1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845 |
- //===- InstCombineAndOrXor.cpp --------------------------------------------===//
- //
- // The LLVM Compiler Infrastructure
- //
- // This file is distributed under the University of Illinois Open Source
- // License. See LICENSE.TXT for details.
- //
- //===----------------------------------------------------------------------===//
- //
- // This file implements the visitAnd, visitOr, and visitXor functions.
- //
- //===----------------------------------------------------------------------===//
- #include "InstCombineInternal.h"
- #include "llvm/Analysis/InstructionSimplify.h"
- #include "llvm/IR/ConstantRange.h"
- #include "llvm/IR/Intrinsics.h"
- #include "llvm/IR/PatternMatch.h"
- #include "llvm/Transforms/Utils/CmpInstAnalysis.h"
- using namespace llvm;
- using namespace PatternMatch;
- #define DEBUG_TYPE "instcombine"
- static inline Value *dyn_castNotVal(Value *V) {
- // If this is not(not(x)) don't return that this is a not: we want the two
- // not's to be folded first.
- if (BinaryOperator::isNot(V)) {
- Value *Operand = BinaryOperator::getNotArgument(V);
- if (!IsFreeToInvert(Operand, Operand->hasOneUse()))
- return Operand;
- }
- // Constants can be considered to be not'ed values...
- if (ConstantInt *C = dyn_cast<ConstantInt>(V))
- return ConstantInt::get(C->getType(), ~C->getValue());
- return nullptr;
- }
- /// getFCmpCode - Similar to getICmpCode but for FCmpInst. This encodes a fcmp
- /// predicate into a three bit mask. It also returns whether it is an ordered
- /// predicate by reference.
- static unsigned getFCmpCode(FCmpInst::Predicate CC, bool &isOrdered) {
- isOrdered = false;
- switch (CC) {
- case FCmpInst::FCMP_ORD: isOrdered = true; return 0; // 000
- case FCmpInst::FCMP_UNO: return 0; // 000
- case FCmpInst::FCMP_OGT: isOrdered = true; return 1; // 001
- case FCmpInst::FCMP_UGT: return 1; // 001
- case FCmpInst::FCMP_OEQ: isOrdered = true; return 2; // 010
- case FCmpInst::FCMP_UEQ: return 2; // 010
- case FCmpInst::FCMP_OGE: isOrdered = true; return 3; // 011
- case FCmpInst::FCMP_UGE: return 3; // 011
- case FCmpInst::FCMP_OLT: isOrdered = true; return 4; // 100
- case FCmpInst::FCMP_ULT: return 4; // 100
- case FCmpInst::FCMP_ONE: isOrdered = true; return 5; // 101
- case FCmpInst::FCMP_UNE: return 5; // 101
- case FCmpInst::FCMP_OLE: isOrdered = true; return 6; // 110
- case FCmpInst::FCMP_ULE: return 6; // 110
- // True -> 7
- default:
- // Not expecting FCMP_FALSE and FCMP_TRUE;
- llvm_unreachable("Unexpected FCmp predicate!");
- }
- }
- /// getNewICmpValue - This is the complement of getICmpCode, which turns an
- /// opcode and two operands into either a constant true or false, or a brand
- /// new ICmp instruction. The sign is passed in to determine which kind
- /// of predicate to use in the new icmp instruction.
- static Value *getNewICmpValue(bool Sign, unsigned Code, Value *LHS, Value *RHS,
- InstCombiner::BuilderTy *Builder) {
- ICmpInst::Predicate NewPred;
- if (Value *NewConstant = getICmpValue(Sign, Code, LHS, RHS, NewPred))
- return NewConstant;
- return Builder->CreateICmp(NewPred, LHS, RHS);
- }
- /// getFCmpValue - This is the complement of getFCmpCode, which turns an
- /// opcode and two operands into either a FCmp instruction. isordered is passed
- /// in to determine which kind of predicate to use in the new fcmp instruction.
- static Value *getFCmpValue(bool isordered, unsigned code,
- Value *LHS, Value *RHS,
- InstCombiner::BuilderTy *Builder) {
- CmpInst::Predicate Pred;
- switch (code) {
- default: llvm_unreachable("Illegal FCmp code!");
- case 0: Pred = isordered ? FCmpInst::FCMP_ORD : FCmpInst::FCMP_UNO; break;
- case 1: Pred = isordered ? FCmpInst::FCMP_OGT : FCmpInst::FCMP_UGT; break;
- case 2: Pred = isordered ? FCmpInst::FCMP_OEQ : FCmpInst::FCMP_UEQ; break;
- case 3: Pred = isordered ? FCmpInst::FCMP_OGE : FCmpInst::FCMP_UGE; break;
- case 4: Pred = isordered ? FCmpInst::FCMP_OLT : FCmpInst::FCMP_ULT; break;
- case 5: Pred = isordered ? FCmpInst::FCMP_ONE : FCmpInst::FCMP_UNE; break;
- case 6: Pred = isordered ? FCmpInst::FCMP_OLE : FCmpInst::FCMP_ULE; break;
- case 7:
- if (!isordered)
- return ConstantInt::get(CmpInst::makeCmpResultType(LHS->getType()), 1);
- Pred = FCmpInst::FCMP_ORD; break;
- }
- return Builder->CreateFCmp(Pred, LHS, RHS);
- }
- /// \brief Transform BITWISE_OP(BSWAP(A),BSWAP(B)) to BSWAP(BITWISE_OP(A, B))
- /// \param I Binary operator to transform.
- /// \return Pointer to node that must replace the original binary operator, or
- /// null pointer if no transformation was made.
- Value *InstCombiner::SimplifyBSwap(BinaryOperator &I) {
- IntegerType *ITy = dyn_cast<IntegerType>(I.getType());
- // Can't do vectors.
- if (I.getType()->isVectorTy()) return nullptr;
- // Can only do bitwise ops.
- unsigned Op = I.getOpcode();
- if (Op != Instruction::And && Op != Instruction::Or &&
- Op != Instruction::Xor)
- return nullptr;
- Value *OldLHS = I.getOperand(0);
- Value *OldRHS = I.getOperand(1);
- ConstantInt *ConstLHS = dyn_cast<ConstantInt>(OldLHS);
- ConstantInt *ConstRHS = dyn_cast<ConstantInt>(OldRHS);
- IntrinsicInst *IntrLHS = dyn_cast<IntrinsicInst>(OldLHS);
- IntrinsicInst *IntrRHS = dyn_cast<IntrinsicInst>(OldRHS);
- bool IsBswapLHS = (IntrLHS && IntrLHS->getIntrinsicID() == Intrinsic::bswap);
- bool IsBswapRHS = (IntrRHS && IntrRHS->getIntrinsicID() == Intrinsic::bswap);
- if (!IsBswapLHS && !IsBswapRHS)
- return nullptr;
- if (!IsBswapLHS && !ConstLHS)
- return nullptr;
- if (!IsBswapRHS && !ConstRHS)
- return nullptr;
- /// OP( BSWAP(x), BSWAP(y) ) -> BSWAP( OP(x, y) )
- /// OP( BSWAP(x), CONSTANT ) -> BSWAP( OP(x, BSWAP(CONSTANT) ) )
- Value *NewLHS = IsBswapLHS ? IntrLHS->getOperand(0) :
- Builder->getInt(ConstLHS->getValue().byteSwap());
- Value *NewRHS = IsBswapRHS ? IntrRHS->getOperand(0) :
- Builder->getInt(ConstRHS->getValue().byteSwap());
- Value *BinOp = nullptr;
- if (Op == Instruction::And)
- BinOp = Builder->CreateAnd(NewLHS, NewRHS);
- else if (Op == Instruction::Or)
- BinOp = Builder->CreateOr(NewLHS, NewRHS);
- else //if (Op == Instruction::Xor)
- BinOp = Builder->CreateXor(NewLHS, NewRHS);
- Module *M = I.getParent()->getParent()->getParent();
- Function *F = Intrinsic::getDeclaration(M, Intrinsic::bswap, ITy);
- return Builder->CreateCall(F, BinOp);
- }
- // OptAndOp - This handles expressions of the form ((val OP C1) & C2). Where
- // the Op parameter is 'OP', OpRHS is 'C1', and AndRHS is 'C2'. Op is
- // guaranteed to be a binary operator.
- Instruction *InstCombiner::OptAndOp(Instruction *Op,
- ConstantInt *OpRHS,
- ConstantInt *AndRHS,
- BinaryOperator &TheAnd) {
- Value *X = Op->getOperand(0);
- Constant *Together = nullptr;
- if (!Op->isShift())
- Together = ConstantExpr::getAnd(AndRHS, OpRHS);
- switch (Op->getOpcode()) {
- case Instruction::Xor:
- if (Op->hasOneUse()) {
- // (X ^ C1) & C2 --> (X & C2) ^ (C1&C2)
- Value *And = Builder->CreateAnd(X, AndRHS);
- And->takeName(Op);
- return BinaryOperator::CreateXor(And, Together);
- }
- break;
- case Instruction::Or:
- if (Op->hasOneUse()){
- if (Together != OpRHS) {
- // (X | C1) & C2 --> (X | (C1&C2)) & C2
- Value *Or = Builder->CreateOr(X, Together);
- Or->takeName(Op);
- return BinaryOperator::CreateAnd(Or, AndRHS);
- }
- ConstantInt *TogetherCI = dyn_cast<ConstantInt>(Together);
- if (TogetherCI && !TogetherCI->isZero()){
- // (X | C1) & C2 --> (X & (C2^(C1&C2))) | C1
- // NOTE: This reduces the number of bits set in the & mask, which
- // can expose opportunities for store narrowing.
- Together = ConstantExpr::getXor(AndRHS, Together);
- Value *And = Builder->CreateAnd(X, Together);
- And->takeName(Op);
- return BinaryOperator::CreateOr(And, OpRHS);
- }
- }
- break;
- case Instruction::Add:
- if (Op->hasOneUse()) {
- // Adding a one to a single bit bit-field should be turned into an XOR
- // of the bit. First thing to check is to see if this AND is with a
- // single bit constant.
- const APInt &AndRHSV = AndRHS->getValue();
- // If there is only one bit set.
- if (AndRHSV.isPowerOf2()) {
- // Ok, at this point, we know that we are masking the result of the
- // ADD down to exactly one bit. If the constant we are adding has
- // no bits set below this bit, then we can eliminate the ADD.
- const APInt& AddRHS = OpRHS->getValue();
- // Check to see if any bits below the one bit set in AndRHSV are set.
- if ((AddRHS & (AndRHSV-1)) == 0) {
- // If not, the only thing that can effect the output of the AND is
- // the bit specified by AndRHSV. If that bit is set, the effect of
- // the XOR is to toggle the bit. If it is clear, then the ADD has
- // no effect.
- if ((AddRHS & AndRHSV) == 0) { // Bit is not set, noop
- TheAnd.setOperand(0, X);
- return &TheAnd;
- } else {
- // Pull the XOR out of the AND.
- Value *NewAnd = Builder->CreateAnd(X, AndRHS);
- NewAnd->takeName(Op);
- return BinaryOperator::CreateXor(NewAnd, AndRHS);
- }
- }
- }
- }
- break;
- case Instruction::Shl: {
- // We know that the AND will not produce any of the bits shifted in, so if
- // the anded constant includes them, clear them now!
- //
- uint32_t BitWidth = AndRHS->getType()->getBitWidth();
- uint32_t OpRHSVal = OpRHS->getLimitedValue(BitWidth);
- APInt ShlMask(APInt::getHighBitsSet(BitWidth, BitWidth-OpRHSVal));
- ConstantInt *CI = Builder->getInt(AndRHS->getValue() & ShlMask);
- if (CI->getValue() == ShlMask)
- // Masking out bits that the shift already masks.
- return ReplaceInstUsesWith(TheAnd, Op); // No need for the and.
- if (CI != AndRHS) { // Reducing bits set in and.
- TheAnd.setOperand(1, CI);
- return &TheAnd;
- }
- break;
- }
- case Instruction::LShr: {
- // We know that the AND will not produce any of the bits shifted in, so if
- // the anded constant includes them, clear them now! This only applies to
- // unsigned shifts, because a signed shr may bring in set bits!
- //
- uint32_t BitWidth = AndRHS->getType()->getBitWidth();
- uint32_t OpRHSVal = OpRHS->getLimitedValue(BitWidth);
- APInt ShrMask(APInt::getLowBitsSet(BitWidth, BitWidth - OpRHSVal));
- ConstantInt *CI = Builder->getInt(AndRHS->getValue() & ShrMask);
- if (CI->getValue() == ShrMask)
- // Masking out bits that the shift already masks.
- return ReplaceInstUsesWith(TheAnd, Op);
- if (CI != AndRHS) {
- TheAnd.setOperand(1, CI); // Reduce bits set in and cst.
- return &TheAnd;
- }
- break;
- }
- case Instruction::AShr:
- // Signed shr.
- // See if this is shifting in some sign extension, then masking it out
- // with an and.
- if (Op->hasOneUse()) {
- uint32_t BitWidth = AndRHS->getType()->getBitWidth();
- uint32_t OpRHSVal = OpRHS->getLimitedValue(BitWidth);
- APInt ShrMask(APInt::getLowBitsSet(BitWidth, BitWidth - OpRHSVal));
- Constant *C = Builder->getInt(AndRHS->getValue() & ShrMask);
- if (C == AndRHS) { // Masking out bits shifted in.
- // (Val ashr C1) & C2 -> (Val lshr C1) & C2
- // Make the argument unsigned.
- Value *ShVal = Op->getOperand(0);
- ShVal = Builder->CreateLShr(ShVal, OpRHS, Op->getName());
- return BinaryOperator::CreateAnd(ShVal, AndRHS, TheAnd.getName());
- }
- }
- break;
- }
- return nullptr;
- }
- /// Emit a computation of: (V >= Lo && V < Hi) if Inside is true, otherwise
- /// (V < Lo || V >= Hi). In practice, we emit the more efficient
- /// (V-Lo) \<u Hi-Lo. This method expects that Lo <= Hi. isSigned indicates
- /// whether to treat the V, Lo and HI as signed or not. IB is the location to
- /// insert new instructions.
- Value *InstCombiner::InsertRangeTest(Value *V, Constant *Lo, Constant *Hi,
- bool isSigned, bool Inside) {
- assert(cast<ConstantInt>(ConstantExpr::getICmp((isSigned ?
- ICmpInst::ICMP_SLE:ICmpInst::ICMP_ULE), Lo, Hi))->getZExtValue() &&
- "Lo is not <= Hi in range emission code!");
- if (Inside) {
- if (Lo == Hi) // Trivially false.
- return Builder->getFalse();
- // V >= Min && V < Hi --> V < Hi
- if (cast<ConstantInt>(Lo)->isMinValue(isSigned)) {
- ICmpInst::Predicate pred = (isSigned ?
- ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT);
- return Builder->CreateICmp(pred, V, Hi);
- }
- // Emit V-Lo <u Hi-Lo
- Constant *NegLo = ConstantExpr::getNeg(Lo);
- Value *Add = Builder->CreateAdd(V, NegLo, V->getName()+".off");
- Constant *UpperBound = ConstantExpr::getAdd(NegLo, Hi);
- return Builder->CreateICmpULT(Add, UpperBound);
- }
- if (Lo == Hi) // Trivially true.
- return Builder->getTrue();
- // V < Min || V >= Hi -> V > Hi-1
- Hi = SubOne(cast<ConstantInt>(Hi));
- if (cast<ConstantInt>(Lo)->isMinValue(isSigned)) {
- ICmpInst::Predicate pred = (isSigned ?
- ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT);
- return Builder->CreateICmp(pred, V, Hi);
- }
- // Emit V-Lo >u Hi-1-Lo
- // Note that Hi has already had one subtracted from it, above.
- ConstantInt *NegLo = cast<ConstantInt>(ConstantExpr::getNeg(Lo));
- Value *Add = Builder->CreateAdd(V, NegLo, V->getName()+".off");
- Constant *LowerBound = ConstantExpr::getAdd(NegLo, Hi);
- return Builder->CreateICmpUGT(Add, LowerBound);
- }
- // isRunOfOnes - Returns true iff Val consists of one contiguous run of 1s with
- // any number of 0s on either side. The 1s are allowed to wrap from LSB to
- // MSB, so 0x000FFF0, 0x0000FFFF, and 0xFF0000FF are all runs. 0x0F0F0000 is
- // not, since all 1s are not contiguous.
- static bool isRunOfOnes(ConstantInt *Val, uint32_t &MB, uint32_t &ME) {
- const APInt& V = Val->getValue();
- uint32_t BitWidth = Val->getType()->getBitWidth();
- if (!APIntOps::isShiftedMask(BitWidth, V)) return false;
- // look for the first zero bit after the run of ones
- MB = BitWidth - ((V - 1) ^ V).countLeadingZeros();
- // look for the first non-zero bit
- ME = V.getActiveBits();
- return true;
- }
- /// FoldLogicalPlusAnd - This is part of an expression (LHS +/- RHS) & Mask,
- /// where isSub determines whether the operator is a sub. If we can fold one of
- /// the following xforms:
- ///
- /// ((A & N) +/- B) & Mask -> (A +/- B) & Mask iff N&Mask == Mask
- /// ((A | N) +/- B) & Mask -> (A +/- B) & Mask iff N&Mask == 0
- /// ((A ^ N) +/- B) & Mask -> (A +/- B) & Mask iff N&Mask == 0
- ///
- /// return (A +/- B).
