOperand(0)->getType();
- Type *DestTy = I.getType();
- Assert(SrcTy->getScalarType()->isIntegerTy(),
- "IntToPtr source must be an integral", &I);
- Assert(DestTy->getScalarType()->isPointerTy(),
- "IntToPtr result must be a pointer", &I);
- Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), "IntToPtr type mismatch",
- &I);
- if (SrcTy->isVectorTy()) {
- VectorType *VSrc = dyn_cast<VectorType>(SrcTy);
- VectorType *VDest = dyn_cast<VectorType>(DestTy);
- Assert(VSrc->getNumElements() == VDest->getNumElements(),
- "IntToPtr Vector width mismatch", &I);
- }
- visitInstruction(I);
- }
- void Verifier::visitBitCastInst(BitCastInst &I) {
- Assert(
- CastInst::castIsValid(Instruction::BitCast, I.getOperand(0), I.getType()),
- "Invalid bitcast", &I);
- visitInstruction(I);
- }
- void Verifier::visitAddrSpaceCastInst(AddrSpaceCastInst &I) {
- Type *SrcTy = I.getOperand(0)->getType();
- Type *DestTy = I.getType();
- Assert(SrcTy->isPtrOrPtrVectorTy(), "AddrSpaceCast source must be a pointer",
- &I);
- Assert(DestTy->isPtrOrPtrVectorTy(), "AddrSpaceCast result must be a pointer",
- &I);
- Assert(SrcTy->getPointerAddressSpace() != DestTy->getPointerAddressSpace(),
- "AddrSpaceCast must be between different address spaces", &I);
- if (SrcTy->isVectorTy())
- Assert(SrcTy->getVectorNumElements() == DestTy->getVectorNumElements(),
- "AddrSpaceCast vector pointer number of elements mismatch", &I);
- visitInstruction(I);
- }
- /// visitPHINode - Ensure that a PHI node is well formed.
- ///
- void Verifier::visitPHINode(PHINode &PN) {
- // Ensure that the PHI nodes are all grouped together at the top of the block.
- // This can be tested by checking whether the instruction before this is
- // either nonexistent (because this is begin()) or is a PHI node. If not,
- // then there is some other instruction before a PHI.
- Assert(&PN == &PN.getParent()->front() ||
- isa<PHINode>(--BasicBlock::iterator(&PN)),
- "PHI nodes not grouped at top of basic block!", &PN, PN.getParent());
- // Check that all of the values of the PHI node have the same type as the
- // result, and that the incoming blocks are really basic blocks.
- for (Value *IncValue : PN.incoming_values()) {
- Assert(PN.getType() == IncValue->getType(),
- "PHI node operands are not the same type as the result!", &PN);
- }
- // All other PHI node constraints are checked in the visitBasicBlock method.
- visitInstruction(PN);
- }
- void Verifier::VerifyCallSite(CallSite CS) {
- Instruction *I = CS.getInstruction();
- Assert(CS.getCalledValue()->getType()->isPointerTy(),
- "Called function must be a pointer!", I);
- PointerType *FPTy = cast<PointerType>(CS.getCalledValue()->getType());
- Assert(FPTy->getElementType()->isFunctionTy(),
- "Called function is not pointer to function type!", I);
- Assert(FPTy->getElementType() == CS.getFunctionType(),
- "Called function is not the same type as the call!", I);
- FunctionType *FTy = CS.getFunctionType();
- // Verify that the correct number of arguments are being passed
- if (FTy->isVarArg())
- Assert(CS.arg_size() >= FTy->getNumParams(),
- "Called function requires more parameters than were provided!", I);
- else
- Assert(CS.arg_size() == FTy->getNumParams(),
- "Incorrect number of arguments passed to called function!", I);
- // Verify that all arguments to the call match the function type.
- for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
- Assert(CS.getArgument(i)->getType() == FTy->getParamType(i),
- "Call parameter type does not match function signature!",
- CS.getArgument(i), FTy->getParamType(i), I);
- AttributeSet Attrs = CS.getAttributes();
- Assert(VerifyAttributeCount(Attrs, CS.arg_size()),
- "Attribute after last parameter!", I);
- // Verify call attributes.
- VerifyFunctionAttrs(FTy, Attrs, I);
- // Conservatively check the inalloca argument.
- // We have a bug if we can find that there is an underlying alloca without
- // inalloca.
- if (CS.hasInAllocaArgument()) {
- Value *InAllocaArg = CS.getArgument(FTy->getNumParams() - 1);
- if (auto AI = dyn_cast<AllocaInst>(InAllocaArg->stripInBoundsOffsets()))
- Assert(AI->isUsedWithInAlloca(),
- "inalloca argument for call has mismatched alloca", AI, I);
- }
- if (FTy->isVarArg()) {
- // FIXME? is 'nest' even legal here?
- bool SawNest = false;
- bool SawReturned = false;
- for (unsigned Idx = 1; Idx < 1 + FTy->getNumParams(); ++Idx) {
- if (Attrs.hasAttribute(Idx, Attribute::Nest))
- SawNest = true;
- if (Attrs.hasAttribute(Idx, Attribute::Returned))
- SawReturned = true;
- }
- // Check attributes on the varargs part.
- for (unsigned Idx = 1 + FTy->getNumParams(); Idx <= CS.arg_size(); ++Idx) {
- Type *Ty = CS.getArgument(Idx-1)->getType();
- VerifyParameterAttrs(Attrs, Idx, Ty, false, I);
- if (Attrs.hasAttribute(Idx, Attribute::Nest)) {
- Assert(!SawNest, "More than one parameter has attribute nest!", I);
- SawNest = true;
- }
- if (Attrs.hasAttribute(Idx, Attribute::Returned)) {
- Assert(!SawReturned, "More than one parameter has attribute returned!",
- I);
- Assert(Ty->canLosslesslyBitCastTo(FTy->getReturnType()),
- "Incompatible argument and return types for 'returned' "
- "attribute",
- I);
- SawReturned = true;
- }
- Assert(!Attrs.hasAttribute(Idx, Attribute::StructRet),
- "Attribute 'sret' cannot be used for vararg call arguments!", I);
- if (Attrs.hasAttribute(Idx, Attribute::InAlloca))
- Assert(Idx == CS.arg_size(), "inalloca isn't on the last argument!", I);
- }
- }
- // Verify that there's no metadata unless it's a direct call to an intrinsic.
- if (CS.getCalledFunction() == nullptr ||
- !CS.getCalledFunction()->getName().startswith("llvm.")) {
- for (FunctionType::param_iterator PI = FTy->param_begin(),
- PE = FTy->param_end(); PI != PE; ++PI)
- Assert(!(*PI)->isMetadataTy(),
- "Function has metadata parameter but isn't an intrinsic", I);
- }
- if (Function *F = CS.getCalledFunction())
- if (Intrinsic::ID ID = (Intrinsic::ID)F->getIntrinsicID())
- visitIntrinsicCallSite(ID, CS);
- visitInstruction(*I);
- }
- /// Two types are "congruent" if they are identical, or if they are both pointer
- /// types with different pointee types and the same address space.
- static bool isTypeCongruent(Type *L, Type *R) {
- if (L == R)
- return true;
- PointerType *PL = dyn_cast<PointerType>(L);
- PointerType *PR = dyn_cast<PointerType>(R);
- if (!PL || !PR)
- return false;
- return PL->getAddressSpace() == PR->getAddressSpace();
- }
- static AttrBuilder getParameterABIAttributes(int I, AttributeSet Attrs) {
- static const Attribute::AttrKind ABIAttrs[] = {
- Attribute::StructRet, Attribute::ByVal, Attribute::InAlloca,
- Attribute::InReg, Attribute::Returned};
- AttrBuilder Copy;
- for (auto AK : ABIAttrs) {
- if (Attrs.hasAttribute(I + 1, AK))
- Copy.addAttribute(AK);
- }
- if (Attrs.hasAttribute(I + 1, Attribute::Alignment))
- Copy.addAlignmentAttr(Attrs.getParamAlignment(I + 1));
- return Copy;
- }
- void Verifier::verifyMustTailCall(CallInst &CI) {
- Assert(!CI.isInlineAsm(), "cannot use musttail call with inline asm", &CI);
- // - The caller and callee prototypes must match. Pointer types of
- // parameters or return types may differ in pointee type, but not
- // address space.
