123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907 |
- //===-- APInt.cpp - Implement APInt class ---------------------------------===//
- //
- // The LLVM Compiler Infrastructure
- //
- // This file is distributed under the University of Illinois Open Source
- // License. See LICENSE.TXT for details.
- //
- //===----------------------------------------------------------------------===//
- //
- // This file implements a class to represent arbitrary precision integer
- // constant values and provide a variety of arithmetic operations on them.
- //
- //===----------------------------------------------------------------------===//
- #include "llvm/ADT/APInt.h"
- #include "llvm/ADT/FoldingSet.h"
- #include "llvm/ADT/Hashing.h"
- #include "llvm/ADT/SmallString.h"
- #include "llvm/ADT/StringRef.h"
- #include "llvm/Support/Debug.h"
- #include "llvm/Support/ErrorHandling.h"
- #include "llvm/Support/MathExtras.h"
- #include "llvm/Support/raw_ostream.h"
- #include <cmath>
- #include <cstdlib>
- #include <cstring>
- #include <limits>
- using namespace llvm;
- #define DEBUG_TYPE "apint"
- /// A utility function for allocating memory, checking for allocation failures,
- /// and ensuring the contents are zeroed.
- inline static uint64_t* getClearedMemory(unsigned numWords) {
- uint64_t * result = new uint64_t[numWords];
- assert(result && "APInt memory allocation fails!");
- memset(result, 0, numWords * sizeof(uint64_t));
- return result;
- }
- /// A utility function for allocating memory and checking for allocation
- /// failure. The content is not zeroed.
- inline static uint64_t* getMemory(unsigned numWords) {
- uint64_t * result = new uint64_t[numWords];
- assert(result && "APInt memory allocation fails!");
- return result;
- }
- /// A utility function that converts a character to a digit.
- inline static unsigned getDigit(char cdigit, uint8_t radix) {
- unsigned r;
- if (radix == 16 || radix == 36) {
- r = cdigit - '0';
- if (r <= 9)
- return r;
- r = cdigit - 'A';
- if (r <= radix - 11U)
- return r + 10;
- r = cdigit - 'a';
- if (r <= radix - 11U)
- return r + 10;
-
- radix = 10;
- }
- r = cdigit - '0';
- if (r < radix)
- return r;
- return -1U;
- }
- void APInt::initSlowCase(unsigned numBits, uint64_t val, bool isSigned) {
- pVal = getClearedMemory(getNumWords());
- pVal[0] = val;
- if (isSigned && int64_t(val) < 0)
- for (unsigned i = 1; i < getNumWords(); ++i)
- pVal[i] = -1ULL;
- }
- void APInt::initSlowCase(const APInt& that) {
- pVal = getMemory(getNumWords());
- memcpy(pVal, that.pVal, getNumWords() * APINT_WORD_SIZE);
- }
- void APInt::initFromArray(ArrayRef<uint64_t> bigVal) {
- assert(BitWidth && "Bitwidth too small");
- assert(bigVal.data() && "Null pointer detected!");
- if (isSingleWord())
- VAL = bigVal[0];
- else {
- // Get memory, cleared to 0
- pVal = getClearedMemory(getNumWords());
- // Calculate the number of words to copy
- unsigned words = std::min<unsigned>(bigVal.size(), getNumWords());
- // Copy the words from bigVal to pVal
- memcpy(pVal, bigVal.data(), words * APINT_WORD_SIZE);
- }
- // Make sure unused high bits are cleared
- clearUnusedBits();
- }
- APInt::APInt(unsigned numBits, ArrayRef<uint64_t> bigVal)
- : BitWidth(numBits), VAL(0) {
- initFromArray(bigVal);
- }
- APInt::APInt(unsigned numBits, unsigned numWords, const uint64_t bigVal[])
- : BitWidth(numBits), VAL(0) {
- initFromArray(makeArrayRef(bigVal, numWords));
- }
- APInt::APInt(unsigned numbits, StringRef Str, uint8_t radix)
- : BitWidth(numbits), VAL(0) {
- assert(BitWidth && "Bitwidth too small");
- fromString(numbits, Str, radix);
- }
- APInt& APInt::AssignSlowCase(const APInt& RHS) {
- // Don't do anything for X = X
- if (this == &RHS)
- return *this;
- if (BitWidth == RHS.getBitWidth()) {
- // assume same bit-width single-word case is already handled
- assert(!isSingleWord());
- memcpy(pVal, RHS.pVal, getNumWords() * APINT_WORD_SIZE);
- return *this;
- }
- if (isSingleWord()) {
- // assume case where both are single words is already handled
- assert(!RHS.isSingleWord());
- VAL = 0;
- pVal = getMemory(RHS.getNumWords());
- memcpy(pVal, RHS.pVal, RHS.getNumWords() * APINT_WORD_SIZE);
- } else if (getNumWords() == RHS.getNumWords())
- memcpy(pVal, RHS.pVal, RHS.getNumWords() * APINT_WORD_SIZE);
- else if (RHS.isSingleWord()) {
- delete [] pVal;
- VAL = RHS.VAL;
- } else {
- delete [] pVal;
- pVal = getMemory(RHS.getNumWords());
- memcpy(pVal, RHS.pVal, RHS.getNumWords() * APINT_WORD_SIZE);
- }
- BitWidth = RHS.BitWidth;
- return clearUnusedBits();
- }
- APInt& APInt::operator=(uint64_t RHS) {
- if (isSingleWord())
- VAL = RHS;
- else {
- pVal[0] = RHS;
- memset(pVal+1, 0, (getNumWords() - 1) * APINT_WORD_SIZE);
- }
- return clearUnusedBits();
- }
- /// This method 'profiles' an APInt for use with FoldingSet.
- void APInt::Profile(FoldingSetNodeID& ID) const {
- ID.AddInteger(BitWidth);
- if (isSingleWord()) {
- ID.AddInteger(VAL);
- return;
- }
- unsigned NumWords = getNumWords();
- for (unsigned i = 0; i < NumWords; ++i)
- ID.AddInteger(pVal[i]);
- }
- /// This function adds a single "digit" integer, y, to the multiple
- /// "digit" integer array, x[]. x[] is modified to reflect the addition and
- /// 1 is returned if there is a carry out, otherwise 0 is returned.
- /// @returns the carry of the addition.
- static bool add_1(uint64_t dest[], uint64_t x[], unsigned len, uint64_t y) {
- for (unsigned i = 0; i < len; ++i) {
- dest[i] = y + x[i];
- if (dest[i] < y)
- y = 1; // Carry one to next digit.
- else {
- y = 0; // No need to carry so exit early
- break;
- }
- }
- return y;
- }
- /// @brief Prefix increment operator. Increments the APInt by one.
- APInt& APInt::operator++() {
- if (isSingleWord())
- ++VAL;
- else
- add_1(pVal, pVal, getNumWords(), 1);
- return clearUnusedBits();
- }
- /// This function subtracts a single "digit" (64-bit word), y, from
- /// the multi-digit integer array, x[], propagating the borrowed 1 value until
- /// no further borrowing is neeeded or it runs out of "digits" in x. The result
- /// is 1 if "borrowing" exhausted the digits in x, or 0 if x was not exhausted.
- /// In other words, if y > x then this function returns 1, otherwise 0.
- /// @returns the borrow out of the subtraction
- static bool sub_1(uint64_t x[], unsigned len, uint64_t y) {
- for (unsigned i = 0; i < len; ++i) {
- uint64_t X = x[i];
- x[i] -= y;
- if (y > X)
- y = 1; // We have to "borrow 1" from next "digit"
- else {
- y = 0; // No need to borrow
- break; // Remaining digits are unchanged so exit early
- }
- }
- return bool(y);
- }
- /// @brief Prefix decrement operator. Decrements the APInt by one.
- APInt& APInt::operator--() {
- if (isSingleWord())
- --VAL;
- else
- sub_1(pVal, getNumWords(), 1);
- return clearUnusedBits();
- }
- /// This function adds the integer array x to the integer array Y and
- /// places the result in dest.
- /// @returns the carry out from the addition
- /// @brief General addition of 64-bit integer arrays
- static bool add(uint64_t *dest, const uint64_t *x, const uint64_t *y,
- unsigned len) {
- bool carry = false;
- for (unsigned i = 0; i< len; ++i) {
- uint64_t limit = std::min(x[i],y[i]); // must come first in case dest == x
- dest[i] = x[i] + y[i] + carry;
- carry = dest[i] < limit || (carry && dest[i] == limit);
- }
- return carry;
- }
- /// Adds the RHS APint to this APInt.
- /// @returns this, after addition of RHS.
- /// @brief Addition assignment operator.
- APInt& APInt::operator+=(const APInt& RHS) {
- assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
- if (isSingleWord())
- VAL += RHS.VAL;
- else {
- add(pVal, pVal, RHS.pVal, getNumWords());
- }
- return clearUnusedBits();
- }
- /// Subtracts the integer array y from the integer array x
- /// @returns returns the borrow out.
- /// @brief Generalized subtraction of 64-bit integer arrays.
- static bool sub(uint64_t *dest, const uint64_t *x, const uint64_t *y,
- unsigned len) {
- bool borrow = false;
- for (unsigned i = 0; i < len; ++i) {
- uint64_t x_tmp = borrow ? x[i] - 1 : x[i];
- borrow = y[i] > x_tmp || (borrow && x[i] == 0);
- dest[i] = x_tmp - y[i];
- }
- return borrow;
- }
- /// Subtracts the RHS APInt from this APInt
- /// @returns this, after subtraction
- /// @brief Subtraction assignment operator.
- APInt& APInt::operator-=(const APInt& RHS) {
- assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
- if (isSingleWord())
- VAL -= RHS.VAL;
- else
- sub(pVal, pVal, RHS.pVal, getNumWords());
- return clearUnusedBits();
- }
- /// Multiplies an integer array, x, by a uint64_t integer and places the result
- /// into dest.
- /// @returns the carry out of the multiplication.
- /// @brief Multiply a multi-digit APInt by a single digit (64-bit) integer.
- static uint64_t mul_1(uint64_t dest[], uint64_t x[], unsigned len, uint64_t y) {
- // Split y into high 32-bit part (hy) and low 32-bit part (ly)
- uint64_t ly = y & 0xffffffffULL, hy = y >> 32;
- uint64_t carry = 0;
- // For each digit of x.
- for (unsigned i = 0; i < len; ++i) {
- // Split x into high and low words
- uint64_t lx = x[i] & 0xffffffffULL;
- uint64_t hx = x[i] >> 32;
- // hasCarry - A flag to indicate if there is a carry to the next digit.
- // hasCarry == 0, no carry
- // hasCarry == 1, has carry
- // hasCarry == 2, no carry and the calculation result == 0.
- uint8_t hasCarry = 0;
- dest[i] = carry + lx * ly;
- // Determine if the add above introduces carry.
- hasCarry = (dest[i] < carry) ? 1 : 0;
- carry = hx * ly + (dest[i] >> 32) + (hasCarry ? (1ULL << 32) : 0);
- // The upper limit of carry can be (2^32 - 1)(2^32 - 1) +
- // (2^32 - 1) + 2^32 = 2^64.
- hasCarry = (!carry && hasCarry) ? 1 : (!carry ? 2 : 0);
- carry += (lx * hy) & 0xffffffffULL;
- dest[i] = (carry << 32) | (dest[i] & 0xffffffffULL);
- carry = (((!carry && hasCarry != 2) || hasCarry == 1) ? (1ULL << 32) : 0) +
- (carry >> 32) + ((lx * hy) >> 32) + hx * hy;
- }
- return carry;
- }
- /// Multiplies integer array x by integer array y and stores the result into
- /// the integer array dest. Note that dest's size must be >= xlen + ylen.
- /// @brief Generalized multiplicate of integer arrays.
- static void mul(uint64_t dest[], uint64_t x[], unsigned xlen, uint64_t y[],
- unsigned ylen) {
- dest[xlen] = mul_1(dest, x, xlen, y[0]);
- for (unsigned i = 1; i < ylen; ++i) {
- uint64_t ly = y[i] & 0xffffffffULL, hy = y[i] >> 32;
- uint64_t carry = 0, lx = 0, hx = 0;
- for (unsigned j = 0; j < xlen; ++j) {
- lx = x[j] & 0xffffffffULL;
- hx = x[j] >> 32;
- // hasCarry - A flag to indicate if has carry.
- // hasCarry == 0, no carry
- // hasCarry == 1, has carry
- // hasCarry == 2, no carry and the calculation result == 0.