- ///
- Value *InstCombiner::FoldLogicalPlusAnd(Value *LHS, Value *RHS,
- ConstantInt *Mask, bool isSub,
- Instruction &I) {
- Instruction *LHSI = dyn_cast<Instruction>(LHS);
- if (!LHSI || LHSI->getNumOperands() != 2 ||
- !isa<ConstantInt>(LHSI->getOperand(1))) return nullptr;
- ConstantInt *N = cast<ConstantInt>(LHSI->getOperand(1));
- switch (LHSI->getOpcode()) {
- default: return nullptr;
- case Instruction::And:
- if (ConstantExpr::getAnd(N, Mask) == Mask) {
- // If the AndRHS is a power of two minus one (0+1+), this is simple.
- if ((Mask->getValue().countLeadingZeros() +
- Mask->getValue().countPopulation()) ==
- Mask->getValue().getBitWidth())
- break;
- // Otherwise, if Mask is 0+1+0+, and if B is known to have the low 0+
- // part, we don't need any explicit masks to take them out of A. If that
- // is all N is, ignore it.
- uint32_t MB = 0, ME = 0;
- if (isRunOfOnes(Mask, MB, ME)) { // begin/end bit of run, inclusive
- uint32_t BitWidth = cast<IntegerType>(RHS->getType())->getBitWidth();
- APInt Mask(APInt::getLowBitsSet(BitWidth, MB-1));
- if (MaskedValueIsZero(RHS, Mask, 0, &I))
- break;
- }
- }
- return nullptr;
- case Instruction::Or:
- case Instruction::Xor:
- // If the AndRHS is a power of two minus one (0+1+), and N&Mask == 0
- if ((Mask->getValue().countLeadingZeros() +
- Mask->getValue().countPopulation()) == Mask->getValue().getBitWidth()
- && ConstantExpr::getAnd(N, Mask)->isNullValue())
- break;
- return nullptr;
- }
- if (isSub)
- return Builder->CreateSub(LHSI->getOperand(0), RHS, "fold");
- return Builder->CreateAdd(LHSI->getOperand(0), RHS, "fold");
- }
- /// enum for classifying (icmp eq (A & B), C) and (icmp ne (A & B), C)
- /// One of A and B is considered the mask, the other the value. This is
- /// described as the "AMask" or "BMask" part of the enum. If the enum
- /// contains only "Mask", then both A and B can be considered masks.
- /// If A is the mask, then it was proven, that (A & C) == C. This
- /// is trivial if C == A, or C == 0. If both A and C are constants, this
- /// proof is also easy.
- /// For the following explanations we assume that A is the mask.
- /// The part "AllOnes" declares, that the comparison is true only
- /// if (A & B) == A, or all bits of A are set in B.
- /// Example: (icmp eq (A & 3), 3) -> FoldMskICmp_AMask_AllOnes
- /// The part "AllZeroes" declares, that the comparison is true only
- /// if (A & B) == 0, or all bits of A are cleared in B.
- /// Example: (icmp eq (A & 3), 0) -> FoldMskICmp_Mask_AllZeroes
- /// The part "Mixed" declares, that (A & B) == C and C might or might not
- /// contain any number of one bits and zero bits.
- /// Example: (icmp eq (A & 3), 1) -> FoldMskICmp_AMask_Mixed
- /// The Part "Not" means, that in above descriptions "==" should be replaced
- /// by "!=".
- /// Example: (icmp ne (A & 3), 3) -> FoldMskICmp_AMask_NotAllOnes
- /// If the mask A contains a single bit, then the following is equivalent:
- /// (icmp eq (A & B), A) equals (icmp ne (A & B), 0)
- /// (icmp ne (A & B), A) equals (icmp eq (A & B), 0)
- enum MaskedICmpType {
- FoldMskICmp_AMask_AllOnes = 1,
- FoldMskICmp_AMask_NotAllOnes = 2,
- FoldMskICmp_BMask_AllOnes = 4,
- FoldMskICmp_BMask_NotAllOnes = 8,
- FoldMskICmp_Mask_AllZeroes = 16,
- FoldMskICmp_Mask_NotAllZeroes = 32,
- FoldMskICmp_AMask_Mixed = 64,
- FoldMskICmp_AMask_NotMixed = 128,
- FoldMskICmp_BMask_Mixed = 256,
- FoldMskICmp_BMask_NotMixed = 512
- };
- /// return the set of pattern classes (from MaskedICmpType)
- /// that (icmp SCC (A & B), C) satisfies
- static unsigned getTypeOfMaskedICmp(Value* A, Value* B, Value* C,
- ICmpInst::Predicate SCC)
- {
- ConstantInt *ACst = dyn_cast<ConstantInt>(A);
- ConstantInt *BCst = dyn_cast<ConstantInt>(B);
- ConstantInt *CCst = dyn_cast<ConstantInt>(C);
- bool icmp_eq = (SCC == ICmpInst::ICMP_EQ);
- bool icmp_abit = (ACst && !ACst->isZero() &&
- ACst->getValue().isPowerOf2());
- bool icmp_bbit = (BCst && !BCst->isZero() &&
- BCst->getValue().isPowerOf2());
- unsigned result = 0;
- if (CCst && CCst->isZero()) {
- // if C is zero, then both A and B qualify as mask
- result |= (icmp_eq ? (FoldMskICmp_Mask_AllZeroes |
- FoldMskICmp_Mask_AllZeroes |
- FoldMskICmp_AMask_Mixed |
- FoldMskICmp_BMask_Mixed)
- : (FoldMskICmp_Mask_NotAllZeroes |
- FoldMskICmp_Mask_NotAllZeroes |
- FoldMskICmp_AMask_NotMixed |
- FoldMskICmp_BMask_NotMixed));
- if (icmp_abit)
- result |= (icmp_eq ? (FoldMskICmp_AMask_NotAllOnes |
- FoldMskICmp_AMask_NotMixed)
- : (FoldMskICmp_AMask_AllOnes |
- FoldMskICmp_AMask_Mixed));
- if (icmp_bbit)
- result |= (icmp_eq ? (FoldMskICmp_BMask_NotAllOnes |
- FoldMskICmp_BMask_NotMixed)
- : (FoldMskICmp_BMask_AllOnes |
- FoldMskICmp_BMask_Mixed));
- return result;
- }
- if (A == C) {
- result |= (icmp_eq ? (FoldMskICmp_AMask_AllOnes |
- FoldMskICmp_AMask_Mixed)
- : (FoldMskICmp_AMask_NotAllOnes |
- FoldMskICmp_AMask_NotMixed));
- if (icmp_abit)
- result |= (icmp_eq ? (FoldMskICmp_Mask_NotAllZeroes |
- FoldMskICmp_AMask_NotMixed)
- : (FoldMskICmp_Mask_AllZeroes |
- FoldMskICmp_AMask_Mixed));
- } else if (ACst && CCst &&
- ConstantExpr::getAnd(ACst, CCst) == CCst) {
- result |= (icmp_eq ? FoldMskICmp_AMask_Mixed
- : FoldMskICmp_AMask_NotMixed);
- }
- if (B == C) {
- result |= (icmp_eq ? (FoldMskICmp_BMask_AllOnes |
- FoldMskICmp_BMask_Mixed)
- : (FoldMskICmp_BMask_NotAllOnes |
- FoldMskICmp_BMask_NotMixed));
- if (icmp_bbit)
- result |= (icmp_eq ? (FoldMskICmp_Mask_NotAllZeroes |
- FoldMskICmp_BMask_NotMixed)
- : (FoldMskICmp_Mask_AllZeroes |
- FoldMskICmp_BMask_Mixed));
- } else if (BCst && CCst &&
- ConstantExpr::getAnd(BCst, CCst) == CCst) {
- result |= (icmp_eq ? FoldMskICmp_BMask_Mixed
- : FoldMskICmp_BMask_NotMixed);
- }
- return result;
- }
- /// Convert an analysis of a masked ICmp into its equivalent if all boolean
- /// operations had the opposite sense. Since each "NotXXX" flag (recording !=)
- /// is adjacent to the corresponding normal flag (recording ==), this just
- /// involves swapping those bits over.
- static unsigned conjugateICmpMask(unsigned Mask) {
- unsigned NewMask;
- NewMask = (Mask & (FoldMskICmp_AMask_AllOnes | FoldMskICmp_BMask_AllOnes |
- FoldMskICmp_Mask_AllZeroes | FoldMskICmp_AMask_Mixed |
- FoldMskICmp_BMask_Mixed))
- << 1;
- NewMask |=
- (Mask & (FoldMskICmp_AMask_NotAllOnes | FoldMskICmp_BMask_NotAllOnes |
- FoldMskICmp_Mask_NotAllZeroes | FoldMskICmp_AMask_NotMixed |
- FoldMskICmp_BMask_NotMixed))
- >> 1;
- return NewMask;
- }
- /// decomposeBitTestICmp - Decompose an icmp into the form ((X & Y) pred Z)
- /// if possible. The returned predicate is either == or !=. Returns false if
- /// decomposition fails.
- static bool decomposeBitTestICmp(const ICmpInst *I, ICmpInst::Predicate &Pred,
- Value *&X, Value *&Y, Value *&Z) {
- ConstantInt *C = dyn_cast<ConstantInt>(I->getOperand(1));
- if (!C)
- return false;
- switch (I->getPredicate()) {
- default:
- return false;
- case ICmpInst::ICMP_SLT:
- // X < 0 is equivalent to (X & SignBit) != 0.
- if (!C->isZero())
- return false;
- Y = ConstantInt::get(I->getContext(), APInt::getSignBit(C->getBitWidth()));
- Pred = ICmpInst::ICMP_NE;
- break;
- case ICmpInst::ICMP_SGT:
- // X > -1 is equivalent to (X & SignBit) == 0.
- if (!C->isAllOnesValue())
- return false;
- Y = ConstantInt::get(I->getContext(), APInt::getSignBit(C->getBitWidth()));
- Pred = ICmpInst::ICMP_EQ;
- break;
- case ICmpInst::ICMP_ULT:
- // X <u 2^n is equivalent to (X & ~(2^n-1)) == 0.
- if (!C->getValue().isPowerOf2())
- return false;
- Y = ConstantInt::get(I->getContext(), -C->getValue());
- Pred = ICmpInst::ICMP_EQ;
- break;
- case ICmpInst::ICMP_UGT:
- // X >u 2^n-1 is equivalent to (X & ~(2^n-1)) != 0.
- if (!(C->getValue() + 1).isPowerOf2())
- return false;
- Y = ConstantInt::get(I->getContext(), ~C->getValue());
- Pred = ICmpInst::ICMP_NE;
- break;
- }
- X = I->getOperand(0);
- Z = ConstantInt::getNullValue(C->getType());
- return true;
- }
- /// foldLogOpOfMaskedICmpsHelper:
- /// handle (icmp(A & B) ==/!= C) &/| (icmp(A & D) ==/!= E)
- /// return the set of pattern classes (from MaskedICmpType)
- /// that both LHS and RHS satisfy
- static unsigned foldLogOpOfMaskedICmpsHelper(Value*& A,
- Value*& B, Value*& C,
- Value*& D, Value*& E,
- ICmpInst *LHS, ICmpInst *RHS,
- ICmpInst::Predicate &LHSCC,
- ICmpInst::Predicate &RHSCC) {
- if (LHS->getOperand(0)->getType() != RHS->getOperand(0)->getType()) return 0;
- // vectors are not (yet?) supported
- if (LHS->getOperand(0)->getType()->isVectorTy()) return 0;
- // Here comes the tricky part:
- // LHS might be of the form L11 & L12 == X, X == L21 & L22,
- // and L11 & L12 == L21 & L22. The same goes for RHS.
- // Now we must find those components L** and R**, that are equal, so
- // that we can extract the parameters A, B, C, D, and E for the canonical
- // above.
- Value *L1 = LHS->getOperand(0);
- Value *L2 = LHS->getOperand(1);
- Value *L11,*L12,*L21,*L22;
- // Check whether the icmp can be decomposed into a bit test.
- if (decomposeBitTestICmp(LHS, LHSCC, L11, L12, L2)) {
- L21 = L22 = L1 = nullptr;
- } else {
- // Look for ANDs in the LHS icmp.
- if (!L1->getType()->isIntegerTy()) {
- // You can icmp pointers, for example. They really aren't masks.
- L11 = L12 = nullptr;
- } else if (!match(L1, m_And(m_Value(L11), m_Value(L12)))) {
- // Any icmp can be viewed as being trivially masked; if it allows us to
- // remove one, it's worth it.
- L11 = L1;
- L12 = Constant::getAllOnesValue(L1->getType());
- }
- if (!L2->getType()->isIntegerTy()) {
- // You can icmp pointers, for example. They really aren't masks.
- L21 = L22 = nullptr;
- } else if (!match(L2, m_And(m_Value(L21), m_Value(L22)))) {
- L21 = L2;
- L22 = Constant::getAllOnesValue(L2->getType());
- }
- }
- // Bail if LHS was a icmp that can't be decomposed into an equality.
- if (!ICmpInst::isEquality(LHSCC))
- return 0;
- Value *R1 = RHS->getOperand(0);
- Value *R2 = RHS->getOperand(1);
- Value *R11,*R12;
- bool ok = false;
- if (decomposeBitTestICmp(RHS, RHSCC, R11, R12, R2)) {
- if (R11 == L11 || R11 == L12 || R11 == L21 || R11 == L22) {
- A = R11; D = R12;
- } else if (R12 == L11 || R12 == L12 || R12 == L21 || R12 == L22) {
- A = R12; D = R11;
- } else {
- return 0;
- }
- E = R2; R1 = nullptr; ok = true;
- } else if (R1->getType()->isIntegerTy()) {
- if (!match(R1, m_And(m_Value(R11), m_Value(R12)))) {
- // As before, model no mask as a trivial mask if it'll let us do an
- // optimization.
- R11 = R1;
- R12 = Constant::getAllOnesValue(R1->getType());
- }
- if (R11 == L11 || R11 == L12 || R11 == L21 || R11 == L22) {
- A = R11; D = R12; E = R2; ok = true;
- } else if (R12 == L11 || R12 == L12 || R12 == L21 || R12 == L22) {
- A = R12; D = R11; E = R2; ok = true;
- }
- }
- // Bail if RHS was a icmp that can't be decomposed into an equality.
- if (!ICmpInst::isEquality(RHSCC))
- return 0;
- // Look for ANDs in on the right side of the RHS icmp.
- if (!ok && R2->getType()->isIntegerTy()) {
- if (!match(R2, m_And(m_Value(R11), m_Value(R12)))) {
- R11 = R2;
- R12 = Constant::getAllOnesValue(R2->getType());
- }
- if (R11 == L11 || R11 == L12 || R11 == L21 || R11 == L22) {
- A = R11; D = R12; E = R1; ok = true;
- } else if (R12 == L11 || R12 == L12 || R12 == L21 || R12 == L22) {
- A = R12; D = R11; E = R1; ok = true;
- } else {
- return 0;
- }
- }
- if (!ok)
- return 0;
- if (L11 == A) {
- B = L12; C = L2;
- } else if (L12 == A) {
- B = L11; C = L2;
- } else if (L21 == A) {
- B = L22; C = L1;
- } else if (L22 == A) {
- B = L21; C = L1;
- }
- unsigned left_type = getTypeOfMaskedICmp(A, B, C, LHSCC);
- unsigned right_type = getTypeOfMaskedICmp(A, D, E, RHSCC);
- return left_type & right_type;
- }
- /// foldLogOpOfMaskedICmps:
- /// try to fold (icmp(A & B) ==/!= C) &/| (icmp(A & D) ==/!= E)
- /// into a single (icmp(A & X) ==/!= Y)
- static Value *foldLogOpOfMaskedICmps(ICmpInst *LHS, ICmpInst *RHS, bool IsAnd,
- llvm::InstCombiner::BuilderTy *Builder) {
- Value *A = nullptr, *B = nullptr, *C = nullptr, *D = nullptr, *E = nullptr;
- ICmpInst::Predicate LHSCC = LHS->getPredicate(), RHSCC = RHS->getPredicate();
- unsigned mask = foldLogOpOfMaskedICmpsHelper(A, B, C, D, E, LHS, RHS,
- LHSCC, RHSCC);
- if (mask == 0) return nullptr;
- assert(ICmpInst::isEquality(LHSCC) && ICmpInst::isEquality(RHSCC) &&
- "foldLogOpOfMaskedICmpsHelper must return an equality predicate.");
- // In full generality:
- // (icmp (A & B) Op C) | (icmp (A & D) Op E)
- // == ![ (icmp (A & B) !Op C) & (icmp (A & D) !Op E) ]
- //
- // If the latter can be converted into (icmp (A & X) Op Y) then the former is
- // equivalent to (icmp (A & X) !Op Y).
- //
- // Therefore, we can pretend for the rest of this function that we're dealing
- // with the conjunction, provided we flip the sense of any comparisons (both
- // input and output).
