| 12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037 |
- //===-- ArgumentPromotion.cpp - Promote by-reference arguments ------------===//
- //
- // The LLVM Compiler Infrastructure
- //
- // This file is distributed under the University of Illinois Open Source
- // License. See LICENSE.TXT for details.
- //
- //===----------------------------------------------------------------------===//
- //
- // This pass promotes "by reference" arguments to be "by value" arguments. In
- // practice, this means looking for internal functions that have pointer
- // arguments. If it can prove, through the use of alias analysis, that an
- // argument is *only* loaded, then it can pass the value into the function
- // instead of the address of the value. This can cause recursive simplification
- // of code and lead to the elimination of allocas (especially in C++ template
- // code like the STL).
- //
- // This pass also handles aggregate arguments that are passed into a function,
- // scalarizing them if the elements of the aggregate are only loaded. Note that
- // by default it refuses to scalarize aggregates which would require passing in
- // more than three operands to the function, because passing thousands of
- // operands for a large array or structure is unprofitable! This limit can be
- // configured or disabled, however.
- //
- // Note that this transformation could also be done for arguments that are only
- // stored to (returning the value instead), but does not currently. This case
- // would be best handled when and if LLVM begins supporting multiple return
- // values from functions.
- //
- //===----------------------------------------------------------------------===//
- #include "llvm/Transforms/IPO.h"
- #include "llvm/ADT/DepthFirstIterator.h"
- #include "llvm/ADT/Statistic.h"
- #include "llvm/ADT/StringExtras.h"
- #include "llvm/Analysis/AliasAnalysis.h"
- #include "llvm/Analysis/CallGraph.h"
- #include "llvm/Analysis/CallGraphSCCPass.h"
- #include "llvm/Analysis/ValueTracking.h"
- #include "llvm/IR/CFG.h"
- #include "llvm/IR/CallSite.h"
- #include "llvm/IR/Constants.h"
- #include "llvm/IR/DataLayout.h"
- #include "llvm/IR/DebugInfo.h"
- #include "llvm/IR/DerivedTypes.h"
- #include "llvm/IR/Instructions.h"
- #include "llvm/IR/LLVMContext.h"
- #include "llvm/IR/Module.h"
- #include "llvm/Support/Debug.h"
- #include "llvm/Support/raw_ostream.h"
- #include <set>
- using namespace llvm;
- #define DEBUG_TYPE "argpromotion"
- STATISTIC(NumArgumentsPromoted , "Number of pointer arguments promoted");
- STATISTIC(NumAggregatesPromoted, "Number of aggregate arguments promoted");
- STATISTIC(NumByValArgsPromoted , "Number of byval arguments promoted");
- STATISTIC(NumArgumentsDead , "Number of dead pointer args eliminated");
- namespace {
- /// ArgPromotion - The 'by reference' to 'by value' argument promotion pass.
- ///
- struct ArgPromotion : public CallGraphSCCPass {
- void getAnalysisUsage(AnalysisUsage &AU) const override {
- AU.addRequired<AliasAnalysis>();
- CallGraphSCCPass::getAnalysisUsage(AU);
- }
- bool runOnSCC(CallGraphSCC &SCC) override;
- static char ID; // Pass identification, replacement for typeid
- explicit ArgPromotion(unsigned maxElements = 3)
- : CallGraphSCCPass(ID), maxElements(maxElements) {
- initializeArgPromotionPass(*PassRegistry::getPassRegistry());
- }
- /// A vector used to hold the indices of a single GEP instruction
- typedef std::vector<uint64_t> IndicesVector;
- private:
- bool isDenselyPacked(Type *type, const DataLayout &DL);
- bool canPaddingBeAccessed(Argument *Arg);
- CallGraphNode *PromoteArguments(CallGraphNode *CGN);
- bool isSafeToPromoteArgument(Argument *Arg, bool isByVal) const;
- CallGraphNode *DoPromotion(Function *F,
- SmallPtrSetImpl<Argument*> &ArgsToPromote,
- SmallPtrSetImpl<Argument*> &ByValArgsToTransform);
-
- using llvm::Pass::doInitialization;
- bool doInitialization(CallGraph &CG) override;
- /// The maximum number of elements to expand, or 0 for unlimited.
- unsigned maxElements;
- DenseMap<const Function *, DISubprogram *> FunctionDIs;
- };
- }
- char ArgPromotion::ID = 0;
- INITIALIZE_PASS_BEGIN(ArgPromotion, "argpromotion",
- "Promote 'by reference' arguments to scalars", false, false)
- INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
- INITIALIZE_PASS_DEPENDENCY(CallGraphWrapperPass)
- INITIALIZE_PASS_END(ArgPromotion, "argpromotion",
- "Promote 'by reference' arguments to scalars", false, false)
- Pass *llvm::createArgumentPromotionPass(unsigned maxElements) {
- return new ArgPromotion(maxElements);
- }
- bool ArgPromotion::runOnSCC(CallGraphSCC &SCC) {
- bool Changed = false, LocalChange;
- do { // Iterate until we stop promoting from this SCC.
- LocalChange = false;
- // Attempt to promote arguments from all functions in this SCC.
- for (CallGraphSCC::iterator I = SCC.begin(), E = SCC.end(); I != E; ++I) {
- if (CallGraphNode *CGN = PromoteArguments(*I)) {
- LocalChange = true;
- SCC.ReplaceNode(*I, CGN);
- }
- }
- Changed |= LocalChange; // Remember that we changed something.