- uint8_t hasCarry = 0;
- uint64_t resul = carry + lx * ly;
- hasCarry = (resul < carry) ? 1 : 0;
- carry = (hasCarry ? (1ULL << 32) : 0) + hx * ly + (resul >> 32);
- hasCarry = (!carry && hasCarry) ? 1 : (!carry ? 2 : 0);
- carry += (lx * hy) & 0xffffffffULL;
- resul = (carry << 32) | (resul & 0xffffffffULL);
- dest[i+j] += resul;
- carry = (((!carry && hasCarry != 2) || hasCarry == 1) ? (1ULL << 32) : 0)+
- (carry >> 32) + (dest[i+j] < resul ? 1 : 0) +
- ((lx * hy) >> 32) + hx * hy;
- }
- dest[i+xlen] = carry;
- }
- }
- APInt& APInt::operator*=(const APInt& RHS) {
- assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
- if (isSingleWord()) {
- VAL *= RHS.VAL;
- clearUnusedBits();
- return *this;
- }
- // Get some bit facts about LHS and check for zero
- unsigned lhsBits = getActiveBits();
- unsigned lhsWords = !lhsBits ? 0 : whichWord(lhsBits - 1) + 1;
- if (!lhsWords)
- // 0 * X ===> 0
- return *this;
- // Get some bit facts about RHS and check for zero
- unsigned rhsBits = RHS.getActiveBits();
- unsigned rhsWords = !rhsBits ? 0 : whichWord(rhsBits - 1) + 1;
- if (!rhsWords) {
- // X * 0 ===> 0
- clearAllBits();
- return *this;
- }
- // Allocate space for the result
- unsigned destWords = rhsWords + lhsWords;
- uint64_t *dest = getMemory(destWords);
- // Perform the long multiply
- mul(dest, pVal, lhsWords, RHS.pVal, rhsWords);
- // Copy result back into *this
- clearAllBits();
- unsigned wordsToCopy = destWords >= getNumWords() ? getNumWords() : destWords;
- memcpy(pVal, dest, wordsToCopy * APINT_WORD_SIZE);
- clearUnusedBits();
- // delete dest array and return
- delete[] dest;
- return *this;
- }
- APInt& APInt::operator&=(const APInt& RHS) {
- assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
- if (isSingleWord()) {
- VAL &= RHS.VAL;
- return *this;
- }
- unsigned numWords = getNumWords();
- for (unsigned i = 0; i < numWords; ++i)
- pVal[i] &= RHS.pVal[i];
- return *this;
- }
- APInt& APInt::operator|=(const APInt& RHS) {
- assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
- if (isSingleWord()) {
- VAL |= RHS.VAL;
- return *this;
- }
- unsigned numWords = getNumWords();
- for (unsigned i = 0; i < numWords; ++i)
- pVal[i] |= RHS.pVal[i];
- return *this;
- }
- APInt& APInt::operator^=(const APInt& RHS) {
- assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
- if (isSingleWord()) {
- VAL ^= RHS.VAL;
- this->clearUnusedBits();
- return *this;
- }
- unsigned numWords = getNumWords();
- for (unsigned i = 0; i < numWords; ++i)
- pVal[i] ^= RHS.pVal[i];
- return clearUnusedBits();
- }
- APInt APInt::AndSlowCase(const APInt& RHS) const {
- unsigned numWords = getNumWords();
- uint64_t* val = getMemory(numWords);
- for (unsigned i = 0; i < numWords; ++i)
- val[i] = pVal[i] & RHS.pVal[i];
- return APInt(val, getBitWidth());
- }
- APInt APInt::OrSlowCase(const APInt& RHS) const {
- unsigned numWords = getNumWords();
- uint64_t *val = getMemory(numWords);
- for (unsigned i = 0; i < numWords; ++i)
- val[i] = pVal[i] | RHS.pVal[i];
- return APInt(val, getBitWidth());
- }
- APInt APInt::XorSlowCase(const APInt& RHS) const {
- unsigned numWords = getNumWords();
- uint64_t *val = getMemory(numWords);
- for (unsigned i = 0; i < numWords; ++i)
- val[i] = pVal[i] ^ RHS.pVal[i];
- APInt Result(val, getBitWidth());
- // 0^0==1 so clear the high bits in case they got set.
- Result.clearUnusedBits();
- return Result;
- }
- APInt APInt::operator*(const APInt& RHS) const {
- assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
- if (isSingleWord())
- return APInt(BitWidth, VAL * RHS.VAL);
- APInt Result(*this);
- Result *= RHS;
- return Result;
- }
- APInt APInt::operator+(const APInt& RHS) const {
- assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
- if (isSingleWord())
- return APInt(BitWidth, VAL + RHS.VAL);
- APInt Result(BitWidth, 0);
- add(Result.pVal, this->pVal, RHS.pVal, getNumWords());
- Result.clearUnusedBits();
- return Result;
- }
- APInt APInt::operator-(const APInt& RHS) const {
- assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
- if (isSingleWord())
- return APInt(BitWidth, VAL - RHS.VAL);
- APInt Result(BitWidth, 0);
- sub(Result.pVal, this->pVal, RHS.pVal, getNumWords());
- Result.clearUnusedBits();
- return Result;
- }
- bool APInt::EqualSlowCase(const APInt& RHS) const {
- // Get some facts about the number of bits used in the two operands.
- unsigned n1 = getActiveBits();
- unsigned n2 = RHS.getActiveBits();
- // If the number of bits isn't the same, they aren't equal
- if (n1 != n2)
- return false;
- // If the number of bits fits in a word, we only need to compare the low word.
- if (n1 <= APINT_BITS_PER_WORD)
- return pVal[0] == RHS.pVal[0];
- // Otherwise, compare everything
- for (int i = whichWord(n1 - 1); i >= 0; --i)
- if (pVal[i] != RHS.pVal[i])
- return false;
- return true;
- }
- bool APInt::EqualSlowCase(uint64_t Val) const {
- unsigned n = getActiveBits();
- if (n <= APINT_BITS_PER_WORD)
- return pVal[0] == Val;
- else
- return false;
- }
- bool APInt::ult(const APInt& RHS) const {
- assert(BitWidth == RHS.BitWidth && "Bit widths must be same for comparison");
- if (isSingleWord())
- return VAL < RHS.VAL;
- // Get active bit length of both operands
- unsigned n1 = getActiveBits();
- unsigned n2 = RHS.getActiveBits();
- // If magnitude of LHS is less than RHS, return true.
- if (n1 < n2)
- return true;
- // If magnitude of RHS is greather than LHS, return false.
- if (n2 < n1)
- return false;
- // If they bot fit in a word, just compare the low order word
- if (n1 <= APINT_BITS_PER_WORD && n2 <= APINT_BITS_PER_WORD)
- return pVal[0] < RHS.pVal[0];
- // Otherwise, compare all words
- unsigned topWord = whichWord(std::max(n1,n2)-1);
- for (int i = topWord; i >= 0; --i) {
- if (pVal[i] > RHS.pVal[i])
- return false;
- if (pVal[i] < RHS.pVal[i])
- return true;
- }
- return false;
- }
- bool APInt::slt(const APInt& RHS) const {
- assert(BitWidth == RHS.BitWidth && "Bit widths must be same for comparison");
- if (isSingleWord()) {
- int64_t lhsSext = (int64_t(VAL) << (64-BitWidth)) >> (64-BitWidth);
- int64_t rhsSext = (int64_t(RHS.VAL) << (64-BitWidth)) >> (64-BitWidth);
- return lhsSext < rhsSext;
- }
- APInt lhs(*this);
- APInt rhs(RHS);
- bool lhsNeg = isNegative();
- bool rhsNeg = rhs.isNegative();
- if (lhsNeg) {
- // Sign bit is set so perform two's complement to make it positive
- lhs.flipAllBits();
- ++lhs;
- }
- if (rhsNeg) {
- // Sign bit is set so perform two's complement to make it positive
- rhs.flipAllBits();
- ++rhs;
- }
- // Now we have unsigned values to compare so do the comparison if necessary
- // based on the negativeness of the values.
- if (lhsNeg)
- if (rhsNeg)
- return lhs.ugt(rhs);
- else
- return true;
- else if (rhsNeg)
- return false;
- else
- return lhs.ult(rhs);
- }
- void APInt::setBit(unsigned bitPosition) {
- if (isSingleWord())
- VAL |= maskBit(bitPosition);
- else
- pVal[whichWord(bitPosition)] |= maskBit(bitPosition);
- }
- /// Set the given bit to 0 whose position is given as "bitPosition".
- /// @brief Set a given bit to 0.
- void APInt::clearBit(unsigned bitPosition) {
- if (isSingleWord())
- VAL &= ~maskBit(bitPosition);
- else
- pVal[whichWord(bitPosition)] &= ~maskBit(bitPosition);
- }
- /// @brief Toggle every bit to its opposite value.
- /// Toggle a given bit to its opposite value whose position is given
- /// as "bitPosition".
- /// @brief Toggles a given bit to its opposite value.
- void APInt::flipBit(unsigned bitPosition) {
- assert(bitPosition < BitWidth && "Out of the bit-width range!");
- if ((*this)[bitPosition]) clearBit(bitPosition);
- else setBit(bitPosition);
- }
- unsigned APInt::getBitsNeeded(StringRef str, uint8_t radix) {
- assert(!str.empty() && "Invalid string length");
- assert((radix == 10 || radix == 8 || radix == 16 || radix == 2 ||
- radix == 36) &&
- "Radix should be 2, 8, 10, 16, or 36!");
- size_t slen = str.size();
- // Each computation below needs to know if it's negative.
- StringRef::iterator p = str.begin();
- unsigned isNegative = *p == '-';
- if (*p == '-' || *p == '+') {
- p++;
- slen--;
- assert(slen && "String is only a sign, needs a value.");
- }
- // For radixes of power-of-two values, the bits required is accurately and
- // easily computed
- if (radix == 2)
- return slen + isNegative;
- if (radix == 8)
- return slen * 3 + isNegative;
- if (radix == 16)
- return slen * 4 + isNegative;
- // FIXME: base 36
-
- // This is grossly inefficient but accurate. We could probably do something
- // with a computation of roughly slen*64/20 and then adjust by the value of
- // the first few digits. But, I'm not sure how accurate that could be.
- // Compute a sufficient number of bits that is always large enough but might
- // be too large. This avoids the assertion in the constructor. This
- // calculation doesn't work appropriately for the numbers 0-9, so just use 4
- // bits in that case.
- unsigned sufficient
- = radix == 10? (slen == 1 ? 4 : slen * 64/18)
- : (slen == 1 ? 7 : slen * 16/3);
- // Convert to the actual binary value.
- APInt tmp(sufficient, StringRef(p, slen), radix);
- // Compute how many bits are required. If the log is infinite, assume we need
- // just bit.
- unsigned log = tmp.logBase2();
- if (log == (unsigned)-1) {
- return isNegative + 1;
- } else {
- return isNegative + log + 1;
- }
- }
- hash_code llvm::hash_value(const APInt &Arg) {
- if (Arg.isSingleWord())
- return hash_combine(Arg.VAL);
- return hash_combine_range(Arg.pVal, Arg.pVal + Arg.getNumWords());
- }
- bool APInt::isSplat(unsigned SplatSizeInBits) const {
- assert(getBitWidth() % SplatSizeInBits == 0 &&
- "SplatSizeInBits must divide width!");
- // We can check that all parts of an integer are equal by making use of a
- // little trick: rotate and check if it's still the same value.
- return *this == rotl(SplatSizeInBits);
- }
- /// This function returns the high "numBits" bits of this APInt.
- APInt APInt::getHiBits(unsigned numBits) const {
- return APIntOps::lshr(*this, BitWidth - numBits);
- }
- /// This function returns the low "numBits" bits of this APInt.
- APInt APInt::getLoBits(unsigned numBits) const {
- return APIntOps::lshr(APIntOps::shl(*this, BitWidth - numBits),
- BitWidth - numBits);
- }
- unsigned APInt::countLeadingZerosSlowCase() const {
- // Treat the most significand word differently because it might have
- // meaningless bits set beyond the precision.
