| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096 |
- //===- GlobalOpt.cpp - Optimize Global Variables --------------------------===//
- //
- // The LLVM Compiler Infrastructure
- //
- // This file is distributed under the University of Illinois Open Source
- // License. See LICENSE.TXT for details.
- //
- //===----------------------------------------------------------------------===//
- //
- // This pass transforms simple global variables that never have their address
- // taken. If obviously true, it marks read/write globals as constant, deletes
- // variables only stored to, etc.
- //
- //===----------------------------------------------------------------------===//
- #include "llvm/Transforms/IPO.h"
- #include "llvm/ADT/DenseMap.h"
- #include "llvm/ADT/STLExtras.h"
- #include "llvm/ADT/SmallPtrSet.h"
- #include "llvm/ADT/SmallSet.h"
- #include "llvm/ADT/SmallVector.h"
- #include "llvm/ADT/Statistic.h"
- #include "llvm/Analysis/ConstantFolding.h"
- #include "llvm/Analysis/MemoryBuiltins.h"
- #include "llvm/Analysis/TargetLibraryInfo.h"
- #include "llvm/IR/CallSite.h"
- #include "llvm/IR/CallingConv.h"
- #include "llvm/IR/Constants.h"
- #include "llvm/IR/DataLayout.h"
- #include "llvm/IR/DerivedTypes.h"
- #include "llvm/IR/GetElementPtrTypeIterator.h"
- #include "llvm/IR/Instructions.h"
- #include "llvm/IR/IntrinsicInst.h"
- #include "llvm/IR/Module.h"
- #include "llvm/IR/Operator.h"
- #include "llvm/IR/ValueHandle.h"
- #include "llvm/Pass.h"
- #include "llvm/Support/Debug.h"
- #include "llvm/Support/ErrorHandling.h"
- #include "llvm/Support/MathExtras.h"
- #include "llvm/Support/raw_ostream.h"
- #include "llvm/Transforms/Utils/CtorUtils.h"
- #include "llvm/Transforms/Utils/GlobalStatus.h"
- #include "llvm/Transforms/Utils/ModuleUtils.h"
- #include "dxc/DXIL/DxilModule.h" // HLSL Change - Entrypoint testing
- #include <algorithm>
- #include <deque>
- using namespace llvm;
- #define DEBUG_TYPE "globalopt"
- STATISTIC(NumMarked , "Number of globals marked constant");
- STATISTIC(NumUnnamed , "Number of globals marked unnamed_addr");
- STATISTIC(NumSRA , "Number of aggregate globals broken into scalars");
- STATISTIC(NumHeapSRA , "Number of heap objects SRA'd");
- STATISTIC(NumSubstitute,"Number of globals with initializers stored into them");
- STATISTIC(NumDeleted , "Number of globals deleted");
- STATISTIC(NumFnDeleted , "Number of functions deleted");
- STATISTIC(NumGlobUses , "Number of global uses devirtualized");
- STATISTIC(NumLocalized , "Number of globals localized");
- STATISTIC(NumShrunkToBool , "Number of global vars shrunk to booleans");
- STATISTIC(NumFastCallFns , "Number of functions converted to fastcc");
- STATISTIC(NumCtorsEvaluated, "Number of static ctors evaluated");
- STATISTIC(NumNestRemoved , "Number of nest attributes removed");
- STATISTIC(NumAliasesResolved, "Number of global aliases resolved");
- STATISTIC(NumAliasesRemoved, "Number of global aliases eliminated");
- STATISTIC(NumCXXDtorsRemoved, "Number of global C++ destructors removed");
- namespace {
- struct GlobalOpt : public ModulePass {
- void getAnalysisUsage(AnalysisUsage &AU) const override {
- AU.addRequired<TargetLibraryInfoWrapperPass>();
- }
- static char ID; // Pass identification, replacement for typeid
- GlobalOpt() : ModulePass(ID) {
- initializeGlobalOptPass(*PassRegistry::getPassRegistry());
- }
- bool runOnModule(Module &M) override;
- private:
- bool OptimizeFunctions(Module &M);
- bool OptimizeGlobalVars(Module &M);
- bool OptimizeGlobalAliases(Module &M);
- bool ProcessGlobal(GlobalVariable *GV,Module::global_iterator &GVI);
- bool ProcessInternalGlobal(GlobalVariable *GV,Module::global_iterator &GVI,
- const GlobalStatus &GS);
- bool OptimizeEmptyGlobalCXXDtors(Function *CXAAtExitFn);
- TargetLibraryInfo *TLI;
- SmallSet<const Comdat *, 8> NotDiscardableComdats;
- };
- }
- char GlobalOpt::ID = 0;
- INITIALIZE_PASS_BEGIN(GlobalOpt, "globalopt",
- "Global Variable Optimizer", false, false)
- INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
- INITIALIZE_PASS_END(GlobalOpt, "globalopt",
- "Global Variable Optimizer", false, false)
- ModulePass *llvm::createGlobalOptimizerPass() { return new GlobalOpt(); }
- /// isLeakCheckerRoot - Is this global variable possibly used by a leak checker
- /// as a root? If so, we might not really want to eliminate the stores to it.
- static bool isLeakCheckerRoot(GlobalVariable *GV) {
- // A global variable is a root if it is a pointer, or could plausibly contain
- // a pointer. There are two challenges; one is that we could have a struct
- // the has an inner member which is a pointer. We recurse through the type to
- // detect these (up to a point). The other is that we may actually be a union
- // of a pointer and another type, and so our LLVM type is an integer which
- // gets converted into a pointer, or our type is an [i8 x #] with a pointer
- // potentially contained here.
- if (GV->hasPrivateLinkage())
- return false;
- SmallVector<Type *, 4> Types;
- Types.push_back(cast<PointerType>(GV->getType())->getElementType());
- unsigned Limit = 20;
- do {
- Type *Ty = Types.pop_back_val();
- switch (Ty->getTypeID()) {
- default: break;
- case Type::PointerTyID: return true;
- case Type::ArrayTyID:
- case Type::VectorTyID: {
- SequentialType *STy = cast<SequentialType>(Ty);
- Types.push_back(STy->getElementType());
- break;
- }
- case Type::StructTyID: {
- StructType *STy = cast<StructType>(Ty);
- if (STy->isOpaque()) return true;
- for (StructType::element_iterator I = STy->element_begin(),
- E = STy->element_end(); I != E; ++I) {
- Type *InnerTy = *I;
- if (isa<PointerType>(InnerTy)) return true;
- if (isa<CompositeType>(InnerTy))
- Types.push_back(InnerTy);
- }
- break;
- }
- }
- if (--Limit == 0) return true;
- } while (!Types.empty());
- return false;
- }
- /// Given a value that is stored to a global but never read, determine whether
- /// it's safe to remove the store and the chain of computation that feeds the
- /// store.
- static bool IsSafeComputationToRemove(Value *V, const TargetLibraryInfo *TLI) {
- do {
- if (isa<Constant>(V))
- return true;
- if (!V->hasOneUse())
- return false;
- if (isa<LoadInst>(V) || isa<InvokeInst>(V) || isa<Argument>(V) ||
- isa<GlobalValue>(V))
- return false;
- if (isAllocationFn(V, TLI))
- return true;
- Instruction *I = cast<Instruction>(V);
- if (I->mayHaveSideEffects())
- return false;
- if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I)) {
- if (!GEP->hasAllConstantIndices())
- return false;
- } else if (I->getNumOperands() != 1) {
- return false;
- }
- V = I->getOperand(0);
- } while (1);
- }
- /// CleanupPointerRootUsers - This GV is a pointer root. Loop over all users
- /// of the global and clean up any that obviously don't assign the global a
- /// value that isn't dynamically allocated.
- ///
- static bool CleanupPointerRootUsers(GlobalVariable *GV,
- const TargetLibraryInfo *TLI) {
- // A brief explanation of leak checkers. The goal is to find bugs where
- // pointers are forgotten, causing an accumulating growth in memory
- // usage over time. The common strategy for leak checkers is to whitelist the
- // memory pointed to by globals at exit. This is popular because it also
- // solves another problem where the main thread of a C++ program may shut down
- // before other threads that are still expecting to use those globals. To
- // handle that case, we expect the program may create a singleton and never
- // destroy it.
- bool Changed = false;
- // If Dead[n].first is the only use of a malloc result, we can delete its
- // chain of computation and the store to the global in Dead[n].second.
- SmallVector<std::pair<Instruction *, Instruction *>, 32> Dead;
- // Constants can't be pointers to dynamically allocated memory.
- for (Value::user_iterator UI = GV->user_begin(), E = GV->user_end();
- UI != E;) {
- User *U = *UI++;
- if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
- Value *V = SI->getValueOperand();
- if (isa<Constant>(V)) {
- Changed = true;
- SI->eraseFromParent();
- } else if (Instruction *I = dyn_cast<Instruction>(V)) {
- if (I->hasOneUse())
- Dead.push_back(std::make_pair(I, SI));
- }
- } else if (MemSetInst *MSI = dyn_cast<MemSetInst>(U)) {
- if (isa<Constant>(MSI->getValue())) {
- Changed = true;
- MSI->eraseFromParent();
- } else if (Instruction *I = dyn_cast<Instruction>(MSI->getValue())) {
- if (I->hasOneUse())
- Dead.push_back(std::make_pair(I, MSI));
- }
- } else if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(U)) {
- GlobalVariable *MemSrc = dyn_cast<GlobalVariable>(MTI->getSource());
- if (MemSrc && MemSrc->isConstant()) {
- Changed = true;
- MTI->eraseFromParent();
- } else if (Instruction *I = dyn_cast<Instruction>(MemSrc)) {
- if (I->hasOneUse())
- Dead.push_back(std::make_pair(I, MTI));
- }
- } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(U)) {
- if (CE->use_empty()) {
- CE->destroyConstant();
- Changed = true;
- }
- } else if (Constant *C = dyn_cast<Constant>(U)) {
- if (isSafeToDestroyConstant(C)) {
- C->destroyConstant();
- // This could have invalidated UI, start over from scratch.
- Dead.clear();
- CleanupPointerRootUsers(GV, TLI);
- return true;
- }
- }
- }
- for (int i = 0, e = Dead.size(); i != e; ++i) {
- if (IsSafeComputationToRemove(Dead[i].first, TLI)) {
- Dead[i].second->eraseFromParent();
- Instruction *I = Dead[i].first;
- do {
- if (isAllocationFn(I, TLI))
- break;
- Instruction *J = dyn_cast<Instruction>(I->getOperand(0));
- if (!J)
- break;
- I->eraseFromParent();
- I = J;
- } while (1);
- I->eraseFromParent();
- }
- }
- return Changed;
- }
- /// CleanupConstantGlobalUsers - We just marked GV constant. Loop over all
- /// users of the global, cleaning up the obvious ones. This is largely just a
- /// quick scan over the use list to clean up the easy and obvious cruft. This
- /// returns true if it made a change.
- static bool CleanupConstantGlobalUsers(Value *V, Constant *Init,
- const DataLayout &DL,
- TargetLibraryInfo *TLI) {
- bool Changed = false;
- // Note that we need to use a weak value handle for the worklist items. When
- // we delete a constant array, we may also be holding pointer to one of its
- // elements (or an element of one of its elements if we're dealing with an
- // array of arrays) in the worklist.
- SmallVector<WeakVH, 8> WorkList(V->user_begin(), V->user_end());
- while (!WorkList.empty()) {
- Value *UV = WorkList.pop_back_val();
- if (!UV)
- continue;
- User *U = cast<User>(UV);
- if (LoadInst *LI = dyn_cast<LoadInst>(U)) {
- if (Init) {
- // Replace the load with the initializer.
- LI->replaceAllUsesWith(Init);
- LI->eraseFromParent();
- Changed = true;
- }
- } else if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
- // Store must be unreachable or storing Init into the global.
- SI->eraseFromParent();
- Changed = true;
- } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(U)) {
- if (CE->getOpcode() == Instruction::GetElementPtr) {
- Constant *SubInit = nullptr;
- if (Init)
- SubInit = ConstantFoldLoadThroughGEPConstantExpr(Init, CE);
- Changed |= CleanupConstantGlobalUsers(CE, SubInit, DL, TLI);
- } else if ((CE->getOpcode() == Instruction::BitCast &&
- CE->getType()->isPointerTy()) ||
- CE->getOpcode() == Instruction::AddrSpaceCast) {
- // Pointer cast, delete any stores and memsets to the global.
- Changed |= CleanupConstantGlobalUsers(CE, nullptr, DL, TLI);
- }
- if (CE->use_empty()) {
- CE->destroyConstant();
- Changed = true;
- }
- } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(U)) {
- // Do not transform "gepinst (gep constexpr (GV))" here, because forming
- // "gepconstexpr (gep constexpr (GV))" will cause the two gep's to fold
- // and will invalidate our notion of what Init is.
- Constant *SubInit = nullptr;
- if (!isa<ConstantExpr>(GEP->getOperand(0))) {
- ConstantExpr *CE = dyn_cast_or_null<ConstantExpr>(
- ConstantFoldInstruction(GEP, DL, TLI));
- if (Init && CE && CE->getOpcode() == Instruction::GetElementPtr)
- SubInit = ConstantFoldLoadThroughGEPConstantExpr(Init, CE);
- // If the initializer is an all-null value and we have an inbounds GEP,
- // we already know what the result of any load from that GEP is.
- // TODO: Handle splats.
- if (Init && isa<ConstantAggregateZero>(Init) && GEP->isInBounds())
- SubInit = Constant::getNullValue(GEP->getType()->getElementType());
- }
- Changed |= CleanupConstantGlobalUsers(GEP, SubInit, DL, TLI);
- if (GEP->use_empty()) {
- GEP->eraseFromParent();
- Changed = true;
- }
- } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(U)) { // memset/cpy/mv
- if (MI->getRawDest() == V) {
- MI->eraseFromParent();
- Changed = true;
- }
- } else if (Constant *C = dyn_cast<Constant>(U)) {
- // If we have a chain of dead constantexprs or other things dangling from
- // us, and if they are all dead, nuke them without remorse.
- if (isSafeToDestroyConstant(C)) {
- C->destroyConstant();
- CleanupConstantGlobalUsers(V, Init, DL, TLI);
- return true;
- }
- }
- }
- return Changed;
- }
- /// isSafeSROAElementUse - Return true if the specified instruction is a safe
- /// user of a derived expression from a global that we want to SROA.
- static bool isSafeSROAElementUse(Value *V) {
- // We might have a dead and dangling constant hanging off of here.
- if (Constant *C = dyn_cast<Constant>(V))
- return isSafeToDestroyConstant(C);
- Instruction *I = dyn_cast<Instruction>(V);
- if (!I) return false;
- // Loads are ok.
- if (isa<LoadInst>(I)) return true;
- // Stores *to* the pointer are ok.
- if (StoreInst *SI = dyn_cast<StoreInst>(I))
- return SI->getOperand(0) != V;
- // Otherwise, it must be a GEP.
- GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I);
- if (!GEPI) return false;
- if (GEPI->getNumOperands() < 3 || !isa<Constant>(GEPI->getOperand(1)) ||
- !cast<Constant>(GEPI->getOperand(1))->isNullValue())
- return false;
- for (User *U : GEPI->users())
- if (!isSafeSROAElementUse(U))
- return false;
- return true;
- }
- /// IsUserOfGlobalSafeForSRA - U is a direct user of the specified global value.
- /// Look at it and its uses and decide whether it is safe to SROA this global.
- ///
- static bool IsUserOfGlobalSafeForSRA(User *U, GlobalValue *GV) {
- // The user of the global must be a GEP Inst or a ConstantExpr GEP.