- } while (LocalChange);
-
- return Changed;
- }
- /// \brief Checks if a type could have padding bytes.
- bool ArgPromotion::isDenselyPacked(Type *type, const DataLayout &DL) {
- // There is no size information, so be conservative.
- if (!type->isSized())
- return false;
- // If the alloc size is not equal to the storage size, then there are padding
- // bytes. For x86_fp80 on x86-64, size: 80 alloc size: 128.
- if (DL.getTypeSizeInBits(type) != DL.getTypeAllocSizeInBits(type))
- return false;
- if (!isa<CompositeType>(type))
- return true;
- // For homogenous sequential types, check for padding within members.
- if (SequentialType *seqTy = dyn_cast<SequentialType>(type))
- return isa<PointerType>(seqTy) ||
- isDenselyPacked(seqTy->getElementType(), DL);
- // Check for padding within and between elements of a struct.
- StructType *StructTy = cast<StructType>(type);
- const StructLayout *Layout = DL.getStructLayout(StructTy);
- uint64_t StartPos = 0;
- for (unsigned i = 0, E = StructTy->getNumElements(); i < E; ++i) {
- Type *ElTy = StructTy->getElementType(i);
- if (!isDenselyPacked(ElTy, DL))
- return false;
- if (StartPos != Layout->getElementOffsetInBits(i))
- return false;
- StartPos += DL.getTypeAllocSizeInBits(ElTy);
- }
- return true;
- }
- /// \brief Checks if the padding bytes of an argument could be accessed.
- bool ArgPromotion::canPaddingBeAccessed(Argument *arg) {
- assert(arg->hasByValAttr());
- // Track all the pointers to the argument to make sure they are not captured.
- SmallPtrSet<Value *, 16> PtrValues;
- PtrValues.insert(arg);
- // Track all of the stores.
- SmallVector<StoreInst *, 16> Stores;
- // Scan through the uses recursively to make sure the pointer is always used
- // sanely.
- SmallVector<Value *, 16> WorkList;
- WorkList.insert(WorkList.end(), arg->user_begin(), arg->user_end());
- while (!WorkList.empty()) {
- Value *V = WorkList.back();
- WorkList.pop_back();
- if (isa<GetElementPtrInst>(V) || isa<PHINode>(V)) {
- if (PtrValues.insert(V).second)
- WorkList.insert(WorkList.end(), V->user_begin(), V->user_end());
- } else if (StoreInst *Store = dyn_cast<StoreInst>(V)) {
- Stores.push_back(Store);
- } else if (!isa<LoadInst>(V)) {
- return true;
- }
- }
- // Check to make sure the pointers aren't captured
- for (StoreInst *Store : Stores)
- if (PtrValues.count(Store->getValueOperand()))
- return true;
- return false;
- }
- /// PromoteArguments - This method checks the specified function to see if there
- /// are any promotable arguments and if it is safe to promote the function (for
- /// example, all callers are direct). If safe to promote some arguments, it
- /// calls the DoPromotion method.
- ///
- CallGraphNode *ArgPromotion::PromoteArguments(CallGraphNode *CGN) {
- Function *F = CGN->getFunction();
- // Make sure that it is local to this module.
- if (!F || !F->hasLocalLinkage()) return nullptr;
- // Don't promote arguments for variadic functions. Adding, removing, or
- // changing non-pack parameters can change the classification of pack
- // parameters. Frontends encode that classification at the call site in the
- // IR, while in the callee the classification is determined dynamically based
- // on the number of registers consumed so far.
- if (F->isVarArg()) return nullptr;
- // First check: see if there are any pointer arguments! If not, quick exit.
- SmallVector<Argument*, 16> PointerArgs;
- for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E; ++I)
- if (I->getType()->isPointerTy())
- PointerArgs.push_back(I);
- if (PointerArgs.empty()) return nullptr;
- // Second check: make sure that all callers are direct callers. We can't
- // transform functions that have indirect callers. Also see if the function
- // is self-recursive.
- bool isSelfRecursive = false;
- for (Use &U : F->uses()) {
- CallSite CS(U.getUser());
- // Must be a direct call.
- if (CS.getInstruction() == nullptr || !CS.isCallee(&U)) return nullptr;
-
- if (CS.getInstruction()->getParent()->getParent() == F)
- isSelfRecursive = true;
- }
-
- const DataLayout &DL = F->getParent()->getDataLayout();
- // Check to see which arguments are promotable. If an argument is promotable,
- // add it to ArgsToPromote.
- SmallPtrSet<Argument*, 8> ArgsToPromote;
- SmallPtrSet<Argument*, 8> ByValArgsToTransform;
- for (unsigned i = 0, e = PointerArgs.size(); i != e; ++i) {
- Argument *PtrArg = PointerArgs[i];
- Type *AgTy = cast<PointerType>(PtrArg->getType())->getElementType();
- // Replace sret attribute with noalias. This reduces register pressure by
- // avoiding a register copy.