- Function *F = CI.getParent()->getParent();
- FunctionType *CallerTy = F->getFunctionType();
- FunctionType *CalleeTy = CI.getFunctionType();
- Assert(CallerTy->getNumParams() == CalleeTy->getNumParams(),
- "cannot guarantee tail call due to mismatched parameter counts", &CI);
- Assert(CallerTy->isVarArg() == CalleeTy->isVarArg(),
- "cannot guarantee tail call due to mismatched varargs", &CI);
- Assert(isTypeCongruent(CallerTy->getReturnType(), CalleeTy->getReturnType()),
- "cannot guarantee tail call due to mismatched return types", &CI);
- for (int I = 0, E = CallerTy->getNumParams(); I != E; ++I) {
- Assert(
- isTypeCongruent(CallerTy->getParamType(I), CalleeTy->getParamType(I)),
- "cannot guarantee tail call due to mismatched parameter types", &CI);
- }
- // - The calling conventions of the caller and callee must match.
- Assert(F->getCallingConv() == CI.getCallingConv(),
- "cannot guarantee tail call due to mismatched calling conv", &CI);
- // - All ABI-impacting function attributes, such as sret, byval, inreg,
- // returned, and inalloca, must match.
- AttributeSet CallerAttrs = F->getAttributes();
- AttributeSet CalleeAttrs = CI.getAttributes();
- for (int I = 0, E = CallerTy->getNumParams(); I != E; ++I) {
- AttrBuilder CallerABIAttrs = getParameterABIAttributes(I, CallerAttrs);
- AttrBuilder CalleeABIAttrs = getParameterABIAttributes(I, CalleeAttrs);
- Assert(CallerABIAttrs == CalleeABIAttrs,
- "cannot guarantee tail call due to mismatched ABI impacting "
- "function attributes",
- &CI, CI.getOperand(I));
- }
- // - The call must immediately precede a :ref:`ret <i_ret>` instruction,
- // or a pointer bitcast followed by a ret instruction.
- // - The ret instruction must return the (possibly bitcasted) value
- // produced by the call or void.
- Value *RetVal = &CI;
- Instruction *Next = CI.getNextNode();
- // Handle the optional bitcast.
- if (BitCastInst *BI = dyn_cast_or_null<BitCastInst>(Next)) {
- Assert(BI->getOperand(0) == RetVal,
- "bitcast following musttail call must use the call", BI);
- RetVal = BI;
- Next = BI->getNextNode();
- }
- // Check the return.
- ReturnInst *Ret = dyn_cast_or_null<ReturnInst>(Next);
- Assert(Ret, "musttail call must be precede a ret with an optional bitcast",
- &CI);
- Assert(!Ret->getReturnValue() || Ret->getReturnValue() == RetVal,
- "musttail call result must be returned", Ret);
- }
- void Verifier::visitCallInst(CallInst &CI) {
- VerifyCallSite(&CI);
- if (CI.isMustTailCall())
- verifyMustTailCall(CI);
- }
- void Verifier::visitInvokeInst(InvokeInst &II) {
- VerifyCallSite(&II);
- // Verify that there is a landingpad instruction as the first non-PHI
- // instruction of the 'unwind' destination.
- Assert(II.getUnwindDest()->isLandingPad(),
- "The unwind destination does not have a landingpad instruction!", &II);
- visitTerminatorInst(II);
- }
- /// visitBinaryOperator - Check that both arguments to the binary operator are
- /// of the same type!
- ///
- void Verifier::visitBinaryOperator(BinaryOperator &B) {
- Assert(B.getOperand(0)->getType() == B.getOperand(1)->getType(),
- "Both operands to a binary operator are not of the same type!", &B);
- switch (B.getOpcode()) {
- // Check that integer arithmetic operators are only used with
- // integral operands.
- case Instruction::Add:
- case Instruction::Sub:
- case Instruction::Mul:
- case Instruction::SDiv:
- case Instruction::UDiv:
- case Instruction::SRem:
- case Instruction::URem:
- Assert(B.getType()->isIntOrIntVectorTy(),
- "Integer arithmetic operators only work with integral types!", &B);
- Assert(B.getType() == B.getOperand(0)->getType(),
- "Integer arithmetic operators must have same type "
- "for operands and result!",
- &B);
- break;
- // Check that floating-point arithmetic operators are only used with
- // floating-point operands.
- case Instruction::FAdd:
- case Instruction::FSub:
- case Instruction::FMul:
- case Instruction::FDiv:
- case Instruction::FRem:
- Assert(B.getType()->isFPOrFPVectorTy(),
- "Floating-point arithmetic operators only work with "
- "floating-point types!",
- &B);
- Assert(B.getType() == B.getOperand(0)->getType(),
- "Floating-point arithmetic operators must have same type "
- "for operands and result!",
- &B);
- break;
- // Check that logical operators are only used with integral operands.
- case Instruction::And:
- case Instruction::Or:
- case Instruction::Xor:
- Assert(B.getType()->isIntOrIntVectorTy(),
- "Logical operators only work with integral types!", &B);
- Assert(B.getType() == B.getOperand(0)->getType(),
- "Logical operators must have same type for operands and result!",
- &B);
- break;
- case Instruction::Shl:
- case Instruction::LShr:
- case Instruction::AShr:
- Assert(B.getType()->isIntOrIntVectorTy(),
- "Shifts only work with integral types!", &B);
- Assert(B.getType() == B.getOperand(0)->getType(),
- "Shift return type must be same as operands!", &B);
- break;
- default:
- llvm_unreachable("Unknown BinaryOperator opcode!");
- }
- visitInstruction(B);
- }
- void Verifier::visitICmpInst(ICmpInst &IC) {
- // Check that the operands are the same type
- Type *Op0Ty = IC.getOperand(0)->getType();
- Type *Op1Ty = IC.getOperand(1)->getType();
- Assert(Op0Ty == Op1Ty,
- "Both operands to ICmp instruction are not of the same type!", &IC);
- // Check that the operands are the right type
- Assert(Op0Ty->isIntOrIntVectorTy() || Op0Ty->getScalarType()->isPointerTy(),
- "Invalid operand types for ICmp instruction", &IC);
- // Check that the predicate is valid.
- Assert(IC.getPredicate() >= CmpInst::FIRST_ICMP_PREDICATE &&
- IC.getPredicate() <= CmpInst::LAST_ICMP_PREDICATE,
- "Invalid predicate in ICmp instruction!", &IC);
- visitInstruction(IC);
- }
- void Verifier::visitFCmpInst(FCmpInst &FC) {
- // Check that the operands are the same type
- Type *Op0Ty = FC.getOperand(0)->getType();
- Type *Op1Ty = FC.getOperand(1)->getType();
- Assert(Op0Ty == Op1Ty,
- "Both operands to FCmp instruction are not of the same type!", &FC);
- // Check that the operands are the right type
- Assert(Op0Ty->isFPOrFPVectorTy(),
- "Invalid operand types for FCmp instruction", &FC);
- // Check that the predicate is valid.
- Assert(FC.getPredicate() >= CmpInst::FIRST_FCMP_PREDICATE &&
- FC.getPredicate() <= CmpInst::LAST_FCMP_PREDICATE,
- "Invalid predicate in FCmp instruction!", &FC);
- visitInstruction(FC);
- }
- void Verifier::visitExtractElementInst(ExtractElementInst &EI) {
- Assert(
- ExtractElementInst::isValidOperands(EI.getOperand(0), EI.getOperand(1)),
- "Invalid extractelement operands!", &EI);
- visitInstruction(EI);
- }
- void Verifier::visitInsertElementInst(InsertElementInst &IE) {
- Assert(InsertElementInst::isValidOperands(IE.getOperand(0), IE.getOperand(1),
- IE.getOperand(2)),
- "Invalid insertelement operands!", &IE);
- visitInstruction(IE);
- }
- void Verifier::visitShuffleVectorInst(ShuffleVectorInst &SV) {
- Assert(ShuffleVectorInst::isValidOperands(SV.getOperand(0), SV.getOperand(1),
- SV.getOperand(2)),
- "Invalid shufflevector operands!", &SV);
- visitInstruction(SV);
- }
- void Verifier::visitGetElementPtrInst(GetElementPtrInst &GEP) {
- Type *TargetTy = GEP.getPointerOperandType()->getScalarType();
- Assert(isa<PointerType>(TargetTy),
- "GEP base pointer is not a vector or a vector of pointers", &GEP);
- Assert(GEP.getSourceElementType()->isSized(), "GEP into unsized type!", &GEP);
- SmallVector<Value*, 16> Idxs(GEP.idx_begin(), GEP.idx_end());
- Type *ElTy =
- GetElementPtrInst::getIndexedType(GEP.getSourceElementType(), Idxs);
- Assert(ElTy, "Invalid indices for GEP pointer type!", &GEP);
- Assert(GEP.getType()->getScalarType()->isPointerTy() &&
- GEP.getResultElementType() == ElTy,
- "GEP is not of right type for indices!", &GEP, ElTy);
- if (GEP.getType()->isVectorTy()) {
- // Additional checks for vector GEPs.