- // In most cases we're going to produce an EQ for the "&&" case.
- ICmpInst::Predicate NEWCC = IsAnd ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE;
- if (!IsAnd) {
- // Convert the masking analysis into its equivalent with negated
- // comparisons.
- mask = conjugateICmpMask(mask);
- }
- if (mask & FoldMskICmp_Mask_AllZeroes) {
- // (icmp eq (A & B), 0) & (icmp eq (A & D), 0)
- // -> (icmp eq (A & (B|D)), 0)
- Value *newOr = Builder->CreateOr(B, D);
- Value *newAnd = Builder->CreateAnd(A, newOr);
- // we can't use C as zero, because we might actually handle
- // (icmp ne (A & B), B) & (icmp ne (A & D), D)
- // with B and D, having a single bit set
- Value *zero = Constant::getNullValue(A->getType());
- return Builder->CreateICmp(NEWCC, newAnd, zero);
- }
- if (mask & FoldMskICmp_BMask_AllOnes) {
- // (icmp eq (A & B), B) & (icmp eq (A & D), D)
- // -> (icmp eq (A & (B|D)), (B|D))
- Value *newOr = Builder->CreateOr(B, D);
- Value *newAnd = Builder->CreateAnd(A, newOr);
- return Builder->CreateICmp(NEWCC, newAnd, newOr);
- }
- if (mask & FoldMskICmp_AMask_AllOnes) {
- // (icmp eq (A & B), A) & (icmp eq (A & D), A)
- // -> (icmp eq (A & (B&D)), A)
- Value *newAnd1 = Builder->CreateAnd(B, D);
- Value *newAnd = Builder->CreateAnd(A, newAnd1);
- return Builder->CreateICmp(NEWCC, newAnd, A);
- }
- // Remaining cases assume at least that B and D are constant, and depend on
- // their actual values. This isn't strictly, necessary, just a "handle the
- // easy cases for now" decision.
- ConstantInt *BCst = dyn_cast<ConstantInt>(B);
- if (!BCst) return nullptr;
- ConstantInt *DCst = dyn_cast<ConstantInt>(D);
- if (!DCst) return nullptr;
- if (mask & (FoldMskICmp_Mask_NotAllZeroes | FoldMskICmp_BMask_NotAllOnes)) {
- // (icmp ne (A & B), 0) & (icmp ne (A & D), 0) and
- // (icmp ne (A & B), B) & (icmp ne (A & D), D)
- // -> (icmp ne (A & B), 0) or (icmp ne (A & D), 0)
- // Only valid if one of the masks is a superset of the other (check "B&D" is
- // the same as either B or D).
- APInt NewMask = BCst->getValue() & DCst->getValue();
- if (NewMask == BCst->getValue())
- return LHS;
- else if (NewMask == DCst->getValue())
- return RHS;
- }
- if (mask & FoldMskICmp_AMask_NotAllOnes) {
- // (icmp ne (A & B), B) & (icmp ne (A & D), D)
- // -> (icmp ne (A & B), A) or (icmp ne (A & D), A)
- // Only valid if one of the masks is a superset of the other (check "B|D" is
- // the same as either B or D).
- APInt NewMask = BCst->getValue() | DCst->getValue();
- if (NewMask == BCst->getValue())
- return LHS;
- else if (NewMask == DCst->getValue())
- return RHS;
- }
- if (mask & FoldMskICmp_BMask_Mixed) {
- // (icmp eq (A & B), C) & (icmp eq (A & D), E)
- // We already know that B & C == C && D & E == E.
- // If we can prove that (B & D) & (C ^ E) == 0, that is, the bits of
- // C and E, which are shared by both the mask B and the mask D, don't
- // contradict, then we can transform to
- // -> (icmp eq (A & (B|D)), (C|E))
- // Currently, we only handle the case of B, C, D, and E being constant.
- // we can't simply use C and E, because we might actually handle
- // (icmp ne (A & B), B) & (icmp eq (A & D), D)
- // with B and D, having a single bit set
- ConstantInt *CCst = dyn_cast<ConstantInt>(C);
- if (!CCst) return nullptr;
- ConstantInt *ECst = dyn_cast<ConstantInt>(E);
- if (!ECst) return nullptr;
- if (LHSCC != NEWCC)
- CCst = cast<ConstantInt>(ConstantExpr::getXor(BCst, CCst));
- if (RHSCC != NEWCC)
- ECst = cast<ConstantInt>(ConstantExpr::getXor(DCst, ECst));
- // if there is a conflict we should actually return a false for the
- // whole construct
- if (((BCst->getValue() & DCst->getValue()) &
- (CCst->getValue() ^ ECst->getValue())) != 0)
- return ConstantInt::get(LHS->getType(), !IsAnd);
- Value *newOr1 = Builder->CreateOr(B, D);
- Value *newOr2 = ConstantExpr::getOr(CCst, ECst);
- Value *newAnd = Builder->CreateAnd(A, newOr1);
- return Builder->CreateICmp(NEWCC, newAnd, newOr2);
- }
- return nullptr;
- }
- /// Try to fold a signed range checked with lower bound 0 to an unsigned icmp.
- /// Example: (icmp sge x, 0) & (icmp slt x, n) --> icmp ult x, n
- /// If \p Inverted is true then the check is for the inverted range, e.g.
- /// (icmp slt x, 0) | (icmp sgt x, n) --> icmp ugt x, n
- Value *InstCombiner::simplifyRangeCheck(ICmpInst *Cmp0, ICmpInst *Cmp1,
- bool Inverted) {
- // Check the lower range comparison, e.g. x >= 0
- // InstCombine already ensured that if there is a constant it's on the RHS.
- ConstantInt *RangeStart = dyn_cast<ConstantInt>(Cmp0->getOperand(1));
- if (!RangeStart)
- return nullptr;
- ICmpInst::Predicate Pred0 = (Inverted ? Cmp0->getInversePredicate() :
- Cmp0->getPredicate());
- // Accept x > -1 or x >= 0 (after potentially inverting the predicate).
- if (!((Pred0 == ICmpInst::ICMP_SGT && RangeStart->isMinusOne()) ||
- (Pred0 == ICmpInst::ICMP_SGE && RangeStart->isZero())))
- return nullptr;
- ICmpInst::Predicate Pred1 = (Inverted ? Cmp1->getInversePredicate() :
- Cmp1->getPredicate());
- Value *Input = Cmp0->getOperand(0);
- Value *RangeEnd;
- if (Cmp1->getOperand(0) == Input) {
- // For the upper range compare we have: icmp x, n
- RangeEnd = Cmp1->getOperand(1);
- } else if (Cmp1->getOperand(1) == Input) {
- // For the upper range compare we have: icmp n, x
- RangeEnd = Cmp1->getOperand(0);
- Pred1 = ICmpInst::getSwappedPredicate(Pred1);
- } else {
- return nullptr;
- }
- // Check the upper range comparison, e.g. x < n
- ICmpInst::Predicate NewPred;
- switch (Pred1) {
- case ICmpInst::ICMP_SLT: NewPred = ICmpInst::ICMP_ULT; break;
- case ICmpInst::ICMP_SLE: NewPred = ICmpInst::ICMP_ULE; break;
- default: return nullptr;
- }
- // This simplification is only valid if the upper range is not negative.
- bool IsNegative, IsNotNegative;
- ComputeSignBit(RangeEnd, IsNotNegative, IsNegative, /*Depth=*/0, Cmp1);
- if (!IsNotNegative)
- return nullptr;
- if (Inverted)
- NewPred = ICmpInst::getInversePredicate(NewPred);
- return Builder->CreateICmp(NewPred, Input, RangeEnd);
- }
- /// FoldAndOfICmps - Fold (icmp)&(icmp) if possible.
- Value *InstCombiner::FoldAndOfICmps(ICmpInst *LHS, ICmpInst *RHS) {
- ICmpInst::Predicate LHSCC = LHS->getPredicate(), RHSCC = RHS->getPredicate();
- // (icmp1 A, B) & (icmp2 A, B) --> (icmp3 A, B)
- if (PredicatesFoldable(LHSCC, RHSCC)) {
- if (LHS->getOperand(0) == RHS->getOperand(1) &&
- LHS->getOperand(1) == RHS->getOperand(0))
- LHS->swapOperands();
- if (LHS->getOperand(0) == RHS->getOperand(0) &&
- LHS->getOperand(1) == RHS->getOperand(1)) {
- Value *Op0 = LHS->getOperand(0), *Op1 = LHS->getOperand(1);
- unsigned Code = getICmpCode(LHS) & getICmpCode(RHS);
- bool isSigned = LHS->isSigned() || RHS->isSigned();
- return getNewICmpValue(isSigned, Code, Op0, Op1, Builder);
- }
- }
- // handle (roughly): (icmp eq (A & B), C) & (icmp eq (A & D), E)
- if (Value *V = foldLogOpOfMaskedICmps(LHS, RHS, true, Builder))
- return V;
- // E.g. (icmp sge x, 0) & (icmp slt x, n) --> icmp ult x, n
- if (Value *V = simplifyRangeCheck(LHS, RHS, /*Inverted=*/false))
- return V;
- // E.g. (icmp slt x, n) & (icmp sge x, 0) --> icmp ult x, n
- if (Value *V = simplifyRangeCheck(RHS, LHS, /*Inverted=*/false))
- return V;
- // This only handles icmp of constants: (icmp1 A, C1) & (icmp2 B, C2).
- Value *Val = LHS->getOperand(0), *Val2 = RHS->getOperand(0);
- ConstantInt *LHSCst = dyn_cast<ConstantInt>(LHS->getOperand(1));
- ConstantInt *RHSCst = dyn_cast<ConstantInt>(RHS->getOperand(1));
- if (!LHSCst || !RHSCst) return nullptr;
- if (LHSCst == RHSCst && LHSCC == RHSCC) {
- // (icmp ult A, C) & (icmp ult B, C) --> (icmp ult (A|B), C)
- // where C is a power of 2
- if (LHSCC == ICmpInst::ICMP_ULT &&
- LHSCst->getValue().isPowerOf2()) {
- Value *NewOr = Builder->CreateOr(Val, Val2);
- return Builder->CreateICmp(LHSCC, NewOr, LHSCst);
- }
- // (icmp eq A, 0) & (icmp eq B, 0) --> (icmp eq (A|B), 0)
- if (LHSCC == ICmpInst::ICMP_EQ && LHSCst->isZero()) {
- Value *NewOr = Builder->CreateOr(Val, Val2);
- return Builder->CreateICmp(LHSCC, NewOr, LHSCst);
- }
- }
- // (trunc x) == C1 & (and x, CA) == C2 -> (and x, CA|CMAX) == C1|C2
- // where CMAX is the all ones value for the truncated type,
- // iff the lower bits of C2 and CA are zero.
- if (LHSCC == ICmpInst::ICMP_EQ && LHSCC == RHSCC &&
- LHS->hasOneUse() && RHS->hasOneUse()) {
- Value *V;
- ConstantInt *AndCst, *SmallCst = nullptr, *BigCst = nullptr;
- // (trunc x) == C1 & (and x, CA) == C2
- // (and x, CA) == C2 & (trunc x) == C1
- if (match(Val2, m_Trunc(m_Value(V))) &&
- match(Val, m_And(m_Specific(V), m_ConstantInt(AndCst)))) {
- SmallCst = RHSCst;
- BigCst = LHSCst;
- } else if (match(Val, m_Trunc(m_Value(V))) &&
- match(Val2, m_And(m_Specific(V), m_ConstantInt(AndCst)))) {
- SmallCst = LHSCst;
- BigCst = RHSCst;
- }
- if (SmallCst && BigCst) {
- unsigned BigBitSize = BigCst->getType()->getBitWidth();
- unsigned SmallBitSize = SmallCst->getType()->getBitWidth();
- // Check that the low bits are zero.
- APInt Low = APInt::getLowBitsSet(BigBitSize, SmallBitSize);
- if ((Low & AndCst->getValue()) == 0 && (Low & BigCst->getValue()) == 0) {
- Value *NewAnd = Builder->CreateAnd(V, Low | AndCst->getValue());
- APInt N = SmallCst->getValue().zext(BigBitSize) | BigCst->getValue();
- Value *NewVal = ConstantInt::get(AndCst->getType()->getContext(), N);
- return Builder->CreateICmp(LHSCC, NewAnd, NewVal);
- }
- }
- }
- // From here on, we only handle:
- // (icmp1 A, C1) & (icmp2 A, C2) --> something simpler.
- if (Val != Val2) return nullptr;
- // ICMP_[US][GL]E X, CST is folded to ICMP_[US][GL]T elsewhere.
- if (LHSCC == ICmpInst::ICMP_UGE || LHSCC == ICmpInst::ICMP_ULE ||
- RHSCC == ICmpInst::ICMP_UGE || RHSCC == ICmpInst::ICMP_ULE ||
- LHSCC == ICmpInst::ICMP_SGE || LHSCC == ICmpInst::ICMP_SLE ||
- RHSCC == ICmpInst::ICMP_SGE || RHSCC == ICmpInst::ICMP_SLE)
- return nullptr;
- // Make a constant range that's the intersection of the two icmp ranges.
- // If the intersection is empty, we know that the result is false.
- ConstantRange LHSRange =
- ConstantRange::makeAllowedICmpRegion(LHSCC, LHSCst->getValue());
- ConstantRange RHSRange =
- ConstantRange::makeAllowedICmpRegion(RHSCC, RHSCst->getValue());
- if (LHSRange.intersectWith(RHSRange).isEmptySet())
- return ConstantInt::get(CmpInst::makeCmpResultType(LHS->getType()), 0);
- // We can't fold (ugt x, C) & (sgt x, C2).
- if (!PredicatesFoldable(LHSCC, RHSCC))
- return nullptr;
- // Ensure that the larger constant is on the RHS.
- bool ShouldSwap;
- if (CmpInst::isSigned(LHSCC) ||
- (ICmpInst::isEquality(LHSCC) &&
- CmpInst::isSigned(RHSCC)))
- ShouldSwap = LHSCst->getValue().sgt(RHSCst->getValue());
- else
- ShouldSwap = LHSCst->getValue().ugt(RHSCst->getValue());
- if (ShouldSwap) {
- std::swap(LHS, RHS);
- std::swap(LHSCst, RHSCst);
- std::swap(LHSCC, RHSCC);
- }
- // At this point, we know we have two icmp instructions
- // comparing a value against two constants and and'ing the result
- // together. Because of the above check, we know that we only have
- // icmp eq, icmp ne, icmp [su]lt, and icmp [SU]gt here. We also know
- // (from the icmp folding check above), that the two constants
- // are not equal and that the larger constant is on the RHS
- assert(LHSCst != RHSCst && "Compares not folded above?");
- switch (LHSCC) {
- default: llvm_unreachable("Unknown integer condition code!");
- case ICmpInst::ICMP_EQ:
- switch (RHSCC) {
- default: llvm_unreachable("Unknown integer condition code!");
- case ICmpInst::ICMP_NE: // (X == 13 & X != 15) -> X == 13
- case ICmpInst::ICMP_ULT: // (X == 13 & X < 15) -> X == 13
- case ICmpInst::ICMP_SLT: // (X == 13 & X < 15) -> X == 13
- return LHS;
- }
- case ICmpInst::ICMP_NE:
- switch (RHSCC) {
- default: llvm_unreachable("Unknown integer condition code!");
- case ICmpInst::ICMP_ULT:
- if (LHSCst == SubOne(RHSCst)) // (X != 13 & X u< 14) -> X < 13
- return Builder->CreateICmpULT(Val, LHSCst);
- if (LHSCst->isNullValue()) // (X != 0 & X u< 14) -> X-1 u< 13
- return InsertRangeTest(Val, AddOne(LHSCst), RHSCst, false, true);
- break; // (X != 13 & X u< 15) -> no change
- case ICmpInst::ICMP_SLT:
- if (LHSCst == SubOne(RHSCst)) // (X != 13 & X s< 14) -> X < 13
- return Builder->CreateICmpSLT(Val, LHSCst);
- break; // (X != 13 & X s< 15) -> no change
- case ICmpInst::ICMP_EQ: // (X != 13 & X == 15) -> X == 15
- case ICmpInst::ICMP_UGT: // (X != 13 & X u> 15) -> X u> 15
- case ICmpInst::ICMP_SGT: // (X != 13 & X s> 15) -> X s> 15
- return RHS;
- case ICmpInst::ICMP_NE:
- // Special case to get the ordering right when the values wrap around
- // zero.