- unsigned BitsInMSW = BitWidth % APINT_BITS_PER_WORD;
- integerPart MSWMask;
- if (BitsInMSW) MSWMask = (integerPart(1) << BitsInMSW) - 1;
- else {
- MSWMask = ~integerPart(0);
- BitsInMSW = APINT_BITS_PER_WORD;
- }
- unsigned i = getNumWords();
- integerPart MSW = pVal[i-1] & MSWMask;
- if (MSW)
- return llvm::countLeadingZeros(MSW) - (APINT_BITS_PER_WORD - BitsInMSW);
- unsigned Count = BitsInMSW;
- for (--i; i > 0u; --i) {
- if (pVal[i-1] == 0)
- Count += APINT_BITS_PER_WORD;
- else {
- Count += llvm::countLeadingZeros(pVal[i-1]);
- break;
- }
- }
- return Count;
- }
- unsigned APInt::countLeadingOnes() const {
- if (isSingleWord())
- return llvm::countLeadingOnes(VAL << (APINT_BITS_PER_WORD - BitWidth));
- unsigned highWordBits = BitWidth % APINT_BITS_PER_WORD;
- unsigned shift;
- if (!highWordBits) {
- highWordBits = APINT_BITS_PER_WORD;
- shift = 0;
- } else {
- shift = APINT_BITS_PER_WORD - highWordBits;
- }
- int i = getNumWords() - 1;
- unsigned Count = llvm::countLeadingOnes(pVal[i] << shift);
- if (Count == highWordBits) {
- for (i--; i >= 0; --i) {
- if (pVal[i] == -1ULL)
- Count += APINT_BITS_PER_WORD;
- else {
- Count += llvm::countLeadingOnes(pVal[i]);
- break;
- }
- }
- }
- return Count;
- }
- unsigned APInt::countTrailingZeros() const {
- if (isSingleWord())
- return std::min(unsigned(llvm::countTrailingZeros(VAL)), BitWidth);
- unsigned Count = 0;
- unsigned i = 0;
- for (; i < getNumWords() && pVal[i] == 0; ++i)
- Count += APINT_BITS_PER_WORD;
- if (i < getNumWords())
- Count += llvm::countTrailingZeros(pVal[i]);
- return std::min(Count, BitWidth);
- }
- unsigned APInt::countTrailingOnesSlowCase() const {
- unsigned Count = 0;
- unsigned i = 0;
- for (; i < getNumWords() && pVal[i] == -1ULL; ++i)
- Count += APINT_BITS_PER_WORD;
- if (i < getNumWords())
- Count += llvm::countTrailingOnes(pVal[i]);
- return std::min(Count, BitWidth);
- }
- unsigned APInt::countPopulationSlowCase() const {
- unsigned Count = 0;
- for (unsigned i = 0; i < getNumWords(); ++i)
- Count += llvm::countPopulation(pVal[i]);
- return Count;
- }
- /// Perform a logical right-shift from Src to Dst, which must be equal or
- /// non-overlapping, of Words words, by Shift, which must be less than 64.
- static void lshrNear(uint64_t *Dst, uint64_t *Src, unsigned Words,
- unsigned Shift) {
- uint64_t Carry = 0;
- for (int I = Words - 1; I >= 0; --I) {
- uint64_t Tmp = Src[I];
- Dst[I] = (Tmp >> Shift) | Carry;
- Carry = Tmp << (64 - Shift);
- }
- }
- APInt APInt::byteSwap() const {
- assert(BitWidth >= 16 && BitWidth % 16 == 0 && "Cannot byteswap!");
- if (BitWidth == 16)
- return APInt(BitWidth, ByteSwap_16(uint16_t(VAL)));
- if (BitWidth == 32)
- return APInt(BitWidth, ByteSwap_32(unsigned(VAL)));
- if (BitWidth == 48) {
- unsigned Tmp1 = unsigned(VAL >> 16);
- Tmp1 = ByteSwap_32(Tmp1);
- uint16_t Tmp2 = uint16_t(VAL);
- Tmp2 = ByteSwap_16(Tmp2);
- return APInt(BitWidth, (uint64_t(Tmp2) << 32) | Tmp1);
- }
- if (BitWidth == 64)
- return APInt(BitWidth, ByteSwap_64(VAL));
- APInt Result(getNumWords() * APINT_BITS_PER_WORD, 0);
- for (unsigned I = 0, N = getNumWords(); I != N; ++I)
- Result.pVal[I] = ByteSwap_64(pVal[N - I - 1]);
- if (Result.BitWidth != BitWidth) {
- lshrNear(Result.pVal, Result.pVal, getNumWords(),
- Result.BitWidth - BitWidth);
- Result.BitWidth = BitWidth;
- }
- return Result;
- }
- APInt llvm::APIntOps::GreatestCommonDivisor(const APInt& API1,
- const APInt& API2) {
- APInt A = API1, B = API2;
- while (!!B) {
- APInt T = B;
- B = APIntOps::urem(A, B);
- A = T;
- }
- return A;
- }
- APInt llvm::APIntOps::RoundDoubleToAPInt(double Double, unsigned width) {
- union {
- double D;
- uint64_t I;
- } T;
- T.D = Double;
- // Get the sign bit from the highest order bit
- bool isNeg = T.I >> 63;
- // Get the 11-bit exponent and adjust for the 1023 bit bias
- int64_t exp = ((T.I >> 52) & 0x7ff) - 1023;
- // If the exponent is negative, the value is < 0 so just return 0.
- if (exp < 0)
- return APInt(width, 0u);
- // Extract the mantissa by clearing the top 12 bits (sign + exponent).
- uint64_t mantissa = (T.I & (~0ULL >> 12)) | 1ULL << 52;
- // If the exponent doesn't shift all bits out of the mantissa
- if (exp < 52)
- return isNeg ? -APInt(width, mantissa >> (52 - exp)) :
- APInt(width, mantissa >> (52 - exp));
- // If the client didn't provide enough bits for us to shift the mantissa into
- // then the result is undefined, just return 0
- if (width <= exp - 52)
- return APInt(width, 0);
- // Otherwise, we have to shift the mantissa bits up to the right location
- APInt Tmp(width, mantissa);
- Tmp = Tmp.shl((unsigned)exp - 52);
- return isNeg ? -Tmp : Tmp;
- }
- /// This function converts this APInt to a double.
- /// The layout for double is as following (IEEE Standard 754):
- /// --------------------------------------
- /// | Sign Exponent Fraction Bias |
- /// |-------------------------------------- |
- /// | 1[63] 11[62-52] 52[51-00] 1023 |
- /// --------------------------------------
- double APInt::roundToDouble(bool isSigned) const {
- // Handle the simple case where the value is contained in one uint64_t.
- // It is wrong to optimize getWord(0) to VAL; there might be more than one word.
- if (isSingleWord() || getActiveBits() <= APINT_BITS_PER_WORD) {
- if (isSigned) {
- int64_t sext = (int64_t(getWord(0)) << (64-BitWidth)) >> (64-BitWidth);
- return double(sext);
- } else
- return double(getWord(0));
- }
- // Determine if the value is negative.
- bool isNeg = isSigned ? (*this)[BitWidth-1] : false;
- // Construct the absolute value if we're negative.
- APInt Tmp(isNeg ? -(*this) : (*this));
- // Figure out how many bits we're using.
- unsigned n = Tmp.getActiveBits();
- // The exponent (without bias normalization) is just the number of bits
- // we are using. Note that the sign bit is gone since we constructed the
- // absolute value.
- uint64_t exp = n;
- // Return infinity for exponent overflow
- if (exp > 1023) {
- if (!isSigned || !isNeg)
- return std::numeric_limits<double>::infinity();
- else
- return -std::numeric_limits<double>::infinity();
- }
- exp += 1023; // Increment for 1023 bias
- // Number of bits in mantissa is 52. To obtain the mantissa value, we must
- // extract the high 52 bits from the correct words in pVal.
- uint64_t mantissa;
- unsigned hiWord = whichWord(n-1);
- if (hiWord == 0) {
- mantissa = Tmp.pVal[0];
- if (n > 52)
- mantissa >>= n - 52; // shift down, we want the top 52 bits.
- } else {
- assert(hiWord > 0 && "huh?");
- uint64_t hibits = Tmp.pVal[hiWord] << (52 - n % APINT_BITS_PER_WORD);
- uint64_t lobits = Tmp.pVal[hiWord-1] >> (11 + n % APINT_BITS_PER_WORD);
- mantissa = hibits | lobits;
- }
- // The leading bit of mantissa is implicit, so get rid of it.
- uint64_t sign = isNeg ? (1ULL << (APINT_BITS_PER_WORD - 1)) : 0;
- union {
- double D;
- uint64_t I;
- } T;
- T.I = sign | (exp << 52) | mantissa;
- return T.D;
- }
- // Truncate to new width.
- APInt APInt::trunc(unsigned width) const {
- assert(width < BitWidth && "Invalid APInt Truncate request");
- assert(width && "Can't truncate to 0 bits");
- if (width <= APINT_BITS_PER_WORD)
- return APInt(width, getRawData()[0]);
- APInt Result(getMemory(getNumWords(width)), width);
- // Copy full words.
- unsigned i;
- for (i = 0; i != width / APINT_BITS_PER_WORD; i++)
- Result.pVal[i] = pVal[i];
- // Truncate and copy any partial word.
- unsigned bits = (0 - width) % APINT_BITS_PER_WORD;
- if (bits != 0)
- Result.pVal[i] = pVal[i] << bits >> bits;
- return Result;
- }
- // Sign extend to a new width.
- APInt APInt::sext(unsigned width) const {
- assert(width > BitWidth && "Invalid APInt SignExtend request");
- if (width <= APINT_BITS_PER_WORD) {
- uint64_t val = VAL << (APINT_BITS_PER_WORD - BitWidth);
- val = (int64_t)val >> (width - BitWidth);
- return APInt(width, val >> (APINT_BITS_PER_WORD - width));
- }
- APInt Result(getMemory(getNumWords(width)), width);
- // Copy full words.
- unsigned i;
- uint64_t word = 0;
- for (i = 0; i != BitWidth / APINT_BITS_PER_WORD; i++) {
- word = getRawData()[i];
- Result.pVal[i] = word;
- }
- // Read and sign-extend any partial word.
- unsigned bits = (0 - BitWidth) % APINT_BITS_PER_WORD;
- if (bits != 0)
- word = (int64_t)getRawData()[i] << bits >> bits;
- else
- word = (int64_t)word >> (APINT_BITS_PER_WORD - 1);
- // Write remaining full words.
- for (; i != width / APINT_BITS_PER_WORD; i++) {
- Result.pVal[i] = word;
- word = (int64_t)word >> (APINT_BITS_PER_WORD - 1);
- }
- // Write any partial word.
- bits = (0 - width) % APINT_BITS_PER_WORD;
- if (bits != 0)
- Result.pVal[i] = word << bits >> bits;
- return Result;
- }
- // Zero extend to a new width.
- APInt APInt::zext(unsigned width) const {
- assert(width > BitWidth && "Invalid APInt ZeroExtend request");
- if (width <= APINT_BITS_PER_WORD)
- return APInt(width, VAL);
- APInt Result(getMemory(getNumWords(width)), width);
- // Copy words.
- unsigned i;
- for (i = 0; i != getNumWords(); i++)
- Result.pVal[i] = getRawData()[i];
- // Zero remaining words.
- memset(&Result.pVal[i], 0, (Result.getNumWords() - i) * APINT_WORD_SIZE);
- return Result;
- }
- APInt APInt::zextOrTrunc(unsigned width) const {
- if (BitWidth < width)
- return zext(width);
- if (BitWidth > width)
- return trunc(width);
- return *this;
- }
- APInt APInt::sextOrTrunc(unsigned width) const {
- if (BitWidth < width)
- return sext(width);
- if (BitWidth > width)
- return trunc(width);
- return *this;
- }
- APInt APInt::zextOrSelf(unsigned width) const {
- if (BitWidth < width)
- return zext(width);
- return *this;
- }
- APInt APInt::sextOrSelf(unsigned width) const {
- if (BitWidth < width)
- return sext(width);
- return *this;
- }
- /// Arithmetic right-shift this APInt by shiftAmt.
- /// @brief Arithmetic right-shift function.
- APInt APInt::ashr(const APInt &shiftAmt) const {
- return ashr((unsigned)shiftAmt.getLimitedValue(BitWidth));
- }
- /// Arithmetic right-shift this APInt by shiftAmt.
- /// @brief Arithmetic right-shift function.
- APInt APInt::ashr(unsigned shiftAmt) const {
- assert(shiftAmt <= BitWidth && "Invalid shift amount");
- // Handle a degenerate case
- if (shiftAmt == 0)
- return *this;
- // Handle single word shifts with built-in ashr
- if (isSingleWord()) {
- if (shiftAmt == BitWidth)
- return APInt(BitWidth, 0); // undefined
- else {
- unsigned SignBit = APINT_BITS_PER_WORD - BitWidth;
- return APInt(BitWidth,
- (((int64_t(VAL) << SignBit) >> SignBit) >> shiftAmt));
- }
- }
- // If all the bits were shifted out, the result is, technically, undefined.
- // We return -1 if it was negative, 0 otherwise. We check this early to avoid
- // issues in the algorithm below.
- if (shiftAmt == BitWidth) {
- if (isNegative())
- return APInt(BitWidth, -1ULL, true);
- else
- return APInt(BitWidth, 0);
- }
- // Create some space for the result.
- uint64_t * val = new uint64_t[getNumWords()];
- // Compute some values needed by the following shift algorithms
- unsigned wordShift = shiftAmt % APINT_BITS_PER_WORD; // bits to shift per word
- unsigned offset = shiftAmt / APINT_BITS_PER_WORD; // word offset for shift
- unsigned breakWord = getNumWords() - 1 - offset; // last word affected
- unsigned bitsInWord = whichBit(BitWidth); // how many bits in last word?