- unsigned GEPWidth = GEP.getType()->getVectorNumElements();
- if (GEP.getPointerOperandType()->isVectorTy())
- Assert(GEPWidth == GEP.getPointerOperandType()->getVectorNumElements(),
- "Vector GEP result width doesn't match operand's", &GEP);
- for (unsigned i = 0, e = Idxs.size(); i != e; ++i) {
- Type *IndexTy = Idxs[i]->getType();
- if (IndexTy->isVectorTy()) {
- unsigned IndexWidth = IndexTy->getVectorNumElements();
- Assert(IndexWidth == GEPWidth, "Invalid GEP index vector width", &GEP);
- }
- Assert(IndexTy->getScalarType()->isIntegerTy(),
- "All GEP indices should be of integer type");
- }
- }
- visitInstruction(GEP);
- }
- static bool isContiguous(const ConstantRange &A, const ConstantRange &B) {
- return A.getUpper() == B.getLower() || A.getLower() == B.getUpper();
- }
- void Verifier::visitRangeMetadata(Instruction& I,
- MDNode* Range, Type* Ty) {
- assert(Range &&
- Range == I.getMetadata(LLVMContext::MD_range) &&
- "precondition violation");
- unsigned NumOperands = Range->getNumOperands();
- Assert(NumOperands % 2 == 0, "Unfinished range!", Range);
- unsigned NumRanges = NumOperands / 2;
- Assert(NumRanges >= 1, "It should have at least one range!", Range);
- ConstantRange LastRange(1); // Dummy initial value
- for (unsigned i = 0; i < NumRanges; ++i) {
- ConstantInt *Low =
- mdconst::dyn_extract<ConstantInt>(Range->getOperand(2 * i));
- Assert(Low, "The lower limit must be an integer!", Low);
- ConstantInt *High =
- mdconst::dyn_extract<ConstantInt>(Range->getOperand(2 * i + 1));
- Assert(High, "The upper limit must be an integer!", High);
- Assert(High->getType() == Low->getType() && High->getType() == Ty,
- "Range types must match instruction type!", &I);
- APInt HighV = High->getValue();
- APInt LowV = Low->getValue();
- ConstantRange CurRange(LowV, HighV);
- Assert(!CurRange.isEmptySet() && !CurRange.isFullSet(),
- "Range must not be empty!", Range);
- if (i != 0) {
- Assert(CurRange.intersectWith(LastRange).isEmptySet(),
- "Intervals are overlapping", Range);
- Assert(LowV.sgt(LastRange.getLower()), "Intervals are not in order",
- Range);
- Assert(!isContiguous(CurRange, LastRange), "Intervals are contiguous",
- Range);
- }
- LastRange = ConstantRange(LowV, HighV);
- }
- if (NumRanges > 2) {
- APInt FirstLow =
- mdconst::dyn_extract<ConstantInt>(Range->getOperand(0))->getValue();
- APInt FirstHigh =
- mdconst::dyn_extract<ConstantInt>(Range->getOperand(1))->getValue();
- ConstantRange FirstRange(FirstLow, FirstHigh);
- Assert(FirstRange.intersectWith(LastRange).isEmptySet(),
- "Intervals are overlapping", Range);
- Assert(!isContiguous(FirstRange, LastRange), "Intervals are contiguous",
- Range);
- }
- }
- void Verifier::visitLoadInst(LoadInst &LI) {
- PointerType *PTy = dyn_cast<PointerType>(LI.getOperand(0)->getType());
- Assert(PTy, "Load operand must be a pointer.", &LI);
- Type *ElTy = LI.getType();
- Assert(LI.getAlignment() <= Value::MaximumAlignment,
- "huge alignment values are unsupported", &LI);
- if (LI.isAtomic()) {
- Assert(LI.getOrdering() != Release && LI.getOrdering() != AcquireRelease,
- "Load cannot have Release ordering", &LI);
- Assert(LI.getAlignment() != 0,
- "Atomic load must specify explicit alignment", &LI);
- if (!ElTy->isPointerTy()) {
- Assert(ElTy->isIntegerTy(), "atomic load operand must have integer type!",
- &LI, ElTy);
- unsigned Size = ElTy->getPrimitiveSizeInBits();
- Assert(Size >= 8 && !(Size & (Size - 1)),
- "atomic load operand must be power-of-two byte-sized integer", &LI,
- ElTy);
- }
- } else {
- Assert(LI.getSynchScope() == CrossThread,
- "Non-atomic load cannot have SynchronizationScope specified", &LI);
- }
- visitInstruction(LI);
- }
- void Verifier::visitStoreInst(StoreInst &SI) {
- PointerType *PTy = dyn_cast<PointerType>(SI.getOperand(1)->getType());
- Assert(PTy, "Store operand must be a pointer.", &SI);
- Type *ElTy = PTy->getElementType();
- Assert(ElTy == SI.getOperand(0)->getType(),
- "Stored value type does not match pointer operand type!", &SI, ElTy);
- Assert(SI.getAlignment() <= Value::MaximumAlignment,
- "huge alignment values are unsupported", &SI);
- if (SI.isAtomic()) {
- Assert(SI.getOrdering() != Acquire && SI.getOrdering() != AcquireRelease,
- "Store cannot have Acquire ordering", &SI);
- Assert(SI.getAlignment() != 0,
- "Atomic store must specify explicit alignment", &SI);
- if (!ElTy->isPointerTy()) {
- Assert(ElTy->isIntegerTy(),
- "atomic store operand must have integer type!", &SI, ElTy);
- unsigned Size = ElTy->getPrimitiveSizeInBits();
- Assert(Size >= 8 && !(Size & (Size - 1)),
- "atomic store operand must be power-of-two byte-sized integer",
- &SI, ElTy);
- }
- } else {
- Assert(SI.getSynchScope() == CrossThread,
- "Non-atomic store cannot have SynchronizationScope specified", &SI);
- }
- visitInstruction(SI);
- }
- void Verifier::visitAllocaInst(AllocaInst &AI) {
- SmallPtrSet<const Type*, 4> Visited;
- PointerType *PTy = AI.getType();
- Assert(PTy->getAddressSpace() == 0,
- "Allocation instruction pointer not in the generic address space!",
- &AI);
- Assert(AI.getAllocatedType()->isSized(&Visited),
- "Cannot allocate unsized type", &AI);
- Assert(AI.getArraySize()->getType()->isIntegerTy(),
- "Alloca array size must have integer type", &AI);
- Assert(AI.getAlignment() <= Value::MaximumAlignment,
- "huge alignment values are unsupported", &AI);
- visitInstruction(AI);
- }
- void Verifier::visitAtomicCmpXchgInst(AtomicCmpXchgInst &CXI) {
- // FIXME: more conditions???