- if (LHSCst->getValue() == 0 && RHSCst->getValue().isAllOnesValue())
- std::swap(LHSCst, RHSCst);
- if (LHSCst == SubOne(RHSCst)){// (X != 13 & X != 14) -> X-13 >u 1
- Constant *AddCST = ConstantExpr::getNeg(LHSCst);
- Value *Add = Builder->CreateAdd(Val, AddCST, Val->getName()+".off");
- return Builder->CreateICmpUGT(Add, ConstantInt::get(Add->getType(), 1),
- Val->getName()+".cmp");
- }
- break; // (X != 13 & X != 15) -> no change
- }
- break;
- case ICmpInst::ICMP_ULT:
- switch (RHSCC) {
- default: llvm_unreachable("Unknown integer condition code!");
- case ICmpInst::ICMP_EQ: // (X u< 13 & X == 15) -> false
- case ICmpInst::ICMP_UGT: // (X u< 13 & X u> 15) -> false
- return ConstantInt::get(CmpInst::makeCmpResultType(LHS->getType()), 0);
- case ICmpInst::ICMP_SGT: // (X u< 13 & X s> 15) -> no change
- break;
- case ICmpInst::ICMP_NE: // (X u< 13 & X != 15) -> X u< 13
- case ICmpInst::ICMP_ULT: // (X u< 13 & X u< 15) -> X u< 13
- return LHS;
- case ICmpInst::ICMP_SLT: // (X u< 13 & X s< 15) -> no change
- break;
- }
- break;
- case ICmpInst::ICMP_SLT:
- switch (RHSCC) {
- default: llvm_unreachable("Unknown integer condition code!");
- case ICmpInst::ICMP_UGT: // (X s< 13 & X u> 15) -> no change
- break;
- case ICmpInst::ICMP_NE: // (X s< 13 & X != 15) -> X < 13
- case ICmpInst::ICMP_SLT: // (X s< 13 & X s< 15) -> X < 13
- return LHS;
- case ICmpInst::ICMP_ULT: // (X s< 13 & X u< 15) -> no change
- break;
- }
- break;
- case ICmpInst::ICMP_UGT:
- switch (RHSCC) {
- default: llvm_unreachable("Unknown integer condition code!");
- case ICmpInst::ICMP_EQ: // (X u> 13 & X == 15) -> X == 15
- case ICmpInst::ICMP_UGT: // (X u> 13 & X u> 15) -> X u> 15
- return RHS;
- case ICmpInst::ICMP_SGT: // (X u> 13 & X s> 15) -> no change
- break;
- case ICmpInst::ICMP_NE:
- if (RHSCst == AddOne(LHSCst)) // (X u> 13 & X != 14) -> X u> 14
- return Builder->CreateICmp(LHSCC, Val, RHSCst);
- break; // (X u> 13 & X != 15) -> no change
- case ICmpInst::ICMP_ULT: // (X u> 13 & X u< 15) -> (X-14) <u 1
- return InsertRangeTest(Val, AddOne(LHSCst), RHSCst, false, true);
- case ICmpInst::ICMP_SLT: // (X u> 13 & X s< 15) -> no change
- break;
- }
- break;
- case ICmpInst::ICMP_SGT:
- switch (RHSCC) {
- default: llvm_unreachable("Unknown integer condition code!");
- case ICmpInst::ICMP_EQ: // (X s> 13 & X == 15) -> X == 15
- case ICmpInst::ICMP_SGT: // (X s> 13 & X s> 15) -> X s> 15
- return RHS;
- case ICmpInst::ICMP_UGT: // (X s> 13 & X u> 15) -> no change
- break;
- case ICmpInst::ICMP_NE:
- if (RHSCst == AddOne(LHSCst)) // (X s> 13 & X != 14) -> X s> 14
- return Builder->CreateICmp(LHSCC, Val, RHSCst);
- break; // (X s> 13 & X != 15) -> no change
- case ICmpInst::ICMP_SLT: // (X s> 13 & X s< 15) -> (X-14) s< 1
- return InsertRangeTest(Val, AddOne(LHSCst), RHSCst, true, true);
- case ICmpInst::ICMP_ULT: // (X s> 13 & X u< 15) -> no change
- break;
- }
- break;
- }
- return nullptr;
- }
- /// FoldAndOfFCmps - Optimize (fcmp)&(fcmp). NOTE: Unlike the rest of
- /// instcombine, this returns a Value which should already be inserted into the
- /// function.
- Value *InstCombiner::FoldAndOfFCmps(FCmpInst *LHS, FCmpInst *RHS) {
- if (LHS->getPredicate() == FCmpInst::FCMP_ORD &&
- RHS->getPredicate() == FCmpInst::FCMP_ORD) {
- if (LHS->getOperand(0)->getType() != RHS->getOperand(0)->getType())
- return nullptr;
- // (fcmp ord x, c) & (fcmp ord y, c) -> (fcmp ord x, y)
- if (ConstantFP *LHSC = dyn_cast<ConstantFP>(LHS->getOperand(1)))
- if (ConstantFP *RHSC = dyn_cast<ConstantFP>(RHS->getOperand(1))) {
- // If either of the constants are nans, then the whole thing returns
- // false.
- if (LHSC->getValueAPF().isNaN() || RHSC->getValueAPF().isNaN())
- return Builder->getFalse();
- return Builder->CreateFCmpORD(LHS->getOperand(0), RHS->getOperand(0));
- }
- // Handle vector zeros. This occurs because the canonical form of
- // "fcmp ord x,x" is "fcmp ord x, 0".
- if (isa<ConstantAggregateZero>(LHS->getOperand(1)) &&
- isa<ConstantAggregateZero>(RHS->getOperand(1)))
- return Builder->CreateFCmpORD(LHS->getOperand(0), RHS->getOperand(0));
- return nullptr;
- }
- Value *Op0LHS = LHS->getOperand(0), *Op0RHS = LHS->getOperand(1);
- Value *Op1LHS = RHS->getOperand(0), *Op1RHS = RHS->getOperand(1);
- FCmpInst::Predicate Op0CC = LHS->getPredicate(), Op1CC = RHS->getPredicate();
- if (Op0LHS == Op1RHS && Op0RHS == Op1LHS) {
- // Swap RHS operands to match LHS.
- Op1CC = FCmpInst::getSwappedPredicate(Op1CC);
- std::swap(Op1LHS, Op1RHS);
- }
- if (Op0LHS == Op1LHS && Op0RHS == Op1RHS) {
- // Simplify (fcmp cc0 x, y) & (fcmp cc1 x, y).
- if (Op0CC == Op1CC)
- return Builder->CreateFCmp((FCmpInst::Predicate)Op0CC, Op0LHS, Op0RHS);
- if (Op0CC == FCmpInst::FCMP_FALSE || Op1CC == FCmpInst::FCMP_FALSE)
- return ConstantInt::get(CmpInst::makeCmpResultType(LHS->getType()), 0);
- if (Op0CC == FCmpInst::FCMP_TRUE)
- return RHS;
- if (Op1CC == FCmpInst::FCMP_TRUE)
- return LHS;
- bool Op0Ordered;
- bool Op1Ordered;
- unsigned Op0Pred = getFCmpCode(Op0CC, Op0Ordered);
- unsigned Op1Pred = getFCmpCode(Op1CC, Op1Ordered);
- // uno && ord -> false
- if (Op0Pred == 0 && Op1Pred == 0 && Op0Ordered != Op1Ordered)
- return ConstantInt::get(CmpInst::makeCmpResultType(LHS->getType()), 0);
- if (Op1Pred == 0) {
- std::swap(LHS, RHS);
- std::swap(Op0Pred, Op1Pred);
- std::swap(Op0Ordered, Op1Ordered);
- }
- if (Op0Pred == 0) {
- // uno && ueq -> uno && (uno || eq) -> uno
- // ord && olt -> ord && (ord && lt) -> olt
- if (!Op0Ordered && (Op0Ordered == Op1Ordered))
- return LHS;
- if (Op0Ordered && (Op0Ordered == Op1Ordered))
- return RHS;
- // uno && oeq -> uno && (ord && eq) -> false
- if (!Op0Ordered)
- return ConstantInt::get(CmpInst::makeCmpResultType(LHS->getType()), 0);
- // ord && ueq -> ord && (uno || eq) -> oeq
- return getFCmpValue(true, Op1Pred, Op0LHS, Op0RHS, Builder);
- }
- }
- return nullptr;
- }
- Instruction *InstCombiner::visitAnd(BinaryOperator &I) {
- bool Changed = SimplifyAssociativeOrCommutative(I);
- Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
- if (Value *V = SimplifyVectorOp(I))
- return ReplaceInstUsesWith(I, V);
- if (Value *V = SimplifyAndInst(Op0, Op1, DL, TLI, DT, AC))
- return ReplaceInstUsesWith(I, V);
- // (A|B)&(A|C) -> A|(B&C) etc
- if (Value *V = SimplifyUsingDistributiveLaws(I))
- return ReplaceInstUsesWith(I, V);
- // See if we can simplify any instructions used by the instruction whose sole
- // purpose is to compute bits we don't care about.
- if (SimplifyDemandedInstructionBits(I))
- return &I;
- if (Value *V = SimplifyBSwap(I))
- return ReplaceInstUsesWith(I, V);
- if (ConstantInt *AndRHS = dyn_cast<ConstantInt>(Op1)) {
- const APInt &AndRHSMask = AndRHS->getValue();
- // Optimize a variety of ((val OP C1) & C2) combinations...
- if (BinaryOperator *Op0I = dyn_cast<BinaryOperator>(Op0)) {
- Value *Op0LHS = Op0I->getOperand(0);
- Value *Op0RHS = Op0I->getOperand(1);
- switch (Op0I->getOpcode()) {
- default: break;
- case Instruction::Xor:
- case Instruction::Or: {
- // If the mask is only needed on one incoming arm, push it up.
- if (!Op0I->hasOneUse()) break;
- APInt NotAndRHS(~AndRHSMask);
- if (MaskedValueIsZero(Op0LHS, NotAndRHS, 0, &I)) {
- // Not masking anything out for the LHS, move to RHS.
- Value *NewRHS = Builder->CreateAnd(Op0RHS, AndRHS,
- Op0RHS->getName()+".masked");
- return BinaryOperator::Create(Op0I->getOpcode(), Op0LHS, NewRHS);
- }
- if (!isa<Constant>(Op0RHS) &&
- MaskedValueIsZero(Op0RHS, NotAndRHS, 0, &I)) {
- // Not masking anything out for the RHS, move to LHS.
- Value *NewLHS = Builder->CreateAnd(Op0LHS, AndRHS,
- Op0LHS->getName()+".masked");
- return BinaryOperator::Create(Op0I->getOpcode(), NewLHS, Op0RHS);
- }
- break;
- }
- case Instruction::Add:
- // ((A & N) + B) & AndRHS -> (A + B) & AndRHS iff N&AndRHS == AndRHS.
- // ((A | N) + B) & AndRHS -> (A + B) & AndRHS iff N&AndRHS == 0
- // ((A ^ N) + B) & AndRHS -> (A + B) & AndRHS iff N&AndRHS == 0
- if (Value *V = FoldLogicalPlusAnd(Op0LHS, Op0RHS, AndRHS, false, I))
- return BinaryOperator::CreateAnd(V, AndRHS);
- if (Value *V = FoldLogicalPlusAnd(Op0RHS, Op0LHS, AndRHS, false, I))
- return BinaryOperator::CreateAnd(V, AndRHS); // Add commutes
- break;
- case Instruction::Sub:
- // ((A & N) - B) & AndRHS -> (A - B) & AndRHS iff N&AndRHS == AndRHS.
- // ((A | N) - B) & AndRHS -> (A - B) & AndRHS iff N&AndRHS == 0
- // ((A ^ N) - B) & AndRHS -> (A - B) & AndRHS iff N&AndRHS == 0
- if (Value *V = FoldLogicalPlusAnd(Op0LHS, Op0RHS, AndRHS, true, I))
- return BinaryOperator::CreateAnd(V, AndRHS);
- // (A - N) & AndRHS -> -N & AndRHS iff A&AndRHS==0 and AndRHS
- // has 1's for all bits that the subtraction with A might affect.
- if (Op0I->hasOneUse() && !match(Op0LHS, m_Zero())) {
- uint32_t BitWidth = AndRHSMask.getBitWidth();
- uint32_t Zeros = AndRHSMask.countLeadingZeros();
- APInt Mask = APInt::getLowBitsSet(BitWidth, BitWidth - Zeros);
- if (MaskedValueIsZero(Op0LHS, Mask, 0, &I)) {
- Value *NewNeg = Builder->CreateNeg(Op0RHS);
- return BinaryOperator::CreateAnd(NewNeg, AndRHS);
- }
- }
- break;
- case Instruction::Shl:
- case Instruction::LShr:
- // (1 << x) & 1 --> zext(x == 0)
- // (1 >> x) & 1 --> zext(x == 0)
- if (AndRHSMask == 1 && Op0LHS == AndRHS) {
- Value *NewICmp =
- Builder->CreateICmpEQ(Op0RHS, Constant::getNullValue(I.getType()));
- return new ZExtInst(NewICmp, I.getType());
- }
- break;
- }
- if (ConstantInt *Op0CI = dyn_cast<ConstantInt>(Op0I->getOperand(1)))
- if (Instruction *Res = OptAndOp(Op0I, Op0CI, AndRHS, I))
- return Res;
- }
- // If this is an integer truncation, and if the source is an 'and' with
- // immediate, transform it. This frequently occurs for bitfield accesses.
- {
- Value *X = nullptr; ConstantInt *YC = nullptr;
- if (match(Op0, m_Trunc(m_And(m_Value(X), m_ConstantInt(YC))))) {
- // Change: and (trunc (and X, YC) to T), C2
- // into : and (trunc X to T), trunc(YC) & C2
- // This will fold the two constants together, which may allow
- // other simplifications.
- Value *NewCast = Builder->CreateTrunc(X, I.getType(), "and.shrunk");
- Constant *C3 = ConstantExpr::getTrunc(YC, I.getType());
- C3 = ConstantExpr::getAnd(C3, AndRHS);
- return BinaryOperator::CreateAnd(NewCast, C3);
- }
- }
- // Try to fold constant and into select arguments.
- if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
- if (Instruction *R = FoldOpIntoSelect(I, SI))
- return R;
- if (isa<PHINode>(Op0))
- if (Instruction *NV = FoldOpIntoPhi(I))
- return NV;
- }
- // (~A & ~B) == (~(A | B)) - De Morgan's Law
- if (Value *Op0NotVal = dyn_castNotVal(Op0))
- if (Value *Op1NotVal = dyn_castNotVal(Op1))
- if (Op0->hasOneUse() && Op1->hasOneUse()) {
- Value *Or = Builder->CreateOr(Op0NotVal, Op1NotVal,
- I.getName()+".demorgan");
- return BinaryOperator::CreateNot(Or);
- }
- {
- Value *A = nullptr, *B = nullptr, *C = nullptr, *D = nullptr;
- // (A|B) & ~(A&B) -> A^B
- if (match(Op0, m_Or(m_Value(A), m_Value(B))) &&
- match(Op1, m_Not(m_And(m_Value(C), m_Value(D)))) &&
- ((A == C && B == D) || (A == D && B == C)))
- return BinaryOperator::CreateXor(A, B);
- // ~(A&B) & (A|B) -> A^B
- if (match(Op1, m_Or(m_Value(A), m_Value(B))) &&
- match(Op0, m_Not(m_And(m_Value(C), m_Value(D)))) &&
- ((A == C && B == D) || (A == D && B == C)))
- return BinaryOperator::CreateXor(A, B);
- // A&(A^B) => A & ~B
- {
- Value *tmpOp0 = Op0;
- Value *tmpOp1 = Op1;
- if (Op0->hasOneUse() &&
- match(Op0, m_Xor(m_Value(A), m_Value(B)))) {
- if (A == Op1 || B == Op1 ) {
- tmpOp1 = Op0;
- tmpOp0 = Op1;
- // Simplify below
- }
- }
- if (tmpOp1->hasOneUse() &&
- match(tmpOp1, m_Xor(m_Value(A), m_Value(B)))) {
- if (B == tmpOp0) {
- std::swap(A, B);
- }
- // Notice that the patten (A&(~B)) is actually (A&(-1^B)), so if
- // A is originally -1 (or a vector of -1 and undefs), then we enter
- // an endless loop. By checking that A is non-constant we ensure that
- // we will never get to the loop.
- if (A == tmpOp0 && !isa<Constant>(A)) // A&(A^B) -> A & ~B
- return BinaryOperator::CreateAnd(A, Builder->CreateNot(B));
- }
- }
- // (A&((~A)|B)) -> A&B
- if (match(Op0, m_Or(m_Not(m_Specific(Op1)), m_Value(A))) ||
- match(Op0, m_Or(m_Value(A), m_Not(m_Specific(Op1)))))
- return BinaryOperator::CreateAnd(A, Op1);
- if (match(Op1, m_Or(m_Not(m_Specific(Op0)), m_Value(A))) ||
- match(Op1, m_Or(m_Value(A), m_Not(m_Specific(Op0)))))
- return BinaryOperator::CreateAnd(A, Op0);
- // (A ^ B) & ((B ^ C) ^ A) -> (A ^ B) & ~C
- if (match(Op0, m_Xor(m_Value(A), m_Value(B))))
- if (match(Op1, m_Xor(m_Xor(m_Specific(B), m_Value(C)), m_Specific(A))))
- if (Op1->hasOneUse() || cast<BinaryOperator>(Op1)->hasOneUse())
- return BinaryOperator::CreateAnd(Op0, Builder->CreateNot(C));
- // ((A ^ C) ^ B) & (B ^ A) -> (B ^ A) & ~C
- if (match(Op0, m_Xor(m_Xor(m_Value(A), m_Value(C)), m_Value(B))))
- if (match(Op1, m_Xor(m_Specific(B), m_Specific(A))))
- if (Op0->hasOneUse() || cast<BinaryOperator>(Op0)->hasOneUse())
- return BinaryOperator::CreateAnd(Op1, Builder->CreateNot(C));
- // (A | B) & ((~A) ^ B) -> (A & B)
- if (match(Op0, m_Or(m_Value(A), m_Value(B))) &&
- match(Op1, m_Xor(m_Not(m_Specific(A)), m_Specific(B))))
- return BinaryOperator::CreateAnd(A, B);
- // ((~A) ^ B) & (A | B) -> (A & B)
- if (match(Op0, m_Xor(m_Not(m_Value(A)), m_Value(B))) &&
- match(Op1, m_Or(m_Specific(A), m_Specific(B))))
- return BinaryOperator::CreateAnd(A, B);
- }
- {
- ICmpInst *LHS = dyn_cast<ICmpInst>(Op0);
- ICmpInst *RHS = dyn_cast<ICmpInst>(Op1);
- if (LHS && RHS)
- if (Value *Res = FoldAndOfICmps(LHS, RHS))
- return ReplaceInstUsesWith(I, Res);
- // TODO: Make this recursive; it's a little tricky because an arbitrary
- // number of 'and' instructions might have to be created.