- if (bitsInWord == 0)
- bitsInWord = APINT_BITS_PER_WORD;
- // If we are shifting whole words, just move whole words
- if (wordShift == 0) {
- // Move the words containing significant bits
- for (unsigned i = 0; i <= breakWord; ++i)
- val[i] = pVal[i+offset]; // move whole word
- // Adjust the top significant word for sign bit fill, if negative
- if (isNegative())
- if (bitsInWord < APINT_BITS_PER_WORD)
- val[breakWord] |= ~0ULL << bitsInWord; // set high bits
- } else {
- // Shift the low order words
- for (unsigned i = 0; i < breakWord; ++i) {
- // This combines the shifted corresponding word with the low bits from
- // the next word (shifted into this word's high bits).
- val[i] = (pVal[i+offset] >> wordShift) |
- (pVal[i+offset+1] << (APINT_BITS_PER_WORD - wordShift));
- }
- // Shift the break word. In this case there are no bits from the next word
- // to include in this word.
- val[breakWord] = pVal[breakWord+offset] >> wordShift;
- // Deal with sign extension in the break word, and possibly the word before
- // it.
- if (isNegative()) {
- if (wordShift > bitsInWord) {
- if (breakWord > 0)
- val[breakWord-1] |=
- ~0ULL << (APINT_BITS_PER_WORD - (wordShift - bitsInWord));
- val[breakWord] |= ~0ULL;
- } else
- val[breakWord] |= (~0ULL << (bitsInWord - wordShift));
- }
- }
- // Remaining words are 0 or -1, just assign them.
- uint64_t fillValue = (isNegative() ? -1ULL : 0);
- for (unsigned i = breakWord+1; i < getNumWords(); ++i)
- val[i] = fillValue;
- APInt Result(val, BitWidth);
- Result.clearUnusedBits();
- return Result;
- }
- /// Logical right-shift this APInt by shiftAmt.
- /// @brief Logical right-shift function.
- APInt APInt::lshr(const APInt &shiftAmt) const {
- return lshr((unsigned)shiftAmt.getLimitedValue(BitWidth));
- }
- /// Logical right-shift this APInt by shiftAmt.
- /// @brief Logical right-shift function.
- APInt APInt::lshr(unsigned shiftAmt) const {
- if (isSingleWord()) {
- if (shiftAmt >= BitWidth)
- return APInt(BitWidth, 0);
- else
- return APInt(BitWidth, this->VAL >> shiftAmt);
- }
- // If all the bits were shifted out, the result is 0. This avoids issues
- // with shifting by the size of the integer type, which produces undefined
- // results. We define these "undefined results" to always be 0.
- if (shiftAmt >= BitWidth)
- return APInt(BitWidth, 0);
- // If none of the bits are shifted out, the result is *this. This avoids
- // issues with shifting by the size of the integer type, which produces
- // undefined results in the code below. This is also an optimization.
- if (shiftAmt == 0)
- return *this;
- // Create some space for the result.
- uint64_t * val = new uint64_t[getNumWords()];
- // If we are shifting less than a word, compute the shift with a simple carry
- if (shiftAmt < APINT_BITS_PER_WORD) {
- lshrNear(val, pVal, getNumWords(), shiftAmt);
- APInt Result(val, BitWidth);
- Result.clearUnusedBits();
- return Result;
- }
- // Compute some values needed by the remaining shift algorithms
- unsigned wordShift = shiftAmt % APINT_BITS_PER_WORD;
- unsigned offset = shiftAmt / APINT_BITS_PER_WORD;
- // If we are shifting whole words, just move whole words
- if (wordShift == 0) {
- for (unsigned i = 0; i < getNumWords() - offset; ++i)
- val[i] = pVal[i+offset];
- for (unsigned i = getNumWords()-offset; i < getNumWords(); i++)
- val[i] = 0;
- APInt Result(val, BitWidth);
- Result.clearUnusedBits();
- return Result;
- }
- // Shift the low order words
- unsigned breakWord = getNumWords() - offset -1;
- for (unsigned i = 0; i < breakWord; ++i)
- val[i] = (pVal[i+offset] >> wordShift) |
- (pVal[i+offset+1] << (APINT_BITS_PER_WORD - wordShift));
- // Shift the break word.
- val[breakWord] = pVal[breakWord+offset] >> wordShift;
- // Remaining words are 0
- for (unsigned i = breakWord+1; i < getNumWords(); ++i)
- val[i] = 0;
- APInt Result(val, BitWidth);
- Result.clearUnusedBits();
- return Result;
- }
- /// Left-shift this APInt by shiftAmt.
- /// @brief Left-shift function.
- APInt APInt::shl(const APInt &shiftAmt) const {
- // It's undefined behavior in C to shift by BitWidth or greater.
- return shl((unsigned)shiftAmt.getLimitedValue(BitWidth));
- }
- APInt APInt::shlSlowCase(unsigned shiftAmt) const {
- // If all the bits were shifted out, the result is 0. This avoids issues
- // with shifting by the size of the integer type, which produces undefined
- // results. We define these "undefined results" to always be 0.
- if (shiftAmt == BitWidth)
- return APInt(BitWidth, 0);
- // If none of the bits are shifted out, the result is *this. This avoids a
- // lshr by the words size in the loop below which can produce incorrect
- // results. It also avoids the expensive computation below for a common case.
- if (shiftAmt == 0)
- return *this;
- // Create some space for the result.
- uint64_t * val = new uint64_t[getNumWords()];
- // If we are shifting less than a word, do it the easy way
- if (shiftAmt < APINT_BITS_PER_WORD) {
- uint64_t carry = 0;
- for (unsigned i = 0; i < getNumWords(); i++) {
- val[i] = pVal[i] << shiftAmt | carry;
- carry = pVal[i] >> (APINT_BITS_PER_WORD - shiftAmt);
- }
- APInt Result(val, BitWidth);
- Result.clearUnusedBits();
- return Result;
- }
- // Compute some values needed by the remaining shift algorithms
- unsigned wordShift = shiftAmt % APINT_BITS_PER_WORD;
- unsigned offset = shiftAmt / APINT_BITS_PER_WORD;
- // If we are shifting whole words, just move whole words
- if (wordShift == 0) {
- for (unsigned i = 0; i < offset; i++)
- val[i] = 0;
- for (unsigned i = offset; i < getNumWords(); i++)
- val[i] = pVal[i-offset];
- APInt Result(val, BitWidth);
- Result.clearUnusedBits();
- return Result;
- }
- // Copy whole words from this to Result.
- unsigned i = getNumWords() - 1;
- for (; i > offset; --i)
- val[i] = pVal[i-offset] << wordShift |
- pVal[i-offset-1] >> (APINT_BITS_PER_WORD - wordShift);
- val[offset] = pVal[0] << wordShift;
- for (i = 0; i < offset; ++i)
- val[i] = 0;
- APInt Result(val, BitWidth);
- Result.clearUnusedBits();
- return Result;
- }
- APInt APInt::rotl(const APInt &rotateAmt) const {
- return rotl((unsigned)rotateAmt.getLimitedValue(BitWidth));
- }
- APInt APInt::rotl(unsigned rotateAmt) const {
- rotateAmt %= BitWidth;
- if (rotateAmt == 0)
- return *this;
- return shl(rotateAmt) | lshr(BitWidth - rotateAmt);
- }
- APInt APInt::rotr(const APInt &rotateAmt) const {
- return rotr((unsigned)rotateAmt.getLimitedValue(BitWidth));
- }
- APInt APInt::rotr(unsigned rotateAmt) const {
- rotateAmt %= BitWidth;
- if (rotateAmt == 0)
- return *this;
- return lshr(rotateAmt) | shl(BitWidth - rotateAmt);
- }
- // Square Root - this method computes and returns the square root of "this".
- // Three mechanisms are used for computation. For small values (<= 5 bits),
- // a table lookup is done. This gets some performance for common cases. For
- // values using less than 52 bits, the value is converted to double and then
- // the libc sqrt function is called. The result is rounded and then converted
- // back to a uint64_t which is then used to construct the result. Finally,
- // the Babylonian method for computing square roots is used.
- APInt APInt::sqrt() const {
- // Determine the magnitude of the value.
- unsigned magnitude = getActiveBits();
- // Use a fast table for some small values. This also gets rid of some
- // rounding errors in libc sqrt for small values.
- if (magnitude <= 5) {
- static const uint8_t results[32] = {
- /* 0 */ 0,
- /* 1- 2 */ 1, 1,
- /* 3- 6 */ 2, 2, 2, 2,
- /* 7-12 */ 3, 3, 3, 3, 3, 3,
- /* 13-20 */ 4, 4, 4, 4, 4, 4, 4, 4,
- /* 21-30 */ 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
- /* 31 */ 6
- };
- return APInt(BitWidth, results[ (isSingleWord() ? VAL : pVal[0]) ]);
- }
- // If the magnitude of the value fits in less than 52 bits (the precision of
- // an IEEE double precision floating point value), then we can use the
- // libc sqrt function which will probably use a hardware sqrt computation.
- // This should be faster than the algorithm below.
- if (magnitude < 52) {
- return APInt(BitWidth,
- uint64_t(::round(::sqrt(double(isSingleWord()?VAL:pVal[0])))));
- }
- // Okay, all the short cuts are exhausted. We must compute it. The following
- // is a classical Babylonian method for computing the square root. This code
- // was adapted to APInt from a wikipedia article on such computations.
- // See http://www.wikipedia.org/ and go to the page named
- // Calculate_an_integer_square_root.
- unsigned nbits = BitWidth, i = 4;
- APInt testy(BitWidth, 16);
- APInt x_old(BitWidth, 1);
- APInt x_new(BitWidth, 0);
- APInt two(BitWidth, 2);
- // Select a good starting value using binary logarithms.
- for (;; i += 2, testy = testy.shl(2))
- if (i >= nbits || this->ule(testy)) {
- x_old = x_old.shl(i / 2);
- break;
- }
- // Use the Babylonian method to arrive at the integer square root:
- for (;;) {
- x_new = (this->udiv(x_old) + x_old).udiv(two);
- if (x_old.ule(x_new))
- break;
- x_old = x_new;
- }
- // Make sure we return the closest approximation
- // NOTE: The rounding calculation below is correct. It will produce an
- // off-by-one discrepancy with results from pari/gp. That discrepancy has been
- // determined to be a rounding issue with pari/gp as it begins to use a
- // floating point representation after 192 bits. There are no discrepancies
- // between this algorithm and pari/gp for bit widths < 192 bits.
- APInt square(x_old * x_old);
- APInt nextSquare((x_old + 1) * (x_old +1));
- if (this->ult(square))
- return x_old;
- assert(this->ule(nextSquare) && "Error in APInt::sqrt computation");
- APInt midpoint((nextSquare - square).udiv(two));
- APInt offset(*this - square);
- if (offset.ult(midpoint))
- return x_old;
- return x_old + 1;
- }
- /// Computes the multiplicative inverse of this APInt for a given modulo. The
- /// iterative extended Euclidean algorithm is used to solve for this value,
- /// however we simplify it to speed up calculating only the inverse, and take
- /// advantage of div+rem calculations. We also use some tricks to avoid copying
- /// (potentially large) APInts around.
- APInt APInt::multiplicativeInverse(const APInt& modulo) const {
- assert(ult(modulo) && "This APInt must be smaller than the modulo");
- // Using the properties listed at the following web page (accessed 06/21/08):
- // http://www.numbertheory.org/php/euclid.html
- // (especially the properties numbered 3, 4 and 9) it can be proved that
- // BitWidth bits suffice for all the computations in the algorithm implemented
- // below. More precisely, this number of bits suffice if the multiplicative
- // inverse exists, but may not suffice for the general extended Euclidean
- // algorithm.
- APInt r[2] = { modulo, *this };
- APInt t[2] = { APInt(BitWidth, 0), APInt(BitWidth, 1) };
- APInt q(BitWidth, 0);
- unsigned i;
- for (i = 0; r[i^1] != 0; i ^= 1) {
- // An overview of the math without the confusing bit-flipping:
- // q = r[i-2] / r[i-1]
- // r[i] = r[i-2] % r[i-1]
- // t[i] = t[i-2] - t[i-1] * q
- udivrem(r[i], r[i^1], q, r[i]);
- t[i] -= t[i^1] * q;
- }
- // If this APInt and the modulo are not coprime, there is no multiplicative
- // inverse, so return 0. We check this by looking at the next-to-last
- // remainder, which is the gcd(*this,modulo) as calculated by the Euclidean
- // algorithm.
- if (r[i] != 1)
- return APInt(BitWidth, 0);
- // The next-to-last t is the multiplicative inverse. However, we are
- // interested in a positive inverse. Calcuate a positive one from a negative
- // one if necessary. A simple addition of the modulo suffices because
- // abs(t[i]) is known to be less than *this/2 (see the link above).
- return t[i].isNegative() ? t[i] + modulo : t[i];
- }
- /// Calculate the magic numbers required to implement a signed integer division
- /// by a constant as a sequence of multiplies, adds and shifts. Requires that
- /// the divisor not be 0, 1, or -1. Taken from "Hacker's Delight", Henry S.
- /// Warren, Jr., chapter 10.