- Assert(CXI.getSuccessOrdering() != NotAtomic,
- "cmpxchg instructions must be atomic.", &CXI);
- Assert(CXI.getFailureOrdering() != NotAtomic,
- "cmpxchg instructions must be atomic.", &CXI);
- Assert(CXI.getSuccessOrdering() != Unordered,
- "cmpxchg instructions cannot be unordered.", &CXI);
- Assert(CXI.getFailureOrdering() != Unordered,
- "cmpxchg instructions cannot be unordered.", &CXI);
- Assert(CXI.getSuccessOrdering() >= CXI.getFailureOrdering(),
- "cmpxchg instructions be at least as constrained on success as fail",
- &CXI);
- Assert(CXI.getFailureOrdering() != Release &&
- CXI.getFailureOrdering() != AcquireRelease,
- "cmpxchg failure ordering cannot include release semantics", &CXI);
- PointerType *PTy = dyn_cast<PointerType>(CXI.getOperand(0)->getType());
- Assert(PTy, "First cmpxchg operand must be a pointer.", &CXI);
- Type *ElTy = PTy->getElementType();
- Assert(ElTy->isIntegerTy(), "cmpxchg operand must have integer type!", &CXI,
- ElTy);
- unsigned Size = ElTy->getPrimitiveSizeInBits();
- Assert(Size >= 8 && !(Size & (Size - 1)),
- "cmpxchg operand must be power-of-two byte-sized integer", &CXI, ElTy);
- Assert(ElTy == CXI.getOperand(1)->getType(),
- "Expected value type does not match pointer operand type!", &CXI,
- ElTy);
- Assert(ElTy == CXI.getOperand(2)->getType(),
- "Stored value type does not match pointer operand type!", &CXI, ElTy);
- visitInstruction(CXI);
- }
- void Verifier::visitAtomicRMWInst(AtomicRMWInst &RMWI) {
- Assert(RMWI.getOrdering() != NotAtomic,
- "atomicrmw instructions must be atomic.", &RMWI);
- Assert(RMWI.getOrdering() != Unordered,
- "atomicrmw instructions cannot be unordered.", &RMWI);
- PointerType *PTy = dyn_cast<PointerType>(RMWI.getOperand(0)->getType());
- Assert(PTy, "First atomicrmw operand must be a pointer.", &RMWI);
- Type *ElTy = PTy->getElementType();
- Assert(ElTy->isIntegerTy(), "atomicrmw operand must have integer type!",
- &RMWI, ElTy);
- unsigned Size = ElTy->getPrimitiveSizeInBits();
- Assert(Size >= 8 && !(Size & (Size - 1)),
- "atomicrmw operand must be power-of-two byte-sized integer", &RMWI,
- ElTy);
- Assert(ElTy == RMWI.getOperand(1)->getType(),
- "Argument value type does not match pointer operand type!", &RMWI,
- ElTy);
- Assert(AtomicRMWInst::FIRST_BINOP <= RMWI.getOperation() &&
- RMWI.getOperation() <= AtomicRMWInst::LAST_BINOP,
- "Invalid binary operation!", &RMWI);
- visitInstruction(RMWI);
- }
- void Verifier::visitFenceInst(FenceInst &FI) {
- const AtomicOrdering Ordering = FI.getOrdering();
- Assert(Ordering == Acquire || Ordering == Release ||
- Ordering == AcquireRelease || Ordering == SequentiallyConsistent,
- "fence instructions may only have "
- "acquire, release, acq_rel, or seq_cst ordering.",
- &FI);
- visitInstruction(FI);
- }
- void Verifier::visitExtractValueInst(ExtractValueInst &EVI) {
- Assert(ExtractValueInst::getIndexedType(EVI.getAggregateOperand()->getType(),
- EVI.getIndices()) == EVI.getType(),
- "Invalid ExtractValueInst operands!", &EVI);
- visitInstruction(EVI);
- }
- void Verifier::visitInsertValueInst(InsertValueInst &IVI) {
- Assert(ExtractValueInst::getIndexedType(IVI.getAggregateOperand()->getType(),
- IVI.getIndices()) ==
- IVI.getOperand(1)->getType(),
- "Invalid InsertValueInst operands!", &IVI);
- visitInstruction(IVI);
- }
- void Verifier::visitLandingPadInst(LandingPadInst &LPI) {
- BasicBlock *BB = LPI.getParent();
- // The landingpad instruction is ill-formed if it doesn't have any clauses and
- // isn't a cleanup.
- Assert(LPI.getNumClauses() > 0 || LPI.isCleanup(),
- "LandingPadInst needs at least one clause or to be a cleanup.", &LPI);
- // The landingpad instruction defines its parent as a landing pad block. The
- // landing pad block may be branched to only by the unwind edge of an invoke.
- for (pred_iterator I = pred_begin(BB), E = pred_end(BB); I != E; ++I) {
- const InvokeInst *II = dyn_cast<InvokeInst>((*I)->getTerminator());
- Assert(II && II->getUnwindDest() == BB && II->getNormalDest() != BB,
- "Block containing LandingPadInst must be jumped to "
- "only by the unwind edge of an invoke.",
- &LPI);
- }
- Function *F = LPI.getParent()->getParent();
- Assert(F->hasPersonalityFn(),
- "LandingPadInst needs to be in a function with a personality.", &LPI);
- // The landingpad instruction must be the first non-PHI instruction in the
- // block.
- Assert(LPI.getParent()->getLandingPadInst() == &LPI,
- "LandingPadInst not the first non-PHI instruction in the block.",
- &LPI);
- for (unsigned i = 0, e = LPI.getNumClauses(); i < e; ++i) {
- Constant *Clause = LPI.getClause(i);
- if (LPI.isCatch(i)) {
- Assert(isa<PointerType>(Clause->getType()),
- "Catch operand does not have pointer type!", &LPI);
- } else {
- Assert(LPI.isFilter(i), "Clause is neither catch nor filter!", &LPI);
- Assert(isa<ConstantArray>(Clause) || isa<ConstantAggregateZero>(Clause),
- "Filter operand is not an array of constants!", &LPI);
- }
- }
- visitInstruction(LPI);
- }
- void Verifier::verifyDominatesUse(Instruction &I, unsigned i) {
- Instruction *Op = cast<Instruction>(I.getOperand(i));
- // If the we have an invalid invoke, don't try to compute the dominance.
- // We already reject it in the invoke specific checks and the dominance
- // computation doesn't handle multiple edges.
- if (InvokeInst *II = dyn_cast<InvokeInst>(Op)) {
- if (II->getNormalDest() == II->getUnwindDest())
- return;
- }
- const Use &U = I.getOperandUse(i);
- Assert(InstsInThisBlock.count(Op) || DT.dominates(Op, U),
- "Instruction does not dominate all uses!", Op, &I);
- }
- /// verifyInstruction - Verify that an instruction is well formed.
- ///
- void Verifier::visitInstruction(Instruction &I) {
- BasicBlock *BB = I.getParent();
- Assert(BB, "Instruction not embedded in basic block!", &I);
- if (!isa<PHINode>(I)) { // Check that non-phi nodes are not self referential
- for (User *U : I.users()) {
- Assert(U != (User *)&I || !DT.isReachableFromEntry(BB),
- "Only PHI nodes may reference their own value!", &I);
- }
- }
- // Check that void typed values don't have names
- Assert(!I.getType()->isVoidTy() || !I.hasName(),
- "Instruction has a name, but provides a void value!", &I);
- // Check that the return value of the instruction is either void or a legal
- // value type.
- Assert(I.getType()->isVoidTy() || I.getType()->isFirstClassType(),
- "Instruction returns a non-scalar type!", &I);
- // Check that the instruction doesn't produce metadata. Calls are already
- // checked against the callee type.
- Assert(!I.getType()->isMetadataTy() || isa<CallInst>(I) || isa<InvokeInst>(I),
- "Invalid use of metadata!", &I);
- // Check that all uses of the instruction, if they are instructions
- // themselves, actually have parent basic blocks. If the use is not an
- // instruction, it is an error!
- for (Use &U : I.uses()) {
- if (Instruction *Used = dyn_cast<Instruction>(U.getUser()))
- Assert(Used->getParent() != nullptr,
- "Instruction referencing"
- " instruction not embedded in a basic block!",
- &I, Used);
- else {
- CheckFailed("Use of instruction is not an instruction!", U);
- return;
- }
- }
- for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) {
- Assert(I.getOperand(i) != nullptr, "Instruction has null operand!", &I);
- // Check to make sure that only first-class-values are operands to
- // instructions.
- if (!I.getOperand(i)->getType()->isFirstClassType()) {
- Assert(0, "Instruction operands must be first-class values!", &I);
- }
- if (Function *F = dyn_cast<Function>(I.getOperand(i))) {
- // Check to make sure that the "address of" an intrinsic function is never
- // taken.