- if (PtrArg->hasStructRetAttr()) {
- unsigned ArgNo = PtrArg->getArgNo();
- F->setAttributes(
- F->getAttributes()
- .removeAttribute(F->getContext(), ArgNo + 1, Attribute::StructRet)
- .addAttribute(F->getContext(), ArgNo + 1, Attribute::NoAlias));
- for (Use &U : F->uses()) {
- CallSite CS(U.getUser());
- CS.setAttributes(
- CS.getAttributes()
- .removeAttribute(F->getContext(), ArgNo + 1,
- Attribute::StructRet)
- .addAttribute(F->getContext(), ArgNo + 1, Attribute::NoAlias));
- }
- }
- // If this is a byval argument, and if the aggregate type is small, just
- // pass the elements, which is always safe, if the passed value is densely
- // packed or if we can prove the padding bytes are never accessed. This does
- // not apply to inalloca.
- bool isSafeToPromote =
- PtrArg->hasByValAttr() &&
- (isDenselyPacked(AgTy, DL) || !canPaddingBeAccessed(PtrArg));
- if (isSafeToPromote) {
- if (StructType *STy = dyn_cast<StructType>(AgTy)) {
- if (maxElements > 0 && STy->getNumElements() > maxElements) {
- DEBUG(dbgs() << "argpromotion disable promoting argument '"
- << PtrArg->getName() << "' because it would require adding more"
- << " than " << maxElements << " arguments to the function.\n");
- continue;
- }
-
- // If all the elements are single-value types, we can promote it.
- bool AllSimple = true;
- for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
- if (!STy->getElementType(i)->isSingleValueType()) {
- AllSimple = false;
- break;
- }
- }
- // Safe to transform, don't even bother trying to "promote" it.
- // Passing the elements as a scalar will allow scalarrepl to hack on
- // the new alloca we introduce.
- if (AllSimple) {
- ByValArgsToTransform.insert(PtrArg);
- continue;
- }
- }
- }
- // If the argument is a recursive type and we're in a recursive
- // function, we could end up infinitely peeling the function argument.
- if (isSelfRecursive) {
- if (StructType *STy = dyn_cast<StructType>(AgTy)) {
- bool RecursiveType = false;
- for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
- if (STy->getElementType(i) == PtrArg->getType()) {
- RecursiveType = true;
- break;
- }
- }
- if (RecursiveType)
- continue;
- }
- }
-
- // Otherwise, see if we can promote the pointer to its value.
- if (isSafeToPromoteArgument(PtrArg, PtrArg->hasByValOrInAllocaAttr()))
- ArgsToPromote.insert(PtrArg);
- }
- // No promotable pointer arguments.
- if (ArgsToPromote.empty() && ByValArgsToTransform.empty())
- return nullptr;
- return DoPromotion(F, ArgsToPromote, ByValArgsToTransform);
- }
- /// AllCallersPassInValidPointerForArgument - Return true if we can prove that
- /// all callees pass in a valid pointer for the specified function argument.
- static bool AllCallersPassInValidPointerForArgument(Argument *Arg) {
- Function *Callee = Arg->getParent();
- const DataLayout &DL = Callee->getParent()->getDataLayout();
- unsigned ArgNo = Arg->getArgNo();
- // Look at all call sites of the function. At this pointer we know we only
- // have direct callees.
- for (User *U : Callee->users()) {
- CallSite CS(U);
- assert(CS && "Should only have direct calls!");
- if (!isDereferenceablePointer(CS.getArgument(ArgNo), DL))
- return false;
- }
- return true;
- }
- /// Returns true if Prefix is a prefix of longer. That means, Longer has a size
- /// that is greater than or equal to the size of prefix, and each of the
- /// elements in Prefix is the same as the corresponding elements in Longer.
- ///
- /// This means it also returns true when Prefix and Longer are equal!
- static bool IsPrefix(const ArgPromotion::IndicesVector &Prefix,
- const ArgPromotion::IndicesVector &Longer) {
- if (Prefix.size() > Longer.size())
- return false;
- return std::equal(Prefix.begin(), Prefix.end(), Longer.begin());
- }
- /// Checks if Indices, or a prefix of Indices, is in Set.
- static bool PrefixIn(const ArgPromotion::IndicesVector &Indices,
- std::set<ArgPromotion::IndicesVector> &Set) {
- std::set<ArgPromotion::IndicesVector>::iterator Low;
- Low = Set.upper_bound(Indices);
- if (Low != Set.begin())
- Low--;
- // Low is now the last element smaller than or equal to Indices. This means
- // it points to a prefix of Indices (possibly Indices itself), if such
- // prefix exists.
- //
- // This load is safe if any prefix of its operands is safe to load.
- return Low != Set.end() && IsPrefix(*Low, Indices);
- }
- /// Mark the given indices (ToMark) as safe in the given set of indices
- /// (Safe). Marking safe usually means adding ToMark to Safe. However, if there
- /// is already a prefix of Indices in Safe, Indices are implicitely marked safe
- /// already. Furthermore, any indices that Indices is itself a prefix of, are
- /// removed from Safe (since they are implicitely safe because of Indices now).
- static void MarkIndicesSafe(const ArgPromotion::IndicesVector &ToMark,
- std::set<ArgPromotion::IndicesVector> &Safe) {
- std::set<ArgPromotion::IndicesVector>::iterator Low;
- Low = Safe.upper_bound(ToMark);
- // Guard against the case where Safe is empty
- if (Low != Safe.begin())
- Low--;
- // Low is now the last element smaller than or equal to Indices. This
- // means it points to a prefix of Indices (possibly Indices itself), if
- // such prefix exists.