- if (!isa<GetElementPtrInst>(U) &&
- (!isa<ConstantExpr>(U) ||
- cast<ConstantExpr>(U)->getOpcode() != Instruction::GetElementPtr))
- return false;
- // Check to see if this ConstantExpr GEP is SRA'able. In particular, we
- // don't like < 3 operand CE's, and we don't like non-constant integer
- // indices. This enforces that all uses are 'gep GV, 0, C, ...' for some
- // value of C.
- if (U->getNumOperands() < 3 || !isa<Constant>(U->getOperand(1)) ||
- !cast<Constant>(U->getOperand(1))->isNullValue() ||
- !isa<ConstantInt>(U->getOperand(2)))
- return false;
- gep_type_iterator GEPI = gep_type_begin(U), E = gep_type_end(U);
- ++GEPI; // Skip over the pointer index.
- // If this is a use of an array allocation, do a bit more checking for sanity.
- if (ArrayType *AT = dyn_cast<ArrayType>(*GEPI)) {
- uint64_t NumElements = AT->getNumElements();
- ConstantInt *Idx = cast<ConstantInt>(U->getOperand(2));
- // Check to make sure that index falls within the array. If not,
- // something funny is going on, so we won't do the optimization.
- //
- if (Idx->getZExtValue() >= NumElements)
- return false;
- // We cannot scalar repl this level of the array unless any array
- // sub-indices are in-range constants. In particular, consider:
- // A[0][i]. We cannot know that the user isn't doing invalid things like
- // allowing i to index an out-of-range subscript that accesses A[1].
- //
- // Scalar replacing *just* the outer index of the array is probably not
- // going to be a win anyway, so just give up.
- for (++GEPI; // Skip array index.
- GEPI != E;
- ++GEPI) {
- uint64_t NumElements;
- if (ArrayType *SubArrayTy = dyn_cast<ArrayType>(*GEPI))
- NumElements = SubArrayTy->getNumElements();
- else if (VectorType *SubVectorTy = dyn_cast<VectorType>(*GEPI))
- NumElements = SubVectorTy->getNumElements();
- else {
- assert((*GEPI)->isStructTy() &&
- "Indexed GEP type is not array, vector, or struct!");
- continue;
- }
- ConstantInt *IdxVal = dyn_cast<ConstantInt>(GEPI.getOperand());
- if (!IdxVal || IdxVal->getZExtValue() >= NumElements)
- return false;
- }
- }
- for (User *UU : U->users())
- if (!isSafeSROAElementUse(UU))
- return false;
- return true;
- }
- /// GlobalUsersSafeToSRA - Look at all uses of the global and decide whether it
- /// is safe for us to perform this transformation.
- ///
- static bool GlobalUsersSafeToSRA(GlobalValue *GV) {
- for (User *U : GV->users())
- if (!IsUserOfGlobalSafeForSRA(U, GV))
- return false;
- return true;
- }
- /// SRAGlobal - Perform scalar replacement of aggregates on the specified global
- /// variable. This opens the door for other optimizations by exposing the
- /// behavior of the program in a more fine-grained way. We have determined that
- /// this transformation is safe already. We return the first global variable we
- /// insert so that the caller can reprocess it.
- static GlobalVariable *SRAGlobal(GlobalVariable *GV, const DataLayout &DL) {
- // Make sure this global only has simple uses that we can SRA.
- if (!GlobalUsersSafeToSRA(GV))
- return nullptr;
- assert(GV->hasLocalLinkage() && !GV->isConstant());
- Constant *Init = GV->getInitializer();
- Type *Ty = Init->getType();
- std::vector<GlobalVariable*> NewGlobals;
- Module::GlobalListType &Globals = GV->getParent()->getGlobalList();
- // Get the alignment of the global, either explicit or target-specific.
- unsigned StartAlignment = GV->getAlignment();
- if (StartAlignment == 0)
- StartAlignment = DL.getABITypeAlignment(GV->getType());
- if (StructType *STy = dyn_cast<StructType>(Ty)) {
- NewGlobals.reserve(STy->getNumElements());
- const StructLayout &Layout = *DL.getStructLayout(STy);
- for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
- Constant *In = Init->getAggregateElement(i);
- assert(In && "Couldn't get element of initializer?");
- GlobalVariable *NGV = new GlobalVariable(STy->getElementType(i), false,
- GlobalVariable::InternalLinkage,
- In, GV->getName()+"."+Twine(i),
- GV->getThreadLocalMode(),
- GV->getType()->getAddressSpace());
- Globals.insert(GV, NGV);
- NewGlobals.push_back(NGV);
- // Calculate the known alignment of the field. If the original aggregate
- // had 256 byte alignment for example, something might depend on that:
- // propagate info to each field.
- uint64_t FieldOffset = Layout.getElementOffset(i);
- unsigned NewAlign = (unsigned)MinAlign(StartAlignment, FieldOffset);
- if (NewAlign > DL.getABITypeAlignment(STy->getElementType(i)))
- NGV->setAlignment(NewAlign);
- }
- } else if (SequentialType *STy = dyn_cast<SequentialType>(Ty)) {
- unsigned NumElements = 0;
- if (ArrayType *ATy = dyn_cast<ArrayType>(STy))
- NumElements = ATy->getNumElements();
- else
- NumElements = cast<VectorType>(STy)->getNumElements();
- if (NumElements > 16 && GV->hasNUsesOrMore(16))
- return nullptr; // It's not worth it.
- NewGlobals.reserve(NumElements);
- uint64_t EltSize = DL.getTypeAllocSize(STy->getElementType());
- unsigned EltAlign = DL.getABITypeAlignment(STy->getElementType());
- for (unsigned i = 0, e = NumElements; i != e; ++i) {
- Constant *In = Init->getAggregateElement(i);
- assert(In && "Couldn't get element of initializer?");
- GlobalVariable *NGV = new GlobalVariable(STy->getElementType(), false,
- GlobalVariable::InternalLinkage,
- In, GV->getName()+"."+Twine(i),
- GV->getThreadLocalMode(),
- GV->getType()->getAddressSpace());
- Globals.insert(GV, NGV);
- NewGlobals.push_back(NGV);
- // Calculate the known alignment of the field. If the original aggregate
- // had 256 byte alignment for example, something might depend on that:
- // propagate info to each field.
- unsigned NewAlign = (unsigned)MinAlign(StartAlignment, EltSize*i);
- if (NewAlign > EltAlign)
- NGV->setAlignment(NewAlign);
- }
- }
- if (NewGlobals.empty())
- return nullptr;
- DEBUG(dbgs() << "PERFORMING GLOBAL SRA ON: " << *GV);
- Constant *NullInt =Constant::getNullValue(Type::getInt32Ty(GV->getContext()));
- // Loop over all of the uses of the global, replacing the constantexpr geps,
- // with smaller constantexpr geps or direct references.
- while (!GV->use_empty()) {
- User *GEP = GV->user_back();
- assert(((isa<ConstantExpr>(GEP) &&
- cast<ConstantExpr>(GEP)->getOpcode()==Instruction::GetElementPtr)||
- isa<GetElementPtrInst>(GEP)) && "NonGEP CE's are not SRAable!");
- // Ignore the 1th operand, which has to be zero or else the program is quite
- // broken (undefined). Get the 2nd operand, which is the structure or array
- // index.
- unsigned Val = cast<ConstantInt>(GEP->getOperand(2))->getZExtValue();
- if (Val >= NewGlobals.size()) Val = 0; // Out of bound array access.
- Value *NewPtr = NewGlobals[Val];
- Type *NewTy = NewGlobals[Val]->getValueType();
- // Form a shorter GEP if needed.
- if (GEP->getNumOperands() > 3) {
- if (ConstantExpr *CE = dyn_cast<ConstantExpr>(GEP)) {
- SmallVector<Constant*, 8> Idxs;
- Idxs.push_back(NullInt);
- for (unsigned i = 3, e = CE->getNumOperands(); i != e; ++i)
- Idxs.push_back(CE->getOperand(i));
- NewPtr =
- ConstantExpr::getGetElementPtr(NewTy, cast<Constant>(NewPtr), Idxs);
- } else {
- GetElementPtrInst *GEPI = cast<GetElementPtrInst>(GEP);
- SmallVector<Value*, 8> Idxs;
- Idxs.push_back(NullInt);
- for (unsigned i = 3, e = GEPI->getNumOperands(); i != e; ++i)
- Idxs.push_back(GEPI->getOperand(i));
- NewPtr = GetElementPtrInst::Create(
- NewTy, NewPtr, Idxs, GEPI->getName() + "." + Twine(Val), GEPI);
- }
- }
- GEP->replaceAllUsesWith(NewPtr);
- if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(GEP))
- GEPI->eraseFromParent();
- else
- cast<ConstantExpr>(GEP)->destroyConstant();
- }
- // Delete the old global, now that it is dead.
- Globals.erase(GV);
- ++NumSRA;
- // Loop over the new globals array deleting any globals that are obviously
- // dead. This can arise due to scalarization of a structure or an array that
- // has elements that are dead.
- unsigned FirstGlobal = 0;
- for (unsigned i = 0, e = NewGlobals.size(); i != e; ++i)
- if (NewGlobals[i]->use_empty()) {
- Globals.erase(NewGlobals[i]);
- if (FirstGlobal == i) ++FirstGlobal;
- }
- return FirstGlobal != NewGlobals.size() ? NewGlobals[FirstGlobal] : nullptr;
- }
- /// AllUsesOfValueWillTrapIfNull - Return true if all users of the specified
- /// value will trap if the value is dynamically null. PHIs keeps track of any
- /// phi nodes we've seen to avoid reprocessing them.
- static bool AllUsesOfValueWillTrapIfNull(const Value *V,
- SmallPtrSetImpl<const PHINode*> &PHIs) {
- for (const User *U : V->users())
- if (isa<LoadInst>(U)) {
- // Will trap.
- } else if (const StoreInst *SI = dyn_cast<StoreInst>(U)) {
- if (SI->getOperand(0) == V) {
- //cerr << "NONTRAPPING USE: " << *U;
- return false; // Storing the value.
- }
- } else if (const CallInst *CI = dyn_cast<CallInst>(U)) {
- if (CI->getCalledValue() != V) {
- //cerr << "NONTRAPPING USE: " << *U;
- return false; // Not calling the ptr
- }
- } else if (const InvokeInst *II = dyn_cast<InvokeInst>(U)) {
- if (II->getCalledValue() != V) {
- //cerr << "NONTRAPPING USE: " << *U;
- return false; // Not calling the ptr
- }
- } else if (const BitCastInst *CI = dyn_cast<BitCastInst>(U)) {
- if (!AllUsesOfValueWillTrapIfNull(CI, PHIs)) return false;
- } else if (const GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(U)) {
- if (!AllUsesOfValueWillTrapIfNull(GEPI, PHIs)) return false;
- } else if (const PHINode *PN = dyn_cast<PHINode>(U)) {
- // If we've already seen this phi node, ignore it, it has already been
- // checked.
- if (PHIs.insert(PN).second && !AllUsesOfValueWillTrapIfNull(PN, PHIs))
- return false;
- } else if (isa<ICmpInst>(U) &&
- isa<ConstantPointerNull>(U->getOperand(1))) {
- // Ignore icmp X, null
- } else {
- //cerr << "NONTRAPPING USE: " << *U;
- return false;
- }
- return true;
- }
- /// AllUsesOfLoadedValueWillTrapIfNull - Return true if all uses of any loads
- /// from GV will trap if the loaded value is null. Note that this also permits
- /// comparisons of the loaded value against null, as a special case.
- static bool AllUsesOfLoadedValueWillTrapIfNull(const GlobalVariable *GV) {
- for (const User *U : GV->users())
- if (const LoadInst *LI = dyn_cast<LoadInst>(U)) {
- SmallPtrSet<const PHINode*, 8> PHIs;
- if (!AllUsesOfValueWillTrapIfNull(LI, PHIs))
- return false;
- } else if (isa<StoreInst>(U)) {
- // Ignore stores to the global.
- } else {
- // We don't know or understand this user, bail out.
- //cerr << "UNKNOWN USER OF GLOBAL!: " << *U;
- return false;
- }
- return true;
- }
- static bool OptimizeAwayTrappingUsesOfValue(Value *V, Constant *NewV) {
- bool Changed = false;
- for (auto UI = V->user_begin(), E = V->user_end(); UI != E; ) {
- Instruction *I = cast<Instruction>(*UI++);
- if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
- LI->setOperand(0, NewV);
- Changed = true;
- } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
- if (SI->getOperand(1) == V) {
- SI->setOperand(1, NewV);
- Changed = true;
- }
- } else if (isa<CallInst>(I) || isa<InvokeInst>(I)) {
- CallSite CS(I);
- if (CS.getCalledValue() == V) {
- // Calling through the pointer! Turn into a direct call, but be careful
- // that the pointer is not also being passed as an argument.
- CS.setCalledFunction(NewV);
- Changed = true;
- bool PassedAsArg = false;
- for (unsigned i = 0, e = CS.arg_size(); i != e; ++i)
- if (CS.getArgument(i) == V) {
- PassedAsArg = true;
- CS.setArgument(i, NewV);
- }
- if (PassedAsArg) {
- // Being passed as an argument also. Be careful to not invalidate UI!
- UI = V->user_begin();
- }
- }
- } else if (CastInst *CI = dyn_cast<CastInst>(I)) {
- Changed |= OptimizeAwayTrappingUsesOfValue(CI,
- ConstantExpr::getCast(CI->getOpcode(),
- NewV, CI->getType()));
- if (CI->use_empty()) {
- Changed = true;
- CI->eraseFromParent();
- }
- } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I)) {
- // Should handle GEP here.
- SmallVector<Constant*, 8> Idxs;
- Idxs.reserve(GEPI->getNumOperands()-1);
- for (User::op_iterator i = GEPI->op_begin() + 1, e = GEPI->op_end();
- i != e; ++i)
- if (Constant *C = dyn_cast<Constant>(*i))
- Idxs.push_back(C);
- else
- break;
- if (Idxs.size() == GEPI->getNumOperands()-1)
- Changed |= OptimizeAwayTrappingUsesOfValue(
- GEPI, ConstantExpr::getGetElementPtr(nullptr, NewV, Idxs));
- if (GEPI->use_empty()) {
- Changed = true;
- GEPI->eraseFromParent();
- }
- }
- }
- return Changed;
- }
- /// OptimizeAwayTrappingUsesOfLoads - The specified global has only one non-null
- /// value stored into it. If there are uses of the loaded value that would trap
- /// if the loaded value is dynamically null, then we know that they cannot be
- /// reachable with a null optimize away the load.
- static bool OptimizeAwayTrappingUsesOfLoads(GlobalVariable *GV, Constant *LV,
- const DataLayout &DL,
- TargetLibraryInfo *TLI) {
- bool Changed = false;
- // Keep track of whether we are able to remove all the uses of the global
- // other than the store that defines it.
- bool AllNonStoreUsesGone = true;
- // Replace all uses of loads with uses of uses of the stored value.
- for (Value::user_iterator GUI = GV->user_begin(), E = GV->user_end(); GUI != E;){
- User *GlobalUser = *GUI++;
- if (LoadInst *LI = dyn_cast<LoadInst>(GlobalUser)) {
- Changed |= OptimizeAwayTrappingUsesOfValue(LI, LV);
- // If we were able to delete all uses of the loads
- if (LI->use_empty()) {
- LI->eraseFromParent();
- Changed = true;
- } else {
- AllNonStoreUsesGone = false;
- }
- } else if (isa<StoreInst>(GlobalUser)) {
- // Ignore the store that stores "LV" to the global.
- assert(GlobalUser->getOperand(1) == GV &&
- "Must be storing *to* the global");
- } else {
- AllNonStoreUsesGone = false;
- // If we get here we could have other crazy uses that are transitively
- // loaded.