- Assert(
- !F->isIntrinsic() ||
- i == (isa<CallInst>(I) ? e - 1 : isa<InvokeInst>(I) ? e - 3 : 0),
- "Cannot take the address of an intrinsic!", &I);
- Assert(
- !F->isIntrinsic() || isa<CallInst>(I) ||
- F->getIntrinsicID() == Intrinsic::donothing ||
- F->getIntrinsicID() == Intrinsic::experimental_patchpoint_void ||
- F->getIntrinsicID() == Intrinsic::experimental_patchpoint_i64 ||
- F->getIntrinsicID() == Intrinsic::experimental_gc_statepoint,
- "Cannot invoke an intrinsinc other than"
- " donothing or patchpoint",
- &I);
- Assert(F->getParent() == M, "Referencing function in another module!",
- &I);
- } else if (BasicBlock *OpBB = dyn_cast<BasicBlock>(I.getOperand(i))) {
- Assert(OpBB->getParent() == BB->getParent(),
- "Referring to a basic block in another function!", &I);
- } else if (Argument *OpArg = dyn_cast<Argument>(I.getOperand(i))) {
- Assert(OpArg->getParent() == BB->getParent(),
- "Referring to an argument in another function!", &I);
- } else if (GlobalValue *GV = dyn_cast<GlobalValue>(I.getOperand(i))) {
- Assert(GV->getParent() == M, "Referencing global in another module!", &I);
- } else if (isa<Instruction>(I.getOperand(i))) {
- verifyDominatesUse(I, i);
- } else if (isa<InlineAsm>(I.getOperand(i))) {
- Assert((i + 1 == e && isa<CallInst>(I)) ||
- (i + 3 == e && isa<InvokeInst>(I)),
- "Cannot take the address of an inline asm!", &I);
- } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(I.getOperand(i))) {
- if (CE->getType()->isPtrOrPtrVectorTy()) {
- // If we have a ConstantExpr pointer, we need to see if it came from an
- // illegal bitcast (inttoptr <constant int> )
- SmallVector<const ConstantExpr *, 4> Stack;
- SmallPtrSet<const ConstantExpr *, 4> Visited;
- Stack.push_back(CE);
- while (!Stack.empty()) {
- const ConstantExpr *V = Stack.pop_back_val();
- if (!Visited.insert(V).second)
- continue;
- VerifyConstantExprBitcastType(V);
- for (unsigned I = 0, N = V->getNumOperands(); I != N; ++I) {
- if (ConstantExpr *Op = dyn_cast<ConstantExpr>(V->getOperand(I)))
- Stack.push_back(Op);
- }
- }
- }
- }
- }
- if (MDNode *MD = I.getMetadata(LLVMContext::MD_fpmath)) {
- Assert(I.getType()->isFPOrFPVectorTy(),
- "fpmath requires a floating point result!", &I);
- Assert(MD->getNumOperands() == 1, "fpmath takes one operand!", &I);
- if (ConstantFP *CFP0 =
- mdconst::dyn_extract_or_null<ConstantFP>(MD->getOperand(0))) {
- APFloat Accuracy = CFP0->getValueAPF();
- Assert(Accuracy.isFiniteNonZero() && !Accuracy.isNegative(),
- "fpmath accuracy not a positive number!", &I);
- } else {
- Assert(false, "invalid fpmath accuracy!", &I);
- }
- }
- if (MDNode *Range = I.getMetadata(LLVMContext::MD_range)) {
- Assert(isa<LoadInst>(I) || isa<CallInst>(I) || isa<InvokeInst>(I),
- "Ranges are only for loads, calls and invokes!", &I);
- visitRangeMetadata(I, Range, I.getType());
- }
- if (I.getMetadata(LLVMContext::MD_nonnull)) {
- Assert(I.getType()->isPointerTy(), "nonnull applies only to pointer types",
- &I);
- Assert(isa<LoadInst>(I),
- "nonnull applies only to load instructions, use attributes"
- " for calls or invokes",
- &I);
- }
- if (MDNode *N = I.getDebugLoc().getAsMDNode()) {
- Assert(isa<DILocation>(N), "invalid !dbg metadata attachment", &I, N);
- visitMDNode(*N);
- }
- InstsInThisBlock.insert(&I);
- }
- /// VerifyIntrinsicType - Verify that the specified type (which comes from an
- /// intrinsic argument or return value) matches the type constraints specified
- /// by the .td file (e.g. an "any integer" argument really is an integer).
- ///
- /// This return true on error but does not print a message.
- bool Verifier::VerifyIntrinsicType(Type *Ty,
- ArrayRef<Intrinsic::IITDescriptor> &Infos,
- SmallVectorImpl<Type*> &ArgTys) {
- using namespace Intrinsic;
- // If we ran out of descriptors, there are too many arguments.
- if (Infos.empty()) return true;
- IITDescriptor D = Infos.front();
- Infos = Infos.slice(1);
- switch (D.Kind) {
- case IITDescriptor::Void: return !Ty->isVoidTy();
- case IITDescriptor::VarArg: return true;
- case IITDescriptor::MMX: return !Ty->isX86_MMXTy();
- case IITDescriptor::Metadata: return !Ty->isMetadataTy();
- case IITDescriptor::Half: return !Ty->isHalfTy();
- case IITDescriptor::Float: return !Ty->isFloatTy();
- case IITDescriptor::Double: return !Ty->isDoubleTy();
- case IITDescriptor::Integer: return !Ty->isIntegerTy(D.Integer_Width);
- case IITDescriptor::Vector: {
- VectorType *VT = dyn_cast<VectorType>(Ty);
- return !VT || VT->getNumElements() != D.Vector_Width ||
- VerifyIntrinsicType(VT->getElementType(), Infos, ArgTys);
- }
- case IITDescriptor::Pointer: {
- PointerType *PT = dyn_cast<PointerType>(Ty);
- return !PT || PT->getAddressSpace() != D.Pointer_AddressSpace ||
- VerifyIntrinsicType(PT->getElementType(), Infos, ArgTys);
- }
- case IITDescriptor::Struct: {
- StructType *ST = dyn_cast<StructType>(Ty);
- if (!ST || ST->getNumElements() != D.Struct_NumElements)
- return true;
- for (unsigned i = 0, e = D.Struct_NumElements; i != e; ++i)
- if (VerifyIntrinsicType(ST->getElementType(i), Infos, ArgTys))
- return true;
- return false;
- }
- case IITDescriptor::Argument:
- // Two cases here - If this is the second occurrence of an argument, verify
- // that the later instance matches the previous instance.
- if (D.getArgumentNumber() < ArgTys.size())
- return Ty != ArgTys[D.getArgumentNumber()];
- // Otherwise, if this is the first instance of an argument, record it and
- // verify the "Any" kind.
- assert(D.getArgumentNumber() == ArgTys.size() && "Table consistency error");
- ArgTys.push_back(Ty);
- switch (D.getArgumentKind()) {
- case IITDescriptor::AK_Any: return false; // Success
- case IITDescriptor::AK_AnyInteger: return !Ty->isIntOrIntVectorTy();
- case IITDescriptor::AK_AnyFloat: return !Ty->isFPOrFPVectorTy();
- case IITDescriptor::AK_AnyVector: return !isa<VectorType>(Ty);
- case IITDescriptor::AK_AnyPointer: return !isa<PointerType>(Ty);
- }
- llvm_unreachable("all argument kinds not covered");
- case IITDescriptor::ExtendArgument: {
- // This may only be used when referring to a previous vector argument.
- if (D.getArgumentNumber() >= ArgTys.size())
- return true;
- Type *NewTy = ArgTys[D.getArgumentNumber()];
- if (VectorType *VTy = dyn_cast<VectorType>(NewTy))
- NewTy = VectorType::getExtendedElementVectorType(VTy);
- else if (IntegerType *ITy = dyn_cast<IntegerType>(NewTy))
- NewTy = IntegerType::get(ITy->getContext(), 2 * ITy->getBitWidth());
- else
- return true;
- return Ty != NewTy;
- }
- case IITDescriptor::TruncArgument: {
- // This may only be used when referring to a previous vector argument.
- if (D.getArgumentNumber() >= ArgTys.size())
- return true;
- Type *NewTy = ArgTys[D.getArgumentNumber()];
- if (VectorType *VTy = dyn_cast<VectorType>(NewTy))
- NewTy = VectorType::getTruncatedElementVectorType(VTy);
- else if (IntegerType *ITy = dyn_cast<IntegerType>(NewTy))
- NewTy = IntegerType::get(ITy->getContext(), ITy->getBitWidth() / 2);
- else
- return true;
- return Ty != NewTy;
- }
- case IITDescriptor::HalfVecArgument:
- // This may only be used when referring to a previous vector argument.
- return D.getArgumentNumber() >= ArgTys.size() ||
- !isa<VectorType>(ArgTys[D.getArgumentNumber()]) ||
- VectorType::getHalfElementsVectorType(
- cast<VectorType>(ArgTys[D.getArgumentNumber()])) != Ty;
- case IITDescriptor::SameVecWidthArgument: {
- if (D.getArgumentNumber() >= ArgTys.size())
- return true;
- VectorType * ReferenceType =
- dyn_cast<VectorType>(ArgTys[D.getArgumentNumber()]);
- VectorType *ThisArgType = dyn_cast<VectorType>(Ty);
- if (!ThisArgType || !ReferenceType ||
- (ReferenceType->getVectorNumElements() !=
- ThisArgType->getVectorNumElements()))
- return true;
- return VerifyIntrinsicType(ThisArgType->getVectorElementType(),
- Infos, ArgTys);
- }
- case IITDescriptor::PtrToArgument: {
- if (D.getArgumentNumber() >= ArgTys.size())
- return true;
- Type * ReferenceType = ArgTys[D.getArgumentNumber()];
- PointerType *ThisArgType = dyn_cast<PointerType>(Ty);
- return (!ThisArgType || ThisArgType->getElementType() != ReferenceType);
- }
- case IITDescriptor::VecOfPtrsToElt: {
- if (D.getArgumentNumber() >= ArgTys.size())
- return true;
- VectorType * ReferenceType =
- dyn_cast<VectorType> (ArgTys[D.getArgumentNumber()]);
- VectorType *ThisArgVecTy = dyn_cast<VectorType>(Ty);
- if (!ThisArgVecTy || !ReferenceType ||
- (ReferenceType->getVectorNumElements() !=
- ThisArgVecTy->getVectorNumElements()))
- return true;
- PointerType *ThisArgEltTy =
- dyn_cast<PointerType>(ThisArgVecTy->getVectorElementType());
- if (!ThisArgEltTy)
- return true;
- return ThisArgEltTy->getElementType() !=
- ReferenceType->getVectorElementType();
- }
- }
- llvm_unreachable("unhandled");
- }
- /// \brief Verify if the intrinsic has variable arguments.