- if (Low != Safe.end()) {
- if (IsPrefix(*Low, ToMark))
- // If there is already a prefix of these indices (or exactly these
- // indices) marked a safe, don't bother adding these indices
- return;
- // Increment Low, so we can use it as a "insert before" hint
- ++Low;
- }
- // Insert
- Low = Safe.insert(Low, ToMark);
- ++Low;
- // If there we're a prefix of longer index list(s), remove those
- std::set<ArgPromotion::IndicesVector>::iterator End = Safe.end();
- while (Low != End && IsPrefix(ToMark, *Low)) {
- std::set<ArgPromotion::IndicesVector>::iterator Remove = Low;
- ++Low;
- Safe.erase(Remove);
- }
- }
- /// isSafeToPromoteArgument - As you might guess from the name of this method,
- /// it checks to see if it is both safe and useful to promote the argument.
- /// This method limits promotion of aggregates to only promote up to three
- /// elements of the aggregate in order to avoid exploding the number of
- /// arguments passed in.
- bool ArgPromotion::isSafeToPromoteArgument(Argument *Arg,
- bool isByValOrInAlloca) const {
- typedef std::set<IndicesVector> GEPIndicesSet;
- // Quick exit for unused arguments
- if (Arg->use_empty())
- return true;
- // We can only promote this argument if all of the uses are loads, or are GEP
- // instructions (with constant indices) that are subsequently loaded.
- //
- // Promoting the argument causes it to be loaded in the caller
- // unconditionally. This is only safe if we can prove that either the load
- // would have happened in the callee anyway (ie, there is a load in the entry
- // block) or the pointer passed in at every call site is guaranteed to be
- // valid.
- // In the former case, invalid loads can happen, but would have happened
- // anyway, in the latter case, invalid loads won't happen. This prevents us
- // from introducing an invalid load that wouldn't have happened in the
- // original code.
- //
- // This set will contain all sets of indices that are loaded in the entry
- // block, and thus are safe to unconditionally load in the caller.
- //
- // This optimization is also safe for InAlloca parameters, because it verifies
- // that the address isn't captured.
- GEPIndicesSet SafeToUnconditionallyLoad;
- // This set contains all the sets of indices that we are planning to promote.
- // This makes it possible to limit the number of arguments added.
- GEPIndicesSet ToPromote;
- // If the pointer is always valid, any load with first index 0 is valid.
- if (isByValOrInAlloca || AllCallersPassInValidPointerForArgument(Arg))
- SafeToUnconditionallyLoad.insert(IndicesVector(1, 0));
- // First, iterate the entry block and mark loads of (geps of) arguments as
- // safe.
- BasicBlock *EntryBlock = Arg->getParent()->begin();
- // Declare this here so we can reuse it
- IndicesVector Indices;
- for (BasicBlock::iterator I = EntryBlock->begin(), E = EntryBlock->end();
- I != E; ++I)
- if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
- Value *V = LI->getPointerOperand();
- if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(V)) {
- V = GEP->getPointerOperand();
- if (V == Arg) {
- // This load actually loads (part of) Arg? Check the indices then.
- Indices.reserve(GEP->getNumIndices());
- for (User::op_iterator II = GEP->idx_begin(), IE = GEP->idx_end();
- II != IE; ++II)
- if (ConstantInt *CI = dyn_cast<ConstantInt>(*II))
- Indices.push_back(CI->getSExtValue());
- else
- // We found a non-constant GEP index for this argument? Bail out
- // right away, can't promote this argument at all.
- return false;
- // Indices checked out, mark them as safe
- MarkIndicesSafe(Indices, SafeToUnconditionallyLoad);
- Indices.clear();
- }
- } else if (V == Arg) {
- // Direct loads are equivalent to a GEP with a single 0 index.
- MarkIndicesSafe(IndicesVector(1, 0), SafeToUnconditionallyLoad);
- }
- }
- // Now, iterate all uses of the argument to see if there are any uses that are
- // not (GEP+)loads, or any (GEP+)loads that are not safe to promote.
- SmallVector<LoadInst*, 16> Loads;
- IndicesVector Operands;
- for (Use &U : Arg->uses()) {
- User *UR = U.getUser();
- Operands.clear();
- if (LoadInst *LI = dyn_cast<LoadInst>(UR)) {
- // Don't hack volatile/atomic loads
- if (!LI->isSimple()) return false;
- Loads.push_back(LI);
- // Direct loads are equivalent to a GEP with a zero index and then a load.
- Operands.push_back(0);
- } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(UR)) {
- if (GEP->use_empty()) {
- // Dead GEP's cause trouble later. Just remove them if we run into
- // them.
- getAnalysis<AliasAnalysis>().deleteValue(GEP);
- GEP->eraseFromParent();
- // TODO: This runs the above loop over and over again for dead GEPs
- // Couldn't we just do increment the UI iterator earlier and erase the
- // use?
- return isSafeToPromoteArgument(Arg, isByValOrInAlloca);
- }
- // Ensure that all of the indices are constants.
- for (User::op_iterator i = GEP->idx_begin(), e = GEP->idx_end();
- i != e; ++i)
- if (ConstantInt *C = dyn_cast<ConstantInt>(*i))
- Operands.push_back(C->getSExtValue());
- else
- return false; // Not a constant operand GEP!