- assert((isa<PHINode>(GlobalUser) || isa<SelectInst>(GlobalUser) ||
- isa<ConstantExpr>(GlobalUser) || isa<CmpInst>(GlobalUser) ||
- isa<BitCastInst>(GlobalUser) ||
- isa<GetElementPtrInst>(GlobalUser)) &&
- "Only expect load and stores!");
- }
- }
- if (Changed) {
- DEBUG(dbgs() << "OPTIMIZED LOADS FROM STORED ONCE POINTER: " << *GV);
- ++NumGlobUses;
- }
- // If we nuked all of the loads, then none of the stores are needed either,
- // nor is the global.
- if (AllNonStoreUsesGone) {
- if (isLeakCheckerRoot(GV)) {
- Changed |= CleanupPointerRootUsers(GV, TLI);
- } else {
- Changed = true;
- CleanupConstantGlobalUsers(GV, nullptr, DL, TLI);
- }
- if (GV->use_empty()) {
- DEBUG(dbgs() << " *** GLOBAL NOW DEAD!\n");
- Changed = true;
- GV->eraseFromParent();
- ++NumDeleted;
- }
- }
- return Changed;
- }
- /// ConstantPropUsersOf - Walk the use list of V, constant folding all of the
- /// instructions that are foldable.
- static void ConstantPropUsersOf(Value *V, const DataLayout &DL,
- TargetLibraryInfo *TLI) {
- for (Value::user_iterator UI = V->user_begin(), E = V->user_end(); UI != E; )
- if (Instruction *I = dyn_cast<Instruction>(*UI++))
- if (Constant *NewC = ConstantFoldInstruction(I, DL, TLI)) {
- I->replaceAllUsesWith(NewC);
- // Advance UI to the next non-I use to avoid invalidating it!
- // Instructions could multiply use V.
- while (UI != E && *UI == I)
- ++UI;
- I->eraseFromParent();
- }
- }
- /// OptimizeGlobalAddressOfMalloc - This function takes the specified global
- /// variable, and transforms the program as if it always contained the result of
- /// the specified malloc. Because it is always the result of the specified
- /// malloc, there is no reason to actually DO the malloc. Instead, turn the
- /// malloc into a global, and any loads of GV as uses of the new global.
- static GlobalVariable *
- OptimizeGlobalAddressOfMalloc(GlobalVariable *GV, CallInst *CI, Type *AllocTy,
- ConstantInt *NElements, const DataLayout &DL,
- TargetLibraryInfo *TLI) {
- DEBUG(errs() << "PROMOTING GLOBAL: " << *GV << " CALL = " << *CI << '\n');
- Type *GlobalType;
- if (NElements->getZExtValue() == 1)
- GlobalType = AllocTy;
- else
- // If we have an array allocation, the global variable is of an array.
- GlobalType = ArrayType::get(AllocTy, NElements->getZExtValue());
- // Create the new global variable. The contents of the malloc'd memory is
- // undefined, so initialize with an undef value.
- GlobalVariable *NewGV = new GlobalVariable(*GV->getParent(),
- GlobalType, false,
- GlobalValue::InternalLinkage,
- UndefValue::get(GlobalType),
- GV->getName()+".body",
- GV,
- GV->getThreadLocalMode());
- // If there are bitcast users of the malloc (which is typical, usually we have
- // a malloc + bitcast) then replace them with uses of the new global. Update
- // other users to use the global as well.
- BitCastInst *TheBC = nullptr;
- while (!CI->use_empty()) {
- Instruction *User = cast<Instruction>(CI->user_back());
- if (BitCastInst *BCI = dyn_cast<BitCastInst>(User)) {
- if (BCI->getType() == NewGV->getType()) {
- BCI->replaceAllUsesWith(NewGV);
- BCI->eraseFromParent();
- } else {
- BCI->setOperand(0, NewGV);
- }
- } else {
- if (!TheBC)
- TheBC = new BitCastInst(NewGV, CI->getType(), "newgv", CI);
- User->replaceUsesOfWith(CI, TheBC);
- }
- }
- Constant *RepValue = NewGV;
- if (NewGV->getType() != GV->getType()->getElementType())
- RepValue = ConstantExpr::getBitCast(RepValue,
- GV->getType()->getElementType());
- // If there is a comparison against null, we will insert a global bool to
- // keep track of whether the global was initialized yet or not.
- GlobalVariable *InitBool =
- new GlobalVariable(Type::getInt1Ty(GV->getContext()), false,
- GlobalValue::InternalLinkage,
- ConstantInt::getFalse(GV->getContext()),
- GV->getName()+".init", GV->getThreadLocalMode());
- bool InitBoolUsed = false;
- // Loop over all uses of GV, processing them in turn.
- while (!GV->use_empty()) {
- if (StoreInst *SI = dyn_cast<StoreInst>(GV->user_back())) {
- // The global is initialized when the store to it occurs.
- new StoreInst(ConstantInt::getTrue(GV->getContext()), InitBool, false, 0,
- SI->getOrdering(), SI->getSynchScope(), SI);
- SI->eraseFromParent();
- continue;
- }
- LoadInst *LI = cast<LoadInst>(GV->user_back());
- while (!LI->use_empty()) {
- Use &LoadUse = *LI->use_begin();
- ICmpInst *ICI = dyn_cast<ICmpInst>(LoadUse.getUser());
- if (!ICI) {
- LoadUse = RepValue;
- continue;
- }
- // Replace the cmp X, 0 with a use of the bool value.
- // Sink the load to where the compare was, if atomic rules allow us to.
- Value *LV = new LoadInst(InitBool, InitBool->getName()+".val", false, 0,
- LI->getOrdering(), LI->getSynchScope(),
- LI->isUnordered() ? (Instruction*)ICI : LI);
- InitBoolUsed = true;
- switch (ICI->getPredicate()) {
- default: llvm_unreachable("Unknown ICmp Predicate!");
- case ICmpInst::ICMP_ULT:
- case ICmpInst::ICMP_SLT: // X < null -> always false
- LV = ConstantInt::getFalse(GV->getContext());
- break;
- case ICmpInst::ICMP_ULE:
- case ICmpInst::ICMP_SLE:
- case ICmpInst::ICMP_EQ:
- LV = BinaryOperator::CreateNot(LV, "notinit", ICI);
- break;
- case ICmpInst::ICMP_NE:
- case ICmpInst::ICMP_UGE:
- case ICmpInst::ICMP_SGE:
- case ICmpInst::ICMP_UGT:
- case ICmpInst::ICMP_SGT:
- break; // no change.
- }
- ICI->replaceAllUsesWith(LV);
- ICI->eraseFromParent();
- }
- LI->eraseFromParent();
- }
- // If the initialization boolean was used, insert it, otherwise delete it.
- if (!InitBoolUsed) {
- while (!InitBool->use_empty()) // Delete initializations
- cast<StoreInst>(InitBool->user_back())->eraseFromParent();
- delete InitBool;
- } else
- GV->getParent()->getGlobalList().insert(GV, InitBool);
- // Now the GV is dead, nuke it and the malloc..
- GV->eraseFromParent();
- CI->eraseFromParent();
- // To further other optimizations, loop over all users of NewGV and try to
- // constant prop them. This will promote GEP instructions with constant
- // indices into GEP constant-exprs, which will allow global-opt to hack on it.
- ConstantPropUsersOf(NewGV, DL, TLI);
- if (RepValue != NewGV)
- ConstantPropUsersOf(RepValue, DL, TLI);
- return NewGV;
- }
- /// ValueIsOnlyUsedLocallyOrStoredToOneGlobal - Scan the use-list of V checking
- /// to make sure that there are no complex uses of V. We permit simple things
- /// like dereferencing the pointer, but not storing through the address, unless
- /// it is to the specified global.
- static bool ValueIsOnlyUsedLocallyOrStoredToOneGlobal(const Instruction *V,
- const GlobalVariable *GV,
- SmallPtrSetImpl<const PHINode*> &PHIs) {
- for (const User *U : V->users()) {
- const Instruction *Inst = cast<Instruction>(U);
- if (isa<LoadInst>(Inst) || isa<CmpInst>(Inst)) {
- continue; // Fine, ignore.
- }
- if (const StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
- if (SI->getOperand(0) == V && SI->getOperand(1) != GV)
- return false; // Storing the pointer itself... bad.
- continue; // Otherwise, storing through it, or storing into GV... fine.
- }
- // Must index into the array and into the struct.
- if (isa<GetElementPtrInst>(Inst) && Inst->getNumOperands() >= 3) {
- if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(Inst, GV, PHIs))
- return false;
- continue;
- }
- if (const PHINode *PN = dyn_cast<PHINode>(Inst)) {
- // PHIs are ok if all uses are ok. Don't infinitely recurse through PHI
- // cycles.
- if (PHIs.insert(PN).second)
- if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(PN, GV, PHIs))
- return false;
- continue;
- }
- if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Inst)) {
- if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(BCI, GV, PHIs))
- return false;
- continue;
- }
- return false;
- }
- return true;
- }
- /// ReplaceUsesOfMallocWithGlobal - The Alloc pointer is stored into GV
- /// somewhere. Transform all uses of the allocation into loads from the
- /// global and uses of the resultant pointer. Further, delete the store into
- /// GV. This assumes that these value pass the
- /// 'ValueIsOnlyUsedLocallyOrStoredToOneGlobal' predicate.
- static void ReplaceUsesOfMallocWithGlobal(Instruction *Alloc,
- GlobalVariable *GV) {
- while (!Alloc->use_empty()) {
- Instruction *U = cast<Instruction>(*Alloc->user_begin());
- Instruction *InsertPt = U;
- if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
- // If this is the store of the allocation into the global, remove it.
- if (SI->getOperand(1) == GV) {
- SI->eraseFromParent();
- continue;
- }
- } else if (PHINode *PN = dyn_cast<PHINode>(U)) {
- // Insert the load in the corresponding predecessor, not right before the
- // PHI.
- InsertPt = PN->getIncomingBlock(*Alloc->use_begin())->getTerminator();
- } else if (isa<BitCastInst>(U)) {
- // Must be bitcast between the malloc and store to initialize the global.
- ReplaceUsesOfMallocWithGlobal(U, GV);
- U->eraseFromParent();
- continue;
- } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(U)) {
- // If this is a "GEP bitcast" and the user is a store to the global, then
- // just process it as a bitcast.
- if (GEPI->hasAllZeroIndices() && GEPI->hasOneUse())
- if (StoreInst *SI = dyn_cast<StoreInst>(GEPI->user_back()))
- if (SI->getOperand(1) == GV) {
- // Must be bitcast GEP between the malloc and store to initialize
- // the global.
- ReplaceUsesOfMallocWithGlobal(GEPI, GV);
- GEPI->eraseFromParent();
- continue;
- }
- }
- // Insert a load from the global, and use it instead of the malloc.
- Value *NL = new LoadInst(GV, GV->getName()+".val", InsertPt);
- U->replaceUsesOfWith(Alloc, NL);
- }
- }
- /// LoadUsesSimpleEnoughForHeapSRA - Verify that all uses of V (a load, or a phi
- /// of a load) are simple enough to perform heap SRA on. This permits GEP's
- /// that index through the array and struct field, icmps of null, and PHIs.
- static bool LoadUsesSimpleEnoughForHeapSRA(const Value *V,
- SmallPtrSetImpl<const PHINode*> &LoadUsingPHIs,
- SmallPtrSetImpl<const PHINode*> &LoadUsingPHIsPerLoad) {
- // We permit two users of the load: setcc comparing against the null
- // pointer, and a getelementptr of a specific form.
- for (const User *U : V->users()) {
- const Instruction *UI = cast<Instruction>(U);
- // Comparison against null is ok.
- if (const ICmpInst *ICI = dyn_cast<ICmpInst>(UI)) {
- if (!isa<ConstantPointerNull>(ICI->getOperand(1)))
- return false;
- continue;
- }
- // getelementptr is also ok, but only a simple form.
- if (const GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(UI)) {
- // Must index into the array and into the struct.
- if (GEPI->getNumOperands() < 3)
- return false;
- // Otherwise the GEP is ok.
- continue;
- }
- if (const PHINode *PN = dyn_cast<PHINode>(UI)) {
- if (!LoadUsingPHIsPerLoad.insert(PN).second)
- // This means some phi nodes are dependent on each other.
- // Avoid infinite looping!
- return false;
- if (!LoadUsingPHIs.insert(PN).second)
- // If we have already analyzed this PHI, then it is safe.
- continue;
- // Make sure all uses of the PHI are simple enough to transform.
- if (!LoadUsesSimpleEnoughForHeapSRA(PN,
- LoadUsingPHIs, LoadUsingPHIsPerLoad))
- return false;
- continue;
- }
- // Otherwise we don't know what this is, not ok.
- return false;
- }
- return true;
- }
- /// AllGlobalLoadUsesSimpleEnoughForHeapSRA - If all users of values loaded from
- /// GV are simple enough to perform HeapSRA, return true.
- static bool AllGlobalLoadUsesSimpleEnoughForHeapSRA(const GlobalVariable *GV,
- Instruction *StoredVal) {
- SmallPtrSet<const PHINode*, 32> LoadUsingPHIs;
- SmallPtrSet<const PHINode*, 32> LoadUsingPHIsPerLoad;
- for (const User *U : GV->users())
- if (const LoadInst *LI = dyn_cast<LoadInst>(U)) {
- if (!LoadUsesSimpleEnoughForHeapSRA(LI, LoadUsingPHIs,
- LoadUsingPHIsPerLoad))
- return false;
- LoadUsingPHIsPerLoad.clear();
- }
- // If we reach here, we know that all uses of the loads and transitive uses
- // (through PHI nodes) are simple enough to transform. However, we don't know
- // that all inputs the to the PHI nodes are in the same equivalence sets.
- // Check to verify that all operands of the PHIs are either PHIS that can be
- // transformed, loads from GV, or MI itself.
- for (const PHINode *PN : LoadUsingPHIs) {
- for (unsigned op = 0, e = PN->getNumIncomingValues(); op != e; ++op) {
- Value *InVal = PN->getIncomingValue(op);
- // PHI of the stored value itself is ok.
- if (InVal == StoredVal) continue;
- if (const PHINode *InPN = dyn_cast<PHINode>(InVal)) {
- // One of the PHIs in our set is (optimistically) ok.
- if (LoadUsingPHIs.count(InPN))
- continue;
- return false;
- }
- // Load from GV is ok.
- if (const LoadInst *LI = dyn_cast<LoadInst>(InVal))
- if (LI->getOperand(0) == GV)
- continue;
- // UNDEF? NULL?
- // Anything else is rejected.
- return false;
- }
- }
- return true;
- }
- static Value *GetHeapSROAValue(Value *V, unsigned FieldNo,
- DenseMap<Value*, std::vector<Value*> > &InsertedScalarizedValues,
- std::vector<std::pair<PHINode*, unsigned> > &PHIsToRewrite) {
- std::vector<Value*> &FieldVals = InsertedScalarizedValues[V];
- if (FieldNo >= FieldVals.size())
- FieldVals.resize(FieldNo+1);
- // If we already have this value, just reuse the previously scalarized
- // version.
- if (Value *FieldVal = FieldVals[FieldNo])
- return FieldVal;
- // Depending on what instruction this is, we have several cases.
- Value *Result;
- if (LoadInst *LI = dyn_cast<LoadInst>(V)) {
- // This is a scalarized version of the load from the global. Just create
- // a new Load of the scalarized global.
- Result = new LoadInst(GetHeapSROAValue(LI->getOperand(0), FieldNo,
- InsertedScalarizedValues,
- PHIsToRewrite),
- LI->getName()+".f"+Twine(FieldNo), LI);
- } else {
- PHINode *PN = cast<PHINode>(V);
- // PN's type is pointer to struct. Make a new PHI of pointer to struct
- // field.