- /// This method is intended to be called after all the fixed arguments have been
- /// verified first.
- ///
- /// This method returns true on error and does not print an error message.
- bool
- Verifier::VerifyIntrinsicIsVarArg(bool isVarArg,
- ArrayRef<Intrinsic::IITDescriptor> &Infos) {
- using namespace Intrinsic;
- // If there are no descriptors left, then it can't be a vararg.
- if (Infos.empty())
- return isVarArg;
- // There should be only one descriptor remaining at this point.
- if (Infos.size() != 1)
- return true;
- // Check and verify the descriptor.
- IITDescriptor D = Infos.front();
- Infos = Infos.slice(1);
- if (D.Kind == IITDescriptor::VarArg)
- return !isVarArg;
- return true;
- }
- /// Allow intrinsics to be verified in different ways.
- void Verifier::visitIntrinsicCallSite(Intrinsic::ID ID, CallSite CS) {
- Function *IF = CS.getCalledFunction();
- Assert(IF->isDeclaration(), "Intrinsic functions should never be defined!",
- IF);
- // Verify that the intrinsic prototype lines up with what the .td files
- // describe.
- FunctionType *IFTy = IF->getFunctionType();
- bool IsVarArg = IFTy->isVarArg();
- SmallVector<Intrinsic::IITDescriptor, 8> Table;
- getIntrinsicInfoTableEntries(ID, Table);
- ArrayRef<Intrinsic::IITDescriptor> TableRef = Table;
- SmallVector<Type *, 4> ArgTys;
- Assert(!VerifyIntrinsicType(IFTy->getReturnType(), TableRef, ArgTys),
- "Intrinsic has incorrect return type!", IF);
- for (unsigned i = 0, e = IFTy->getNumParams(); i != e; ++i)
- Assert(!VerifyIntrinsicType(IFTy->getParamType(i), TableRef, ArgTys),
- "Intrinsic has incorrect argument type!", IF);
- // Verify if the intrinsic call matches the vararg property.
- if (IsVarArg)
- Assert(!VerifyIntrinsicIsVarArg(IsVarArg, TableRef),
- "Intrinsic was not defined with variable arguments!", IF);
- else
- Assert(!VerifyIntrinsicIsVarArg(IsVarArg, TableRef),
- "Callsite was not defined with variable arguments!", IF);
- // All descriptors should be absorbed by now.
- Assert(TableRef.empty(), "Intrinsic has too few arguments!", IF);
- // Now that we have the intrinsic ID and the actual argument types (and we
- // know they are legal for the intrinsic!) get the intrinsic name through the
- // usual means. This allows us to verify the mangling of argument types into
- // the name.
- const std::string ExpectedName = Intrinsic::getName(ID, ArgTys);
- Assert(ExpectedName == IF->getName(),
- "Intrinsic name not mangled correctly for type arguments! "
- "Should be: " +
- ExpectedName,
- IF);
- // If the intrinsic takes MDNode arguments, verify that they are either global
- // or are local to *this* function.
- for (Value *V : CS.args())
- if (auto *MD = dyn_cast<MetadataAsValue>(V))
- visitMetadataAsValue(*MD, CS.getCaller());
- switch (ID) {
- default:
- break;
- case Intrinsic::ctlz: // llvm.ctlz
- case Intrinsic::cttz: // llvm.cttz
- Assert(isa<ConstantInt>(CS.getArgOperand(1)),
- "is_zero_undef argument of bit counting intrinsics must be a "
- "constant int",
- CS);
- break;
- case Intrinsic::dbg_declare: // llvm.dbg.declare
- Assert(isa<MetadataAsValue>(CS.getArgOperand(0)),
- "invalid llvm.dbg.declare intrinsic call 1", CS);
- visitDbgIntrinsic("declare", cast<DbgDeclareInst>(*CS.getInstruction()));
- break;
- case Intrinsic::dbg_value: // llvm.dbg.value
- visitDbgIntrinsic("value", cast<DbgValueInst>(*CS.getInstruction()));
- break;
- case Intrinsic::memcpy:
- case Intrinsic::memmove:
- case Intrinsic::memset: {
- ConstantInt *AlignCI = dyn_cast<ConstantInt>(CS.getArgOperand(3));
- Assert(AlignCI,
- "alignment argument of memory intrinsics must be a constant int",
- CS);
- const APInt &AlignVal = AlignCI->getValue();
- Assert(AlignCI->isZero() || AlignVal.isPowerOf2(),
- "alignment argument of memory intrinsics must be a power of 2", CS);
- Assert(isa<ConstantInt>(CS.getArgOperand(4)),
- "isvolatile argument of memory intrinsics must be a constant int",
- CS);
- break;
- }
- case Intrinsic::gcroot:
- case Intrinsic::gcwrite:
- case Intrinsic::gcread:
- if (ID == Intrinsic::gcroot) {
- AllocaInst *AI =
- dyn_cast<AllocaInst>(CS.getArgOperand(0)->stripPointerCasts());
- Assert(AI, "llvm.gcroot parameter #1 must be an alloca.", CS);
- Assert(isa<Constant>(CS.getArgOperand(1)),
- "llvm.gcroot parameter #2 must be a constant.", CS);
- if (!AI->getAllocatedType()->isPointerTy()) {
- Assert(!isa<ConstantPointerNull>(CS.getArgOperand(1)),
- "llvm.gcroot parameter #1 must either be a pointer alloca, "
- "or argument #2 must be a non-null constant.",
- CS);
- }
- }
- Assert(CS.getParent()->getParent()->hasGC(),
- "Enclosing function does not use GC.", CS);
- break;
- case Intrinsic::init_trampoline:
- Assert(isa<Function>(CS.getArgOperand(1)->stripPointerCasts()),
- "llvm.init_trampoline parameter #2 must resolve to a function.",
- CS);
- break;
- case Intrinsic::prefetch:
- Assert(isa<ConstantInt>(CS.getArgOperand(1)) &&
- isa<ConstantInt>(CS.getArgOperand(2)) &&
- cast<ConstantInt>(CS.getArgOperand(1))->getZExtValue() < 2 &&
- cast<ConstantInt>(CS.getArgOperand(2))->getZExtValue() < 4,
- "invalid arguments to llvm.prefetch", CS);
- break;
- case Intrinsic::stackprotector:
- Assert(isa<AllocaInst>(CS.getArgOperand(1)->stripPointerCasts()),
- "llvm.stackprotector parameter #2 must resolve to an alloca.", CS);
- break;
- case Intrinsic::lifetime_start:
- case Intrinsic::lifetime_end:
- case Intrinsic::invariant_start:
- Assert(isa<ConstantInt>(CS.getArgOperand(0)),
- "size argument of memory use markers must be a constant integer",
- CS);
- break;
- case Intrinsic::invariant_end:
- Assert(isa<ConstantInt>(CS.getArgOperand(1)),
- "llvm.invariant.end parameter #2 must be a constant integer", CS);
- break;
- case Intrinsic::localescape: {
- BasicBlock *BB = CS.getParent();
- Assert(BB == &BB->getParent()->front(),
- "llvm.localescape used outside of entry block", CS);
- Assert(!SawFrameEscape,
- "multiple calls to llvm.localescape in one function", CS);
- for (Value *Arg : CS.args()) {
- if (isa<ConstantPointerNull>(Arg))
- continue; // Null values are allowed as placeholders.