- APInt::ms APInt::magic() const {
- const APInt& d = *this;
- unsigned p;
- APInt ad, anc, delta, q1, r1, q2, r2, t;
- APInt signedMin = APInt::getSignedMinValue(d.getBitWidth());
- struct ms mag;
- ad = d.abs();
- t = signedMin + (d.lshr(d.getBitWidth() - 1));
- anc = t - 1 - t.urem(ad); // absolute value of nc
- p = d.getBitWidth() - 1; // initialize p
- q1 = signedMin.udiv(anc); // initialize q1 = 2p/abs(nc)
- r1 = signedMin - q1*anc; // initialize r1 = rem(2p,abs(nc))
- q2 = signedMin.udiv(ad); // initialize q2 = 2p/abs(d)
- r2 = signedMin - q2*ad; // initialize r2 = rem(2p,abs(d))
- do {
- p = p + 1;
- q1 = q1<<1; // update q1 = 2p/abs(nc)
- r1 = r1<<1; // update r1 = rem(2p/abs(nc))
- if (r1.uge(anc)) { // must be unsigned comparison
- q1 = q1 + 1;
- r1 = r1 - anc;
- }
- q2 = q2<<1; // update q2 = 2p/abs(d)
- r2 = r2<<1; // update r2 = rem(2p/abs(d))
- if (r2.uge(ad)) { // must be unsigned comparison
- q2 = q2 + 1;
- r2 = r2 - ad;
- }
- delta = ad - r2;
- } while (q1.ult(delta) || (q1 == delta && r1 == 0));
- mag.m = q2 + 1;
- if (d.isNegative()) mag.m = -mag.m; // resulting magic number
- mag.s = p - d.getBitWidth(); // resulting shift
- return mag;
- }
- /// Calculate the magic numbers required to implement an unsigned integer
- /// division by a constant as a sequence of multiplies, adds and shifts.
- /// Requires that the divisor not be 0. Taken from "Hacker's Delight", Henry
- /// S. Warren, Jr., chapter 10.
- /// LeadingZeros can be used to simplify the calculation if the upper bits
- /// of the divided value are known zero.
- APInt::mu APInt::magicu(unsigned LeadingZeros) const {
- const APInt& d = *this;
- unsigned p;
- APInt nc, delta, q1, r1, q2, r2;
- struct mu magu;
- magu.a = 0; // initialize "add" indicator
- APInt allOnes = APInt::getAllOnesValue(d.getBitWidth()).lshr(LeadingZeros);
- APInt signedMin = APInt::getSignedMinValue(d.getBitWidth());
- APInt signedMax = APInt::getSignedMaxValue(d.getBitWidth());
- nc = allOnes - (allOnes - d).urem(d);
- p = d.getBitWidth() - 1; // initialize p
- q1 = signedMin.udiv(nc); // initialize q1 = 2p/nc
- r1 = signedMin - q1*nc; // initialize r1 = rem(2p,nc)
- q2 = signedMax.udiv(d); // initialize q2 = (2p-1)/d
- r2 = signedMax - q2*d; // initialize r2 = rem((2p-1),d)
- do {
- p = p + 1;
- if (r1.uge(nc - r1)) {
- q1 = q1 + q1 + 1; // update q1
- r1 = r1 + r1 - nc; // update r1
- }
- else {
- q1 = q1+q1; // update q1
- r1 = r1+r1; // update r1
- }
- if ((r2 + 1).uge(d - r2)) {
- if (q2.uge(signedMax)) magu.a = 1;
- q2 = q2+q2 + 1; // update q2
- r2 = r2+r2 + 1 - d; // update r2
- }
- else {
- if (q2.uge(signedMin)) magu.a = 1;
- q2 = q2+q2; // update q2
- r2 = r2+r2 + 1; // update r2
- }
- delta = d - 1 - r2;
- } while (p < d.getBitWidth()*2 &&
- (q1.ult(delta) || (q1 == delta && r1 == 0)));
- magu.m = q2 + 1; // resulting magic number
- magu.s = p - d.getBitWidth(); // resulting shift
- return magu;
- }
- /// Implementation of Knuth's Algorithm D (Division of nonnegative integers)
- /// from "Art of Computer Programming, Volume 2", section 4.3.1, p. 272. The
- /// variables here have the same names as in the algorithm. Comments explain
- /// the algorithm and any deviation from it.
- static void KnuthDiv(unsigned *u, unsigned *v, unsigned *q, unsigned* r,
- unsigned m, unsigned n) {
- assert(u && "Must provide dividend");
- assert(v && "Must provide divisor");
- assert(q && "Must provide quotient");
- assert(u != v && u != q && v != q && "Must use different memory");
- assert(n>1 && "n must be > 1");
- // b denotes the base of the number system. In our case b is 2^32.
- LLVM_CONSTEXPR uint64_t b = uint64_t(1) << 32;
- DEBUG(dbgs() << "KnuthDiv: m=" << m << " n=" << n << '\n');
- DEBUG(dbgs() << "KnuthDiv: original:");
- DEBUG(for (int i = m+n; i >=0; i--) dbgs() << " " << u[i]);
- DEBUG(dbgs() << " by");
- DEBUG(for (int i = n; i >0; i--) dbgs() << " " << v[i-1]);
- DEBUG(dbgs() << '\n');
- // D1. [Normalize.] Set d = b / (v[n-1] + 1) and multiply all the digits of
- // u and v by d. Note that we have taken Knuth's advice here to use a power
- // of 2 value for d such that d * v[n-1] >= b/2 (b is the base). A power of
- // 2 allows us to shift instead of multiply and it is easy to determine the
- // shift amount from the leading zeros. We are basically normalizing the u
- // and v so that its high bits are shifted to the top of v's range without
- // overflow. Note that this can require an extra word in u so that u must
- // be of length m+n+1.
- unsigned shift = countLeadingZeros(v[n-1]);
- unsigned v_carry = 0;
- unsigned u_carry = 0;
- if (shift) {
- for (unsigned i = 0; i < m+n; ++i) {
- unsigned u_tmp = u[i] >> (32 - shift);
- u[i] = (u[i] << shift) | u_carry;
- u_carry = u_tmp;
- }
- for (unsigned i = 0; i < n; ++i) {
- unsigned v_tmp = v[i] >> (32 - shift);
- v[i] = (v[i] << shift) | v_carry;
- v_carry = v_tmp;
- }
- }
- u[m+n] = u_carry;
- DEBUG(dbgs() << "KnuthDiv: normal:");
- DEBUG(for (int i = m+n; i >=0; i--) dbgs() << " " << u[i]);
- DEBUG(dbgs() << " by");
- DEBUG(for (int i = n; i >0; i--) dbgs() << " " << v[i-1]);
- DEBUG(dbgs() << '\n');
- // D2. [Initialize j.] Set j to m. This is the loop counter over the places.
- int j = m;
- do {
- DEBUG(dbgs() << "KnuthDiv: quotient digit #" << j << '\n');
- // D3. [Calculate q'.].
- // Set qp = (u[j+n]*b + u[j+n-1]) / v[n-1]. (qp=qprime=q')
- // Set rp = (u[j+n]*b + u[j+n-1]) % v[n-1]. (rp=rprime=r')
- // Now test if qp == b or qp*v[n-2] > b*rp + u[j+n-2]; if so, decrease
- // qp by 1, inrease rp by v[n-1], and repeat this test if rp < b. The test
- // on v[n-2] determines at high speed most of the cases in which the trial
- // value qp is one too large, and it eliminates all cases where qp is two
- // too large.
- uint64_t dividend = ((uint64_t(u[j+n]) << 32) + u[j+n-1]);
- DEBUG(dbgs() << "KnuthDiv: dividend == " << dividend << '\n');
- uint64_t qp = dividend / v[n-1];
- uint64_t rp = dividend % v[n-1];
- if (qp == b || qp*v[n-2] > b*rp + u[j+n-2]) {
- qp--;
- rp += v[n-1];
- if (rp < b && (qp == b || qp*v[n-2] > b*rp + u[j+n-2]))
- qp--;
- }
- DEBUG(dbgs() << "KnuthDiv: qp == " << qp << ", rp == " << rp << '\n');
- // D4. [Multiply and subtract.] Replace (u[j+n]u[j+n-1]...u[j]) with
- // (u[j+n]u[j+n-1]..u[j]) - qp * (v[n-1]...v[1]v[0]). This computation
- // consists of a simple multiplication by a one-place number, combined with
- // a subtraction.
- // The digits (u[j+n]...u[j]) should be kept positive; if the result of
- // this step is actually negative, (u[j+n]...u[j]) should be left as the
- // true value plus b**(n+1), namely as the b's complement of
- // the true value, and a "borrow" to the left should be remembered.
- int64_t borrow = 0;
- for (unsigned i = 0; i < n; ++i) {
- uint64_t p = uint64_t(qp) * uint64_t(v[i]);
- int64_t subres = int64_t(u[j+i]) - borrow - (unsigned)p;
- u[j+i] = (unsigned)subres;
- borrow = (p >> 32) - (subres >> 32);
- DEBUG(dbgs() << "KnuthDiv: u[j+i] = " << u[j+i]
- << ", borrow = " << borrow << '\n');
- }
- bool isNeg = u[j+n] < borrow;
- u[j+n] -= (unsigned)borrow;
- DEBUG(dbgs() << "KnuthDiv: after subtraction:");
- DEBUG(for (int i = m+n; i >=0; i--) dbgs() << " " << u[i]);
- DEBUG(dbgs() << '\n');
- // D5. [Test remainder.] Set q[j] = qp. If the result of step D4 was
- // negative, go to step D6; otherwise go on to step D7.
- q[j] = (unsigned)qp;
- if (isNeg) {
- // D6. [Add back]. The probability that this step is necessary is very
- // small, on the order of only 2/b. Make sure that test data accounts for
- // this possibility. Decrease q[j] by 1
- q[j]--;
- // and add (0v[n-1]...v[1]v[0]) to (u[j+n]u[j+n-1]...u[j+1]u[j]).
- // A carry will occur to the left of u[j+n], and it should be ignored
- // since it cancels with the borrow that occurred in D4.
- bool carry = false;
- for (unsigned i = 0; i < n; i++) {
- unsigned limit = std::min(u[j+i],v[i]);
- u[j+i] += v[i] + carry;
- carry = u[j+i] < limit || (carry && u[j+i] == limit);
- }
- u[j+n] += carry;
- }
- DEBUG(dbgs() << "KnuthDiv: after correction:");
- DEBUG(for (int i = m+n; i >=0; i--) dbgs() << " " << u[i]);
- DEBUG(dbgs() << "\nKnuthDiv: digit result = " << q[j] << '\n');
- // D7. [Loop on j.] Decrease j by one. Now if j >= 0, go back to D3.
- } while (--j >= 0);
- DEBUG(dbgs() << "KnuthDiv: quotient:");
- DEBUG(for (int i = m; i >=0; i--) dbgs() <<" " << q[i]);
- DEBUG(dbgs() << '\n');
- // D8. [Unnormalize]. Now q[...] is the desired quotient, and the desired
- // remainder may be obtained by dividing u[...] by d. If r is non-null we
- // compute the remainder (urem uses this).
- if (r) {
- // The value d is expressed by the "shift" value above since we avoided
- // multiplication by d by using a shift left. So, all we have to do is
- // shift right here. In order to mak
- if (shift) {
- unsigned carry = 0;
- DEBUG(dbgs() << "KnuthDiv: remainder:");
- for (int i = n-1; i >= 0; i--) {
- r[i] = (u[i] >> shift) | carry;
- carry = u[i] << (32 - shift);
- DEBUG(dbgs() << " " << r[i]);
- }
- } else {
- for (int i = n-1; i >= 0; i--) {
- r[i] = u[i];
- DEBUG(dbgs() << " " << r[i]);
- }
- }
- DEBUG(dbgs() << '\n');
- }
- DEBUG(dbgs() << '\n');
- }
- void APInt::divide(const APInt LHS, unsigned lhsWords,
- const APInt &RHS, unsigned rhsWords,
- APInt *Quotient, APInt *Remainder)
- {
- assert(lhsWords >= rhsWords && "Fractional result");
- // First, compose the values into an array of 32-bit words instead of
- // 64-bit words. This is a necessity of both the "short division" algorithm
- // and the Knuth "classical algorithm" which requires there to be native
- // operations for +, -, and * on an m bit value with an m*2 bit result. We
- // can't use 64-bit operands here because we don't have native results of
- // 128-bits. Furthermore, casting the 64-bit values to 32-bit values won't
- // work on large-endian machines.
- uint64_t mask = ~0ull >> (sizeof(unsigned)*CHAR_BIT);
- unsigned n = rhsWords * 2;
- unsigned m = (lhsWords * 2) - n;
- // Allocate space for the temporary values we need either on the stack, if
- // it will fit, or on the heap if it won't.