- PointerType *PTy = cast<PointerType>(PN->getType());
- StructType *ST = cast<StructType>(PTy->getElementType());
- unsigned AS = PTy->getAddressSpace();
- PHINode *NewPN =
- PHINode::Create(PointerType::get(ST->getElementType(FieldNo), AS),
- PN->getNumIncomingValues(),
- PN->getName()+".f"+Twine(FieldNo), PN);
- Result = NewPN;
- PHIsToRewrite.push_back(std::make_pair(PN, FieldNo));
- }
- return FieldVals[FieldNo] = Result;
- }
- /// RewriteHeapSROALoadUser - Given a load instruction and a value derived from
- /// the load, rewrite the derived value to use the HeapSRoA'd load.
- static void RewriteHeapSROALoadUser(Instruction *LoadUser,
- DenseMap<Value*, std::vector<Value*> > &InsertedScalarizedValues,
- std::vector<std::pair<PHINode*, unsigned> > &PHIsToRewrite) {
- // If this is a comparison against null, handle it.
- if (ICmpInst *SCI = dyn_cast<ICmpInst>(LoadUser)) {
- assert(isa<ConstantPointerNull>(SCI->getOperand(1)));
- // If we have a setcc of the loaded pointer, we can use a setcc of any
- // field.
- Value *NPtr = GetHeapSROAValue(SCI->getOperand(0), 0,
- InsertedScalarizedValues, PHIsToRewrite);
- Value *New = new ICmpInst(SCI, SCI->getPredicate(), NPtr,
- Constant::getNullValue(NPtr->getType()),
- SCI->getName());
- SCI->replaceAllUsesWith(New);
- SCI->eraseFromParent();
- return;
- }
- // Handle 'getelementptr Ptr, Idx, i32 FieldNo ...'
- if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(LoadUser)) {
- assert(GEPI->getNumOperands() >= 3 && isa<ConstantInt>(GEPI->getOperand(2))
- && "Unexpected GEPI!");
- // Load the pointer for this field.
- unsigned FieldNo = cast<ConstantInt>(GEPI->getOperand(2))->getZExtValue();
- Value *NewPtr = GetHeapSROAValue(GEPI->getOperand(0), FieldNo,
- InsertedScalarizedValues, PHIsToRewrite);
- // Create the new GEP idx vector.
- SmallVector<Value*, 8> GEPIdx;
- GEPIdx.push_back(GEPI->getOperand(1));
- GEPIdx.append(GEPI->op_begin()+3, GEPI->op_end());
- Value *NGEPI = GetElementPtrInst::Create(GEPI->getResultElementType(), NewPtr, GEPIdx,
- GEPI->getName(), GEPI);
- GEPI->replaceAllUsesWith(NGEPI);
- GEPI->eraseFromParent();
- return;
- }
- // Recursively transform the users of PHI nodes. This will lazily create the
- // PHIs that are needed for individual elements. Keep track of what PHIs we
- // see in InsertedScalarizedValues so that we don't get infinite loops (very
- // antisocial). If the PHI is already in InsertedScalarizedValues, it has
- // already been seen first by another load, so its uses have already been
- // processed.
- PHINode *PN = cast<PHINode>(LoadUser);
- if (!InsertedScalarizedValues.insert(std::make_pair(PN,
- std::vector<Value*>())).second)
- return;
- // If this is the first time we've seen this PHI, recursively process all
- // users.
- for (auto UI = PN->user_begin(), E = PN->user_end(); UI != E;) {
- Instruction *User = cast<Instruction>(*UI++);
- RewriteHeapSROALoadUser(User, InsertedScalarizedValues, PHIsToRewrite);
- }
- }
- /// RewriteUsesOfLoadForHeapSRoA - We are performing Heap SRoA on a global. Ptr
- /// is a value loaded from the global. Eliminate all uses of Ptr, making them
- /// use FieldGlobals instead. All uses of loaded values satisfy
- /// AllGlobalLoadUsesSimpleEnoughForHeapSRA.
- static void RewriteUsesOfLoadForHeapSRoA(LoadInst *Load,
- DenseMap<Value*, std::vector<Value*> > &InsertedScalarizedValues,
- std::vector<std::pair<PHINode*, unsigned> > &PHIsToRewrite) {
- for (auto UI = Load->user_begin(), E = Load->user_end(); UI != E;) {
- Instruction *User = cast<Instruction>(*UI++);
- RewriteHeapSROALoadUser(User, InsertedScalarizedValues, PHIsToRewrite);
- }
- if (Load->use_empty()) {
- Load->eraseFromParent();
- InsertedScalarizedValues.erase(Load);
- }
- }
- /// PerformHeapAllocSRoA - CI is an allocation of an array of structures. Break
- /// it up into multiple allocations of arrays of the fields.
- static GlobalVariable *PerformHeapAllocSRoA(GlobalVariable *GV, CallInst *CI,
- Value *NElems, const DataLayout &DL,
- const TargetLibraryInfo *TLI) {
- DEBUG(dbgs() << "SROA HEAP ALLOC: " << *GV << " MALLOC = " << *CI << '\n');
- Type *MAT = getMallocAllocatedType(CI, TLI);
- StructType *STy = cast<StructType>(MAT);
- // There is guaranteed to be at least one use of the malloc (storing
- // it into GV). If there are other uses, change them to be uses of
- // the global to simplify later code. This also deletes the store
- // into GV.
- ReplaceUsesOfMallocWithGlobal(CI, GV);
- // Okay, at this point, there are no users of the malloc. Insert N
- // new mallocs at the same place as CI, and N globals.
- std::vector<Value*> FieldGlobals;
- std::vector<Value*> FieldMallocs;
- unsigned AS = GV->getType()->getPointerAddressSpace();
- for (unsigned FieldNo = 0, e = STy->getNumElements(); FieldNo != e;++FieldNo){
- Type *FieldTy = STy->getElementType(FieldNo);
- PointerType *PFieldTy = PointerType::get(FieldTy, AS);
- GlobalVariable *NGV =
- new GlobalVariable(*GV->getParent(),
- PFieldTy, false, GlobalValue::InternalLinkage,
- Constant::getNullValue(PFieldTy),
- GV->getName() + ".f" + Twine(FieldNo), GV,
- GV->getThreadLocalMode());
- FieldGlobals.push_back(NGV);
- unsigned TypeSize = DL.getTypeAllocSize(FieldTy);
- if (StructType *ST = dyn_cast<StructType>(FieldTy))
- TypeSize = DL.getStructLayout(ST)->getSizeInBytes();
- Type *IntPtrTy = DL.getIntPtrType(CI->getType());
- Value *NMI = CallInst::CreateMalloc(CI, IntPtrTy, FieldTy,
- ConstantInt::get(IntPtrTy, TypeSize),
- NElems, nullptr,
- CI->getName() + ".f" + Twine(FieldNo));
- FieldMallocs.push_back(NMI);
- new StoreInst(NMI, NGV, CI);
- }
- // The tricky aspect of this transformation is handling the case when malloc
- // fails. In the original code, malloc failing would set the result pointer
- // of malloc to null. In this case, some mallocs could succeed and others
- // could fail. As such, we emit code that looks like this:
- // F0 = malloc(field0)
- // F1 = malloc(field1)
- // F2 = malloc(field2)
- // if (F0 == 0 || F1 == 0 || F2 == 0) {
- // if (F0) { free(F0); F0 = 0; }
- // if (F1) { free(F1); F1 = 0; }
- // if (F2) { free(F2); F2 = 0; }
- // }
- // The malloc can also fail if its argument is too large.
- Constant *ConstantZero = ConstantInt::get(CI->getArgOperand(0)->getType(), 0);
- Value *RunningOr = new ICmpInst(CI, ICmpInst::ICMP_SLT, CI->getArgOperand(0),
- ConstantZero, "isneg");
- for (unsigned i = 0, e = FieldMallocs.size(); i != e; ++i) {
- Value *Cond = new ICmpInst(CI, ICmpInst::ICMP_EQ, FieldMallocs[i],
- Constant::getNullValue(FieldMallocs[i]->getType()),
- "isnull");
- RunningOr = BinaryOperator::CreateOr(RunningOr, Cond, "tmp", CI);
- }
- // Split the basic block at the old malloc.
- BasicBlock *OrigBB = CI->getParent();
- BasicBlock *ContBB = OrigBB->splitBasicBlock(CI, "malloc_cont");
- // Create the block to check the first condition. Put all these blocks at the
- // end of the function as they are unlikely to be executed.
- BasicBlock *NullPtrBlock = BasicBlock::Create(OrigBB->getContext(),
- "malloc_ret_null",
- OrigBB->getParent());
- // Remove the uncond branch from OrigBB to ContBB, turning it into a cond
- // branch on RunningOr.
- OrigBB->getTerminator()->eraseFromParent();
- BranchInst::Create(NullPtrBlock, ContBB, RunningOr, OrigBB);
- // Within the NullPtrBlock, we need to emit a comparison and branch for each
- // pointer, because some may be null while others are not.
- for (unsigned i = 0, e = FieldGlobals.size(); i != e; ++i) {
- Value *GVVal = new LoadInst(FieldGlobals[i], "tmp", NullPtrBlock);
- Value *Cmp = new ICmpInst(*NullPtrBlock, ICmpInst::ICMP_NE, GVVal,
- Constant::getNullValue(GVVal->getType()));
- BasicBlock *FreeBlock = BasicBlock::Create(Cmp->getContext(), "free_it",
- OrigBB->getParent());
- BasicBlock *NextBlock = BasicBlock::Create(Cmp->getContext(), "next",
- OrigBB->getParent());
- Instruction *BI = BranchInst::Create(FreeBlock, NextBlock,
- Cmp, NullPtrBlock);
- // Fill in FreeBlock.
- CallInst::CreateFree(GVVal, BI);
- new StoreInst(Constant::getNullValue(GVVal->getType()), FieldGlobals[i],
- FreeBlock);
- BranchInst::Create(NextBlock, FreeBlock);
- NullPtrBlock = NextBlock;
- }
- BranchInst::Create(ContBB, NullPtrBlock);
- // CI is no longer needed, remove it.
- CI->eraseFromParent();
- /// InsertedScalarizedLoads - As we process loads, if we can't immediately
- /// update all uses of the load, keep track of what scalarized loads are
- /// inserted for a given load.
- DenseMap<Value*, std::vector<Value*> > InsertedScalarizedValues;
- InsertedScalarizedValues[GV] = FieldGlobals;
- std::vector<std::pair<PHINode*, unsigned> > PHIsToRewrite;
- // Okay, the malloc site is completely handled. All of the uses of GV are now
- // loads, and all uses of those loads are simple. Rewrite them to use loads
- // of the per-field globals instead.
- for (auto UI = GV->user_begin(), E = GV->user_end(); UI != E;) {
- Instruction *User = cast<Instruction>(*UI++);
- if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
- RewriteUsesOfLoadForHeapSRoA(LI, InsertedScalarizedValues, PHIsToRewrite);
- continue;
- }
- // Must be a store of null.
- StoreInst *SI = cast<StoreInst>(User);
- assert(isa<ConstantPointerNull>(SI->getOperand(0)) &&
- "Unexpected heap-sra user!");
- // Insert a store of null into each global.
- for (unsigned i = 0, e = FieldGlobals.size(); i != e; ++i) {
- PointerType *PT = cast<PointerType>(FieldGlobals[i]->getType());
- Constant *Null = Constant::getNullValue(PT->getElementType());
- new StoreInst(Null, FieldGlobals[i], SI);
- }
- // Erase the original store.
- SI->eraseFromParent();
- }
- // While we have PHIs that are interesting to rewrite, do it.
- while (!PHIsToRewrite.empty()) {
- PHINode *PN = PHIsToRewrite.back().first;
- unsigned FieldNo = PHIsToRewrite.back().second;
- PHIsToRewrite.pop_back();
- PHINode *FieldPN = cast<PHINode>(InsertedScalarizedValues[PN][FieldNo]);
- assert(FieldPN->getNumIncomingValues() == 0 &&"Already processed this phi");
- // Add all the incoming values. This can materialize more phis.
- for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
- Value *InVal = PN->getIncomingValue(i);
- InVal = GetHeapSROAValue(InVal, FieldNo, InsertedScalarizedValues,
- PHIsToRewrite);
- FieldPN->addIncoming(InVal, PN->getIncomingBlock(i));
- }
- }
- // Drop all inter-phi links and any loads that made it this far.
- for (DenseMap<Value*, std::vector<Value*> >::iterator
- I = InsertedScalarizedValues.begin(), E = InsertedScalarizedValues.end();
- I != E; ++I) {
- if (PHINode *PN = dyn_cast<PHINode>(I->first))
- PN->dropAllReferences();
- else if (LoadInst *LI = dyn_cast<LoadInst>(I->first))
- LI->dropAllReferences();
- }
- // Delete all the phis and loads now that inter-references are dead.
- for (DenseMap<Value*, std::vector<Value*> >::iterator
- I = InsertedScalarizedValues.begin(), E = InsertedScalarizedValues.end();
- I != E; ++I) {
- if (PHINode *PN = dyn_cast<PHINode>(I->first))
- PN->eraseFromParent();
- else if (LoadInst *LI = dyn_cast<LoadInst>(I->first))
- LI->eraseFromParent();
- }
- // The old global is now dead, remove it.
- GV->eraseFromParent();
- ++NumHeapSRA;
- return cast<GlobalVariable>(FieldGlobals[0]);
- }
- /// TryToOptimizeStoreOfMallocToGlobal - This function is called when we see a
- /// pointer global variable with a single value stored it that is a malloc or
- /// cast of malloc.
- static bool TryToOptimizeStoreOfMallocToGlobal(GlobalVariable *GV, CallInst *CI,
- Type *AllocTy,
- AtomicOrdering Ordering,
- Module::global_iterator &GVI,
- const DataLayout &DL,
- TargetLibraryInfo *TLI) {
- // If this is a malloc of an abstract type, don't touch it.
- if (!AllocTy->isSized())
- return false;
- // We can't optimize this global unless all uses of it are *known* to be
- // of the malloc value, not of the null initializer value (consider a use
- // that compares the global's value against zero to see if the malloc has
- // been reached). To do this, we check to see if all uses of the global
- // would trap if the global were null: this proves that they must all
- // happen after the malloc.
- if (!AllUsesOfLoadedValueWillTrapIfNull(GV))
- return false;
- // We can't optimize this if the malloc itself is used in a complex way,
- // for example, being stored into multiple globals. This allows the
- // malloc to be stored into the specified global, loaded icmp'd, and
- // GEP'd. These are all things we could transform to using the global
- // for.
- SmallPtrSet<const PHINode*, 8> PHIs;
- if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(CI, GV, PHIs))
- return false;
- // If we have a global that is only initialized with a fixed size malloc,
- // transform the program to use global memory instead of malloc'd memory.
- // This eliminates dynamic allocation, avoids an indirection accessing the
- // data, and exposes the resultant global to further GlobalOpt.
- // We cannot optimize the malloc if we cannot determine malloc array size.
- Value *NElems = getMallocArraySize(CI, DL, TLI, true);
- if (!NElems)
- return false;
- if (ConstantInt *NElements = dyn_cast<ConstantInt>(NElems))
- // Restrict this transformation to only working on small allocations
- // (2048 bytes currently), as we don't want to introduce a 16M global or
- // something.
- if (NElements->getZExtValue() * DL.getTypeAllocSize(AllocTy) < 2048) {
- GVI = OptimizeGlobalAddressOfMalloc(GV, CI, AllocTy, NElements, DL, TLI);
- return true;
- }
- // If the allocation is an array of structures, consider transforming this
- // into multiple malloc'd arrays, one for each field. This is basically
- // SRoA for malloc'd memory.