- auto *AI = dyn_cast<AllocaInst>(Arg->stripPointerCasts());
- Assert(AI && AI->isStaticAlloca(),
- "llvm.localescape only accepts static allocas", CS);
- }
- FrameEscapeInfo[BB->getParent()].first = CS.getNumArgOperands();
- SawFrameEscape = true;
- break;
- }
- case Intrinsic::localrecover: {
- Value *FnArg = CS.getArgOperand(0)->stripPointerCasts();
- Function *Fn = dyn_cast<Function>(FnArg);
- Assert(Fn && !Fn->isDeclaration(),
- "llvm.localrecover first "
- "argument must be function defined in this module",
- CS);
- auto *IdxArg = dyn_cast<ConstantInt>(CS.getArgOperand(2));
- Assert(IdxArg, "idx argument of llvm.localrecover must be a constant int",
- CS);
- auto &Entry = FrameEscapeInfo[Fn];
- Entry.second = unsigned(
- std::max(uint64_t(Entry.second), IdxArg->getLimitedValue(~0U) + 1));
- break;
- }
- case Intrinsic::experimental_gc_statepoint:
- Assert(!CS.isInlineAsm(),
- "gc.statepoint support for inline assembly unimplemented", CS);
- Assert(CS.getParent()->getParent()->hasGC(),
- "Enclosing function does not use GC.", CS);
- VerifyStatepoint(CS);
- break;
- case Intrinsic::experimental_gc_result_int:
- case Intrinsic::experimental_gc_result_float:
- case Intrinsic::experimental_gc_result_ptr:
- case Intrinsic::experimental_gc_result: {
- Assert(CS.getParent()->getParent()->hasGC(),
- "Enclosing function does not use GC.", CS);
- // Are we tied to a statepoint properly?
- CallSite StatepointCS(CS.getArgOperand(0));
- const Function *StatepointFn =
- StatepointCS.getInstruction() ? StatepointCS.getCalledFunction() : nullptr;
- Assert(StatepointFn && StatepointFn->isDeclaration() &&
- StatepointFn->getIntrinsicID() ==
- Intrinsic::experimental_gc_statepoint,
- "gc.result operand #1 must be from a statepoint", CS,
- CS.getArgOperand(0));
- // Assert that result type matches wrapped callee.
- const Value *Target = StatepointCS.getArgument(2);
- const PointerType *PT = cast<PointerType>(Target->getType());
- const FunctionType *TargetFuncType =
- cast<FunctionType>(PT->getElementType());
- Assert(CS.getType() == TargetFuncType->getReturnType(),
- "gc.result result type does not match wrapped callee", CS);
- break;
- }
- case Intrinsic::experimental_gc_relocate: {
- Assert(CS.getNumArgOperands() == 3, "wrong number of arguments", CS);
- // Check that this relocate is correctly tied to the statepoint
- // This is case for relocate on the unwinding path of an invoke statepoint
- if (ExtractValueInst *ExtractValue =
- dyn_cast<ExtractValueInst>(CS.getArgOperand(0))) {
- Assert(isa<LandingPadInst>(ExtractValue->getAggregateOperand()),
- "gc relocate on unwind path incorrectly linked to the statepoint",
- CS);
- const BasicBlock *InvokeBB =
- ExtractValue->getParent()->getUniquePredecessor();
- // Landingpad relocates should have only one predecessor with invoke
- // statepoint terminator
- Assert(InvokeBB, "safepoints should have unique landingpads",
- ExtractValue->getParent());
- Assert(InvokeBB->getTerminator(), "safepoint block should be well formed",
- InvokeBB);
- Assert(isStatepoint(InvokeBB->getTerminator()),
- "gc relocate should be linked to a statepoint", InvokeBB);
- }
- else {
- // In all other cases relocate should be tied to the statepoint directly.
- // This covers relocates on a normal return path of invoke statepoint and
- // relocates of a call statepoint
- auto Token = CS.getArgOperand(0);
- Assert(isa<Instruction>(Token) && isStatepoint(cast<Instruction>(Token)),
- "gc relocate is incorrectly tied to the statepoint", CS, Token);
- }
- // Verify rest of the relocate arguments
- GCRelocateOperands Ops(CS);
- ImmutableCallSite StatepointCS(Ops.getStatepoint());
- // Both the base and derived must be piped through the safepoint
- Value* Base = CS.getArgOperand(1);
- Assert(isa<ConstantInt>(Base),
- "gc.relocate operand #2 must be integer offset", CS);
- Value* Derived = CS.getArgOperand(2);
- Assert(isa<ConstantInt>(Derived),
- "gc.relocate operand #3 must be integer offset", CS);
- const int BaseIndex = cast<ConstantInt>(Base)->getZExtValue();
- const int DerivedIndex = cast<ConstantInt>(Derived)->getZExtValue();
- // Check the bounds
- Assert(0 <= BaseIndex && BaseIndex < (int)StatepointCS.arg_size(),
- "gc.relocate: statepoint base index out of bounds", CS);
- Assert(0 <= DerivedIndex && DerivedIndex < (int)StatepointCS.arg_size(),
- "gc.relocate: statepoint derived index out of bounds", CS);
- // Check that BaseIndex and DerivedIndex fall within the 'gc parameters'
- // section of the statepoint's argument
- Assert(StatepointCS.arg_size() > 0,
- "gc.statepoint: insufficient arguments");
- Assert(isa<ConstantInt>(StatepointCS.getArgument(3)),
- "gc.statement: number of call arguments must be constant integer");
- const unsigned NumCallArgs =
- cast<ConstantInt>(StatepointCS.getArgument(3))->getZExtValue();
- Assert(StatepointCS.arg_size() > NumCallArgs + 5,
- "gc.statepoint: mismatch in number of call arguments");
- Assert(isa<ConstantInt>(StatepointCS.getArgument(NumCallArgs + 5)),
- "gc.statepoint: number of transition arguments must be "
- "a constant integer");
- const int NumTransitionArgs =
- cast<ConstantInt>(StatepointCS.getArgument(NumCallArgs + 5))
- ->getZExtValue();
- const int DeoptArgsStart = 4 + NumCallArgs + 1 + NumTransitionArgs + 1;
- Assert(isa<ConstantInt>(StatepointCS.getArgument(DeoptArgsStart)),
- "gc.statepoint: number of deoptimization arguments must be "
- "a constant integer");
- const int NumDeoptArgs =
- cast<ConstantInt>(StatepointCS.getArgument(DeoptArgsStart))->getZExtValue();
- const int GCParamArgsStart = DeoptArgsStart + 1 + NumDeoptArgs;
- const int GCParamArgsEnd = StatepointCS.arg_size();
- Assert(GCParamArgsStart <= BaseIndex && BaseIndex < GCParamArgsEnd,
- "gc.relocate: statepoint base index doesn't fall within the "
- "'gc parameters' section of the statepoint call",
- CS);
- Assert(GCParamArgsStart <= DerivedIndex && DerivedIndex < GCParamArgsEnd,
- "gc.relocate: statepoint derived index doesn't fall within the "
- "'gc parameters' section of the statepoint call",
- CS);
- // Relocated value must be a pointer type, but gc_relocate does not need to return the
- // same pointer type as the relocated pointer. It can be casted to the correct type later
- // if it's desired. However, they must have the same address space.
- GCRelocateOperands Operands(CS);
- Assert(Operands.getDerivedPtr()->getType()->isPointerTy(),
- "gc.relocate: relocated value must be a gc pointer", CS);
- // gc_relocate return type must be a pointer type, and is verified earlier in
- // VerifyIntrinsicType().
- Assert(cast<PointerType>(CS.getType())->getAddressSpace() ==
- cast<PointerType>(Operands.getDerivedPtr()->getType())->getAddressSpace(),
- "gc.relocate: relocating a pointer shouldn't change its address space", CS);
- break;
- }
- };
- }
- /// \brief Carefully grab the subprogram from a local scope.
- ///
- /// This carefully grabs the subprogram from a local scope, avoiding the
- /// built-in assertions that would typically fire.
- static DISubprogram *getSubprogram(Metadata *LocalScope) {
- if (!LocalScope)
- return nullptr;
- if (auto *SP = dyn_cast<DISubprogram>(LocalScope))
- return SP;
- if (auto *LB = dyn_cast<DILexicalBlockBase>(LocalScope))
- return getSubprogram(LB->getRawScope());
- // Just return null; broken scope chains are checked elsewhere.
- assert(!isa<DILocalScope>(LocalScope) && "Unknown type of local scope");
- return nullptr;
- }
- template <class DbgIntrinsicTy>
- void Verifier::visitDbgIntrinsic(StringRef Kind, DbgIntrinsicTy &DII) {
- auto *MD = cast<MetadataAsValue>(DII.getArgOperand(0))->getMetadata();
- Assert(isa<ValueAsMetadata>(MD) ||
- (isa<MDNode>(MD) && !cast<MDNode>(MD)->getNumOperands()),
- "invalid llvm.dbg." + Kind + " intrinsic address/value", &DII, MD);
- Assert(isa<DILocalVariable>(DII.getRawVariable()),
- "invalid llvm.dbg." + Kind + " intrinsic variable", &DII,
- DII.getRawVariable());
- Assert(isa<DIExpression>(DII.getRawExpression()),
- "invalid llvm.dbg." + Kind + " intrinsic expression", &DII,
- DII.getRawExpression());
- // Ignore broken !dbg attachments; they're checked elsewhere.