- Value *X, *Y;
- if (LHS && match(Op1, m_OneUse(m_And(m_Value(X), m_Value(Y))))) {
- if (auto *Cmp = dyn_cast<ICmpInst>(X))
- if (Value *Res = FoldAndOfICmps(LHS, Cmp))
- return ReplaceInstUsesWith(I, Builder->CreateAnd(Res, Y));
- if (auto *Cmp = dyn_cast<ICmpInst>(Y))
- if (Value *Res = FoldAndOfICmps(LHS, Cmp))
- return ReplaceInstUsesWith(I, Builder->CreateAnd(Res, X));
- }
- if (RHS && match(Op0, m_OneUse(m_And(m_Value(X), m_Value(Y))))) {
- if (auto *Cmp = dyn_cast<ICmpInst>(X))
- if (Value *Res = FoldAndOfICmps(Cmp, RHS))
- return ReplaceInstUsesWith(I, Builder->CreateAnd(Res, Y));
- if (auto *Cmp = dyn_cast<ICmpInst>(Y))
- if (Value *Res = FoldAndOfICmps(Cmp, RHS))
- return ReplaceInstUsesWith(I, Builder->CreateAnd(Res, X));
- }
- }
- // If and'ing two fcmp, try combine them into one.
- if (FCmpInst *LHS = dyn_cast<FCmpInst>(I.getOperand(0)))
- if (FCmpInst *RHS = dyn_cast<FCmpInst>(I.getOperand(1)))
- if (Value *Res = FoldAndOfFCmps(LHS, RHS))
- return ReplaceInstUsesWith(I, Res);
- // fold (and (cast A), (cast B)) -> (cast (and A, B))
- if (CastInst *Op0C = dyn_cast<CastInst>(Op0))
- if (CastInst *Op1C = dyn_cast<CastInst>(Op1)) {
- Type *SrcTy = Op0C->getOperand(0)->getType();
- if (Op0C->getOpcode() == Op1C->getOpcode() && // same cast kind ?
- SrcTy == Op1C->getOperand(0)->getType() &&
- SrcTy->isIntOrIntVectorTy()) {
- Value *Op0COp = Op0C->getOperand(0), *Op1COp = Op1C->getOperand(0);
- // Only do this if the casts both really cause code to be generated.
- if (ShouldOptimizeCast(Op0C->getOpcode(), Op0COp, I.getType()) &&
- ShouldOptimizeCast(Op1C->getOpcode(), Op1COp, I.getType())) {
- Value *NewOp = Builder->CreateAnd(Op0COp, Op1COp, I.getName());
- return CastInst::Create(Op0C->getOpcode(), NewOp, I.getType());
- }
- // If this is and(cast(icmp), cast(icmp)), try to fold this even if the
- // cast is otherwise not optimizable. This happens for vector sexts.
- if (ICmpInst *RHS = dyn_cast<ICmpInst>(Op1COp))
- if (ICmpInst *LHS = dyn_cast<ICmpInst>(Op0COp))
- if (Value *Res = FoldAndOfICmps(LHS, RHS))
- return CastInst::Create(Op0C->getOpcode(), Res, I.getType());
- // If this is and(cast(fcmp), cast(fcmp)), try to fold this even if the
- // cast is otherwise not optimizable. This happens for vector sexts.
- if (FCmpInst *RHS = dyn_cast<FCmpInst>(Op1COp))
- if (FCmpInst *LHS = dyn_cast<FCmpInst>(Op0COp))
- if (Value *Res = FoldAndOfFCmps(LHS, RHS))
- return CastInst::Create(Op0C->getOpcode(), Res, I.getType());
- }
- }
- {
- Value *X = nullptr;
- bool OpsSwapped = false;
- // Canonicalize SExt or Not to the LHS
- if (match(Op1, m_SExt(m_Value())) ||
- match(Op1, m_Not(m_Value()))) {
- std::swap(Op0, Op1);
- OpsSwapped = true;
- }
- // Fold (and (sext bool to A), B) --> (select bool, B, 0)
- if (match(Op0, m_SExt(m_Value(X))) &&
- X->getType()->getScalarType()->isIntegerTy(1)) {
- Value *Zero = Constant::getNullValue(Op1->getType());
- return SelectInst::Create(X, Op1, Zero);
- }
- // Fold (and ~(sext bool to A), B) --> (select bool, 0, B)
- if (match(Op0, m_Not(m_SExt(m_Value(X)))) &&
- X->getType()->getScalarType()->isIntegerTy(1)) {
- Value *Zero = Constant::getNullValue(Op0->getType());
- return SelectInst::Create(X, Zero, Op1);
- }
- if (OpsSwapped)
- std::swap(Op0, Op1);
- }
- return Changed ? &I : nullptr;
- }
- /// CollectBSwapParts - Analyze the specified subexpression and see if it is
- /// capable of providing pieces of a bswap. The subexpression provides pieces
- /// of a bswap if it is proven that each of the non-zero bytes in the output of
- /// the expression came from the corresponding "byte swapped" byte in some other
- /// value. For example, if the current subexpression is "(shl i32 %X, 24)" then
- /// we know that the expression deposits the low byte of %X into the high byte
- /// of the bswap result and that all other bytes are zero. This expression is
- /// accepted, the high byte of ByteValues is set to X to indicate a correct
- /// match.
- ///
- /// This function returns true if the match was unsuccessful and false if so.
- /// On entry to the function the "OverallLeftShift" is a signed integer value
- /// indicating the number of bytes that the subexpression is later shifted. For
- /// example, if the expression is later right shifted by 16 bits, the
- /// OverallLeftShift value would be -2 on entry. This is used to specify which
- /// byte of ByteValues is actually being set.
- ///
- /// Similarly, ByteMask is a bitmask where a bit is clear if its corresponding
- /// byte is masked to zero by a user. For example, in (X & 255), X will be
- /// processed with a bytemask of 1. Because bytemask is 32-bits, this limits
- /// this function to working on up to 32-byte (256 bit) values. ByteMask is
- /// always in the local (OverallLeftShift) coordinate space.
- ///
- static bool CollectBSwapParts(Value *V, int OverallLeftShift, uint32_t ByteMask,
- SmallVectorImpl<Value *> &ByteValues) {
- if (Instruction *I = dyn_cast<Instruction>(V)) {
- // If this is an or instruction, it may be an inner node of the bswap.
- if (I->getOpcode() == Instruction::Or) {
- return CollectBSwapParts(I->getOperand(0), OverallLeftShift, ByteMask,
- ByteValues) ||
- CollectBSwapParts(I->getOperand(1), OverallLeftShift, ByteMask,
- ByteValues);
- }
- // If this is a logical shift by a constant multiple of 8, recurse with
- // OverallLeftShift and ByteMask adjusted.
- if (I->isLogicalShift() && isa<ConstantInt>(I->getOperand(1))) {
- unsigned ShAmt =
- cast<ConstantInt>(I->getOperand(1))->getLimitedValue(~0U);
- // Ensure the shift amount is defined and of a byte value.
- if ((ShAmt & 7) || (ShAmt > 8*ByteValues.size()))
- return true;
- unsigned ByteShift = ShAmt >> 3;
- if (I->getOpcode() == Instruction::Shl) {
- // X << 2 -> collect(X, +2)
- OverallLeftShift += ByteShift;
- ByteMask >>= ByteShift;
- } else {
- // X >>u 2 -> collect(X, -2)
- OverallLeftShift -= ByteShift;
- ByteMask <<= ByteShift;
- ByteMask &= (~0U >> (32-ByteValues.size()));
- }
- if (OverallLeftShift >= (int)ByteValues.size()) return true;
- if (OverallLeftShift <= -(int)ByteValues.size()) return true;
- return CollectBSwapParts(I->getOperand(0), OverallLeftShift, ByteMask,
- ByteValues);
- }
- // If this is a logical 'and' with a mask that clears bytes, clear the
- // corresponding bytes in ByteMask.
- if (I->getOpcode() == Instruction::And &&
- isa<ConstantInt>(I->getOperand(1))) {
- // Scan every byte of the and mask, seeing if the byte is either 0 or 255.
- unsigned NumBytes = ByteValues.size();
- APInt Byte(I->getType()->getPrimitiveSizeInBits(), 255);
- const APInt &AndMask = cast<ConstantInt>(I->getOperand(1))->getValue();
- for (unsigned i = 0; i != NumBytes; ++i, Byte <<= 8) {
- // If this byte is masked out by a later operation, we don't care what
- // the and mask is.
- if ((ByteMask & (1 << i)) == 0)
- continue;
- // If the AndMask is all zeros for this byte, clear the bit.
- APInt MaskB = AndMask & Byte;
- if (MaskB == 0) {
- ByteMask &= ~(1U << i);
- continue;
- }
- // If the AndMask is not all ones for this byte, it's not a bytezap.
- if (MaskB != Byte)
- return true;
- // Otherwise, this byte is kept.
- }
- return CollectBSwapParts(I->getOperand(0), OverallLeftShift, ByteMask,
- ByteValues);
- }
- }
- // Okay, we got to something that isn't a shift, 'or' or 'and'. This must be
- // the input value to the bswap. Some observations: 1) if more than one byte
- // is demanded from this input, then it could not be successfully assembled
- // into a byteswap. At least one of the two bytes would not be aligned with
- // their ultimate destination.
- if (!isPowerOf2_32(ByteMask)) return true;
- unsigned InputByteNo = countTrailingZeros(ByteMask);
- // 2) The input and ultimate destinations must line up: if byte 3 of an i32
- // is demanded, it needs to go into byte 0 of the result. This means that the
- // byte needs to be shifted until it lands in the right byte bucket. The
- // shift amount depends on the position: if the byte is coming from the high
- // part of the value (e.g. byte 3) then it must be shifted right. If from the
- // low part, it must be shifted left.
- unsigned DestByteNo = InputByteNo + OverallLeftShift;
- if (ByteValues.size()-1-DestByteNo != InputByteNo)
- return true;
- // If the destination byte value is already defined, the values are or'd
- // together, which isn't a bswap (unless it's an or of the same bits).
- if (ByteValues[DestByteNo] && ByteValues[DestByteNo] != V)
- return true;
- ByteValues[DestByteNo] = V;
- return false;
- }
- /// MatchBSwap - Given an OR instruction, check to see if this is a bswap idiom.
- /// If so, insert the new bswap intrinsic and return it.
- Instruction *InstCombiner::MatchBSwap(BinaryOperator &I) {
- IntegerType *ITy = dyn_cast<IntegerType>(I.getType());
- if (!ITy || ITy->getBitWidth() % 16 ||
- // ByteMask only allows up to 32-byte values.
- ITy->getBitWidth() > 32*8)
- return nullptr; // Can only bswap pairs of bytes. Can't do vectors.
- /// ByteValues - For each byte of the result, we keep track of which value
- /// defines each byte.
- SmallVector<Value*, 8> ByteValues;
- ByteValues.resize(ITy->getBitWidth()/8);
- // Try to find all the pieces corresponding to the bswap.
- uint32_t ByteMask = ~0U >> (32-ByteValues.size());
- if (CollectBSwapParts(&I, 0, ByteMask, ByteValues))
- return nullptr;
- // Check to see if all of the bytes come from the same value.
- Value *V = ByteValues[0];
- if (!V) return nullptr; // Didn't find a byte? Must be zero.
- // Check to make sure that all of the bytes come from the same value.
- for (unsigned i = 1, e = ByteValues.size(); i != e; ++i)
- if (ByteValues[i] != V)
- return nullptr;
- Module *M = I.getParent()->getParent()->getParent();
- Function *F = Intrinsic::getDeclaration(M, Intrinsic::bswap, ITy);
- return CallInst::Create(F, V);
- }
- /// MatchSelectFromAndOr - We have an expression of the form (A&C)|(B&D). Check
- /// If A is (cond?-1:0) and either B or D is ~(cond?-1,0) or (cond?0,-1), then
- /// we can simplify this expression to "cond ? C : D or B".
- static Instruction *MatchSelectFromAndOr(Value *A, Value *B,
- Value *C, Value *D) {
- // If A is not a select of -1/0, this cannot match.
- Value *Cond = nullptr;
- if (!match(A, m_SExt(m_Value(Cond))) ||
- !Cond->getType()->isIntegerTy(1))
- return nullptr;
- // ((cond?-1:0)&C) | (B&(cond?0:-1)) -> cond ? C : B.
- if (match(D, m_Not(m_SExt(m_Specific(Cond)))))
- return SelectInst::Create(Cond, C, B);
- if (match(D, m_SExt(m_Not(m_Specific(Cond)))))
- return SelectInst::Create(Cond, C, B);
- // ((cond?-1:0)&C) | ((cond?0:-1)&D) -> cond ? C : D.
- if (match(B, m_Not(m_SExt(m_Specific(Cond)))))
- return SelectInst::Create(Cond, C, D);
- if (match(B, m_SExt(m_Not(m_Specific(Cond)))))
- return SelectInst::Create(Cond, C, D);
- return nullptr;
- }
- /// FoldOrOfICmps - Fold (icmp)|(icmp) if possible.
- Value *InstCombiner::FoldOrOfICmps(ICmpInst *LHS, ICmpInst *RHS,
- Instruction *CxtI) {
- ICmpInst::Predicate LHSCC = LHS->getPredicate(), RHSCC = RHS->getPredicate();
- // Fold (iszero(A & K1) | iszero(A & K2)) -> (A & (K1 | K2)) != (K1 | K2)
- // if K1 and K2 are a one-bit mask.
- ConstantInt *LHSCst = dyn_cast<ConstantInt>(LHS->getOperand(1));
- ConstantInt *RHSCst = dyn_cast<ConstantInt>(RHS->getOperand(1));
- if (LHS->getPredicate() == ICmpInst::ICMP_EQ && LHSCst && LHSCst->isZero() &&
- RHS->getPredicate() == ICmpInst::ICMP_EQ && RHSCst && RHSCst->isZero()) {
- BinaryOperator *LAnd = dyn_cast<BinaryOperator>(LHS->getOperand(0));
- BinaryOperator *RAnd = dyn_cast<BinaryOperator>(RHS->getOperand(0));
- if (LAnd && RAnd && LAnd->hasOneUse() && RHS->hasOneUse() &&
- LAnd->getOpcode() == Instruction::And &&
- RAnd->getOpcode() == Instruction::And) {
- Value *Mask = nullptr;
- Value *Masked = nullptr;
- if (LAnd->getOperand(0) == RAnd->getOperand(0) &&
- isKnownToBeAPowerOfTwo(LAnd->getOperand(1), DL, false, 0, AC, CxtI,
- DT) &&
- isKnownToBeAPowerOfTwo(RAnd->getOperand(1), DL, false, 0, AC, CxtI,
- DT)) {
- Mask = Builder->CreateOr(LAnd->getOperand(1), RAnd->getOperand(1));
- Masked = Builder->CreateAnd(LAnd->getOperand(0), Mask);
- } else if (LAnd->getOperand(1) == RAnd->getOperand(1) &&
- isKnownToBeAPowerOfTwo(LAnd->getOperand(0), DL, false, 0, AC,
- CxtI, DT) &&
- isKnownToBeAPowerOfTwo(RAnd->getOperand(0), DL, false, 0, AC,
- CxtI, DT)) {
- Mask = Builder->CreateOr(LAnd->getOperand(0), RAnd->getOperand(0));
- Masked = Builder->CreateAnd(LAnd->getOperand(1), Mask);
- }
- if (Masked)
- return Builder->CreateICmp(ICmpInst::ICMP_NE, Masked, Mask);
- }
- }
- // Fold (icmp ult/ule (A + C1), C3) | (icmp ult/ule (A + C2), C3)
- // --> (icmp ult/ule ((A & ~(C1 ^ C2)) + max(C1, C2)), C3)
- // The original condition actually refers to the following two ranges:
- // [MAX_UINT-C1+1, MAX_UINT-C1+1+C3] and [MAX_UINT-C2+1, MAX_UINT-C2+1+C3]
- // We can fold these two ranges if:
- // 1) C1 and C2 is unsigned greater than C3.