- if (Ordering != NotAtomic)
- return false;
- // If this is an allocation of a fixed size array of structs, analyze as a
- // variable size array. malloc [100 x struct],1 -> malloc struct, 100
- if (NElems == ConstantInt::get(CI->getArgOperand(0)->getType(), 1))
- if (ArrayType *AT = dyn_cast<ArrayType>(AllocTy))
- AllocTy = AT->getElementType();
- StructType *AllocSTy = dyn_cast<StructType>(AllocTy);
- if (!AllocSTy)
- return false;
- // This the structure has an unreasonable number of fields, leave it
- // alone.
- if (AllocSTy->getNumElements() <= 16 && AllocSTy->getNumElements() != 0 &&
- AllGlobalLoadUsesSimpleEnoughForHeapSRA(GV, CI)) {
- // If this is a fixed size array, transform the Malloc to be an alloc of
- // structs. malloc [100 x struct],1 -> malloc struct, 100
- if (ArrayType *AT = dyn_cast<ArrayType>(getMallocAllocatedType(CI, TLI))) {
- Type *IntPtrTy = DL.getIntPtrType(CI->getType());
- unsigned TypeSize = DL.getStructLayout(AllocSTy)->getSizeInBytes();
- Value *AllocSize = ConstantInt::get(IntPtrTy, TypeSize);
- Value *NumElements = ConstantInt::get(IntPtrTy, AT->getNumElements());
- Instruction *Malloc = CallInst::CreateMalloc(CI, IntPtrTy, AllocSTy,
- AllocSize, NumElements,
- nullptr, CI->getName());
- Instruction *Cast = new BitCastInst(Malloc, CI->getType(), "tmp", CI);
- CI->replaceAllUsesWith(Cast);
- CI->eraseFromParent();
- if (BitCastInst *BCI = dyn_cast<BitCastInst>(Malloc))
- CI = cast<CallInst>(BCI->getOperand(0));
- else
- CI = cast<CallInst>(Malloc);
- }
- GVI = PerformHeapAllocSRoA(GV, CI, getMallocArraySize(CI, DL, TLI, true),
- DL, TLI);
- return true;
- }
- return false;
- }
- // OptimizeOnceStoredGlobal - Try to optimize globals based on the knowledge
- // that only one value (besides its initializer) is ever stored to the global.
- static bool OptimizeOnceStoredGlobal(GlobalVariable *GV, Value *StoredOnceVal,
- AtomicOrdering Ordering,
- Module::global_iterator &GVI,
- const DataLayout &DL,
- TargetLibraryInfo *TLI) {
- // Ignore no-op GEPs and bitcasts.
- StoredOnceVal = StoredOnceVal->stripPointerCasts();
- // If we are dealing with a pointer global that is initialized to null and
- // only has one (non-null) value stored into it, then we can optimize any
- // users of the loaded value (often calls and loads) that would trap if the
- // value was null.
- if (GV->getInitializer()->getType()->isPointerTy() &&
- GV->getInitializer()->isNullValue()) {
- if (Constant *SOVC = dyn_cast<Constant>(StoredOnceVal)) {
- if (GV->getInitializer()->getType() != SOVC->getType())
- SOVC = ConstantExpr::getBitCast(SOVC, GV->getInitializer()->getType());
- // Optimize away any trapping uses of the loaded value.
- if (OptimizeAwayTrappingUsesOfLoads(GV, SOVC, DL, TLI))
- return true;
- } else if (CallInst *CI = extractMallocCall(StoredOnceVal, TLI)) {
- Type *MallocType = getMallocAllocatedType(CI, TLI);
- if (MallocType &&
- TryToOptimizeStoreOfMallocToGlobal(GV, CI, MallocType, Ordering, GVI,
- DL, TLI))
- return true;
- }
- }
- return false;
- }
- /// TryToShrinkGlobalToBoolean - At this point, we have learned that the only
- /// two values ever stored into GV are its initializer and OtherVal. See if we
- /// can shrink the global into a boolean and select between the two values
- /// whenever it is used. This exposes the values to other scalar optimizations.
- static bool TryToShrinkGlobalToBoolean(GlobalVariable *GV, Constant *OtherVal) {
- Type *GVElType = GV->getType()->getElementType();
- // If GVElType is already i1, it is already shrunk. If the type of the GV is
- // an FP value, pointer or vector, don't do this optimization because a select
- // between them is very expensive and unlikely to lead to later
- // simplification. In these cases, we typically end up with "cond ? v1 : v2"
- // where v1 and v2 both require constant pool loads, a big loss.
- if (GVElType == Type::getInt1Ty(GV->getContext()) ||
- GVElType->isFloatingPointTy() ||
- GVElType->isPointerTy() || GVElType->isVectorTy())
- return false;
- // Walk the use list of the global seeing if all the uses are load or store.
- // If there is anything else, bail out.
- for (User *U : GV->users())
- if (!isa<LoadInst>(U) && !isa<StoreInst>(U))
- return false;
- DEBUG(dbgs() << " *** SHRINKING TO BOOL: " << *GV);
- // Create the new global, initializing it to false.
- GlobalVariable *NewGV = new GlobalVariable(Type::getInt1Ty(GV->getContext()),
- false,
- GlobalValue::InternalLinkage,
- ConstantInt::getFalse(GV->getContext()),
- GV->getName()+".b",
- GV->getThreadLocalMode(),
- GV->getType()->getAddressSpace());
- GV->getParent()->getGlobalList().insert(GV, NewGV);
- Constant *InitVal = GV->getInitializer();
- assert(InitVal->getType() != Type::getInt1Ty(GV->getContext()) &&
- "No reason to shrink to bool!");
- // If initialized to zero and storing one into the global, we can use a cast
- // instead of a select to synthesize the desired value.
- bool IsOneZero = false;
- if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal))
- IsOneZero = InitVal->isNullValue() && CI->isOne();
- while (!GV->use_empty()) {
- Instruction *UI = cast<Instruction>(GV->user_back());
- if (StoreInst *SI = dyn_cast<StoreInst>(UI)) {
- // Change the store into a boolean store.
- bool StoringOther = SI->getOperand(0) == OtherVal;
- // Only do this if we weren't storing a loaded value.
- Value *StoreVal;
- if (StoringOther || SI->getOperand(0) == InitVal) {
- StoreVal = ConstantInt::get(Type::getInt1Ty(GV->getContext()),
- StoringOther);
- } else {
- // Otherwise, we are storing a previously loaded copy. To do this,
- // change the copy from copying the original value to just copying the
- // bool.
- Instruction *StoredVal = cast<Instruction>(SI->getOperand(0));
- // If we've already replaced the input, StoredVal will be a cast or
- // select instruction. If not, it will be a load of the original
- // global.
- if (LoadInst *LI = dyn_cast<LoadInst>(StoredVal)) {
- assert(LI->getOperand(0) == GV && "Not a copy!");
- // Insert a new load, to preserve the saved value.
- StoreVal = new LoadInst(NewGV, LI->getName()+".b", false, 0,
- LI->getOrdering(), LI->getSynchScope(), LI);
- } else {
- assert((isa<CastInst>(StoredVal) || isa<SelectInst>(StoredVal)) &&
- "This is not a form that we understand!");
- StoreVal = StoredVal->getOperand(0);
- assert(isa<LoadInst>(StoreVal) && "Not a load of NewGV!");
- }
- }
- new StoreInst(StoreVal, NewGV, false, 0,
- SI->getOrdering(), SI->getSynchScope(), SI);
- } else {
- // Change the load into a load of bool then a select.
- LoadInst *LI = cast<LoadInst>(UI);
- LoadInst *NLI = new LoadInst(NewGV, LI->getName()+".b", false, 0,
- LI->getOrdering(), LI->getSynchScope(), LI);
- Value *NSI;
- if (IsOneZero)
- NSI = new ZExtInst(NLI, LI->getType(), "", LI);
- else
- NSI = SelectInst::Create(NLI, OtherVal, InitVal, "", LI);
- NSI->takeName(LI);
- LI->replaceAllUsesWith(NSI);
- }
- UI->eraseFromParent();
- }
- // Retain the name of the old global variable. People who are debugging their
- // programs may expect these variables to be named the same.
- NewGV->takeName(GV);
- GV->eraseFromParent();
- return true;
- }
- /// ProcessGlobal - Analyze the specified global variable and optimize it if
- /// possible. If we make a change, return true.
- bool GlobalOpt::ProcessGlobal(GlobalVariable *GV,
- Module::global_iterator &GVI) {
- // Do more involved optimizations if the global is internal.
- GV->removeDeadConstantUsers();
- if (GV->use_empty()) {
- DEBUG(dbgs() << "GLOBAL DEAD: " << *GV);
- GV->eraseFromParent();
- ++NumDeleted;
- return true;
- }
- if (!GV->hasLocalLinkage())
- return false;
- GlobalStatus GS;
- if (GlobalStatus::analyzeGlobal(GV, GS))
- return false;
- if (!GS.IsCompared && !GV->hasUnnamedAddr()) {
- GV->setUnnamedAddr(true);
- NumUnnamed++;
- }
- if (GV->isConstant() || !GV->hasInitializer())
- return false;
- return ProcessInternalGlobal(GV, GVI, GS);
- }
- // HLSL Change Begin
- static bool isEntryPoint(const llvm::Function* Func) {
- const llvm::Module* Mod = Func->getParent();
- return Mod->HasDxilModule()
- ? Mod->GetDxilModule().IsEntryOrPatchConstantFunction(Func)
- : Func->getName() == "main"; // Original logic for non-HLSL
- }
- // HLSL Change End
- /// ProcessInternalGlobal - Analyze the specified global variable and optimize
- /// it if possible. If we make a change, return true.
- bool GlobalOpt::ProcessInternalGlobal(GlobalVariable *GV,
- Module::global_iterator &GVI,
- const GlobalStatus &GS) {
- auto &DL = GV->getParent()->getDataLayout();
- // If this is a first class global and has only one accessing function
- // and this function is main (which we know is not recursive), we replace
- // the global with a local alloca in this function.
- //
- // NOTE: It doesn't make sense to promote non-single-value types since we
- // are just replacing static memory to stack memory.
- //
- // If the global is in different address space, don't bring it to stack.
- if (!GS.HasMultipleAccessingFunctions &&
- GS.AccessingFunction && !GS.HasNonInstructionUser &&
- GV->getType()->getElementType()->isSingleValueType() &&
- isEntryPoint(GS.AccessingFunction) && // HLSL Change - Generalize entrypoint testing
- GS.AccessingFunction->hasExternalLinkage() &&
- GV->getType()->getAddressSpace() == 0) {
- DEBUG(dbgs() << "LOCALIZING GLOBAL: " << *GV);
- Instruction &FirstI = const_cast<Instruction&>(*GS.AccessingFunction
- ->getEntryBlock().begin());
- Type *ElemTy = GV->getType()->getElementType();
- // FIXME: Pass Global's alignment when globals have alignment
- AllocaInst *Alloca = new AllocaInst(ElemTy, nullptr,
- GV->getName(), &FirstI);
- if (!isa<UndefValue>(GV->getInitializer()))
- new StoreInst(GV->getInitializer(), Alloca, &FirstI);
- GV->replaceAllUsesWith(Alloca);
- GV->eraseFromParent();
- ++NumLocalized;
- return true;
- }
- // If the global is never loaded (but may be stored to), it is dead.
- // Delete it now.
- if (!GS.IsLoaded) {
- DEBUG(dbgs() << "GLOBAL NEVER LOADED: " << *GV);
- bool Changed;
- if (isLeakCheckerRoot(GV)) {
- // Delete any constant stores to the global.
- Changed = CleanupPointerRootUsers(GV, TLI);
- } else {
- // Delete any stores we can find to the global. We may not be able to
- // make it completely dead though.
- Changed = CleanupConstantGlobalUsers(GV, GV->getInitializer(), DL, TLI);
- }
- // If the global is dead now, delete it.
- if (GV->use_empty()) {
- GV->eraseFromParent();
- ++NumDeleted;
- Changed = true;
- }
- return Changed;
- } else if (GS.StoredType <= GlobalStatus::InitializerStored) {
- DEBUG(dbgs() << "MARKING CONSTANT: " << *GV << "\n");
- GV->setConstant(true);
- // Clean up any obviously simplifiable users now.
- CleanupConstantGlobalUsers(GV, GV->getInitializer(), DL, TLI);
- // If the global is dead now, just nuke it.
- if (GV->use_empty()) {
- DEBUG(dbgs() << " *** Marking constant allowed us to simplify "
- << "all users and delete global!\n");
- GV->eraseFromParent();
- ++NumDeleted;
- }
- ++NumMarked;
- return true;
- } else if (!GV->getInitializer()->getType()->isSingleValueType()) {
- const DataLayout &DL = GV->getParent()->getDataLayout();
- if (GlobalVariable *FirstNewGV = SRAGlobal(GV, DL)) {
- GVI = FirstNewGV; // Don't skip the newly produced globals!
- return true;
- }
- } else if (GS.StoredType == GlobalStatus::StoredOnce) {
- // If the initial value for the global was an undef value, and if only
- // one other value was stored into it, we can just change the
- // initializer to be the stored value, then delete all stores to the
- // global. This allows us to mark it constant.
- if (Constant *SOVConstant = dyn_cast<Constant>(GS.StoredOnceValue))
- if (isa<UndefValue>(GV->getInitializer())) {
- // Change the initial value here.
- GV->setInitializer(SOVConstant);
- // Clean up any obviously simplifiable users now.
- CleanupConstantGlobalUsers(GV, GV->getInitializer(), DL, TLI);
- if (GV->use_empty()) {
- DEBUG(dbgs() << " *** Substituting initializer allowed us to "
- << "simplify all users and delete global!\n");
- GV->eraseFromParent();
- ++NumDeleted;
- } else {
- GVI = GV;
- }
- ++NumSubstitute;
- return true;
- }
- // Try to optimize globals based on the knowledge that only one value
- // (besides its initializer) is ever stored to the global.
- if (OptimizeOnceStoredGlobal(GV, GS.StoredOnceValue, GS.Ordering, GVI,
- DL, TLI))
- return true;
- // Otherwise, if the global was not a boolean, we can shrink it to be a
- // boolean.
- if (Constant *SOVConstant = dyn_cast<Constant>(GS.StoredOnceValue)) {
- if (GS.Ordering == NotAtomic) {
- if (TryToShrinkGlobalToBoolean(GV, SOVConstant)) {
- ++NumShrunkToBool;
- return true;
- }
- }
- }
- }
- return false;
- }
- /// ChangeCalleesToFastCall - Walk all of the direct calls of the specified
- /// function, changing them to FastCC.
- static void ChangeCalleesToFastCall(Function *F) {
- for (User *U : F->users()) {
- if (isa<BlockAddress>(U))
- continue;
- CallSite CS(cast<Instruction>(U));
- CS.setCallingConv(CallingConv::Fast);
- }
- }
- static AttributeSet StripNest(LLVMContext &C, const AttributeSet &Attrs) {
- for (unsigned i = 0, e = Attrs.getNumSlots(); i != e; ++i) {
- unsigned Index = Attrs.getSlotIndex(i);
- if (!Attrs.getSlotAttributes(i).hasAttribute(Index, Attribute::Nest))
- continue;
- // There can be only one.
- return Attrs.removeAttribute(C, Index, Attribute::Nest);
- }
- return Attrs;
- }
- static void RemoveNestAttribute(Function *F) {
- F->setAttributes(StripNest(F->getContext(), F->getAttributes()));
- for (User *U : F->users()) {
- if (isa<BlockAddress>(U))
- continue;
- CallSite CS(cast<Instruction>(U));
- CS.setAttributes(StripNest(F->getContext(), CS.getAttributes()));
- }
- }
- /// Return true if this is a calling convention that we'd like to change. The
- /// idea here is that we don't want to mess with the convention if the user
- /// explicitly requested something with performance implications like coldcc,
- /// GHC, or anyregcc.