- // Ensure that the only users of the GEP are load instructions.
- for (User *GEPU : GEP->users())
- if (LoadInst *LI = dyn_cast<LoadInst>(GEPU)) {
- // Don't hack volatile/atomic loads
- if (!LI->isSimple()) return false;
- Loads.push_back(LI);
- } else {
- // Other uses than load?
- return false;
- }
- } else {
- return false; // Not a load or a GEP.
- }
- // Now, see if it is safe to promote this load / loads of this GEP. Loading
- // is safe if Operands, or a prefix of Operands, is marked as safe.
- if (!PrefixIn(Operands, SafeToUnconditionallyLoad))
- return false;
- // See if we are already promoting a load with these indices. If not, check
- // to make sure that we aren't promoting too many elements. If so, nothing
- // to do.
- if (ToPromote.find(Operands) == ToPromote.end()) {
- if (maxElements > 0 && ToPromote.size() == maxElements) {
- DEBUG(dbgs() << "argpromotion not promoting argument '"
- << Arg->getName() << "' because it would require adding more "
- << "than " << maxElements << " arguments to the function.\n");
- // We limit aggregate promotion to only promoting up to a fixed number
- // of elements of the aggregate.
- return false;
- }
- ToPromote.insert(std::move(Operands));
- }
- }
- if (Loads.empty()) return true; // No users, this is a dead argument.
- // Okay, now we know that the argument is only used by load instructions and
- // it is safe to unconditionally perform all of them. Use alias analysis to
- // check to see if the pointer is guaranteed to not be modified from entry of
- // the function to each of the load instructions.
- // Because there could be several/many load instructions, remember which
- // blocks we know to be transparent to the load.
- SmallPtrSet<BasicBlock*, 16> TranspBlocks;
- AliasAnalysis &AA = getAnalysis<AliasAnalysis>();
- for (unsigned i = 0, e = Loads.size(); i != e; ++i) {
- // Check to see if the load is invalidated from the start of the block to
- // the load itself.
- LoadInst *Load = Loads[i];
- BasicBlock *BB = Load->getParent();
- MemoryLocation Loc = MemoryLocation::get(Load);
- if (AA.canInstructionRangeModRef(BB->front(), *Load, Loc,
- AliasAnalysis::Mod))
- return false; // Pointer is invalidated!
- // Now check every path from the entry block to the load for transparency.
- // To do this, we perform a depth first search on the inverse CFG from the
- // loading block.
- for (BasicBlock *P : predecessors(BB)) {
- for (BasicBlock *TranspBB : inverse_depth_first_ext(P, TranspBlocks))
- if (AA.canBasicBlockModify(*TranspBB, Loc))
- return false;
- }
- }
- // If the path from the entry of the function to each load is free of
- // instructions that potentially invalidate the load, we can make the
- // transformation!
- return true;
- }
- /// DoPromotion - This method actually performs the promotion of the specified
- /// arguments, and returns the new function. At this point, we know that it's
- /// safe to do so.
- CallGraphNode *ArgPromotion::DoPromotion(Function *F,
- SmallPtrSetImpl<Argument*> &ArgsToPromote,
- SmallPtrSetImpl<Argument*> &ByValArgsToTransform) {
- // Start by computing a new prototype for the function, which is the same as
- // the old function, but has modified arguments.
- FunctionType *FTy = F->getFunctionType();
- std::vector<Type*> Params;
- typedef std::set<std::pair<Type *, IndicesVector>> ScalarizeTable;
- // ScalarizedElements - If we are promoting a pointer that has elements
- // accessed out of it, keep track of which elements are accessed so that we
- // can add one argument for each.
- //
- // Arguments that are directly loaded will have a zero element value here, to
- // handle cases where there are both a direct load and GEP accesses.
- //
- std::map<Argument*, ScalarizeTable> ScalarizedElements;
- // OriginalLoads - Keep track of a representative load instruction from the
- // original function so that we can tell the alias analysis implementation
- // what the new GEP/Load instructions we are inserting look like.
- // We need to keep the original loads for each argument and the elements
- // of the argument that are accessed.
- std::map<std::pair<Argument*, IndicesVector>, LoadInst*> OriginalLoads;
- // Attribute - Keep track of the parameter attributes for the arguments
- // that we are *not* promoting. For the ones that we do promote, the parameter
- // attributes are lost
- SmallVector<AttributeSet, 8> AttributesVec;
- const AttributeSet &PAL = F->getAttributes();
- // Add any return attributes.
- if (PAL.hasAttributes(AttributeSet::ReturnIndex))
- AttributesVec.push_back(AttributeSet::get(F->getContext(),
- PAL.getRetAttributes()));
- // First, determine the new argument list
- unsigned ArgIndex = 1;
- for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E;
- ++I, ++ArgIndex) {
- if (ByValArgsToTransform.count(I)) {
- // Simple byval argument? Just add all the struct element types.
- Type *AgTy = cast<PointerType>(I->getType())->getElementType();
- StructType *STy = cast<StructType>(AgTy);
- Params.insert(Params.end(), STy->element_begin(), STy->element_end());
- ++NumByValArgsPromoted;
- } else if (!ArgsToPromote.count(I)) {
- // Unchanged argument
- Params.push_back(I->getType());
- AttributeSet attrs = PAL.getParamAttributes(ArgIndex);
- if (attrs.hasAttributes(ArgIndex)) {
- AttrBuilder B(attrs, ArgIndex);
- AttributesVec.