- unsigned SPACE[128];
- unsigned *U = nullptr;
- unsigned *V = nullptr;
- unsigned *Q = nullptr;
- unsigned *R = nullptr;
- if ((Remainder?4:3)*n+2*m+1 <= 128) {
- U = &SPACE[0];
- V = &SPACE[m+n+1];
- Q = &SPACE[(m+n+1) + n];
- if (Remainder)
- R = &SPACE[(m+n+1) + n + (m+n)];
- } else {
- U = new unsigned[m + n + 1];
- V = new unsigned[n];
- Q = new unsigned[m+n];
- if (Remainder)
- R = new unsigned[n];
- }
- // Initialize the dividend
- memset(U, 0, (m+n+1)*sizeof(unsigned));
- for (unsigned i = 0; i < lhsWords; ++i) {
- uint64_t tmp = (LHS.getNumWords() == 1 ? LHS.VAL : LHS.pVal[i]);
- U[i * 2] = (unsigned)(tmp & mask);
- U[i * 2 + 1] = (unsigned)(tmp >> (sizeof(unsigned)*CHAR_BIT));
- }
- U[m+n] = 0; // this extra word is for "spill" in the Knuth algorithm.
- // Initialize the divisor
- memset(V, 0, (n)*sizeof(unsigned));
- for (unsigned i = 0; i < rhsWords; ++i) {
- uint64_t tmp = (RHS.getNumWords() == 1 ? RHS.VAL : RHS.pVal[i]);
- V[i * 2] = (unsigned)(tmp & mask);
- V[i * 2 + 1] = (unsigned)(tmp >> (sizeof(unsigned)*CHAR_BIT));
- }
- // initialize the quotient and remainder
- memset(Q, 0, (m+n) * sizeof(unsigned));
- if (Remainder)
- memset(R, 0, n * sizeof(unsigned));
- // Now, adjust m and n for the Knuth division. n is the number of words in
- // the divisor. m is the number of words by which the dividend exceeds the
- // divisor (i.e. m+n is the length of the dividend). These sizes must not
- // contain any zero words or the Knuth algorithm fails.
- for (unsigned i = n; i > 0 && V[i-1] == 0; i--) {
- n--;
- m++;
- }
- for (unsigned i = m+n; i > 0 && U[i-1] == 0; i--)
- m--;
- // If we're left with only a single word for the divisor, Knuth doesn't work
- // so we implement the short division algorithm here. This is much simpler
- // and faster because we are certain that we can divide a 64-bit quantity
- // by a 32-bit quantity at hardware speed and short division is simply a
- // series of such operations. This is just like doing short division but we
- // are using base 2^32 instead of base 10.
- assert(n != 0 && "Divide by zero?");
- if (n == 1) {
- unsigned divisor = V[0];
- unsigned remainder = 0;
- for (int i = m+n-1; i >= 0; i--) {
- uint64_t partial_dividend = uint64_t(remainder) << 32 | U[i];
- if (partial_dividend == 0) {
- Q[i] = 0;
- remainder = 0;
- } else if (partial_dividend < divisor) {
- Q[i] = 0;
- remainder = (unsigned)partial_dividend;
- } else if (partial_dividend == divisor) {
- Q[i] = 1;
- remainder = 0;
- } else {
- Q[i] = (unsigned)(partial_dividend / divisor);
- remainder = (unsigned)(partial_dividend - (Q[i] * divisor));
- }
- }
- if (R)
- R[0] = remainder;
- } else {
- // Now we're ready to invoke the Knuth classical divide algorithm. In this
- // case n > 1.
- KnuthDiv(U, V, Q, R, m, n);
- }
- // If the caller wants the quotient
- if (Quotient) {
- // Set up the Quotient value's memory.
- if (Quotient->BitWidth != LHS.BitWidth) {
- if (Quotient->isSingleWord())
- Quotient->VAL = 0;
- else
- delete [] Quotient->pVal;
- Quotient->BitWidth = LHS.BitWidth;
- if (!Quotient->isSingleWord())
- Quotient->pVal = getClearedMemory(Quotient->getNumWords());
- } else
- Quotient->clearAllBits();
- // The quotient is in Q. Reconstitute the quotient into Quotient's low
- // order words.
- // This case is currently dead as all users of divide() handle trivial cases
- // earlier.
- if (lhsWords == 1) {
- uint64_t tmp =
- uint64_t(Q[0]) | (uint64_t(Q[1]) << (APINT_BITS_PER_WORD / 2));
- if (Quotient->isSingleWord())
- Quotient->VAL = tmp;
- else
- Quotient->pVal[0] = tmp;
- } else {
- assert(!Quotient->isSingleWord() && "Quotient APInt not large enough");
- for (unsigned i = 0; i < lhsWords; ++i)
- Quotient->pVal[i] =
- uint64_t(Q[i*2]) | (uint64_t(Q[i*2+1]) << (APINT_BITS_PER_WORD / 2));
- }
- }
- // If the caller wants the remainder
- if (Remainder) {
- // Set up the Remainder value's memory.
- if (Remainder->BitWidth != RHS.BitWidth) {
- if (Remainder->isSingleWord())
- Remainder->VAL = 0;
- else
- delete [] Remainder->pVal;
- Remainder->BitWidth = RHS.BitWidth;
- if (!Remainder->isSingleWord())
- Remainder->pVal = getClearedMemory(Remainder->getNumWords());
- } else
- Remainder->clearAllBits();
- // The remainder is in R. Reconstitute the remainder into Remainder's low
- // order words.
- if (rhsWords == 1) {
- uint64_t tmp =
- uint64_t(R[0]) | (uint64_t(R[1]) << (APINT_BITS_PER_WORD / 2));
- if (Remainder->isSingleWord())
- Remainder->VAL = tmp;
- else
- Remainder->pVal[0] = tmp;
- } else {
- assert(!Remainder->isSingleWord() && "Remainder APInt not large enough");
- for (unsigned i = 0; i < rhsWords; ++i)
- Remainder->pVal[i] =
- uint64_t(R[i*2]) | (uint64_t(R[i*2+1]) << (APINT_BITS_PER_WORD / 2));
- }
- }
- // Clean up the memory we allocated.
- if (U != &SPACE[0]) {
- delete [] U;
- delete [] V;
- delete [] Q;
- delete [] R;
- }
- }
- APInt APInt::udiv(const APInt& RHS) const {
- assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
- // First, deal with the easy case
- if (isSingleWord()) {
- assert(RHS.VAL != 0 && "Divide by zero?");
- return APInt(BitWidth, VAL / RHS.VAL);
- }
- // Get some facts about the LHS and RHS number of bits and words
- unsigned rhsBits = RHS.getActiveBits();
- unsigned rhsWords = !rhsBits ? 0 : (APInt::whichWord(rhsBits - 1) + 1);
- assert(rhsWords && "Divided by zero???");
- unsigned lhsBits = this->getActiveBits();
- unsigned lhsWords = !lhsBits ? 0 : (APInt::whichWord(lhsBits - 1) + 1);
- // Deal with some degenerate cases
- if (!lhsWords)
- // 0 / X ===> 0
- return APInt(BitWidth, 0);
- else if (lhsWords < rhsWords || this->ult(RHS)) {
- // X / Y ===> 0, iff X < Y
- return APInt(BitWidth, 0);
- } else if (*this == RHS) {
- // X / X ===> 1
- return APInt(BitWidth, 1);
- } else if (lhsWords == 1 && rhsWords == 1) {
- // All high words are zero, just use native divide
- return APInt(BitWidth, this->pVal[0] / RHS.pVal[0]);
- }
- // We have to compute it the hard way. Invoke the Knuth divide algorithm.
- APInt Quotient(1,0); // to hold result.
- divide(*this, lhsWords, RHS, rhsWords, &Quotient, nullptr);
- return Quotient;
- }
- APInt APInt::sdiv(const APInt &RHS) const {
- if (isNegative()) {
- if (RHS.isNegative())
- return (-(*this)).udiv(-RHS);
- return -((-(*this)).udiv(RHS));
- }
- if (RHS.isNegative())
- return -(this->udiv(-RHS));
- return this->udiv(RHS);
- }
- APInt APInt::urem(const APInt& RHS) const {
- assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
- if (isSingleWord()) {
- assert(RHS.VAL != 0 && "Remainder by zero?");
- return APInt(BitWidth, VAL % RHS.VAL);
- }
- // Get some facts about the LHS
- unsigned lhsBits = getActiveBits();
- unsigned lhsWords = !lhsBits ? 0 : (whichWord(lhsBits - 1) + 1);
- // Get some facts about the RHS
- unsigned rhsBits = RHS.getActiveBits();
- unsigned rhsWords = !rhsBits ? 0 : (APInt::whichWord(rhsBits - 1) + 1);
- assert(rhsWords && "Performing remainder operation by zero ???");
- // Check the degenerate cases
- if (lhsWords == 0) {
- // 0 % Y ===> 0
- return APInt(BitWidth, 0);
- } else if (lhsWords < rhsWords || this->ult(RHS)) {
- // X % Y ===> X, iff X < Y
- return *this;
- } else if (*this == RHS) {
- // X % X == 0;
- return APInt(BitWidth, 0);
- } else if (lhsWords == 1) {
- // All high words are zero, just use native remainder
- return APInt(BitWidth, pVal[0] % RHS.pVal[0]);
- }
- // We have to compute it the hard way. Invoke the Knuth divide algorithm.
- APInt Remainder(1,0);
- divide(*this, lhsWords, RHS, rhsWords, nullptr, &Remainder);
- return Remainder;
- }
- APInt APInt::srem(const APInt &RHS) const {
- if (isNegative()) {
- if (RHS.isNegative())
- return -((-(*this)).urem(-RHS));
- return -((-(*this)).urem(RHS));
- }
- if (RHS.isNegative())
- return this->urem(-RHS);
- return this->urem(RHS);
- }
- void APInt::udivrem(const APInt &LHS, const APInt &RHS,
- APInt &Quotient, APInt &Remainder) {
- assert(LHS.BitWidth == RHS.BitWidth && "Bit widths must be the same");
- // First, deal with the easy case
- if (LHS.isSingleWord()) {
- assert(RHS.VAL != 0 && "Divide by zero?");
- uint64_t QuotVal = LHS.VAL / RHS.VAL;
- uint64_t RemVal = LHS.VAL % RHS.VAL;
- Quotient = APInt(LHS.BitWidth, QuotVal);
- Remainder = APInt(LHS.BitWidth, RemVal);
- return;
- }
- // Get some size facts about the dividend and divisor
- unsigned lhsBits = LHS.getActiveBits();
- unsigned lhsWords = !lhsBits ? 0 : (APInt::whichWord(lhsBits - 1) + 1);
- unsigned rhsBits = RHS.getActiveBits();
- unsigned rhsWords = !rhsBits ? 0 : (APInt::whichWord(rhsBits - 1) + 1);
- // Check the degenerate cases
- if (lhsWords == 0) {
- Quotient = 0; // 0 / Y ===> 0
- Remainder = 0; // 0 % Y ===> 0
- return;
- }
- if (lhsWords < rhsWords || LHS.ult(RHS)) {
- Remainder = LHS; // X % Y ===> X, iff X < Y
- Quotient = 0; // X / Y ===> 0, iff X < Y
- return;
- }
- if (LHS == RHS) {
- Quotient = 1; // X / X ===> 1
- Remainder = 0; // X % X ===> 0;
- return;
- }
- if (lhsWords == 1 && rhsWords == 1) {
- // There is only one word to consider so use the native versions.
- uint64_t lhsValue = LHS.isSingleWord() ? LHS.VAL : LHS.pVal[0];
- uint64_t rhsValue = RHS.isSingleWord() ? RHS.VAL : RHS.pVal[0];
- Quotient = APInt(LHS.getBitWidth(), lhsValue / rhsValue);
- Remainder = APInt(LHS.getBitWidth(), lhsValue % rhsValue);
- return;
- }
- // Okay, lets do it the long way
- divide(LHS, lhsWords, RHS, rhsWords, &Quotient, &Remainder);
- }
- void APInt::sdivrem(const APInt &LHS, const APInt &RHS,
- APInt &Quotient, APInt &Remainder) {
- if (LHS.isNegative()) {
- if (RHS.isNegative())
- APInt::udivrem(-LHS, -RHS, Quotient, Remainder);
- else {
- APInt::udivrem(-LHS, RHS, Quotient, Remainder);
- Quotient = -Quotient;
- }
- Remainder = -Remainder;
- } else if (RHS.isNegative()) {
- APInt::udivrem(LHS, -RHS, Quotient, Remainder);
- Quotient = -Quotient;
- } else {
- APInt::udivrem(LHS, RHS, Quotient, Remainder);
- }
- }
- APInt APInt::sadd_ov(const APInt &RHS, bool &Overflow) const {
- APInt Res = *this+RHS;
- Overflow = isNonNegative() == RHS.isNonNegative() &&
- Res.isNonNegative() != isNonNegative();
- return Res;
- }
- APInt APInt::uadd_ov(const APInt &RHS, bool &Overflow) const {
- APInt Res = *this+RHS;
- Overflow = Res.ult(RHS);
- return Res;
- }
- APInt APInt::ssub_ov(const APInt &RHS, bool &Overflow) const {
- APInt Res = *this - RHS;
- Overflow = isNonNegative() != RHS.isNonNegative() &&
- Res.isNonNegative() != isNonNegative();
- return Res;
- }
- APInt APInt::usub_ov(const APInt &RHS, bool &Overflow) const {
- APInt Res = *this-RHS;
- Overflow = Res.ugt(*this);
- return Res;
- }
- APInt APInt::sdiv_ov(const APInt &RHS, bool &Overflow) const {
- // MININT/-1 --> overflow.