- static bool isProfitableToMakeFastCC(Function *F) {
- CallingConv::ID CC = F->getCallingConv();
- // FIXME: Is it worth transforming x86_stdcallcc and x86_fastcallcc?
- return CC == CallingConv::C || CC == CallingConv::X86_ThisCall;
- }
- bool GlobalOpt::OptimizeFunctions(Module &M) {
- bool Changed = false;
- // Optimize functions.
- for (Module::iterator FI = M.begin(), E = M.end(); FI != E; ) {
- Function *F = FI++;
- // Functions without names cannot be referenced outside this module.
- if (!F->hasName() && !F->isDeclaration() && !F->hasLocalLinkage())
- F->setLinkage(GlobalValue::InternalLinkage);
- const Comdat *C = F->getComdat();
- bool inComdat = C && NotDiscardableComdats.count(C);
- F->removeDeadConstantUsers();
- if ((!inComdat || F->hasLocalLinkage()) && F->isDefTriviallyDead()) {
- F->eraseFromParent();
- Changed = true;
- ++NumFnDeleted;
- } else if (F->hasLocalLinkage()) {
- if (isProfitableToMakeFastCC(F) && !F->isVarArg() &&
- !F->hasAddressTaken()) {
- // If this function has a calling convention worth changing, is not a
- // varargs function, and is only called directly, promote it to use the
- // Fast calling convention.
- F->setCallingConv(CallingConv::Fast);
- ChangeCalleesToFastCall(F);
- ++NumFastCallFns;
- Changed = true;
- }
- if (F->getAttributes().hasAttrSomewhere(Attribute::Nest) &&
- !F->hasAddressTaken()) {
- // The function is not used by a trampoline intrinsic, so it is safe
- // to remove the 'nest' attribute.
- RemoveNestAttribute(F);
- ++NumNestRemoved;
- Changed = true;
- }
- }
- }
- return Changed;
- }
- bool GlobalOpt::OptimizeGlobalVars(Module &M) {
- bool Changed = false;
- for (Module::global_iterator GVI = M.global_begin(), E = M.global_end();
- GVI != E; ) {
- GlobalVariable *GV = GVI++;
- // Global variables without names cannot be referenced outside this module.
- if (!GV->hasName() && !GV->isDeclaration() && !GV->hasLocalLinkage())
- GV->setLinkage(GlobalValue::InternalLinkage);
- // Simplify the initializer.
- if (GV->hasInitializer())
- if (ConstantExpr *CE = dyn_cast<ConstantExpr>(GV->getInitializer())) {
- auto &DL = M.getDataLayout();
- Constant *New = ConstantFoldConstantExpression(CE, DL, TLI);
- if (New && New != CE)
- GV->setInitializer(New);
- }
- if (GV->isDiscardableIfUnused()) {
- if (const Comdat *C = GV->getComdat())
- if (NotDiscardableComdats.count(C) && !GV->hasLocalLinkage())
- continue;
- Changed |= ProcessGlobal(GV, GVI);
- }
- }
- return Changed;
- }
- static inline bool
- isSimpleEnoughValueToCommit(Constant *C,
- SmallPtrSetImpl<Constant *> &SimpleConstants,
- const DataLayout &DL);
- /// isSimpleEnoughValueToCommit - Return true if the specified constant can be
- /// handled by the code generator. We don't want to generate something like:
- /// void *X = &X/42;
- /// because the code generator doesn't have a relocation that can handle that.
- ///
- /// This function should be called if C was not found (but just got inserted)
- /// in SimpleConstants to avoid having to rescan the same constants all the
- /// time.
- static bool
- isSimpleEnoughValueToCommitHelper(Constant *C,
- SmallPtrSetImpl<Constant *> &SimpleConstants,
- const DataLayout &DL) {
- // Simple global addresses are supported, do not allow dllimport or
- // thread-local globals.
- if (auto *GV = dyn_cast<GlobalValue>(C))
- return !GV->hasDLLImportStorageClass() && !GV->isThreadLocal();
- // Simple integer, undef, constant aggregate zero, etc are all supported.
- if (C->getNumOperands() == 0 || isa<BlockAddress>(C))
- return true;
- // Aggregate values are safe if all their elements are.
- if (isa<ConstantArray>(C) || isa<ConstantStruct>(C) ||
- isa<ConstantVector>(C)) {
- for (Value *Op : C->operands())
- if (!isSimpleEnoughValueToCommit(cast<Constant>(Op), SimpleConstants, DL))
- return false;
- return true;
- }
- // We don't know exactly what relocations are allowed in constant expressions,
- // so we allow &global+constantoffset, which is safe and uniformly supported
- // across targets.
- ConstantExpr *CE = cast<ConstantExpr>(C);
- switch (CE->getOpcode()) {
- case Instruction::BitCast:
- // Bitcast is fine if the casted value is fine.
- return isSimpleEnoughValueToCommit(CE->getOperand(0), SimpleConstants, DL);
- case Instruction::IntToPtr:
- case Instruction::PtrToInt:
- // int <=> ptr is fine if the int type is the same size as the
- // pointer type.
- if (DL.getTypeSizeInBits(CE->getType()) !=
- DL.getTypeSizeInBits(CE->getOperand(0)->getType()))
- return false;
- return isSimpleEnoughValueToCommit(CE->getOperand(0), SimpleConstants, DL);
- // GEP is fine if it is simple + constant offset.
- case Instruction::GetElementPtr:
- for (unsigned i = 1, e = CE->getNumOperands(); i != e; ++i)
- if (!isa<ConstantInt>(CE->getOperand(i)))
- return false;
- return isSimpleEnoughValueToCommit(CE->getOperand(0), SimpleConstants, DL);
- case Instruction::Add:
- // We allow simple+cst.
- if (!isa<ConstantInt>(CE->getOperand(1)))
- return false;
- return isSimpleEnoughValueToCommit(CE->getOperand(0), SimpleConstants, DL);
- }
- return false;
- }
- static inline bool
- isSimpleEnoughValueToCommit(Constant *C,
- SmallPtrSetImpl<Constant *> &SimpleConstants,
- const DataLayout &DL) {
- // If we already checked this constant, we win.
- if (!SimpleConstants.insert(C).second)
- return true;
- // Check the constant.
- return isSimpleEnoughValueToCommitHelper(C, SimpleConstants, DL);
- }
- /// isSimpleEnoughPointerToCommit - Return true if this constant is simple
- /// enough for us to understand. In particular, if it is a cast to anything
- /// other than from one pointer type to another pointer type, we punt.
- /// We basically just support direct accesses to globals and GEP's of
- /// globals. This should be kept up to date with CommitValueTo.
- static bool isSimpleEnoughPointerToCommit(Constant *C) {
- // Conservatively, avoid aggregate types. This is because we don't
- // want to worry about them partially overlapping other stores.
- if (!cast<PointerType>(C->getType())->getElementType()->isSingleValueType())
- return false;
- if (GlobalVariable *GV = dyn_cast<GlobalVariable>(C))
- // Do not allow weak/*_odr/linkonce linkage or external globals.
- return GV->hasUniqueInitializer();
- if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
- // Handle a constantexpr gep.
- if (CE->getOpcode() == Instruction::GetElementPtr &&
- isa<GlobalVariable>(CE->getOperand(0)) &&
- cast<GEPOperator>(CE)->isInBounds()) {
- GlobalVariable *GV = cast<GlobalVariable>(CE->getOperand(0));
- // Do not allow weak/*_odr/linkonce/dllimport/dllexport linkage or
- // external globals.
- if (!GV->hasUniqueInitializer())
- return false;
- // The first index must be zero.
- ConstantInt *CI = dyn_cast<ConstantInt>(*std::next(CE->op_begin()));
- if (!CI || !CI->isZero()) return false;
- // The remaining indices must be compile-time known integers within the
- // notional bounds of the corresponding static array types.
- if (!CE->isGEPWithNoNotionalOverIndexing())
- return false;
- return ConstantFoldLoadThroughGEPConstantExpr(GV->getInitializer(), CE);
- // A constantexpr bitcast from a pointer to another pointer is a no-op,
- // and we know how to evaluate it by moving the bitcast from the pointer
- // operand to the value operand.
- } else if (CE->getOpcode() == Instruction::BitCast &&
- isa<GlobalVariable>(CE->getOperand(0))) {
- // Do not allow weak/*_odr/linkonce/dllimport/dllexport linkage or
- // external globals.
- return cast<GlobalVariable>(CE->getOperand(0))->hasUniqueInitializer();
- }
- }
- return false;
- }
- /// EvaluateStoreInto - Evaluate a piece of a constantexpr store into a global
- /// initializer. This returns 'Init' modified to reflect 'Val' stored into it.
- /// At this point, the GEP operands of Addr [0, OpNo) have been stepped into.
- static Constant *EvaluateStoreInto(Constant *Init, Constant *Val,
- ConstantExpr *Addr, unsigned OpNo) {
- // Base case of the recursion.
- if (OpNo == Addr->getNumOperands()) {
- assert(Val->getType() == Init->getType() && "Type mismatch!");
- return Val;
- }
- SmallVector<Constant*, 32> Elts;
- if (StructType *STy = dyn_cast<StructType>(Init->getType())) {
- // Break up the constant into its elements.
- for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
- Elts.push_back(Init->getAggregateElement(i));
- // Replace the element that we are supposed to.
- ConstantInt *CU = cast<ConstantInt>(Addr->getOperand(OpNo));
- unsigned Idx = CU->getZExtValue();
- assert(Idx < STy->getNumElements() && "Struct index out of range!");
- Elts[Idx] = EvaluateStoreInto(Elts[Idx], Val, Addr, OpNo+1);
- // Return the modified struct.
- return ConstantStruct::get(STy, Elts);
- }
- ConstantInt *CI = cast<ConstantInt>(Addr->getOperand(OpNo));
- SequentialType *InitTy = cast<SequentialType>(Init->getType());
- uint64_t NumElts;
- if (ArrayType *ATy = dyn_cast<ArrayType>(InitTy))
- NumElts = ATy->getNumElements();
- else
- NumElts = InitTy->getVectorNumElements();
- // Break up the array into elements.
- for (uint64_t i = 0, e = NumElts; i != e; ++i)
- Elts.push_back(Init->getAggregateElement(i));
- assert(CI->getZExtValue() < NumElts);
- Elts[CI->getZExtValue()] =
- EvaluateStoreInto(Elts[CI->getZExtValue()], Val, Addr, OpNo+1);
- if (Init->getType()->isArrayTy())
- return ConstantArray::get(cast<ArrayType>(InitTy), Elts);
- return ConstantVector::get(Elts);
- }
- /// CommitValueTo - We have decided that Addr (which satisfies the predicate
- /// isSimpleEnoughPointerToCommit) should get Val as its value. Make it happen.
- static void CommitValueTo(Constant *Val, Constant *Addr) {
- if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Addr)) {
- assert(GV->hasInitializer());
- GV->setInitializer(Val);
- return;
- }
- ConstantExpr *CE = cast<ConstantExpr>(Addr);
- GlobalVariable *GV = cast<GlobalVariable>(CE->getOperand(0));
- GV->setInitializer(EvaluateStoreInto(GV->getInitializer(), Val, CE, 2));
- }
- namespace {
- /// Evaluator - This class evaluates LLVM IR, producing the Constant
- /// representing each SSA instruction. Changes to global variables are stored
- /// in a mapping that can be iterated over after the evaluation is complete.
- /// Once an evaluation call fails, the evaluation object should not be reused.
- class Evaluator {
- public:
- Evaluator(const DataLayout &DL, const TargetLibraryInfo *TLI)
- : DL(DL), TLI(TLI) {
- ValueStack.emplace_back();
- }
- ~Evaluator() {
- for (auto &Tmp : AllocaTmps)
- // If there are still users of the alloca, the program is doing something
- // silly, e.g. storing the address of the alloca somewhere and using it
- // later. Since this is undefined, we'll just make it be null.
- if (!Tmp->use_empty())
- Tmp->replaceAllUsesWith(Constant::getNullValue(Tmp->getType()));
- }
- /// EvaluateFunction - Evaluate a call to function F, returning true if
- /// successful, false if we can't evaluate it. ActualArgs contains the formal
- /// arguments for the function.
- bool EvaluateFunction(Function *F, Constant *&RetVal,
- const SmallVectorImpl<Constant*> &ActualArgs);
- /// EvaluateBlock - Evaluate all instructions in block BB, returning true if
- /// successful, false if we can't evaluate it. NewBB returns the next BB that
- /// control flows into, or null upon return.
- bool EvaluateBlock(BasicBlock::iterator CurInst, BasicBlock *&NextBB);
- Constant *getVal(Value *V) {
- if (Constant *CV = dyn_cast<Constant>(V)) return CV;
- Constant *R = ValueStack.back().lookup(V);
- assert(R && "Reference to an uncomputed value!");
- return R;
- }
- void setVal(Value *V, Constant *C) {
- ValueStack.back()[V] = C;
- }
- const DenseMap<Constant*, Constant*> &getMutatedMemory() const {
- return MutatedMemory;
- }
- const SmallPtrSetImpl<GlobalVariable*> &getInvariants() const {
- return Invariants;
- }
- private:
- Constant *ComputeLoadResult(Constant *P);
- /// ValueStack - As we compute SSA register values, we store their contents
- /// here. The back of the deque contains the current function and the stack
- /// contains the values in the calling frames.
- std::deque<DenseMap<Value*, Constant*>> ValueStack;
- /// CallStack - This is used to detect recursion. In pathological situations
- /// we could hit exponential behavior, but at least there is nothing
- /// unbounded.
- SmallVector<Function*, 4> CallStack;
- /// MutatedMemory - For each store we execute, we update this map. Loads
- /// check this to get the most up-to-date value. If evaluation is successful,
- /// this state is committed to the process.
- DenseMap<Constant*, Constant*> MutatedMemory;
- /// AllocaTmps - To 'execute' an alloca, we create a temporary global variable
- /// to represent its body. This vector is needed so we can delete the
- /// temporary globals when we are done.
- SmallVector<std::unique_ptr<GlobalVariable>, 32> AllocaTmps;
- /// Invariants - These global variables have been marked invariant by the
- /// static constructor.
- SmallPtrSet<GlobalVariable*, 8> Invariants;
- /// SimpleConstants - These are constants we have checked and know to be
- /// simple enough to live in a static initializer of a global.
- SmallPtrSet<Constant*, 8> SimpleConstants;
- const DataLayout &DL;
- const TargetLibraryInfo *TLI;
- };
- } // anonymous namespace
- /// ComputeLoadResult - Return the value that would be computed by a load from
- /// P after the stores reflected by 'memory' have been performed. If we can't
- /// decide, return null.
- Constant *Evaluator::ComputeLoadResult(Constant *P) {
- // If this memory location has been recently stored, use the stored value: it
- // is the most up-to-date.
- DenseMap<Constant*, Constant*>::const_iterator I = MutatedMemory.find(P);
- if (I != MutatedMemory.end()) return I->second;
- // Access it.
- if (GlobalVariable *GV = dyn_cast<GlobalVariable>(P)) {
- if (GV->hasDefinitiveInitializer())
- return GV->getInitializer();
- return nullptr;
- }
- // Handle a constantexpr getelementptr.
- if (ConstantExpr *CE = dyn_cast<ConstantExpr>(P))
- if (CE->getOpcode() == Instruction::GetElementPtr &&
- isa<GlobalVariable>(CE->getOperand(0))) {
- GlobalVariable *GV = cast<GlobalVariable>(CE->getOperand(0));
- if (GV->hasDefinitiveInitializer())
- return ConstantFoldLoadThroughGEPConstantExpr(GV->getInitializer(), CE);
- }
- return nullptr; // don't know how to evaluate.