- // 2) The two ranges are separated.
- // 3) C1 ^ C2 is one-bit mask.
- // 4) LowRange1 ^ LowRange2 and HighRange1 ^ HighRange2 are one-bit mask.
- // This implies all values in the two ranges differ by exactly one bit.
- if ((LHSCC == ICmpInst::ICMP_ULT || LHSCC == ICmpInst::ICMP_ULE) &&
- LHSCC == RHSCC && LHSCst && RHSCst && LHS->hasOneUse() &&
- RHS->hasOneUse() && LHSCst->getType() == RHSCst->getType() &&
- LHSCst->getValue() == (RHSCst->getValue())) {
- Value *LAdd = LHS->getOperand(0);
- Value *RAdd = RHS->getOperand(0);
- Value *LAddOpnd, *RAddOpnd;
- ConstantInt *LAddCst, *RAddCst;
- if (match(LAdd, m_Add(m_Value(LAddOpnd), m_ConstantInt(LAddCst))) &&
- match(RAdd, m_Add(m_Value(RAddOpnd), m_ConstantInt(RAddCst))) &&
- LAddCst->getValue().ugt(LHSCst->getValue()) &&
- RAddCst->getValue().ugt(LHSCst->getValue())) {
- APInt DiffCst = LAddCst->getValue() ^ RAddCst->getValue();
- if (LAddOpnd == RAddOpnd && DiffCst.isPowerOf2()) {
- ConstantInt *MaxAddCst = nullptr;
- if (LAddCst->getValue().ult(RAddCst->getValue()))
- MaxAddCst = RAddCst;
- else
- MaxAddCst = LAddCst;
- APInt RRangeLow = -RAddCst->getValue();
- APInt RRangeHigh = RRangeLow + LHSCst->getValue();
- APInt LRangeLow = -LAddCst->getValue();
- APInt LRangeHigh = LRangeLow + LHSCst->getValue();
- APInt LowRangeDiff = RRangeLow ^ LRangeLow;
- APInt HighRangeDiff = RRangeHigh ^ LRangeHigh;
- APInt RangeDiff = LRangeLow.sgt(RRangeLow) ? LRangeLow - RRangeLow
- : RRangeLow - LRangeLow;
- if (LowRangeDiff.isPowerOf2() && LowRangeDiff == HighRangeDiff &&
- RangeDiff.ugt(LHSCst->getValue())) {
- Value *MaskCst = ConstantInt::get(LAddCst->getType(), ~DiffCst);
- Value *NewAnd = Builder->CreateAnd(LAddOpnd, MaskCst);
- Value *NewAdd = Builder->CreateAdd(NewAnd, MaxAddCst);
- return (Builder->CreateICmp(LHS->getPredicate(), NewAdd, LHSCst));
- }
- }
- }
- }
- // (icmp1 A, B) | (icmp2 A, B) --> (icmp3 A, B)
- if (PredicatesFoldable(LHSCC, RHSCC)) {
- if (LHS->getOperand(0) == RHS->getOperand(1) &&
- LHS->getOperand(1) == RHS->getOperand(0))
- LHS->swapOperands();
- if (LHS->getOperand(0) == RHS->getOperand(0) &&
- LHS->getOperand(1) == RHS->getOperand(1)) {
- Value *Op0 = LHS->getOperand(0), *Op1 = LHS->getOperand(1);
- unsigned Code = getICmpCode(LHS) | getICmpCode(RHS);
- bool isSigned = LHS->isSigned() || RHS->isSigned();
- return getNewICmpValue(isSigned, Code, Op0, Op1, Builder);
- }
- }
- // handle (roughly):
- // (icmp ne (A & B), C) | (icmp ne (A & D), E)
- if (Value *V = foldLogOpOfMaskedICmps(LHS, RHS, false, Builder))
- return V;
- Value *Val = LHS->getOperand(0), *Val2 = RHS->getOperand(0);
- if (LHS->hasOneUse() || RHS->hasOneUse()) {
- // (icmp eq B, 0) | (icmp ult A, B) -> (icmp ule A, B-1)
- // (icmp eq B, 0) | (icmp ugt B, A) -> (icmp ule A, B-1)
- Value *A = nullptr, *B = nullptr;
- if (LHSCC == ICmpInst::ICMP_EQ && LHSCst && LHSCst->isZero()) {
- B = Val;
- if (RHSCC == ICmpInst::ICMP_ULT && Val == RHS->getOperand(1))
- A = Val2;
- else if (RHSCC == ICmpInst::ICMP_UGT && Val == Val2)
- A = RHS->getOperand(1);
- }
- // (icmp ult A, B) | (icmp eq B, 0) -> (icmp ule A, B-1)
- // (icmp ugt B, A) | (icmp eq B, 0) -> (icmp ule A, B-1)
- else if (RHSCC == ICmpInst::ICMP_EQ && RHSCst && RHSCst->isZero()) {
- B = Val2;
- if (LHSCC == ICmpInst::ICMP_ULT && Val2 == LHS->getOperand(1))
- A = Val;
- else if (LHSCC == ICmpInst::ICMP_UGT && Val2 == Val)
- A = LHS->getOperand(1);
- }
- if (A && B)
- return Builder->CreateICmp(
- ICmpInst::ICMP_UGE,
- Builder->CreateAdd(B, ConstantInt::getSigned(B->getType(), -1)), A);
- }
- // E.g. (icmp slt x, 0) | (icmp sgt x, n) --> icmp ugt x, n
- if (Value *V = simplifyRangeCheck(LHS, RHS, /*Inverted=*/true))
- return V;
- // E.g. (icmp sgt x, n) | (icmp slt x, 0) --> icmp ugt x, n
- if (Value *V = simplifyRangeCheck(RHS, LHS, /*Inverted=*/true))
- return V;
-
- // This only handles icmp of constants: (icmp1 A, C1) | (icmp2 B, C2).
- if (!LHSCst || !RHSCst) return nullptr;
- if (LHSCst == RHSCst && LHSCC == RHSCC) {
- // (icmp ne A, 0) | (icmp ne B, 0) --> (icmp ne (A|B), 0)
- if (LHSCC == ICmpInst::ICMP_NE && LHSCst->isZero()) {
- Value *NewOr = Builder->CreateOr(Val, Val2);
- return Builder->CreateICmp(LHSCC, NewOr, LHSCst);
- }
- }
- // (icmp ult (X + CA), C1) | (icmp eq X, C2) -> (icmp ule (X + CA), C1)
- // iff C2 + CA == C1.
- if (LHSCC == ICmpInst::ICMP_ULT && RHSCC == ICmpInst::ICMP_EQ) {
- ConstantInt *AddCst;
- if (match(Val, m_Add(m_Specific(Val2), m_ConstantInt(AddCst))))
- if (RHSCst->getValue() + AddCst->getValue() == LHSCst->getValue())
- return Builder->CreateICmpULE(Val, LHSCst);
- }
- // From here on, we only handle:
- // (icmp1 A, C1) | (icmp2 A, C2) --> something simpler.
- if (Val != Val2) return nullptr;
- // ICMP_[US][GL]E X, CST is folded to ICMP_[US][GL]T elsewhere.
- if (LHSCC == ICmpInst::ICMP_UGE || LHSCC == ICmpInst::ICMP_ULE ||
- RHSCC == ICmpInst::ICMP_UGE || RHSCC == ICmpInst::ICMP_ULE ||
- LHSCC == ICmpInst::ICMP_SGE || LHSCC == ICmpInst::ICMP_SLE ||
- RHSCC == ICmpInst::ICMP_SGE || RHSCC == ICmpInst::ICMP_SLE)
- return nullptr;
- // We can't fold (ugt x, C) | (sgt x, C2).
- if (!PredicatesFoldable(LHSCC, RHSCC))
- return nullptr;
- // Ensure that the larger constant is on the RHS.
- bool ShouldSwap;
- if (CmpInst::isSigned(LHSCC) ||
- (ICmpInst::isEquality(LHSCC) &&
- CmpInst::isSigned(RHSCC)))
- ShouldSwap = LHSCst->getValue().sgt(RHSCst->getValue());
- else
- ShouldSwap = LHSCst->getValue().ugt(RHSCst->getValue());
- if (ShouldSwap) {
- std::swap(LHS, RHS);
- std::swap(LHSCst, RHSCst);
- std::swap(LHSCC, RHSCC);
- }
- // At this point, we know we have two icmp instructions
- // comparing a value against two constants and or'ing the result
- // together. Because of the above check, we know that we only have
- // ICMP_EQ, ICMP_NE, ICMP_LT, and ICMP_GT here. We also know (from the
- // icmp folding check above), that the two constants are not
- // equal.
- assert(LHSCst != RHSCst && "Compares not folded above?");
- switch (LHSCC) {
- default: llvm_unreachable("Unknown integer condition code!");
- case ICmpInst::ICMP_EQ:
- switch (RHSCC) {
- default: llvm_unreachable("Unknown integer condition code!");
- case ICmpInst::ICMP_EQ:
- if (LHS->getOperand(0) == RHS->getOperand(0)) {
- // if LHSCst and RHSCst differ only by one bit:
- // (A == C1 || A == C2) -> (A & ~(C1 ^ C2)) == C1
- assert(LHSCst->getValue().ule(LHSCst->getValue()));
- APInt Xor = LHSCst->getValue() ^ RHSCst->getValue();
- if (Xor.isPowerOf2()) {
- Value *NegCst = Builder->getInt(~Xor);
- Value *And = Builder->CreateAnd(LHS->getOperand(0), NegCst);
- return Builder->CreateICmp(ICmpInst::ICMP_EQ, And, LHSCst);
- }
- }
- if (LHSCst == SubOne(RHSCst)) {
- // (X == 13 | X == 14) -> X-13 <u 2
- Constant *AddCST = ConstantExpr::getNeg(LHSCst);
- Value *Add = Builder->CreateAdd(Val, AddCST, Val->getName()+".off");
- AddCST = ConstantExpr::getSub(AddOne(RHSCst), LHSCst);
- return Builder->CreateICmpULT(Add, AddCST);
- }
- break; // (X == 13 | X == 15) -> no change
- case ICmpInst::ICMP_UGT: // (X == 13 | X u> 14) -> no change
- case ICmpInst::ICMP_SGT: // (X == 13 | X s> 14) -> no change
- break;
- case ICmpInst::ICMP_NE: // (X == 13 | X != 15) -> X != 15
- case ICmpInst::ICMP_ULT: // (X == 13 | X u< 15) -> X u< 15
- case ICmpInst::ICMP_SLT: // (X == 13 | X s< 15) -> X s< 15
- return RHS;
- }
- break;
- case ICmpInst::ICMP_NE:
- switch (RHSCC) {
- default: llvm_unreachable("Unknown integer condition code!");
- case ICmpInst::ICMP_EQ: // (X != 13 | X == 15) -> X != 13
- case ICmpInst::ICMP_UGT: // (X != 13 | X u> 15) -> X != 13
- case ICmpInst::ICMP_SGT: // (X != 13 | X s> 15) -> X != 13
- return LHS;
- case ICmpInst::ICMP_NE: // (X != 13 | X != 15) -> true
- case ICmpInst::ICMP_ULT: // (X != 13 | X u< 15) -> true
- case ICmpInst::ICMP_SLT: // (X != 13 | X s< 15) -> true
- return Builder->getTrue();
- }
- case ICmpInst::ICMP_ULT:
- switch (RHSCC) {
- default: llvm_unreachable("Unknown integer condition code!");
- case ICmpInst::ICMP_EQ: // (X u< 13 | X == 14) -> no change
- break;
- case ICmpInst::ICMP_UGT: // (X u< 13 | X u> 15) -> (X-13) u> 2
- // If RHSCst is [us]MAXINT, it is always false. Not handling
- // this can cause overflow.
- if (RHSCst->isMaxValue(false))
- return LHS;
- return InsertRangeTest(Val, LHSCst, AddOne(RHSCst), false, false);
- case ICmpInst::ICMP_SGT: // (X u< 13 | X s> 15) -> no change
- break;
- case ICmpInst::ICMP_NE: // (X u< 13 | X != 15) -> X != 15
- case ICmpInst::ICMP_ULT: // (X u< 13 | X u< 15) -> X u< 15
- return RHS;
- case ICmpInst::ICMP_SLT: // (X u< 13 | X s< 15) -> no change
- break;
- }
- break;
- case ICmpInst::ICMP_SLT:
- switch (RHSCC) {
- default: llvm_unreachable("Unknown integer condition code!");
- case ICmpInst::ICMP_EQ: // (X s< 13 | X == 14) -> no change
- break;
- case ICmpInst::ICMP_SGT: // (X s< 13 | X s> 15) -> (X-13) s> 2
- // If RHSCst is [us]MAXINT, it is always false. Not handling
- // this can cause overflow.
- if (RHSCst->isMaxValue(true))
- return LHS;
- return InsertRangeTest(Val, LHSCst, AddOne(RHSCst), true, false);
- case ICmpInst::ICMP_UGT: // (X s< 13 | X u> 15) -> no change
- break;
- case ICmpInst::ICMP_NE: // (X s< 13 | X != 15) -> X != 15
- case ICmpInst::ICMP_SLT: // (X s< 13 | X s< 15) -> X s< 15
- return RHS;
- case ICmpInst::ICMP_ULT: // (X s< 13 | X u< 15) -> no change
- break;
- }
- break;
- case ICmpInst::ICMP_UGT:
- switch (RHSCC) {
- default: llvm_unreachable("Unknown integer condition code!");
- case ICmpInst::ICMP_EQ: // (X u> 13 | X == 15) -> X u> 13
- case ICmpInst::ICMP_UGT: // (X u> 13 | X u> 15) -> X u> 13
- return LHS;
- case ICmpInst::ICMP_SGT: // (X u> 13 | X s> 15) -> no change
- break;
- case ICmpInst::ICMP_NE: // (X u> 13 | X != 15) -> true
- case ICmpInst::ICMP_ULT: // (X u> 13 | X u< 15) -> true
- return Builder->getTrue();
- case ICmpInst::ICMP_SLT: // (X u> 13 | X s< 15) -> no change
- break;
- }
- break;
- case ICmpInst::ICMP_SGT:
- switch (RHSCC) {
- default: llvm_unreachable("Unknown integer condition code!");
- case ICmpInst::ICMP_EQ: // (X s> 13 | X == 15) -> X > 13
- case ICmpInst::ICMP_SGT: // (X s> 13 | X s> 15) -> X > 13
- return LHS;
- case ICmpInst::ICMP_UGT: // (X s> 13 | X u> 15) -> no change
- break;
- case ICmpInst::ICMP_NE: // (X s> 13 | X != 15) -> true
- case ICmpInst::ICMP_SLT: // (X s> 13 | X s< 15) -> true
- return Builder->getTrue();
- case ICmpInst::ICMP_ULT: // (X s> 13 | X u< 15) -> no change
- break;
- }
- break;
- }
- return nullptr;
- }
- /// FoldOrOfFCmps - Optimize (fcmp)|(fcmp). NOTE: Unlike the rest of
- /// instcombine, this returns a Value which should already be inserted into the
- /// function.
- Value *InstCombiner::FoldOrOfFCmps(FCmpInst *LHS, FCmpInst *RHS) {
- if (LHS->getPredicate() == FCmpInst::FCMP_UNO &&
- RHS->getPredicate() == FCmpInst::FCMP_UNO &&
- LHS->getOperand(0)->getType() == RHS->getOperand(0)->getType()) {
- if (ConstantFP *LHSC = dyn_cast<ConstantFP>(LHS->getOperand(1)))
- if (ConstantFP *RHSC = dyn_cast<ConstantFP>(RHS->getOperand(1))) {
- // If either of the constants are nans, then the whole thing returns
- // true.
- if (LHSC->getValueAPF().isNaN() || RHSC->getValueAPF().isNaN())
- return Builder->getTrue();
- // Otherwise, no need to compare the two constants, compare the
- // rest.
- return Builder->CreateFCmpUNO(LHS->getOperand(0), RHS->getOperand(0));
- }
- // Handle vector zeros. This occurs because the canonical form of
- // "fcmp uno x,x" is "fcmp uno x, 0".
- if (isa<ConstantAggregateZero>(LHS->getOperand(1)) &&
- isa<ConstantAggregateZero>(RHS->getOperand(1)))
- return Builder->CreateFCmpUNO(LHS->getOperand(0), RHS->getOperand(0));
- return nullptr;
- }
- Value *Op0LHS = LHS->getOperand(0), *Op0RHS = LHS->getOperand(1);
- Value *Op1LHS = RHS->getOperand(0), *Op1RHS = RHS->getOperand(1);
- FCmpInst::Predicate Op0CC = LHS->getPredicate(), Op1CC = RHS->getPredicate();
- if (Op0LHS == Op1RHS && Op0RHS == Op1LHS) {
- // Swap RHS operands to match LHS.
- Op1CC = FCmpInst::getSwappedPredicate(Op1CC);
- std::swap(Op1LHS, Op1RHS);
- }
- if (Op0LHS == Op1LHS && Op0RHS == Op1RHS) {
- // Simplify (fcmp cc0 x, y) | (fcmp cc1 x, y).