- if (MDNode *N = DII.getDebugLoc().getAsMDNode())
- if (!isa<DILocation>(N))
- return;
- BasicBlock *BB = DII.getParent();
- Function *F = BB ? BB->getParent() : nullptr;
- // The scopes for variables and !dbg attachments must agree.
- DILocalVariable *Var = DII.getVariable();
- DILocation *Loc = DII.getDebugLoc();
- Assert(Loc, "llvm.dbg." + Kind + " intrinsic requires a !dbg attachment",
- &DII, BB, F);
- DISubprogram *VarSP = getSubprogram(Var->getRawScope());
- DISubprogram *LocSP = getSubprogram(Loc->getRawScope());
- if (!VarSP || !LocSP)
- return; // Broken scope chains are checked elsewhere.
- Assert(VarSP == LocSP, "mismatched subprogram between llvm.dbg." + Kind +
- " variable and !dbg attachment",
- &DII, BB, F, Var, Var->getScope()->getSubprogram(), Loc,
- Loc->getScope()->getSubprogram());
- }
- template <class MapTy>
- static uint64_t getVariableSize(const DILocalVariable &V, const MapTy &Map) {
- // Be careful of broken types (checked elsewhere).
- const Metadata *RawType = V.getRawType();
- while (RawType) {
- // Try to get the size directly.
- if (auto *T = dyn_cast<DIType>(RawType))
- if (uint64_t Size = T->getSizeInBits())
- return Size;
- if (auto *DT = dyn_cast<DIDerivedType>(RawType)) {
- // Look at the base type.
- RawType = DT->getRawBaseType();
- continue;
- }
- if (auto *S = dyn_cast<MDString>(RawType)) {
- // Don't error on missing types (checked elsewhere).
- RawType = Map.lookup(S);
- continue;
- }
- // Missing type or size.
- break;
- }
- // Fail gracefully.
- return 0;
- }
- template <class MapTy>
- void Verifier::verifyBitPieceExpression(const DbgInfoIntrinsic &I,
- const MapTy &TypeRefs) {
- DILocalVariable *V;
- DIExpression *E;
- if (auto *DVI = dyn_cast<DbgValueInst>(&I)) {
- V = dyn_cast_or_null<DILocalVariable>(DVI->getRawVariable());
- E = dyn_cast_or_null<DIExpression>(DVI->getRawExpression());
- } else {
- auto *DDI = cast<DbgDeclareInst>(&I);
- V = dyn_cast_or_null<DILocalVariable>(DDI->getRawVariable());
- E = dyn_cast_or_null<DIExpression>(DDI->getRawExpression());
- }
- // We don't know whether this intrinsic verified correctly.
- if (!V || !E || !E->isValid())
- return;
- // Nothing to do if this isn't a bit piece expression.
- if (!E->isBitPiece())
- return;
- // The frontend helps out GDB by emitting the members of local anonymous
- // unions as artificial local variables with shared storage. When SROA splits
- // the storage for artificial local variables that are smaller than the entire
- // union, the overhang piece will be outside of the allotted space for the
- // variable and this check fails.
- // FIXME: Remove this check as soon as clang stops doing this; it hides bugs.
- if (V->isArtificial())
- return;
- // If there's no size, the type is broken, but that should be checked
- // elsewhere.
- uint64_t VarSize = getVariableSize(*V, TypeRefs);
- if (!VarSize)
- return;
- unsigned PieceSize = E->getBitPieceSize();
- unsigned PieceOffset = E->getBitPieceOffset();
- Assert(PieceSize + PieceOffset <= VarSize,
- "piece is larger than or outside of variable", &I, V, E);
- Assert(PieceSize != VarSize, "piece covers entire variable", &I, V, E);
- }
- void Verifier::visitUnresolvedTypeRef(const MDString *S, const MDNode *N) {
- // This is in its own function so we get an error for each bad type ref (not
- // just the first).
- Assert(false, "unresolved type ref", S, N);
- }
- void Verifier::verifyTypeRefs() {
- auto *CUs = M->getNamedMetadata("llvm.dbg.cu");
- if (!CUs)
- return;
- // Visit all the compile units again to map the type references.
- SmallDenseMap<const MDString *, const DIType *, 32> TypeRefs;
- for (auto *CU : CUs->operands())
- if (auto Ts = cast<DICompileUnit>(CU)->getRetainedTypes())
- for (DIType *Op : Ts)
- if (auto *T = dyn_cast<DICompositeType>(Op))
- if (auto *S = T->getRawIdentifier()) {
- UnresolvedTypeRefs.erase(S);
- TypeRefs.insert(std::make_pair(S, T));
- }
- // Verify debug info intrinsic bit piece expressions. This needs a second
- // pass through the intructions, since we haven't built TypeRefs yet when
- // verifying functions, and simply queuing the DbgInfoIntrinsics to evaluate
- // later/now would queue up some that could be later deleted.
- for (const Function &F : *M)
- for (const BasicBlock &BB : F)
- for (const Instruction &I : BB)
- if (auto *DII = dyn_cast<DbgInfoIntrinsic>(&I))
- verifyBitPieceExpression(*DII, TypeRefs);
- // Return early if all typerefs were resolved.
- if (UnresolvedTypeRefs.empty())
- return;
- // Sort the unresolved references by name so the output is deterministic.
- typedef std::pair<const MDString *, const MDNode *> TypeRef;
- SmallVector<TypeRef, 32> Unresolved(UnresolvedTypeRefs.begin(),
- UnresolvedTypeRefs.end());
- std::sort(Unresolved.begin(), Unresolved.end(),
- [](const TypeRef &LHS, const TypeRef &RHS) {
- return LHS.first->getString() < RHS.first->getString();
- });
- // Visit the unresolved refs (printing out the errors).
- for (const TypeRef &TR : Unresolved)
- visitUnresolvedTypeRef(TR.first, TR.second);
- }
- //===----------------------------------------------------------------------===//
- // Implement the public interfaces to this file...
- //===----------------------------------------------------------------------===//
- bool llvm::verifyFunction(const Function &f, raw_ostream *OS) {
- Function &F = const_cast<Function &>(f);
- assert(!F.isDeclaration() && "Cannot verify external functions");
- raw_null_ostream NullStr;
- Verifier V(OS ? *OS : NullStr);
- // Note that this function's return value is inverted from what you would
- // expect of a function called "verify".
- return !V.verify(F);
- }
- bool llvm::verifyModule(const Module &M, raw_ostream *OS) {
- raw_null_ostream NullStr;
- Verifier V(OS ? *OS : NullStr);
- bool Broken = false;
- for (Module::const_iterator I = M.begin(), E = M.end(); I != E; ++I)
- if (!I->isDeclaration() && !I->isMaterializable())
- Broken |= !V.verify(*I);
- // Note that this function's return value is inverted from what you would
- // expect of a function called "verify".
- return !V.verify(M) || Broken;
- }
- namespace {
- struct VerifierLegacyPass : public FunctionPass {
- static char ID;
- Verifier V;
- bool FatalErrors;
- VerifierLegacyPass() : FunctionPass(ID), V(dbgs()), FatalErrors(true) {
- initializeVerifierLegacyPassPass(*PassRegistry::getPassRegistry());
- }
- explicit VerifierLegacyPass(bool FatalErrors)
- : FunctionPass(ID), V(dbgs()), FatalErrors(FatalErrors) {
- initializeVerifierLegacyPassPass(*PassRegistry::getPassRegistry());
- }
- bool runOnFunction(Function &F) override {
- return false;
- if (!V.verify(F) && FatalErrors)
- report_fatal_error("Broken function found, compilation aborted!");
- return false;
- }
- bool doFinalization(Module &M) override {
- if (!V.verify(M) && FatalErrors)
- report_fatal_error("Broken module found, compilation aborted!");
- return false;
- }
- void getAnalysisUsage(AnalysisUsage &AU) const override {
- AU.setPreservesAll();
- }
- };
- }
- char VerifierLegacyPass::ID = 0;
- INITIALIZE_PASS(VerifierLegacyPass, "verify", "Module Verifier", false, false)
- FunctionPass *llvm::createVerifierPass(bool FatalErrors) {
- return new VerifierLegacyPass(FatalErrors);
- }
- PreservedAnalyses VerifierPass::run(Module &M) {
- if (verifyModule(M, &dbgs()) && FatalErrors)
- report_fatal_error("Broken module found, compilation aborted!");
- return PreservedAnalyses::all();
- }
- PreservedAnalyses VerifierPass::run(Function &F) {
- if (verifyFunction(F, &dbgs()) && FatalErrors)
- report_fatal_error("Broken function found, compilation aborted!");
- return PreservedAnalyses::all();
- }
|