- Overflow = isMinSignedValue() && RHS.isAllOnesValue();
- return sdiv(RHS);
- }
- APInt APInt::smul_ov(const APInt &RHS, bool &Overflow) const {
- APInt Res = *this * RHS;
-
- if (*this != 0 && RHS != 0)
- Overflow = Res.sdiv(RHS) != *this || Res.sdiv(*this) != RHS;
- else
- Overflow = false;
- return Res;
- }
- APInt APInt::umul_ov(const APInt &RHS, bool &Overflow) const {
- APInt Res = *this * RHS;
- if (*this != 0 && RHS != 0)
- Overflow = Res.udiv(RHS) != *this || Res.udiv(*this) != RHS;
- else
- Overflow = false;
- return Res;
- }
- APInt APInt::sshl_ov(const APInt &ShAmt, bool &Overflow) const {
- Overflow = ShAmt.uge(getBitWidth());
- if (Overflow)
- return APInt(BitWidth, 0);
- if (isNonNegative()) // Don't allow sign change.
- Overflow = ShAmt.uge(countLeadingZeros());
- else
- Overflow = ShAmt.uge(countLeadingOnes());
-
- return *this << ShAmt;
- }
- APInt APInt::ushl_ov(const APInt &ShAmt, bool &Overflow) const {
- Overflow = ShAmt.uge(getBitWidth());
- if (Overflow)
- return APInt(BitWidth, 0);
- Overflow = ShAmt.ugt(countLeadingZeros());
- return *this << ShAmt;
- }
- void APInt::fromString(unsigned numbits, StringRef str, uint8_t radix) {
- // Check our assumptions here
- assert(!str.empty() && "Invalid string length");
- assert((radix == 10 || radix == 8 || radix == 16 || radix == 2 ||
- radix == 36) &&
- "Radix should be 2, 8, 10, 16, or 36!");
- StringRef::iterator p = str.begin();
- size_t slen = str.size();
- bool isNeg = *p == '-';
- if (*p == '-' || *p == '+') {
- p++;
- slen--;
- assert(slen && "String is only a sign, needs a value.");
- }
- assert((slen <= numbits || radix != 2) && "Insufficient bit width");
- assert(((slen-1)*3 <= numbits || radix != 8) && "Insufficient bit width");
- assert(((slen-1)*4 <= numbits || radix != 16) && "Insufficient bit width");
- assert((((slen-1)*64)/22 <= numbits || radix != 10) &&
- "Insufficient bit width");
- // Allocate memory
- if (!isSingleWord())
- pVal = getClearedMemory(getNumWords());
- // Figure out if we can shift instead of multiply
- unsigned shift = (radix == 16 ? 4 : radix == 8 ? 3 : radix == 2 ? 1 : 0);
- // Set up an APInt for the digit to add outside the loop so we don't
- // constantly construct/destruct it.
- APInt apdigit(getBitWidth(), 0);
- APInt apradix(getBitWidth(), radix);
- // Enter digit traversal loop
- for (StringRef::iterator e = str.end(); p != e; ++p) {
- unsigned digit = getDigit(*p, radix);
- assert(digit < radix && "Invalid character in digit string");
- // Shift or multiply the value by the radix
- if (slen > 1) {
- if (shift)
- *this <<= shift;
- else
- *this *= apradix;
- }
- // Add in the digit we just interpreted
- if (apdigit.isSingleWord())
- apdigit.VAL = digit;
- else
- apdigit.pVal[0] = digit;
- *this += apdigit;
- }
- // If its negative, put it in two's complement form
- if (isNeg) {
- --(*this);
- this->flipAllBits();
- }
- }
- void APInt::toString(SmallVectorImpl<char> &Str, unsigned Radix,
- bool Signed, bool formatAsCLiteral) const {
- assert((Radix == 10 || Radix == 8 || Radix == 16 || Radix == 2 ||
- Radix == 36) &&
- "Radix should be 2, 8, 10, 16, or 36!");
- const char *Prefix = "";
- if (formatAsCLiteral) {
- switch (Radix) {
- case 2:
- // Binary literals are a non-standard extension added in gcc 4.3:
- // http://gcc.gnu.org/onlinedocs/gcc-4.3.0/gcc/Binary-constants.html
- Prefix = "0b";
- break;
- case 8:
- Prefix = "0";
- break;
- case 10:
- break; // No prefix
- case 16:
- Prefix = "0x";
- break;
- default:
- llvm_unreachable("Invalid radix!");
- }
- }
- // First, check for a zero value and just short circuit the logic below.
- if (*this == 0) {
- while (*Prefix) {
- Str.push_back(*Prefix);
- ++Prefix;
- };
- Str.push_back('0');
- return;
- }
- static const char Digits[] = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ";
- if (isSingleWord()) {
- char Buffer[65];
- char *BufPtr = Buffer+65;
- uint64_t N;
- if (!Signed) {
- N = getZExtValue();
- } else {
- int64_t I = getSExtValue();
- if (I >= 0) {
- N = I;
- } else {
- Str.push_back('-');
- N = -(uint64_t)I;
- }
- }
- while (*Prefix) {
- Str.push_back(*Prefix);
- ++Prefix;
- };
- while (N) {
- *--BufPtr = Digits[N % Radix];
- N /= Radix;
- }
- Str.append(BufPtr, Buffer+65);
- return;
- }
- APInt Tmp(*this);
- if (Signed && isNegative()) {
- // They want to print the signed version and it is a negative value
- // Flip the bits and add one to turn it into the equivalent positive
- // value and put a '-' in the result.
- Tmp.flipAllBits();
- ++Tmp;
- Str.push_back('-');
- }
- while (*Prefix) {
- Str.push_back(*Prefix);
- ++Prefix;
- };
- // We insert the digits backward, then reverse them to get the right order.
- unsigned StartDig = Str.size();
- // For the 2, 8 and 16 bit cases, we can just shift instead of divide
- // because the number of bits per digit (1, 3 and 4 respectively) divides
- // equaly. We just shift until the value is zero.
- if (Radix == 2 || Radix == 8 || Radix == 16) {
- // Just shift tmp right for each digit width until it becomes zero
- unsigned ShiftAmt = (Radix == 16 ? 4 : (Radix == 8 ? 3 : 1));
- unsigned MaskAmt = Radix - 1;
- while (Tmp != 0) {
- unsigned Digit = unsigned(Tmp.getRawData()[0]) & MaskAmt;
- Str.push_back(Digits[Digit]);
- Tmp = Tmp.lshr(ShiftAmt);
- }
- } else {
- APInt divisor(Radix == 10? 4 : 8, Radix);
- while (Tmp != 0) {
- APInt APdigit(1, 0);
- APInt tmp2(Tmp.getBitWidth(), 0);
- divide(Tmp, Tmp.getNumWords(), divisor, divisor.getNumWords(), &tmp2,
- &APdigit);
- unsigned Digit = (unsigned)APdigit.getZExtValue();
- assert(Digit < Radix && "divide failed");
- Str.push_back(Digits[Digit]);
- Tmp = tmp2;
- }
- }
- // Reverse the digits before returning.
- std::reverse(Str.begin()+StartDig, Str.end());
- }
- /// Returns the APInt as a std::string. Note that this is an inefficient method.
- /// It is better to pass in a SmallVector/SmallString to the methods above.
- std::string APInt::toString(unsigned Radix = 10, bool Signed = true) const {
- SmallString<40> S;
- toString(S, Radix, Signed, /* formatAsCLiteral = */false);
- return S.str();
- }
- void APInt::dump() const {
- SmallString<40> S, U;
- this->toStringUnsigned(U);
- this->toStringSigned(S);
- dbgs() << "APInt(" << BitWidth << "b, "
- << U << "u " << S << "s)";
- }
- void APInt::print(raw_ostream &OS, bool isSigned) const {
- SmallString<40> S;
- this->toString(S, 10, isSigned, /* formatAsCLiteral = */false);
- OS << S;
- }
- // This implements a variety of operations on a representation of
- // arbitrary precision, two's-complement, bignum integer values.
- // Assumed by lowHalf, highHalf, partMSB and partLSB. A fairly safe
- // and unrestricting assumption.
- static_assert(integerPartWidth % 2 == 0, "Part width must be divisible by 2!");
- /* Some handy functions local to this file. */
- namespace {
- /* Returns the integer part with the least significant BITS set.
- BITS cannot be zero. */
- static inline integerPart
- lowBitMask(unsigned int bits)
- {
- assert(bits != 0 && bits <= integerPartWidth);
- return ~(integerPart) 0 >> (integerPartWidth - bits);
- }
- /* Returns the value of the lower half of PART. */
- static inline integerPart
- lowHalf(integerPart part)
- {
- return part & lowBitMask(integerPartWidth / 2);
- }
- /* Returns the value of the upper half of PART. */
- static inline integerPart
- highHalf(integerPart part)
- {
- return part >> (integerPartWidth / 2);
- }
- /* Returns the bit number of the most significant set bit of a part.
- If the input number has no bits set -1U is returned. */
- static unsigned int
- partMSB(integerPart value)
- {
- return findLastSet(value, ZB_Max);
- }
- /* Returns the bit number of the least significant set bit of a
- part. If the input number has no bits set -1U is returned. */
- static unsigned int
- partLSB(integerPart value)
- {
- return findFirstSet(value, ZB_Max);
- }
- }
- /* Sets the least significant part of a bignum to the input value, and
- zeroes out higher parts. */
- void
- APInt::tcSet(integerPart *dst, integerPart part, unsigned int parts)
- {
- unsigned int i;
- assert(parts > 0);
- dst[0] = part;
- for (i = 1; i < parts; i++)
- dst[i] = 0;
- }
- /* Assign one bignum to another. */
- void
- APInt::tcAssign(integerPart *dst, const integerPart *src, unsigned int parts)
- {
- unsigned int i;
- for (i = 0; i < parts; i++)
- dst[i] = src[i];
- }
- /* Returns true if a bignum is zero, false otherwise. */
- bool
- APInt::tcIsZero(const integerPart *src, unsigned int parts)
- {
- unsigned int i;
- for (i = 0; i < parts; i++)
- if (src[i])
- return false;
- return true;
- }
- /* Extract the given bit of a bignum; returns 0 or 1. */
- int
- APInt::tcExtractBit(const integerPart *parts, unsigned int bit)
- {
- return (parts[bit / integerPartWidth] &
- ((integerPart) 1 << bit % integerPartWidth)) != 0;
- }
- /* Set the given bit of a bignum. */
- void
- APInt::tcSetBit(integerPart *parts, unsigned int bit)
- {
- parts[bit / integerPartWidth] |= (integerPart) 1 << (bit % integerPartWidth);
- }
- /* Clears the given bit of a bignum. */
- void
- APInt::tcClearBit(integerPart *parts, unsigned int bit)
- {
- parts[bit / integerPartWidth] &=
- ~((integerPart) 1 << (bit % integerPartWidth));
- }
- /* Returns the bit number of the least significant set bit of a
- number. If the input number has no bits set -1U is returned. */
- unsigned int
- APInt::tcLSB(const integerPart *parts, unsigned int n)
- {
- unsigned int i, lsb;
- for (i = 0; i < n; i++) {
- if (parts[i] != 0) {
- lsb = partLSB(parts[i]);
- return lsb + i * integerPartWidth;
- }
- }
- return -1U;
- }
- /* Returns the bit number of the most significant set bit of a number.