- push_back(AttributeSet::get(F->getContext(), Params.size(), B));
- }
- } else if (I->use_empty()) {
- // Dead argument (which are always marked as promotable)
- ++NumArgumentsDead;
- } else {
- // Okay, this is being promoted. This means that the only uses are loads
- // or GEPs which are only used by loads
- // In this table, we will track which indices are loaded from the argument
- // (where direct loads are tracked as no indices).
- ScalarizeTable &ArgIndices = ScalarizedElements[I];
- for (User *U : I->users()) {
- Instruction *UI = cast<Instruction>(U);
- Type *SrcTy;
- if (LoadInst *L = dyn_cast<LoadInst>(UI))
- SrcTy = L->getType();
- else
- SrcTy = cast<GetElementPtrInst>(UI)->getSourceElementType();
- IndicesVector Indices;
- Indices.reserve(UI->getNumOperands() - 1);
- // Since loads will only have a single operand, and GEPs only a single
- // non-index operand, this will record direct loads without any indices,
- // and gep+loads with the GEP indices.
- for (User::op_iterator II = UI->op_begin() + 1, IE = UI->op_end();
- II != IE; ++II)
- Indices.push_back(cast<ConstantInt>(*II)->getSExtValue());
- // GEPs with a single 0 index can be merged with direct loads
- if (Indices.size() == 1 && Indices.front() == 0)
- Indices.clear();
- ArgIndices.insert(std::make_pair(SrcTy, Indices));
- LoadInst *OrigLoad;
- if (LoadInst *L = dyn_cast<LoadInst>(UI))
- OrigLoad = L;
- else
- // Take any load, we will use it only to update Alias Analysis
- OrigLoad = cast<LoadInst>(UI->user_back());
- OriginalLoads[std::make_pair(I, Indices)] = OrigLoad;
- }
- // Add a parameter to the function for each element passed in.
- for (ScalarizeTable::iterator SI = ArgIndices.begin(),
- E = ArgIndices.end(); SI != E; ++SI) {
- // not allowed to dereference ->begin() if size() is 0
- Params.push_back(GetElementPtrInst::getIndexedType(
- cast<PointerType>(I->getType()->getScalarType())->getElementType(),
- SI->second));
- assert(Params.back());
- }
- if (ArgIndices.size() == 1 && ArgIndices.begin()->second.empty())
- ++NumArgumentsPromoted;
- else
- ++NumAggregatesPromoted;
- }
- }
- // Add any function attributes.
- if (PAL.hasAttributes(AttributeSet::FunctionIndex))
- AttributesVec.push_back(AttributeSet::get(FTy->getContext(),
- PAL.getFnAttributes()));
- Type *RetTy = FTy->getReturnType();
- // Construct the new function type using the new arguments.
- FunctionType *NFTy = FunctionType::get(RetTy, Params, FTy->isVarArg());
- // Create the new function body and insert it into the module.
- Function *NF = Function::Create(NFTy, F->getLinkage(), F->getName());
- NF->copyAttributesFrom(F);
- // Patch the pointer to LLVM function in debug info descriptor.
- auto DI = FunctionDIs.find(F);
- if (DI != FunctionDIs.end()) {
- DISubprogram *SP = DI->second;
- SP->replaceFunction(NF);
- // Ensure the map is updated so it can be reused on subsequent argument
- // promotions of the same function.
- FunctionDIs.erase(DI);
- FunctionDIs[NF] = SP;
- }
- DEBUG(dbgs() << "ARG PROMOTION: Promoting to:" << *NF << "\n"
- << "From: " << *F);
-
- // Recompute the parameter attributes list based on the new arguments for
- // the function.
- NF->setAttributes(AttributeSet::get(F->getContext(), AttributesVec));
- AttributesVec.clear();
- F->getParent()->getFunctionList().insert(F, NF);
- NF->takeName(F);
- // Get the alias analysis information that we need to update to reflect our
- // changes.
- AliasAnalysis &AA = getAnalysis<AliasAnalysis>();
- // Get the callgraph information that we need to update to reflect our
- // changes.
- CallGraph &CG = getAnalysis<CallGraphWrapperPass>().getCallGraph();
- // Get a new callgraph node for NF.
- CallGraphNode *NF_CGN = CG.getOrInsertFunction(NF);
- // Loop over all of the callers of the function, transforming the call sites
- // to pass in the loaded pointers.
- //
- SmallVector<Value*, 16> Args;
- while (!F->use_empty()) {
- CallSite CS(F->user_back());
- assert(CS.getCalledFunction() == F);
- Instruction *Call = CS.getInstruction();
- const AttributeSet &CallPAL = CS.getAttributes();
- // Add any return attributes.
- if (CallPAL.hasAttributes(AttributeSet::ReturnIndex))
- AttributesVec.push_back(AttributeSet::get(F->getContext(),
- CallPAL.getRetAttributes()));
- // Loop over the operands, inserting GEP and loads in the caller as
- // appropriate.