- if (Op0CC == Op1CC)
- return Builder->CreateFCmp((FCmpInst::Predicate)Op0CC, Op0LHS, Op0RHS);
- if (Op0CC == FCmpInst::FCMP_TRUE || Op1CC == FCmpInst::FCMP_TRUE)
- return ConstantInt::get(CmpInst::makeCmpResultType(LHS->getType()), 1);
- if (Op0CC == FCmpInst::FCMP_FALSE)
- return RHS;
- if (Op1CC == FCmpInst::FCMP_FALSE)
- return LHS;
- bool Op0Ordered;
- bool Op1Ordered;
- unsigned Op0Pred = getFCmpCode(Op0CC, Op0Ordered);
- unsigned Op1Pred = getFCmpCode(Op1CC, Op1Ordered);
- if (Op0Ordered == Op1Ordered) {
- // If both are ordered or unordered, return a new fcmp with
- // or'ed predicates.
- return getFCmpValue(Op0Ordered, Op0Pred|Op1Pred, Op0LHS, Op0RHS, Builder);
- }
- }
- return nullptr;
- }
- /// FoldOrWithConstants - This helper function folds:
- ///
- /// ((A | B) & C1) | (B & C2)
- ///
- /// into:
- ///
- /// (A & C1) | B
- ///
- /// when the XOR of the two constants is "all ones" (-1).
- Instruction *InstCombiner::FoldOrWithConstants(BinaryOperator &I, Value *Op,
- Value *A, Value *B, Value *C) {
- ConstantInt *CI1 = dyn_cast<ConstantInt>(C);
- if (!CI1) return nullptr;
- Value *V1 = nullptr;
- ConstantInt *CI2 = nullptr;
- if (!match(Op, m_And(m_Value(V1), m_ConstantInt(CI2)))) return nullptr;
- APInt Xor = CI1->getValue() ^ CI2->getValue();
- if (!Xor.isAllOnesValue()) return nullptr;
- if (V1 == A || V1 == B) {
- Value *NewOp = Builder->CreateAnd((V1 == A) ? B : A, CI1);
- return BinaryOperator::CreateOr(NewOp, V1);
- }
- return nullptr;
- }
- /// \brief This helper function folds:
- ///
- /// ((A | B) & C1) ^ (B & C2)
- ///
- /// into:
- ///
- /// (A & C1) ^ B
- ///
- /// when the XOR of the two constants is "all ones" (-1).
- Instruction *InstCombiner::FoldXorWithConstants(BinaryOperator &I, Value *Op,
- Value *A, Value *B, Value *C) {
- ConstantInt *CI1 = dyn_cast<ConstantInt>(C);
- if (!CI1)
- return nullptr;
- Value *V1 = nullptr;
- ConstantInt *CI2 = nullptr;
- if (!match(Op, m_And(m_Value(V1), m_ConstantInt(CI2))))
- return nullptr;
- APInt Xor = CI1->getValue() ^ CI2->getValue();
- if (!Xor.isAllOnesValue())
- return nullptr;
- if (V1 == A || V1 == B) {
- Value *NewOp = Builder->CreateAnd(V1 == A ? B : A, CI1);
- return BinaryOperator::CreateXor(NewOp, V1);
- }
- return nullptr;
- }
- Instruction *InstCombiner::visitOr(BinaryOperator &I) {
- bool Changed = SimplifyAssociativeOrCommutative(I);
- Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
- if (Value *V = SimplifyVectorOp(I))
- return ReplaceInstUsesWith(I, V);
- if (Value *V = SimplifyOrInst(Op0, Op1, DL, TLI, DT, AC))
- return ReplaceInstUsesWith(I, V);
- // (A&B)|(A&C) -> A&(B|C) etc
- if (Value *V = SimplifyUsingDistributiveLaws(I))
- return ReplaceInstUsesWith(I, V);
- // See if we can simplify any instructions used by the instruction whose sole
- // purpose is to compute bits we don't care about.
- if (SimplifyDemandedInstructionBits(I))
- return &I;
- if (Value *V = SimplifyBSwap(I))
- return ReplaceInstUsesWith(I, V);
- if (ConstantInt *RHS = dyn_cast<ConstantInt>(Op1)) {
- ConstantInt *C1 = nullptr; Value *X = nullptr;
- // (X & C1) | C2 --> (X | C2) & (C1|C2)
- // iff (C1 & C2) == 0.
- if (match(Op0, m_And(m_Value(X), m_ConstantInt(C1))) &&
- (RHS->getValue() & C1->getValue()) != 0 &&
- Op0->hasOneUse()) {
- Value *Or = Builder->CreateOr(X, RHS);
- Or->takeName(Op0);
- return BinaryOperator::CreateAnd(Or,
- Builder->getInt(RHS->getValue() | C1->getValue()));
- }
- // (X ^ C1) | C2 --> (X | C2) ^ (C1&~C2)
- if (match(Op0, m_Xor(m_Value(X), m_ConstantInt(C1))) &&
- Op0->hasOneUse()) {
- Value *Or = Builder->CreateOr(X, RHS);
- Or->takeName(Op0);
- return BinaryOperator::CreateXor(Or,
- Builder->getInt(C1->getValue() & ~RHS->getValue()));
- }
- // Try to fold constant and into select arguments.
- if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
- if (Instruction *R = FoldOpIntoSelect(I, SI))
- return R;
- if (isa<PHINode>(Op0))
- if (Instruction *NV = FoldOpIntoPhi(I))
- return NV;
- }
- Value *A = nullptr, *B = nullptr;
- ConstantInt *C1 = nullptr, *C2 = nullptr;
- // (A | B) | C and A | (B | C) -> bswap if possible.
- // (A >> B) | (C << D) and (A << B) | (B >> C) -> bswap if possible.
- if (match(Op0, m_Or(m_Value(), m_Value())) ||
- match(Op1, m_Or(m_Value(), m_Value())) ||
- (match(Op0, m_LogicalShift(m_Value(), m_Value())) &&
- match(Op1, m_LogicalShift(m_Value(), m_Value())))) {
- if (Instruction *BSwap = MatchBSwap(I))
- return BSwap;
- }
- // (X^C)|Y -> (X|Y)^C iff Y&C == 0
- if (Op0->hasOneUse() &&
- match(Op0, m_Xor(m_Value(A), m_ConstantInt(C1))) &&
- MaskedValueIsZero(Op1, C1->getValue(), 0, &I)) {
- Value *NOr = Builder->CreateOr(A, Op1);
- NOr->takeName(Op0);
- return BinaryOperator::CreateXor(NOr, C1);
- }
- // Y|(X^C) -> (X|Y)^C iff Y&C == 0
- if (Op1->hasOneUse() &&
- match(Op1, m_Xor(m_Value(A), m_ConstantInt(C1))) &&
- MaskedValueIsZero(Op0, C1->getValue(), 0, &I)) {
- Value *NOr = Builder->CreateOr(A, Op0);
- NOr->takeName(Op0);
- return BinaryOperator::CreateXor(NOr, C1);
- }
- // ((~A & B) | A) -> (A | B)
- if (match(Op0, m_And(m_Not(m_Value(A)), m_Value(B))) &&
- match(Op1, m_Specific(A)))
- return BinaryOperator::CreateOr(A, B);
- // ((A & B) | ~A) -> (~A | B)
- if (match(Op0, m_And(m_Value(A), m_Value(B))) &&
- match(Op1, m_Not(m_Specific(A))))
- return BinaryOperator::CreateOr(Builder->CreateNot(A), B);
- // (A & (~B)) | (A ^ B) -> (A ^ B)
- if (match(Op0, m_And(m_Value(A), m_Not(m_Value(B)))) &&
- match(Op1, m_Xor(m_Specific(A), m_Specific(B))))
- return BinaryOperator::CreateXor(A, B);
- // (A ^ B) | ( A & (~B)) -> (A ^ B)
- if (match(Op0, m_Xor(m_Value(A), m_Value(B))) &&
- match(Op1, m_And(m_Specific(A), m_Not(m_Specific(B)))))
- return BinaryOperator::CreateXor(A, B);
- // (A & C)|(B & D)
- Value *C = nullptr, *D = nullptr;
- if (match(Op0, m_And(m_Value(A), m_Value(C))) &&
- match(Op1, m_And(m_Value(B), m_Value(D)))) {
- Value *V1 = nullptr, *V2 = nullptr;
- C1 = dyn_cast<ConstantInt>(C);
- C2 = dyn_cast<ConstantInt>(D);
- if (C1 && C2) { // (A & C1)|(B & C2)
- if ((C1->getValue() & C2->getValue()) == 0) {
- // ((V | N) & C1) | (V & C2) --> (V|N) & (C1|C2)
- // iff (C1&C2) == 0 and (N&~C1) == 0
- if (match(A, m_Or(m_Value(V1), m_Value(V2))) &&
- ((V1 == B &&
- MaskedValueIsZero(V2, ~C1->getValue(), 0, &I)) || // (V|N)
- (V2 == B &&
- MaskedValueIsZero(V1, ~C1->getValue(), 0, &I)))) // (N|V)
- return BinaryOperator::CreateAnd(A,
- Builder->getInt(C1->getValue()|C2->getValue()));
- // Or commutes, try both ways.
- if (match(B, m_Or(m_Value(V1), m_Value(V2))) &&
- ((V1 == A &&
- MaskedValueIsZero(V2, ~C2->getValue(), 0, &I)) || // (V|N)
- (V2 == A &&
- MaskedValueIsZero(V1, ~C2->getValue(), 0, &I)))) // (N|V)
- return BinaryOperator::CreateAnd(B,
- Builder->getInt(C1->getValue()|C2->getValue()));
- // ((V|C3)&C1) | ((V|C4)&C2) --> (V|C3|C4)&(C1|C2)
- // iff (C1&C2) == 0 and (C3&~C1) == 0 and (C4&~C2) == 0.
- ConstantInt *C3 = nullptr, *C4 = nullptr;
- if (match(A, m_Or(m_Value(V1), m_ConstantInt(C3))) &&
- (C3->getValue() & ~C1->getValue()) == 0 &&
- match(B, m_Or(m_Specific(V1), m_ConstantInt(C4))) &&
- (C4->getValue() & ~C2->getValue()) == 0) {
- V2 = Builder->CreateOr(V1, ConstantExpr::getOr(C3, C4), "bitfield");
- return BinaryOperator::CreateAnd(V2,
- Builder->getInt(C1->getValue()|C2->getValue()));
- }
- }
- }
- // (A & (C0?-1:0)) | (B & ~(C0?-1:0)) -> C0 ? A : B, and commuted variants.
- // Don't do this for vector select idioms, the code generator doesn't handle
- // them well yet.
- if (!I.getType()->isVectorTy()) {
- if (Instruction *Match = MatchSelectFromAndOr(A, B, C, D))
- return Match;
- if (Instruction *Match = MatchSelectFromAndOr(B, A, D, C))
- return Match;
- if (Instruction *Match = MatchSelectFromAndOr(C, B, A, D))
- return Match;
- if (Instruction *Match = MatchSelectFromAndOr(D, A, B, C))
- return Match;
- }
- // ((A&~B)|(~A&B)) -> A^B
- if ((match(C, m_Not(m_Specific(D))) &&
- match(B, m_Not(m_Specific(A)))))
- return BinaryOperator::CreateXor(A, D);
- // ((~B&A)|(~A&B)) -> A^B
- if ((match(A, m_Not(m_Specific(D))) &&
- match(B, m_Not(m_Specific(C)))))
- return BinaryOperator::CreateXor(C, D);
- // ((A&~B)|(B&~A)) -> A^B
- if ((match(C, m_Not(m_Specific(B))) &&
- match(D, m_Not(m_Specific(A)))))
- return BinaryOperator::CreateXor(A, B);
- // ((~B&A)|(B&~A)) -> A^B
- if ((match(A, m_Not(m_Specific(B))) &&
- match(D, m_Not(m_Specific(C)))))
- return BinaryOperator::CreateXor(C, B);
- // ((A|B)&1)|(B&-2) -> (A&1) | B
- if (match(A, m_Or(m_Value(V1), m_Specific(B))) ||
- match(A, m_Or(m_Specific(B), m_Value(V1)))) {
- Instruction *Ret = FoldOrWithConstants(I, Op1, V1, B, C);
- if (Ret) return Ret;
- }
- // (B&-2)|((A|B)&1) -> (A&1) | B
- if (match(B, m_Or(m_Specific(A), m_Value(V1))) ||
- match(B, m_Or(m_Value(V1), m_Specific(A)))) {
- Instruction *Ret = FoldOrWithConstants(I, Op0, A, V1, D);
- if (Ret) return Ret;
- }
- // ((A^B)&1)|(B&-2) -> (A&1) ^ B
- if (match(A, m_Xor(m_Value(V1), m_Specific(B))) ||
- match(A, m_Xor(m_Specific(B), m_Value(V1)))) {
- Instruction *Ret = FoldXorWithConstants(I, Op1, V1, B, C);
- if (Ret) return Ret;
- }
- // (B&-2)|((A^B)&1) -> (A&1) ^ B
- if (match(B, m_Xor(m_Specific(A), m_Value(V1))) ||
- match(B, m_Xor(m_Value(V1), m_Specific(A)))) {
- Instruction *Ret = FoldXorWithConstants(I, Op0, A, V1, D);
- if (Ret) return Ret;
- }
- }
- // (A ^ B) | ((B ^ C) ^ A) -> (A ^ B) | C
- if (match(Op0, m_Xor(m_Value(A), m_Value(B))))
- if (match(Op1, m_Xor(m_Xor(m_Specific(B), m_Value(C)), m_Specific(A))))
- if (Op1->hasOneUse() || cast<BinaryOperator>(Op1)->hasOneUse())
- return BinaryOperator::CreateOr(Op0, C);
- // ((A ^ C) ^ B) | (B ^ A) -> (B ^ A) | C
- if (match(Op0, m_Xor(m_Xor(m_Value(A), m_Value(C)), m_Value(B))))
- if (match(Op1, m_Xor(m_Specific(B), m_Specific(A))))
- if (Op0->hasOneUse() || cast<BinaryOperator>(Op0)->hasOneUse())
- return BinaryOperator::CreateOr(Op1, C);
- // ((B | C) & A) | B -> B | (A & C)
- if (match(Op0, m_And(m_Or(m_Specific(Op1), m_Value(C)), m_Value(A))))
- return BinaryOperator::CreateOr(Op1, Builder->CreateAnd(A, C));
- // (~A | ~B) == (~(A & B)) - De Morgan's Law
- if (Value *Op0NotVal = dyn_castNotVal(Op0))
- if (Value *Op1NotVal = dyn_castNotVal(Op1))
- if (Op0->hasOneUse() && Op1->hasOneUse()) {
- Value *And = Builder->CreateAnd(Op0NotVal, Op1NotVal,
- I.getName()+".demorgan");
- return BinaryOperator::CreateNot(And);
- }
- // Canonicalize xor to the RHS.
- bool SwappedForXor = false;
- if (match(Op0, m_Xor(m_Value(), m_Value()))) {
- std::swap(Op0, Op1);
- SwappedForXor = true;
- }
- // A | ( A ^ B) -> A | B
- // A | (~A ^ B) -> A | ~B
- // (A & B) | (A ^ B)
- if (match(Op1, m_Xor(m_Value(A), m_Value(B)))) {
- if (Op0 == A || Op0 == B)
- return BinaryOperator::CreateOr(A, B);
- if (match(Op0, m_And(m_Specific(A), m_Specific(B))) ||
- match(Op0, m_And(m_Specific(B), m_Specific(A))))
- return BinaryOperator::CreateOr(A, B);
- if (Op1->hasOneUse() && match(A, m_Not(m_Specific(Op0)))) {
- Value *Not = Builder->CreateNot(B, B->getName()+".not");
- return BinaryOperator::CreateOr(Not, Op0);
- }
- if (Op1->hasOneUse() && match(B, m_Not(m_Specific(Op0)))) {
- Value *Not = Builder->CreateNot(A, A->getName()+".not");
- return BinaryOperator::CreateOr(Not, Op0);
- }
- }
- // A | ~(A | B) -> A | ~B
- // A | ~(A ^ B) -> A | ~B
- if (match(Op1, m_Not(m_Value(A))))
- if (BinaryOperator *B = dyn_cast<BinaryOperator>(A))
- if ((Op0 == B->getOperand(0) || Op0 == B->getOperand(1)) &&
- Op1->hasOneUse() && (B->getOpcode() == Instruction::Or ||
- B->getOpcode() == Instruction::Xor)) {
- Value *NotOp = Op0 == B->getOperand(0) ? B->getOperand(1) :
- B->getOperand(0);
- Value *Not = Builder->CreateNot(NotOp, NotOp->getName()+".not");
- return BinaryOperator::CreateOr(Not, Op0);
- }
- // (A & B) | ((~A) ^ B) -> (~A ^ B)
- if (match(Op0, m_And(m_Value(A), m_Value(B))) &&
- match(Op1, m_Xor(m_Not(m_Specific(A)), m_Specific(B))))
- return BinaryOperator::CreateXor(Builder->CreateNot(A), B);
- // ((~A) ^ B) | (A & B) -> (~A ^ B)
- if (match(Op0, m_Xor(m_Not(m_Value(A)), m_Value(B))) &&
- match(Op1, m_And(m_Specific(A), m_Specific(B))))
- return BinaryOperator::CreateXor(Builder->CreateNot(A), B);
- if (SwappedForXor)
- std::swap(Op0, Op1);
- {
- ICmpInst *LHS = dyn_cast<ICmpInst>(Op0);
- ICmpInst *RHS = dyn_cast<ICmpInst>(Op1);
- if (LHS && RHS)
- if (Value *Res = FoldOrOfICmps(LHS, RHS, &I))
- return ReplaceInstUsesWith(I, Res);
- // TODO: Make this recursive; it's a little tricky because an arbitrary
- // number of 'or' instructions might have to be created.