- }
- /// EvaluateBlock - Evaluate all instructions in block BB, returning true if
- /// successful, false if we can't evaluate it. NewBB returns the next BB that
- /// control flows into, or null upon return.
- bool Evaluator::EvaluateBlock(BasicBlock::iterator CurInst,
- BasicBlock *&NextBB) {
- // This is the main evaluation loop.
- while (1) {
- Constant *InstResult = nullptr;
- DEBUG(dbgs() << "Evaluating Instruction: " << *CurInst << "\n");
- if (StoreInst *SI = dyn_cast<StoreInst>(CurInst)) {
- if (!SI->isSimple()) {
- DEBUG(dbgs() << "Store is not simple! Can not evaluate.\n");
- return false; // no volatile/atomic accesses.
- }
- Constant *Ptr = getVal(SI->getOperand(1));
- if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ptr)) {
- DEBUG(dbgs() << "Folding constant ptr expression: " << *Ptr);
- Ptr = ConstantFoldConstantExpression(CE, DL, TLI);
- DEBUG(dbgs() << "; To: " << *Ptr << "\n");
- }
- if (!isSimpleEnoughPointerToCommit(Ptr)) {
- // If this is too complex for us to commit, reject it.
- DEBUG(dbgs() << "Pointer is too complex for us to evaluate store.");
- return false;
- }
- Constant *Val = getVal(SI->getOperand(0));
- // If this might be too difficult for the backend to handle (e.g. the addr
- // of one global variable divided by another) then we can't commit it.
- if (!isSimpleEnoughValueToCommit(Val, SimpleConstants, DL)) {
- DEBUG(dbgs() << "Store value is too complex to evaluate store. " << *Val
- << "\n");
- return false;
- }
- if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ptr)) {
- if (CE->getOpcode() == Instruction::BitCast) {
- DEBUG(dbgs() << "Attempting to resolve bitcast on constant ptr.\n");
- // If we're evaluating a store through a bitcast, then we need
- // to pull the bitcast off the pointer type and push it onto the
- // stored value.
- Ptr = CE->getOperand(0);
- Type *NewTy = cast<PointerType>(Ptr->getType())->getElementType();
- // In order to push the bitcast onto the stored value, a bitcast
- // from NewTy to Val's type must be legal. If it's not, we can try
- // introspecting NewTy to find a legal conversion.
- while (!Val->getType()->canLosslesslyBitCastTo(NewTy)) {
- // If NewTy is a struct, we can convert the pointer to the struct
- // into a pointer to its first member.
- // FIXME: This could be extended to support arrays as well.
- if (StructType *STy = dyn_cast<StructType>(NewTy)) {
- NewTy = STy->getTypeAtIndex(0U);
- IntegerType *IdxTy = IntegerType::get(NewTy->getContext(), 32);
- Constant *IdxZero = ConstantInt::get(IdxTy, 0, false);
- Constant * const IdxList[] = {IdxZero, IdxZero};
- Ptr = ConstantExpr::getGetElementPtr(nullptr, Ptr, IdxList);
- if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ptr))
- Ptr = ConstantFoldConstantExpression(CE, DL, TLI);
- // If we can't improve the situation by introspecting NewTy,
- // we have to give up.
- } else {
- DEBUG(dbgs() << "Failed to bitcast constant ptr, can not "
- "evaluate.\n");
- return false;
- }
- }
- // If we found compatible types, go ahead and push the bitcast
- // onto the stored value.
- Val = ConstantExpr::getBitCast(Val, NewTy);
- DEBUG(dbgs() << "Evaluated bitcast: " << *Val << "\n");
- }
- }
- MutatedMemory[Ptr] = Val;
- } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(CurInst)) {
- InstResult = ConstantExpr::get(BO->getOpcode(),
- getVal(BO->getOperand(0)),
- getVal(BO->getOperand(1)));
- DEBUG(dbgs() << "Found a BinaryOperator! Simplifying: " << *InstResult
- << "\n");
- } else if (CmpInst *CI = dyn_cast<CmpInst>(CurInst)) {
- InstResult = ConstantExpr::getCompare(CI->getPredicate(),
- getVal(CI->getOperand(0)),
- getVal(CI->getOperand(1)));
- DEBUG(dbgs() << "Found a CmpInst! Simplifying: " << *InstResult
- << "\n");
- } else if (CastInst *CI = dyn_cast<CastInst>(CurInst)) {
- InstResult = ConstantExpr::getCast(CI->getOpcode(),
- getVal(CI->getOperand(0)),
- CI->getType());
- DEBUG(dbgs() << "Found a Cast! Simplifying: " << *InstResult
- << "\n");
- } else if (SelectInst *SI = dyn_cast<SelectInst>(CurInst)) {
- InstResult = ConstantExpr::getSelect(getVal(SI->getOperand(0)),
- getVal(SI->getOperand(1)),
- getVal(SI->getOperand(2)));
- DEBUG(dbgs() << "Found a Select! Simplifying: " << *InstResult
- << "\n");
- } else if (auto *EVI = dyn_cast<ExtractValueInst>(CurInst)) {
- InstResult = ConstantExpr::getExtractValue(
- getVal(EVI->getAggregateOperand()), EVI->getIndices());
- DEBUG(dbgs() << "Found an ExtractValueInst! Simplifying: " << *InstResult
- << "\n");
- } else if (auto *IVI = dyn_cast<InsertValueInst>(CurInst)) {
- InstResult = ConstantExpr::getInsertValue(
- getVal(IVI->getAggregateOperand()),
- getVal(IVI->getInsertedValueOperand()), IVI->getIndices());
- DEBUG(dbgs() << "Found an InsertValueInst! Simplifying: " << *InstResult
- << "\n");
- } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(CurInst)) {
- Constant *P = getVal(GEP->getOperand(0));
- SmallVector<Constant*, 8> GEPOps;
- for (User::op_iterator i = GEP->op_begin() + 1, e = GEP->op_end();
- i != e; ++i)
- GEPOps.push_back(getVal(*i));
- InstResult =
- ConstantExpr::getGetElementPtr(GEP->getSourceElementType(), P, GEPOps,
- cast<GEPOperator>(GEP)->isInBounds());
- DEBUG(dbgs() << "Found a GEP! Simplifying: " << *InstResult
- << "\n");
- } else if (LoadInst *LI = dyn_cast<LoadInst>(CurInst)) {
- if (!LI->isSimple()) {
- DEBUG(dbgs() << "Found a Load! Not a simple load, can not evaluate.\n");
- return false; // no volatile/atomic accesses.
- }
- Constant *Ptr = getVal(LI->getOperand(0));
- if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ptr)) {
- Ptr = ConstantFoldConstantExpression(CE, DL, TLI);
- DEBUG(dbgs() << "Found a constant pointer expression, constant "
- "folding: " << *Ptr << "\n");
- }
- InstResult = ComputeLoadResult(Ptr);
- if (!InstResult) {
- DEBUG(dbgs() << "Failed to compute load result. Can not evaluate load."
- "\n");
- return false; // Could not evaluate load.
- }
- DEBUG(dbgs() << "Evaluated load: " << *InstResult << "\n");
- } else if (AllocaInst *AI = dyn_cast<AllocaInst>(CurInst)) {
- if (AI->isArrayAllocation()) {
- DEBUG(dbgs() << "Found an array alloca. Can not evaluate.\n");
- return false; // Cannot handle array allocs.
- }
- Type *Ty = AI->getType()->getElementType();
- AllocaTmps.push_back(
- make_unique<GlobalVariable>(Ty, false, GlobalValue::InternalLinkage,
- UndefValue::get(Ty), AI->getName()));
- InstResult = AllocaTmps.back().get();
- DEBUG(dbgs() << "Found an alloca. Result: " << *InstResult << "\n");
- } else if (isa<CallInst>(CurInst) || isa<InvokeInst>(CurInst)) {
- CallSite CS(CurInst);
- // Debug info can safely be ignored here.
- if (isa<DbgInfoIntrinsic>(CS.getInstruction())) {
- DEBUG(dbgs() << "Ignoring debug info.\n");
- ++CurInst;
- continue;
- }
- // Cannot handle inline asm.
- if (isa<InlineAsm>(CS.getCalledValue())) {
- DEBUG(dbgs() << "Found inline asm, can not evaluate.\n");
- return false;
- }
- if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(CS.getInstruction())) {
- if (MemSetInst *MSI = dyn_cast<MemSetInst>(II)) {
- if (MSI->isVolatile()) {
- DEBUG(dbgs() << "Can not optimize a volatile memset " <<
- "intrinsic.\n");
- return false;
- }
- Constant *Ptr = getVal(MSI->getDest());
- Constant *Val = getVal(MSI->getValue());
- Constant *DestVal = ComputeLoadResult(getVal(Ptr));
- if (Val->isNullValue() && DestVal && DestVal->isNullValue()) {
- // This memset is a no-op.
- DEBUG(dbgs() << "Ignoring no-op memset.\n");
- ++CurInst;
- continue;
- }
- }
- if (II->getIntrinsicID() == Intrinsic::lifetime_start ||
- II->getIntrinsicID() == Intrinsic::lifetime_end) {
- DEBUG(dbgs() << "Ignoring lifetime intrinsic.\n");
- ++CurInst;
- continue;
- }
- if (II->getIntrinsicID() == Intrinsic::invariant_start) {
- // We don't insert an entry into Values, as it doesn't have a
- // meaningful return value.
- if (!II->use_empty()) {
- DEBUG(dbgs() << "Found unused invariant_start. Can't evaluate.\n");
- return false;
- }
- ConstantInt *Size = cast<ConstantInt>(II->getArgOperand(0));
- Value *PtrArg = getVal(II->getArgOperand(1));
- Value *Ptr = PtrArg->stripPointerCasts();
- if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Ptr)) {
- Type *ElemTy = cast<PointerType>(GV->getType())->getElementType();
- if (!Size->isAllOnesValue() &&
- Size->getValue().getLimitedValue() >=
- DL.getTypeStoreSize(ElemTy)) {
- Invariants.insert(GV);
- DEBUG(dbgs() << "Found a global var that is an invariant: " << *GV
- << "\n");
- } else {
- DEBUG(dbgs() << "Found a global var, but can not treat it as an "
- "invariant.\n");
- }
- }
- // Continue even if we do nothing.
- ++CurInst;
- continue;
- }
- DEBUG(dbgs() << "Unknown intrinsic. Can not evaluate.\n");
- return false;
- }
- // Resolve function pointers.
- Function *Callee = dyn_cast<Function>(getVal(CS.getCalledValue()));
- if (!Callee || Callee->mayBeOverridden()) {
- DEBUG(dbgs() << "Can not resolve function pointer.\n");
- return false; // Cannot resolve.
- }
- SmallVector<Constant*, 8> Formals;
- for (User::op_iterator i = CS.arg_begin(), e = CS.arg_end(); i != e; ++i)
- Formals.push_back(getVal(*i));
- if (Callee->isDeclaration()) {
- // If this is a function we can constant fold, do it.
- if (Constant *C = ConstantFoldCall(Callee, Formals, TLI)) {
- InstResult = C;
- DEBUG(dbgs() << "Constant folded function call. Result: " <<
- *InstResult << "\n");
- } else {
- DEBUG(dbgs() << "Can not constant fold function call.\n");
- return false;
- }
- } else {
- if (Callee->getFunctionType()->isVarArg()) {
- DEBUG(dbgs() << "Can not constant fold vararg function call.\n");
- return false;
- }
- Constant *RetVal = nullptr;
- // Execute the call, if successful, use the return value.
- ValueStack.emplace_back();
- if (!EvaluateFunction(Callee, RetVal, Formals)) {
- DEBUG(dbgs() << "Failed to evaluate function.\n");
- return false;
- }
- ValueStack.pop_back();
- InstResult = RetVal;
- if (InstResult) {
- DEBUG(dbgs() << "Successfully evaluated function. Result: " <<
- InstResult << "\n\n");
- } else {
- DEBUG(dbgs() << "Successfully evaluated function. Result: 0\n\n");
- }
- }
- } else if (isa<TerminatorInst>(CurInst)) {
- DEBUG(dbgs() << "Found a terminator instruction.\n");
- if (BranchInst *BI = dyn_cast<BranchInst>(CurInst)) {
- if (BI->isUnconditional()) {
- NextBB = BI->getSuccessor(0);
- } else {
- ConstantInt *Cond =
- dyn_cast<ConstantInt>(getVal(BI->getCondition()));
- if (!Cond) return false; // Cannot determine.
- NextBB = BI->getSuccessor(!Cond->getZExtValue());
- }
- } else if (SwitchInst *SI = dyn_cast<SwitchInst>(CurInst)) {
- ConstantInt *Val =
- dyn_cast<ConstantInt>(getVal(SI->getCondition()));
- if (!Val) return false; // Cannot determine.
- NextBB = SI->findCaseValue(Val).getCaseSuccessor();
- } else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(CurInst)) {
- Value *Val = getVal(IBI->getAddress())->stripPointerCasts();
- if (BlockAddress *BA = dyn_cast<BlockAddress>(Val))
- NextBB = BA->getBasicBlock();
- else
- return false; // Cannot determine.
- } else if (isa<ReturnInst>(CurInst)) {
- NextBB = nullptr;
- } else {
- // invoke, unwind, resume, unreachable.
- DEBUG(dbgs() << "Can not handle terminator.");
- return false; // Cannot handle this terminator.
- }
- // We succeeded at evaluating this block!
- DEBUG(dbgs() << "Successfully evaluated block.\n");
- return true;
- } else {
- // Did not know how to evaluate this!
- DEBUG(dbgs() << "Failed to evaluate block due to unhandled instruction."
- "\n");
- return false;
- }
- if (!CurInst->use_empty()) {
- if (ConstantExpr *CE = dyn_cast<ConstantExpr>(InstResult))
- InstResult = ConstantFoldConstantExpression(CE, DL, TLI);
- setVal(CurInst, InstResult);
- }
- // If we just processed an invoke, we finished evaluating the block.
- if (InvokeInst *II = dyn_cast<InvokeInst>(CurInst)) {
- NextBB = II->getNormalDest();
- DEBUG(dbgs() << "Found an invoke instruction. Finished Block.\n\n");
- return true;
- }
- // Advance program counter.
- ++CurInst;
- }
- }
- /// EvaluateFunction - Evaluate a call to function F, returning true if
- /// successful, false if we can't evaluate it. ActualArgs contains the formal
- /// arguments for the function.
- bool Evaluator::EvaluateFunction(Function *F, Constant *&RetVal,
- const SmallVectorImpl<Constant*> &ActualArgs) {
- // Check to see if this function is already executing (recursion). If so,
- // bail out. TODO: we might want to accept limited recursion.
- if (std::find(CallStack.begin(), CallStack.end(), F) != CallStack.end())
- return false;
- CallStack.push_back(F);
- // Initialize arguments to the incoming values specified.
- unsigned ArgNo = 0;
- for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end(); AI != E;
- ++AI, ++ArgNo)
- setVal(AI, ActualArgs[ArgNo]);
- // ExecutedBlocks - We only handle non-looping, non-recursive code. As such,
- // we can only evaluate any one basic block at most once. This set keeps
- // track of what we have executed so we can detect recursive cases etc.
- SmallPtrSet<BasicBlock*, 32> ExecutedBlocks;
- // CurBB - The current basic block we're evaluating.
- BasicBlock *CurBB = F->begin();
- BasicBlock::iterator CurInst = CurBB->begin();
- while (1) {
- BasicBlock *NextBB = nullptr; // Initialized to avoid compiler warnings.
- DEBUG(dbgs() << "Trying to evaluate BB: " << *CurBB << "\n");
- if (!EvaluateBlock(CurInst, NextBB))
- return false;
- if (!NextBB) {
- // Successfully running until there's no next block means that we found
- // the return. Fill it the return value and pop the call stack.