- CallSite::arg_iterator AI = CS.arg_begin();
- ArgIndex = 1;
- for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end();
- I != E; ++I, ++AI, ++ArgIndex)
- if (!ArgsToPromote.count(I) && !ByValArgsToTransform.count(I)) {
- Args.push_back(*AI); // Unmodified argument
- if (CallPAL.hasAttributes(ArgIndex)) {
- AttrBuilder B(CallPAL, ArgIndex);
- AttributesVec.
- push_back(AttributeSet::get(F->getContext(), Args.size(), B));
- }
- } else if (ByValArgsToTransform.count(I)) {
- // Emit a GEP and load for each element of the struct.
- Type *AgTy = cast<PointerType>(I->getType())->getElementType();
- StructType *STy = cast<StructType>(AgTy);
- Value *Idxs[2] = {
- ConstantInt::get(Type::getInt32Ty(F->getContext()), 0), nullptr };
- for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
- Idxs[1] = ConstantInt::get(Type::getInt32Ty(F->getContext()), i);
- Value *Idx = GetElementPtrInst::Create(
- STy, *AI, Idxs, (*AI)->getName() + "." + Twine(i), Call);
- // TODO: Tell AA about the new values?
- Args.push_back(new LoadInst(Idx, Idx->getName()+".val", Call));
- }
- } else if (!I->use_empty()) {
- // Non-dead argument: insert GEPs and loads as appropriate.
- ScalarizeTable &ArgIndices = ScalarizedElements[I];
- // Store the Value* version of the indices in here, but declare it now
- // for reuse.
- std::vector<Value*> Ops;
- for (ScalarizeTable::iterator SI = ArgIndices.begin(),
- E = ArgIndices.end(); SI != E; ++SI) {
- Value *V = *AI;
- LoadInst *OrigLoad = OriginalLoads[std::make_pair(I, SI->second)];
- if (!SI->second.empty()) {
- Ops.reserve(SI->second.size());
- Type *ElTy = V->getType();
- for (IndicesVector::const_iterator II = SI->second.begin(),
- IE = SI->second.end();
- II != IE; ++II) {
- // Use i32 to index structs, and i64 for others (pointers/arrays).
- // This satisfies GEP constraints.
- Type *IdxTy = (ElTy->isStructTy() ?
- Type::getInt32Ty(F->getContext()) :
- Type::getInt64Ty(F->getContext()));
- Ops.push_back(ConstantInt::get(IdxTy, *II));
- // Keep track of the type we're currently indexing.
- ElTy = cast<CompositeType>(ElTy)->getTypeAtIndex(*II);
- }
- // And create a GEP to extract those indices.
- V = GetElementPtrInst::Create(SI->first, V, Ops,
- V->getName() + ".idx", Call);
- Ops.clear();
- }
- // Since we're replacing a load make sure we take the alignment
- // of the previous load.
- LoadInst *newLoad = new LoadInst(V, V->getName()+".val", Call);
- newLoad->setAlignment(OrigLoad->getAlignment());
- // Transfer the AA info too.
- AAMDNodes AAInfo;
- OrigLoad->getAAMetadata(AAInfo);
- newLoad->setAAMetadata(AAInfo);
- Args.push_back(newLoad);
- }
- }
- // Push any varargs arguments on the list.
- for (; AI != CS.arg_end(); ++AI, ++ArgIndex) {
- Args.push_back(*AI);
- if (CallPAL.hasAttributes(ArgIndex)) {
- AttrBuilder B(CallPAL, ArgIndex);
- AttributesVec.
- push_back(AttributeSet::get(F->getContext(), Args.size(), B));
- }
- }
- // Add any function attributes.
- if (CallPAL.hasAttributes(AttributeSet::FunctionIndex))
- AttributesVec.push_back(AttributeSet::get(Call->getContext(),
- CallPAL.getFnAttributes()));
- Instruction *New;
- if (InvokeInst *II = dyn_cast<InvokeInst>(Call)) {
- New = InvokeInst::Create(NF, II->getNormalDest(), II->getUnwindDest(),
- Args, "", Call);
- cast<InvokeInst>(New)->setCallingConv(CS.getCallingConv());
- cast<InvokeInst>(New)->setAttributes(AttributeSet::get(II->getContext(),
- AttributesVec));
- } else {
- New = CallInst::Create(NF, Args, "", Call);
- cast<CallInst>(New)->setCallingConv(CS.getCallingConv());
- cast<CallInst>(New)->setAttributes(AttributeSet::get(New->getContext(),
- AttributesVec));
- if (cast<CallInst>(Call)->isTailCall())
- cast<CallInst>(New)->setTailCall();
- }
- New->setDebugLoc(Call->getDebugLoc());
- Args.clear();
- AttributesVec.clear();
- // Update the alias analysis implementation to know that we are replacing
- // the old call with a new one.
- AA.replaceWithNewValue(Call, New);
- // Update the callgraph to know that the callsite has been transformed.
- CallGraphNode *CalleeNode = CG[Call->getParent()->getParent()];
- CalleeNode->replaceCallEdge(CS, CallSite(New), NF_CGN);
- if (!Call->use_empty()) {
- Call->replaceAllUsesWith(New);
- New->takeName(Call);
- }
- // Finally, remove the old call from the program, reducing the use-count of
- // F.
- Call->eraseFromParent();
- }
- // Since we have now created the new function, splice the body of the old
- // function right into the new function, leaving the old rotting hulk of the
- // function empty.