- If the input number has no bits set -1U is returned. */
- unsigned int
- APInt::tcMSB(const integerPart *parts, unsigned int n)
- {
- unsigned int msb;
- do {
- --n;
- if (parts[n] != 0) {
- msb = partMSB(parts[n]);
- return msb + n * integerPartWidth;
- }
- } while (n);
- return -1U;
- }
- /* Copy the bit vector of width srcBITS from SRC, starting at bit
- srcLSB, to DST, of dstCOUNT parts, such that the bit srcLSB becomes
- the least significant bit of DST. All high bits above srcBITS in
- DST are zero-filled. */
- void
- APInt::tcExtract(integerPart *dst, unsigned int dstCount,const integerPart *src,
- unsigned int srcBits, unsigned int srcLSB)
- {
- unsigned int firstSrcPart, dstParts, shift, n;
- dstParts = (srcBits + integerPartWidth - 1) / integerPartWidth;
- assert(dstParts <= dstCount);
- firstSrcPart = srcLSB / integerPartWidth;
- tcAssign (dst, src + firstSrcPart, dstParts);
- shift = srcLSB % integerPartWidth;
- tcShiftRight (dst, dstParts, shift);
- /* We now have (dstParts * integerPartWidth - shift) bits from SRC
- in DST. If this is less that srcBits, append the rest, else
- clear the high bits. */
- n = dstParts * integerPartWidth - shift;
- if (n < srcBits) {
- integerPart mask = lowBitMask (srcBits - n);
- dst[dstParts - 1] |= ((src[firstSrcPart + dstParts] & mask)
- << n % integerPartWidth);
- } else if (n > srcBits) {
- if (srcBits % integerPartWidth)
- dst[dstParts - 1] &= lowBitMask (srcBits % integerPartWidth);
- }
- /* Clear high parts. */
- while (dstParts < dstCount)
- dst[dstParts++] = 0;
- }
- /* DST += RHS + C where C is zero or one. Returns the carry flag. */
- integerPart
- APInt::tcAdd(integerPart *dst, const integerPart *rhs,
- integerPart c, unsigned int parts)
- {
- unsigned int i;
- assert(c <= 1);
- for (i = 0; i < parts; i++) {
- integerPart l;
- l = dst[i];
- if (c) {
- dst[i] += rhs[i] + 1;
- c = (dst[i] <= l);
- } else {
- dst[i] += rhs[i];
- c = (dst[i] < l);
- }
- }
- return c;
- }
- /* DST -= RHS + C where C is zero or one. Returns the carry flag. */
- integerPart
- APInt::tcSubtract(integerPart *dst, const integerPart *rhs,
- integerPart c, unsigned int parts)
- {
- unsigned int i;
- assert(c <= 1);
- for (i = 0; i < parts; i++) {
- integerPart l;
- l = dst[i];
- if (c) {
- dst[i] -= rhs[i] + 1;
- c = (dst[i] >= l);
- } else {
- dst[i] -= rhs[i];
- c = (dst[i] > l);
- }
- }
- return c;
- }
- /* Negate a bignum in-place. */
- void
- APInt::tcNegate(integerPart *dst, unsigned int parts)
- {
- tcComplement(dst, parts);
- tcIncrement(dst, parts);
- }
- /* DST += SRC * MULTIPLIER + CARRY if add is true
- DST = SRC * MULTIPLIER + CARRY if add is false
- Requires 0 <= DSTPARTS <= SRCPARTS + 1. If DST overlaps SRC
- they must start at the same point, i.e. DST == SRC.
- If DSTPARTS == SRCPARTS + 1 no overflow occurs and zero is
- returned. Otherwise DST is filled with the least significant
- DSTPARTS parts of the result, and if all of the omitted higher
- parts were zero return zero, otherwise overflow occurred and
- return one. */
- int
- APInt::tcMultiplyPart(integerPart *dst, const integerPart *src,
- integerPart multiplier, integerPart carry,
- unsigned int srcParts, unsigned int dstParts,
- bool add)
- {
- unsigned int i, n;
- /* Otherwise our writes of DST kill our later reads of SRC. */
- assert(dst <= src || dst >= src + srcParts);
- assert(dstParts <= srcParts + 1);
- /* N loops; minimum of dstParts and srcParts. */
- n = dstParts < srcParts ? dstParts: srcParts;
- for (i = 0; i < n; i++) {
- integerPart low, mid, high, srcPart;
- /* [ LOW, HIGH ] = MULTIPLIER * SRC[i] + DST[i] + CARRY.
- This cannot overflow, because
- (n - 1) * (n - 1) + 2 (n - 1) = (n - 1) * (n + 1)
- which is less than n^2. */
- srcPart = src[i];
- if (multiplier == 0 || srcPart == 0) {
- low = carry;
- high = 0;
- } else {
- low = lowHalf(srcPart) * lowHalf(multiplier);
- high = highHalf(srcPart) * highHalf(multiplier);
- mid = lowHalf(srcPart) * highHalf(multiplier);
- high += highHalf(mid);
- mid <<= integerPartWidth / 2;
- if (low + mid < low)
- high++;
- low += mid;
- mid = highHalf(srcPart) * lowHalf(multiplier);
- high += highHalf(mid);
- mid <<= integerPartWidth / 2;
- if (low + mid < low)
- high++;
- low += mid;
- /* Now add carry. */
- if (low + carry < low)
- high++;
- low += carry;
- }
- if (add) {
- /* And now DST[i], and store the new low part there. */
- if (low + dst[i] < low)
- high++;
- dst[i] += low;
- } else
- dst[i] = low;
- carry = high;
- }
- if (i < dstParts) {
- /* Full multiplication, there is no overflow. */
- assert(i + 1 == dstParts);
- dst[i] = carry;
- return 0;
- } else {
- /* We overflowed if there is carry. */
- if (carry)
- return 1;
- /* We would overflow if any significant unwritten parts would be
- non-zero. This is true if any remaining src parts are non-zero
- and the multiplier is non-zero. */
- if (multiplier)
- for (; i < srcParts; i++)
- if (src[i])
- return 1;
- /* We fitted in the narrow destination. */
- return 0;
- }
- }
- /* DST = LHS * RHS, where DST has the same width as the operands and
- is filled with the least significant parts of the result. Returns
- one if overflow occurred, otherwise zero. DST must be disjoint
- from both operands. */
- int
- APInt::tcMultiply(integerPart *dst, const integerPart *lhs,
- const integerPart *rhs, unsigned int parts)
- {
- unsigned int i;
- int overflow;
- assert(dst != lhs && dst != rhs);
- overflow = 0;
- tcSet(dst, 0, parts);
- for (i = 0; i < parts; i++)
- overflow |= tcMultiplyPart(&dst[i], lhs, rhs[i], 0, parts,
- parts - i, true);
- return overflow;
- }
- /* DST = LHS * RHS, where DST has width the sum of the widths of the
- operands. No overflow occurs. DST must be disjoint from both
- operands. Returns the number of parts required to hold the
- result. */
- unsigned int
- APInt::tcFullMultiply(integerPart *dst, const integerPart *lhs,
- const integerPart *rhs, unsigned int lhsParts,
- unsigned int rhsParts)
- {
- /* Put the narrower number on the LHS for less loops below. */
- if (lhsParts > rhsParts) {
- return tcFullMultiply (dst, rhs, lhs, rhsParts, lhsParts);
- } else {
- unsigned int n;
- assert(dst != lhs && dst != rhs);
- tcSet(dst, 0, rhsParts);
- for (n = 0; n < lhsParts; n++)
- tcMultiplyPart(&dst[n], rhs, lhs[n], 0, rhsParts, rhsParts + 1, true);
- n = lhsParts + rhsParts;
- return n - (dst[n - 1] == 0);
- }
- }
- /* If RHS is zero LHS and REMAINDER are left unchanged, return one.
- Otherwise set LHS to LHS / RHS with the fractional part discarded,
- set REMAINDER to the remainder, return zero. i.e.
- OLD_LHS = RHS * LHS + REMAINDER
- SCRATCH is a bignum of the same size as the operands and result for
- use by the routine; its contents need not be initialized and are
- destroyed. LHS, REMAINDER and SCRATCH must be distinct.
- */
- int
- APInt::tcDivide(integerPart *lhs, const integerPart *rhs,
- integerPart *remainder, integerPart *srhs,
- unsigned int parts)
- {
- unsigned int n, shiftCount;
- integerPart mask;
- assert(lhs != remainder && lhs != srhs && remainder != srhs);
- shiftCount = tcMSB(rhs, parts) + 1;
- if (shiftCount == 0)
- return true;
- shiftCount = parts * integerPartWidth - shiftCount;
- n = shiftCount / integerPartWidth;
- mask = (integerPart) 1 << (shiftCount % integerPartWidth);
- tcAssign(srhs, rhs, parts);
- tcShiftLeft(srhs, parts, shiftCount);
- tcAssign(remainder, lhs, parts);
- tcSet(lhs, 0, parts);
- /* Loop, subtracting SRHS if REMAINDER is greater and adding that to
- the total. */
- for (;;) {
- int compare;
- compare = tcCompare(remainder, srhs, parts);
- if (compare >= 0) {
- tcSubtract(remainder, srhs, 0, parts);
- lhs[n] |= mask;
- }
- if (shiftCount == 0)
- break;
- shiftCount--;
- tcShiftRight(srhs, parts, 1);
- if ((mask >>= 1) == 0)
- mask = (integerPart) 1 << (integerPartWidth - 1), n--;
- }
- return false;
- }
- /* Shift a bignum left COUNT bits in-place. Shifted in bits are zero.
- There are no restrictions on COUNT. */
- void
- APInt::tcShiftLeft(integerPart *dst, unsigned int parts, unsigned int count)
- {
- if (count) {
- unsigned int jump, shift;
- /* Jump is the inter-part jump; shift is is intra-part shift. */
- jump = count / integerPartWidth;
- shift = count % integerPartWidth;
- while (parts > jump) {
- integerPart part;
- parts--;
- /* dst[i] comes from the two parts src[i - jump] and, if we have
- an intra-part shift, src[i - jump - 1]. */
- part = dst[parts - jump];
- if (shift) {
- part <<= shift;
- if (parts >= jump + 1)
- part |= dst[parts - jump - 1] >> (integerPartWidth - shift);
- }
- dst[parts] = part;
- }
- while (parts > 0)
- dst[--parts] = 0;
- }
- }
- /* Shift a bignum right COUNT bits in-place. Shifted in bits are
- zero. There are no restrictions on COUNT. */
- void
- APInt::tcShiftRight(integerPart *dst, unsigned int parts, unsigned int count)
- {
- if (count) {
- unsigned int i, jump, shift;
- /* Jump is the inter-part jump; shift is is intra-part shift. */
- jump = count / integerPartWidth;
- shift = count % integerPartWidth;
- /* Perform the shift. This leaves the most significant COUNT bits
- of the result at zero. */
- for (i = 0; i < parts; i++) {
- integerPart part;
- if (i + jump >= parts) {
- part = 0;
- } else {
- part = dst[i + jump];
- if (shift) {
- part >>= shift;
- if (i + jump + 1 < parts)
- part |= dst[i + jump + 1] << (integerPartWidth - shift);
- }
- }
- dst[i] = part;
- }
- }
- }
- /* Bitwise and of two bignums. */
- void
- APInt::tcAnd(integerPart *dst, const integerPart *rhs, unsigned int parts)
- {
- unsigned int i;
- for (i = 0; i < parts; i++)
- dst[i] &= rhs[i];
- }
- /* Bitwise inclusive or of two bignums. */
- void
- APInt::tcOr(integerPart *dst, const integerPart *rhs, unsigned int parts)
- {
- unsigned int i;
- for (i = 0; i < parts; i++)
- dst[i] |= rhs[i];
- }
- /* Bitwise exclusive or of two bignums. */
- void
- APInt::tcXor(integerPart *dst, const integerPart *rhs, unsigned int parts)
- {
- unsigned int i;
- for (i = 0; i < parts; i++)
- dst[i] ^= rhs[i];
- }
- /* Complement a bignum in-place. */
- void
- APInt::tcComplement(integerPart *dst, unsigned int parts)
- {
- unsigned int i;
- for (i = 0; i < parts; i++)
- dst[i] = ~dst[i];
- }
- /* Comparison (unsigned) of two bignums. */
- int
- APInt::tcCompare(const integerPart *lhs, const integerPart *rhs,
- unsigned int parts)
- {
- while (parts) {
- parts--;
- if (lhs[parts] == rhs[parts])
- continue;
- if (lhs[parts] > rhs[parts])
- return 1;
- else
- return -1;
- }
- return 0;
- }
- /* Increment a bignum in-place, return the carry flag. */
- integerPart
- APInt::tcIncrement(integerPart *dst, unsigned int parts)
- {
- unsigned int i;
- for (i = 0; i < parts; i++)
- if (++dst[i] != 0)
- break;
- return i == parts;
- }
- /* Decrement a bignum in-place, return the borrow flag. */
- integerPart
- APInt::tcDecrement(integerPart *dst, unsigned int parts) {
- for (unsigned int i = 0; i < parts; i++) {
- // If the current word is non-zero, then the decrement has no effect on the
- // higher-order words of the integer and no borrow can occur. Exit early.
- if (dst[i]--)
- return 0;
- }
- // If every word was zero, then there is a borrow.
- return 1;
- }
- /* Set the least significant BITS bits of a bignum, clear the
- rest. */
- void
- APInt::tcSetLeastSignificantBits(integerPart *dst, unsigned int parts,
- unsigned int bits)
- {
- unsigned int i;
- i = 0;
- while (bits > integerPartWidth) {
- dst[i++] = ~(integerPart) 0;
- bits -= integerPartWidth;
- }
- if (bits)
- dst[i++] = ~(integerPart) 0 >> (integerPartWidth - bits);
- while (i < parts)
- dst[i++] = 0;
- }
|