- ReturnInst *RI = cast<ReturnInst>(CurBB->getTerminator());
- if (RI->getNumOperands())
- RetVal = getVal(RI->getOperand(0));
- CallStack.pop_back();
- return true;
- }
- // Okay, we succeeded in evaluating this control flow. See if we have
- // executed the new block before. If so, we have a looping function,
- // which we cannot evaluate in reasonable time.
- if (!ExecutedBlocks.insert(NextBB).second)
- return false; // looped!
- // Okay, we have never been in this block before. Check to see if there
- // are any PHI nodes. If so, evaluate them with information about where
- // we came from.
- PHINode *PN = nullptr;
- for (CurInst = NextBB->begin();
- (PN = dyn_cast<PHINode>(CurInst)); ++CurInst)
- setVal(PN, getVal(PN->getIncomingValueForBlock(CurBB)));
- // Advance to the next block.
- CurBB = NextBB;
- }
- }
- /// EvaluateStaticConstructor - Evaluate static constructors in the function, if
- /// we can. Return true if we can, false otherwise.
- static bool EvaluateStaticConstructor(Function *F, const DataLayout &DL,
- const TargetLibraryInfo *TLI) {
- // Call the function.
- Evaluator Eval(DL, TLI);
- Constant *RetValDummy;
- bool EvalSuccess = Eval.EvaluateFunction(F, RetValDummy,
- SmallVector<Constant*, 0>());
- if (EvalSuccess) {
- ++NumCtorsEvaluated;
- // We succeeded at evaluation: commit the result.
- DEBUG(dbgs() << "FULLY EVALUATED GLOBAL CTOR FUNCTION '"
- << F->getName() << "' to " << Eval.getMutatedMemory().size()
- << " stores.\n");
- for (DenseMap<Constant*, Constant*>::const_iterator I =
- Eval.getMutatedMemory().begin(), E = Eval.getMutatedMemory().end();
- I != E; ++I)
- CommitValueTo(I->second, I->first);
- for (GlobalVariable *GV : Eval.getInvariants())
- GV->setConstant(true);
- }
- return EvalSuccess;
- }
- // HLSL Change: changed calling convention to __cdecl
- static int __cdecl compareNames(Constant *const *A, Constant *const *B) {
- return (*A)->getName().compare((*B)->getName());
- }
- static void setUsedInitializer(GlobalVariable &V,
- const SmallPtrSet<GlobalValue *, 8> &Init) {
- if (Init.empty()) {
- V.eraseFromParent();
- return;
- }
- // Type of pointer to the array of pointers.
- PointerType *Int8PtrTy = Type::getInt8PtrTy(V.getContext(), 0);
- SmallVector<llvm::Constant *, 8> UsedArray;
- for (GlobalValue *GV : Init) {
- Constant *Cast
- = ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, Int8PtrTy);
- UsedArray.push_back(Cast);
- }
- // Sort to get deterministic order.
- array_pod_sort(UsedArray.begin(), UsedArray.end(), compareNames);
- ArrayType *ATy = ArrayType::get(Int8PtrTy, UsedArray.size());
- Module *M = V.getParent();
- V.removeFromParent();
- GlobalVariable *NV =
- new GlobalVariable(*M, ATy, false, llvm::GlobalValue::AppendingLinkage,
- llvm::ConstantArray::get(ATy, UsedArray), "");
- NV->takeName(&V);
- NV->setSection("llvm.metadata");
- delete &V;
- }
- namespace {
- /// \brief An easy to access representation of llvm.used and llvm.compiler.used.
- class LLVMUsed {
- SmallPtrSet<GlobalValue *, 8> Used;
- SmallPtrSet<GlobalValue *, 8> CompilerUsed;
- GlobalVariable *UsedV;
- GlobalVariable *CompilerUsedV;
- public:
- LLVMUsed(Module &M) {
- UsedV = collectUsedGlobalVariables(M, Used, false);
- CompilerUsedV = collectUsedGlobalVariables(M, CompilerUsed, true);
- }
- typedef SmallPtrSet<GlobalValue *, 8>::iterator iterator;
- typedef iterator_range<iterator> used_iterator_range;
- iterator usedBegin() { return Used.begin(); }
- iterator usedEnd() { return Used.end(); }
- used_iterator_range used() {
- return used_iterator_range(usedBegin(), usedEnd());
- }
- iterator compilerUsedBegin() { return CompilerUsed.begin(); }
- iterator compilerUsedEnd() { return CompilerUsed.end(); }
- used_iterator_range compilerUsed() {
- return used_iterator_range(compilerUsedBegin(), compilerUsedEnd());
- }
- bool usedCount(GlobalValue *GV) const { return Used.count(GV); }
- bool compilerUsedCount(GlobalValue *GV) const {
- return CompilerUsed.count(GV);
- }
- bool usedErase(GlobalValue *GV) { return Used.erase(GV); }
- bool compilerUsedErase(GlobalValue *GV) { return CompilerUsed.erase(GV); }
- bool usedInsert(GlobalValue *GV) { return Used.insert(GV).second; }
- bool compilerUsedInsert(GlobalValue *GV) {
- return CompilerUsed.insert(GV).second;
- }
- void syncVariablesAndSets() {
- if (UsedV)
- setUsedInitializer(*UsedV, Used);
- if (CompilerUsedV)
- setUsedInitializer(*CompilerUsedV, CompilerUsed);
- }
- };
- }
- static bool hasUseOtherThanLLVMUsed(GlobalAlias &GA, const LLVMUsed &U) {
- if (GA.use_empty()) // No use at all.
- return false;
- assert((!U.usedCount(&GA) || !U.compilerUsedCount(&GA)) &&
- "We should have removed the duplicated "
- "element from llvm.compiler.used");
- if (!GA.hasOneUse())
- // Strictly more than one use. So at least one is not in llvm.used and
- // llvm.compiler.used.
- return true;
- // Exactly one use. Check if it is in llvm.used or llvm.compiler.used.
- return !U.usedCount(&GA) && !U.compilerUsedCount(&GA);
- }
- static bool hasMoreThanOneUseOtherThanLLVMUsed(GlobalValue &V,
- const LLVMUsed &U) {
- unsigned N = 2;
- assert((!U.usedCount(&V) || !U.compilerUsedCount(&V)) &&
- "We should have removed the duplicated "
- "element from llvm.compiler.used");
- if (U.usedCount(&V) || U.compilerUsedCount(&V))
- ++N;
- return V.hasNUsesOrMore(N);
- }
- static bool mayHaveOtherReferences(GlobalAlias &GA, const LLVMUsed &U) {
- if (!GA.hasLocalLinkage())
- return true;
- return U.usedCount(&GA) || U.compilerUsedCount(&GA);
- }
- static bool hasUsesToReplace(GlobalAlias &GA, const LLVMUsed &U,
- bool &RenameTarget) {
- RenameTarget = false;
- bool Ret = false;
- if (hasUseOtherThanLLVMUsed(GA, U))
- Ret = true;
- // If the alias is externally visible, we may still be able to simplify it.
- if (!mayHaveOtherReferences(GA, U))
- return Ret;
- // If the aliasee has internal linkage, give it the name and linkage
- // of the alias, and delete the alias. This turns:
- // define internal ... @f(...)
- // @a = alias ... @f
- // into:
- // define ... @a(...)
- Constant *Aliasee = GA.getAliasee();
- GlobalValue *Target = cast<GlobalValue>(Aliasee->stripPointerCasts());
- if (!Target->hasLocalLinkage())
- return Ret;
- // Do not perform the transform if multiple aliases potentially target the
- // aliasee. This check also ensures that it is safe to replace the section
- // and other attributes of the aliasee with those of the alias.
- if (hasMoreThanOneUseOtherThanLLVMUsed(*Target, U))
- return Ret;
- RenameTarget = true;
- return true;
- }
- bool GlobalOpt::OptimizeGlobalAliases(Module &M) {
- bool Changed = false;
- LLVMUsed Used(M);
- for (GlobalValue *GV : Used.used())
- Used.compilerUsedErase(GV);
- for (Module::alias_iterator I = M.alias_begin(), E = M.alias_end();
- I != E;) {
- Module::alias_iterator J = I++;
- // Aliases without names cannot be referenced outside this module.
- if (!J->hasName() && !J->isDeclaration() && !J->hasLocalLinkage())
- J->setLinkage(GlobalValue::InternalLinkage);
- // If the aliasee may change at link time, nothing can be done - bail out.
- if (J->mayBeOverridden())
- continue;
- Constant *Aliasee = J->getAliasee();
- GlobalValue *Target = dyn_cast<GlobalValue>(Aliasee->stripPointerCasts());
- // We can't trivially replace the alias with the aliasee if the aliasee is
- // non-trivial in some way.
- // TODO: Try to handle non-zero GEPs of local aliasees.
- if (!Target)
- continue;
- Target->removeDeadConstantUsers();
- // Make all users of the alias use the aliasee instead.
- bool RenameTarget;
- if (!hasUsesToReplace(*J, Used, RenameTarget))
- continue;
- J->replaceAllUsesWith(ConstantExpr::getBitCast(Aliasee, J->getType()));
- ++NumAliasesResolved;
- Changed = true;
- if (RenameTarget) {
- // Give the aliasee the name, linkage and other attributes of the alias.
- Target->takeName(J);
- Target->setLinkage(J->getLinkage());
- Target->setVisibility(J->getVisibility());
- Target->setDLLStorageClass(J->getDLLStorageClass());
- if (Used.usedErase(J))
- Used.usedInsert(Target);
- if (Used.compilerUsedErase(J))
- Used.compilerUsedInsert(Target);
- } else if (mayHaveOtherReferences(*J, Used))
- continue;
- // Delete the alias.
- M.getAliasList().erase(J);
- ++NumAliasesRemoved;
- Changed = true;
- }
- Used.syncVariablesAndSets();
- return Changed;
- }
- static Function *FindCXAAtExit(Module &M, TargetLibraryInfo *TLI) {
- if (!TLI->has(LibFunc::cxa_atexit))
- return nullptr;
- Function *Fn = M.getFunction(TLI->getName(LibFunc::cxa_atexit));
- if (!Fn)
- return nullptr;
- FunctionType *FTy = Fn->getFunctionType();
- // Checking that the function has the right return type, the right number of
- // parameters and that they all have pointer types should be enough.
- if (!FTy->getReturnType()->isIntegerTy() ||
- FTy->getNumParams() != 3 ||
- !FTy->getParamType(0)->isPointerTy() ||
- !FTy->getParamType(1)->isPointerTy() ||
- !FTy->getParamType(2)->isPointerTy())
- return nullptr;
- return Fn;
- }
- /// cxxDtorIsEmpty - Returns whether the given function is an empty C++
- /// destructor and can therefore be eliminated.
- /// Note that we assume that other optimization passes have already simplified
- /// the code so we only look for a function with a single basic block, where
- /// the only allowed instructions are 'ret', 'call' to an empty C++ dtor and
- /// other side-effect free instructions.
- static bool cxxDtorIsEmpty(const Function &Fn,
- SmallPtrSet<const Function *, 8> &CalledFunctions) {
- // FIXME: We could eliminate C++ destructors if they're readonly/readnone and
- // nounwind, but that doesn't seem worth doing.
- if (Fn.isDeclaration())
- return false;
- if (++Fn.begin() != Fn.end())
- return false;
- const BasicBlock &EntryBlock = Fn.getEntryBlock();
- for (BasicBlock::const_iterator I = EntryBlock.begin(), E = EntryBlock.end();
- I != E; ++I) {
- if (const CallInst *CI = dyn_cast<CallInst>(I)) {
- // Ignore debug intrinsics.
- if (isa<DbgInfoIntrinsic>(CI))
- continue;
- const Function *CalledFn = CI->getCalledFunction();
- if (!CalledFn)
- return false;
- SmallPtrSet<const Function *, 8> NewCalledFunctions(CalledFunctions);
- // Don't treat recursive functions as empty.
- if (!NewCalledFunctions.insert(CalledFn).second)
- return false;
- if (!cxxDtorIsEmpty(*CalledFn, NewCalledFunctions))
- return false;
- } else if (isa<ReturnInst>(*I))
- return true; // We're done.
- else if (I->mayHaveSideEffects())
- return false; // Destructor with side effects, bail.
- }
- return false;
- }
- bool GlobalOpt::OptimizeEmptyGlobalCXXDtors(Function *CXAAtExitFn) {
- /// Itanium C++ ABI p3.3.5:
- ///
- /// After constructing a global (or local static) object, that will require
- /// destruction on exit, a termination function is registered as follows:
- ///
- /// extern "C" int __cxa_atexit ( void (*f)(void *), void *p, void *d );
- ///
- /// This registration, e.g. __cxa_atexit(f,p,d), is intended to cause the
- /// call f(p) when DSO d is unloaded, before all such termination calls
- /// registered before this one. It returns zero if registration is
- /// successful, nonzero on failure.
- // This pass will look for calls to __cxa_atexit where the function is trivial
- // and remove them.
- bool Changed = false;
- for (auto I = CXAAtExitFn->user_begin(), E = CXAAtExitFn->user_end();
- I != E;) {
- // We're only interested in calls. Theoretically, we could handle invoke
- // instructions as well, but neither llvm-gcc nor clang generate invokes
- // to __cxa_atexit.
- CallInst *CI = dyn_cast<CallInst>(*I++);
- if (!CI)
- continue;
- Function *DtorFn =
- dyn_cast<Function>(CI->getArgOperand(0)->stripPointerCasts());
- if (!DtorFn)
- continue;
- SmallPtrSet<const Function *, 8> CalledFunctions;
- if (!cxxDtorIsEmpty(*DtorFn, CalledFunctions))
- continue;
- // Just remove the call.
- CI->replaceAllUsesWith(Constant::getNullValue(CI->getType()));
- CI->eraseFromParent();
- ++NumCXXDtorsRemoved;
- Changed |= true;
- }
- return Changed;
- }
- bool GlobalOpt::runOnModule(Module &M) {
- bool Changed = false;
- auto &DL = M.getDataLayout();
- TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
- bool LocalChange = true;
- while (LocalChange) {
- LocalChange = false;
- NotDiscardableComdats.clear();
- for (const GlobalVariable &GV : M.globals())
- if (const Comdat *C = GV.getComdat())
- if (!GV.isDiscardableIfUnused() || !GV.use_empty())
- NotDiscardableComdats.insert(C);
- for (Function &F : M)
- if (const Comdat *C = F.getComdat())
- if (!F.isDefTriviallyDead())
- NotDiscardableComdats.insert(C);
- for (GlobalAlias &GA : M.aliases())
- if (const Comdat *C = GA.getComdat())
- if (!GA.isDiscardableIfUnused() || !GA.use_empty())
- NotDiscardableComdats.insert(C);
- // Delete functions that are trivially dead, ccc -> fastcc
- LocalChange |= OptimizeFunctions(M);
- // Optimize global_ctors list.
- LocalChange |= optimizeGlobalCtorsList(M, [&](Function *F) {
- return EvaluateStaticConstructor(F, DL, TLI);
- });
- // Optimize non-address-taken globals.
- LocalChange |= OptimizeGlobalVars(M);
- // Resolve aliases, when possible.
- LocalChange |= OptimizeGlobalAliases(M);
- // Try to remove trivial global destructors if they are not removed
- // already.
- Function *CXAAtExitFn = FindCXAAtExit(M, TLI);
- if (CXAAtExitFn)
- LocalChange |= OptimizeEmptyGlobalCXXDtors(CXAAtExitFn);
- Changed |= LocalChange;
- }
- // TODO: Move all global ctors functions to the end of the module for code
- // layout.
- return Changed;
- }
|