- NF->getBasicBlockList().splice(NF->begin(), F->getBasicBlockList());
- // Loop over the argument list, transferring uses of the old arguments over to
- // the new arguments, also transferring over the names as well.
- //
- for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(),
- I2 = NF->arg_begin(); I != E; ++I) {
- if (!ArgsToPromote.count(I) && !ByValArgsToTransform.count(I)) {
- // If this is an unmodified argument, move the name and users over to the
- // new version.
- I->replaceAllUsesWith(I2);
- I2->takeName(I);
- AA.replaceWithNewValue(I, I2);
- ++I2;
- continue;
- }
- if (ByValArgsToTransform.count(I)) {
- // In the callee, we create an alloca, and store each of the new incoming
- // arguments into the alloca.
- Instruction *InsertPt = NF->begin()->begin();
- // Just add all the struct element types.
- Type *AgTy = cast<PointerType>(I->getType())->getElementType();
- Value *TheAlloca = new AllocaInst(AgTy, nullptr, "", InsertPt);
- StructType *STy = cast<StructType>(AgTy);
- Value *Idxs[2] = {
- ConstantInt::get(Type::getInt32Ty(F->getContext()), 0), nullptr };
- for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
- Idxs[1] = ConstantInt::get(Type::getInt32Ty(F->getContext()), i);
- Value *Idx = GetElementPtrInst::Create(
- AgTy, TheAlloca, Idxs, TheAlloca->getName() + "." + Twine(i),
- InsertPt);
- I2->setName(I->getName()+"."+Twine(i));
- new StoreInst(I2++, Idx, InsertPt);
- }
- // Anything that used the arg should now use the alloca.
- I->replaceAllUsesWith(TheAlloca);
- TheAlloca->takeName(I);
- AA.replaceWithNewValue(I, TheAlloca);
- // If the alloca is used in a call, we must clear the tail flag since
- // the callee now uses an alloca from the caller.
- for (User *U : TheAlloca->users()) {
- CallInst *Call = dyn_cast<CallInst>(U);
- if (!Call)
- continue;
- Call->setTailCall(false);
- }
- continue;
- }
- if (I->use_empty()) {
- AA.deleteValue(I);
- continue;
- }
- // Otherwise, if we promoted this argument, then all users are load
- // instructions (or GEPs with only load users), and all loads should be
- // using the new argument that we added.
- ScalarizeTable &ArgIndices = ScalarizedElements[I];
- while (!I->use_empty()) {
- if (LoadInst *LI = dyn_cast<LoadInst>(I->user_back())) {
- assert(ArgIndices.begin()->second.empty() &&
- "Load element should sort to front!");
- I2->setName(I->getName()+".val");
- LI->replaceAllUsesWith(I2);
- AA.replaceWithNewValue(LI, I2);
- LI->eraseFromParent();
- DEBUG(dbgs() << "*** Promoted load of argument '" << I->getName()
- << "' in function '" << F->getName() << "'\n");
- } else {
- GetElementPtrInst *GEP = cast<GetElementPtrInst>(I->user_back());
- IndicesVector Operands;
- Operands.reserve(GEP->getNumIndices());
- for (User::op_iterator II = GEP->idx_begin(), IE = GEP->idx_end();
- II != IE; ++II)
- Operands.push_back(cast<ConstantInt>(*II)->getSExtValue());
- // GEPs with a single 0 index can be merged with direct loads
- if (Operands.size() == 1 && Operands.front() == 0)
- Operands.clear();
- Function::arg_iterator TheArg = I2;
- for (ScalarizeTable::iterator It = ArgIndices.begin();
- It->second != Operands; ++It, ++TheArg) {
- assert(It != ArgIndices.end() && "GEP not handled??");
- }
- std::string NewName = I->getName();
- for (unsigned i = 0, e = Operands.size(); i != e; ++i) {
- NewName += "." + utostr(Operands[i]);
- }
- NewName += ".val";
- TheArg->setName(NewName);
- DEBUG(dbgs() << "*** Promoted agg argument '" << TheArg->getName()
- << "' of function '" << NF->getName() << "'\n");
- // All of the uses must be load instructions. Replace them all with
- // the argument specified by ArgNo.
- while (!GEP->use_empty()) {
- LoadInst *L = cast<LoadInst>(GEP->user_back());
- L->replaceAllUsesWith(TheArg);
- AA.replaceWithNewValue(L, TheArg);
- L->eraseFromParent();
- }
- AA.deleteValue(GEP);
- GEP->eraseFromParent();
- }
- }
- // Increment I2 past all of the arguments added for this promoted pointer.
- std::advance(I2, ArgIndices.size());
- }
- // Tell the alias analysis that the old function is about to disappear.
- AA.replaceWithNewValue(F, NF);
-
- NF_CGN->stealCalledFunctionsFrom(CG[F]);
-
- // Now that the old function is dead, delete it. If there is a dangling
- // reference to the CallgraphNode, just leave the dead function around for
- // someone else to nuke.
- CallGraphNode *CGN = CG[F];
- if (CGN->getNumReferences() == 0)
- delete CG.removeFunctionFromModule(CGN);
- else
- F->setLinkage(Function::ExternalLinkage);
-
- return NF_CGN;
- }
- bool ArgPromotion::doInitialization(CallGraph &CG) {
- FunctionDIs = makeSubprogramMap(CG.getModule());
- return CallGraphSCCPass::doInitialization(CG);
- }
|