- Value *X, *Y;
- if (LHS && match(Op1, m_OneUse(m_Or(m_Value(X), m_Value(Y))))) {
- if (auto *Cmp = dyn_cast<ICmpInst>(X))
- if (Value *Res = FoldOrOfICmps(LHS, Cmp, &I))
- return ReplaceInstUsesWith(I, Builder->CreateOr(Res, Y));
- if (auto *Cmp = dyn_cast<ICmpInst>(Y))
- if (Value *Res = FoldOrOfICmps(LHS, Cmp, &I))
- return ReplaceInstUsesWith(I, Builder->CreateOr(Res, X));
- }
- if (RHS && match(Op0, m_OneUse(m_Or(m_Value(X), m_Value(Y))))) {
- if (auto *Cmp = dyn_cast<ICmpInst>(X))
- if (Value *Res = FoldOrOfICmps(Cmp, RHS, &I))
- return ReplaceInstUsesWith(I, Builder->CreateOr(Res, Y));
- if (auto *Cmp = dyn_cast<ICmpInst>(Y))
- if (Value *Res = FoldOrOfICmps(Cmp, RHS, &I))
- return ReplaceInstUsesWith(I, Builder->CreateOr(Res, X));
- }
- }
- // (fcmp uno x, c) | (fcmp uno y, c) -> (fcmp uno x, y)
- if (FCmpInst *LHS = dyn_cast<FCmpInst>(I.getOperand(0)))
- if (FCmpInst *RHS = dyn_cast<FCmpInst>(I.getOperand(1)))
- if (Value *Res = FoldOrOfFCmps(LHS, RHS))
- return ReplaceInstUsesWith(I, Res);
- // fold (or (cast A), (cast B)) -> (cast (or A, B))
- if (CastInst *Op0C = dyn_cast<CastInst>(Op0)) {
- CastInst *Op1C = dyn_cast<CastInst>(Op1);
- if (Op1C && Op0C->getOpcode() == Op1C->getOpcode()) {// same cast kind ?
- Type *SrcTy = Op0C->getOperand(0)->getType();
- if (SrcTy == Op1C->getOperand(0)->getType() &&
- SrcTy->isIntOrIntVectorTy()) {
- Value *Op0COp = Op0C->getOperand(0), *Op1COp = Op1C->getOperand(0);
- if ((!isa<ICmpInst>(Op0COp) || !isa<ICmpInst>(Op1COp)) &&
- // Only do this if the casts both really cause code to be
- // generated.
- ShouldOptimizeCast(Op0C->getOpcode(), Op0COp, I.getType()) &&
- ShouldOptimizeCast(Op1C->getOpcode(), Op1COp, I.getType())) {
- Value *NewOp = Builder->CreateOr(Op0COp, Op1COp, I.getName());
- return CastInst::Create(Op0C->getOpcode(), NewOp, I.getType());
- }
- // If this is or(cast(icmp), cast(icmp)), try to fold this even if the
- // cast is otherwise not optimizable. This happens for vector sexts.
- if (ICmpInst *RHS = dyn_cast<ICmpInst>(Op1COp))
- if (ICmpInst *LHS = dyn_cast<ICmpInst>(Op0COp))
- if (Value *Res = FoldOrOfICmps(LHS, RHS, &I))
- return CastInst::Create(Op0C->getOpcode(), Res, I.getType());
- // If this is or(cast(fcmp), cast(fcmp)), try to fold this even if the
- // cast is otherwise not optimizable. This happens for vector sexts.
- if (FCmpInst *RHS = dyn_cast<FCmpInst>(Op1COp))
- if (FCmpInst *LHS = dyn_cast<FCmpInst>(Op0COp))
- if (Value *Res = FoldOrOfFCmps(LHS, RHS))
- return CastInst::Create(Op0C->getOpcode(), Res, I.getType());
- }
- }
- }
- // or(sext(A), B) -> A ? -1 : B where A is an i1
- // or(A, sext(B)) -> B ? -1 : A where B is an i1
- if (match(Op0, m_SExt(m_Value(A))) && A->getType()->isIntegerTy(1))
- return SelectInst::Create(A, ConstantInt::getSigned(I.getType(), -1), Op1);
- if (match(Op1, m_SExt(m_Value(A))) && A->getType()->isIntegerTy(1))
- return SelectInst::Create(A, ConstantInt::getSigned(I.getType(), -1), Op0);
- // Note: If we've gotten to the point of visiting the outer OR, then the
- // inner one couldn't be simplified. If it was a constant, then it won't
- // be simplified by a later pass either, so we try swapping the inner/outer
- // ORs in the hopes that we'll be able to simplify it this way.
- // (X|C) | V --> (X|V) | C
- if (Op0->hasOneUse() && !isa<ConstantInt>(Op1) &&
- match(Op0, m_Or(m_Value(A), m_ConstantInt(C1)))) {
- Value *Inner = Builder->CreateOr(A, Op1);
- Inner->takeName(Op0);
- return BinaryOperator::CreateOr(Inner, C1);
- }
- // Change (or (bool?A:B),(bool?C:D)) --> (bool?(or A,C):(or B,D))
- // Since this OR statement hasn't been optimized further yet, we hope
- // that this transformation will allow the new ORs to be optimized.
- {
- Value *X = nullptr, *Y = nullptr;
- if (Op0->hasOneUse() && Op1->hasOneUse() &&
- match(Op0, m_Select(m_Value(X), m_Value(A), m_Value(B))) &&
- match(Op1, m_Select(m_Value(Y), m_Value(C), m_Value(D))) && X == Y) {
- Value *orTrue = Builder->CreateOr(A, C);
- Value *orFalse = Builder->CreateOr(B, D);
- return SelectInst::Create(X, orTrue, orFalse);
- }
- }
- return Changed ? &I : nullptr;
- }
- Instruction *InstCombiner::visitXor(BinaryOperator &I) {
- bool Changed = SimplifyAssociativeOrCommutative(I);
- Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
- if (Value *V = SimplifyVectorOp(I))
- return ReplaceInstUsesWith(I, V);
- if (Value *V = SimplifyXorInst(Op0, Op1, DL, TLI, DT, AC))
- return ReplaceInstUsesWith(I, V);
- // (A&B)^(A&C) -> A&(B^C) etc
- if (Value *V = SimplifyUsingDistributiveLaws(I))
- return ReplaceInstUsesWith(I, V);
- // See if we can simplify any instructions used by the instruction whose sole
- // purpose is to compute bits we don't care about.
- if (SimplifyDemandedInstructionBits(I))
- return &I;
- if (Value *V = SimplifyBSwap(I))
- return ReplaceInstUsesWith(I, V);
- // Is this a ~ operation?
- if (Value *NotOp = dyn_castNotVal(&I)) {
- if (BinaryOperator *Op0I = dyn_cast<BinaryOperator>(NotOp)) {
- if (Op0I->getOpcode() == Instruction::And ||
- Op0I->getOpcode() == Instruction::Or) {
- // ~(~X & Y) --> (X | ~Y) - De Morgan's Law
- // ~(~X | Y) === (X & ~Y) - De Morgan's Law
- if (dyn_castNotVal(Op0I->getOperand(1)))
- Op0I->swapOperands();
- if (Value *Op0NotVal = dyn_castNotVal(Op0I->getOperand(0))) {
- Value *NotY =
- Builder->CreateNot(Op0I->getOperand(1),
- Op0I->getOperand(1)->getName()+".not");
- if (Op0I->getOpcode() == Instruction::And)
- return BinaryOperator::CreateOr(Op0NotVal, NotY);
- return BinaryOperator::CreateAnd(Op0NotVal, NotY);
- }
- // ~(X & Y) --> (~X | ~Y) - De Morgan's Law
- // ~(X | Y) === (~X & ~Y) - De Morgan's Law
- if (IsFreeToInvert(Op0I->getOperand(0),
- Op0I->getOperand(0)->hasOneUse()) &&
- IsFreeToInvert(Op0I->getOperand(1),
- Op0I->getOperand(1)->hasOneUse())) {
- Value *NotX =
- Builder->CreateNot(Op0I->getOperand(0), "notlhs");
- Value *NotY =
- Builder->CreateNot(Op0I->getOperand(1), "notrhs");
- if (Op0I->getOpcode() == Instruction::And)
- return BinaryOperator::CreateOr(NotX, NotY);
- return BinaryOperator::CreateAnd(NotX, NotY);
- }
- } else if (Op0I->getOpcode() == Instruction::AShr) {
- // ~(~X >>s Y) --> (X >>s Y)
- if (Value *Op0NotVal = dyn_castNotVal(Op0I->getOperand(0)))
- return BinaryOperator::CreateAShr(Op0NotVal, Op0I->getOperand(1));
- }
- }
- }
- if (Constant *RHS = dyn_cast<Constant>(Op1)) {
- if (RHS->isAllOnesValue() && Op0->hasOneUse())
- // xor (cmp A, B), true = not (cmp A, B) = !cmp A, B
- if (CmpInst *CI = dyn_cast<CmpInst>(Op0))
- return CmpInst::Create(CI->getOpcode(),
- CI->getInversePredicate(),
- CI->getOperand(0), CI->getOperand(1));
- }
- if (ConstantInt *RHS = dyn_cast<ConstantInt>(Op1)) {
- // fold (xor(zext(cmp)), 1) and (xor(sext(cmp)), -1) to ext(!cmp).
- if (CastInst *Op0C = dyn_cast<CastInst>(Op0)) {
- if (CmpInst *CI = dyn_cast<CmpInst>(Op0C->getOperand(0))) {
- if (CI->hasOneUse() && Op0C->hasOneUse()) {
- Instruction::CastOps Opcode = Op0C->getOpcode();
- if ((Opcode == Instruction::ZExt || Opcode == Instruction::SExt) &&
- (RHS == ConstantExpr::getCast(Opcode, Builder->getTrue(),
- Op0C->getDestTy()))) {
- CI->setPredicate(CI->getInversePredicate());
- return CastInst::Create(Opcode, CI, Op0C->getType());
- }
- }
- }
- }
- if (BinaryOperator *Op0I = dyn_cast<BinaryOperator>(Op0)) {
- // ~(c-X) == X-c-1 == X+(-c-1)
- if (Op0I->getOpcode() == Instruction::Sub && RHS->isAllOnesValue())
- if (Constant *Op0I0C = dyn_cast<Constant>(Op0I->getOperand(0))) {
- Constant *NegOp0I0C = ConstantExpr::getNeg(Op0I0C);
- Constant *ConstantRHS = ConstantExpr::getSub(NegOp0I0C,
- ConstantInt::get(I.getType(), 1));
- return BinaryOperator::CreateAdd(Op0I->getOperand(1), ConstantRHS);
- }
- if (ConstantInt *Op0CI = dyn_cast<ConstantInt>(Op0I->getOperand(1))) {
- if (Op0I->getOpcode() == Instruction::Add) {
- // ~(X-c) --> (-c-1)-X
- if (RHS->isAllOnesValue()) {
- Constant *NegOp0CI = ConstantExpr::getNeg(Op0CI);
- return BinaryOperator::CreateSub(
- ConstantExpr::getSub(NegOp0CI,
- ConstantInt::get(I.getType(), 1)),
- Op0I->getOperand(0));
- } else if (RHS->getValue().isSignBit()) {
- // (X + C) ^ signbit -> (X + C + signbit)
- Constant *C = Builder->getInt(RHS->getValue() + Op0CI->getValue());
- return BinaryOperator::CreateAdd(Op0I->getOperand(0), C);
- }
- } else if (Op0I->getOpcode() == Instruction::Or) {
- // (X|C1)^C2 -> X^(C1|C2) iff X&~C1 == 0
- if (MaskedValueIsZero(Op0I->getOperand(0), Op0CI->getValue(),
- 0, &I)) {
- Constant *NewRHS = ConstantExpr::getOr(Op0CI, RHS);
- // Anything in both C1 and C2 is known to be zero, remove it from
- // NewRHS.
- Constant *CommonBits = ConstantExpr::getAnd(Op0CI, RHS);
- NewRHS = ConstantExpr::getAnd(NewRHS,
- ConstantExpr::getNot(CommonBits));
- Worklist.Add(Op0I);
- I.setOperand(0, Op0I->getOperand(0));
- I.setOperand(1, NewRHS);
- return &I;
- }
- } else if (Op0I->getOpcode() == Instruction::LShr) {
- // ((X^C1) >> C2) ^ C3 -> (X>>C2) ^ ((C1>>C2)^C3)
- // E1 = "X ^ C1"
- BinaryOperator *E1;
- ConstantInt *C1;
- if (Op0I->hasOneUse() &&
- (E1 = dyn_cast<BinaryOperator>(Op0I->getOperand(0))) &&
- E1->getOpcode() == Instruction::Xor &&
- (C1 = dyn_cast<ConstantInt>(E1->getOperand(1)))) {
- // fold (C1 >> C2) ^ C3
- ConstantInt *C2 = Op0CI, *C3 = RHS;
- APInt FoldConst = C1->getValue().lshr(C2->getValue());
- FoldConst ^= C3->getValue();
- // Prepare the two operands.
- Value *Opnd0 = Builder->CreateLShr(E1->getOperand(0), C2);
- Opnd0->takeName(Op0I);
- cast<Instruction>(Opnd0)->setDebugLoc(I.getDebugLoc());
- Value *FoldVal = ConstantInt::get(Opnd0->getType(), FoldConst);
- return BinaryOperator::CreateXor(Opnd0, FoldVal);
- }
- }
- }
- }
- // Try to fold constant and into select arguments.
- if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
- if (Instruction *R = FoldOpIntoSelect(I, SI))
- return R;
- if (isa<PHINode>(Op0))
- if (Instruction *NV = FoldOpIntoPhi(I))
- return NV;
- }
- BinaryOperator *Op1I = dyn_cast<BinaryOperator>(Op1);
- if (Op1I) {
- Value *A, *B;
- if (match(Op1I, m_Or(m_Value(A), m_Value(B)))) {
- if (A == Op0) { // B^(B|A) == (A|B)^B
- Op1I->swapOperands();
- I.swapOperands();
- std::swap(Op0, Op1);
- } else if (B == Op0) { // B^(A|B) == (A|B)^B
- I.swapOperands(); // Simplified below.
- std::swap(Op0, Op1);
- }
- } else if (match(Op1I, m_And(m_Value(A), m_Value(B))) &&
- Op1I->hasOneUse()){
- if (A == Op0) { // A^(A&B) -> A^(B&A)
- Op1I->swapOperands();
- std::swap(A, B);
- }
- if (B == Op0) { // A^(B&A) -> (B&A)^A
- I.swapOperands(); // Simplified below.
- std::swap(Op0, Op1);
- }
- }
- }
- BinaryOperator *Op0I = dyn_cast<BinaryOperator>(Op0);
- if (Op0I) {
- Value *A, *B;
- if (match(Op0I, m_Or(m_Value(A), m_Value(B))) &&
- Op0I->hasOneUse()) {
- if (A == Op1) // (B|A)^B == (A|B)^B
- std::swap(A, B);
- if (B == Op1) // (A|B)^B == A & ~B
- return BinaryOperator::CreateAnd(A, Builder->CreateNot(Op1));
- } else if (match(Op0I, m_And(m_Value(A), m_Value(B))) &&
- Op0I->hasOneUse()){
- if (A == Op1) // (A&B)^A -> (B&A)^A
- std::swap(A, B);
- if (B == Op1 && // (B&A)^A == ~B & A
- !isa<ConstantInt>(Op1)) { // Canonical form is (B&C)^C
- return BinaryOperator::CreateAnd(Builder->CreateNot(A), Op1);
- }
- }
- }
- if (Op0I && Op1I) {
- Value *A, *B, *C, *D;
- // (A & B)^(A | B) -> A ^ B
- if (match(Op0I, m_And(m_Value(A), m_Value(B))) &&
- match(Op1I, m_Or(m_Value(C), m_Value(D)))) {
- if ((A == C && B == D) || (A == D && B == C))
- return BinaryOperator::CreateXor(A, B);
- }
- // (A | B)^(A & B) -> A ^ B
- if (match(Op0I, m_Or(m_Value(A), m_Value(B))) &&
- match(Op1I, m_And(m_Value(C), m_Value(D)))) {
- if ((A == C && B == D) || (A == D && B == C))
- return BinaryOperator::CreateXor(A, B);
- }
- // (A | ~B) ^ (~A | B) -> A ^ B
- if (match(Op0I, m_Or(m_Value(A), m_Not(m_Value(B)))) &&
- match(Op1I, m_Or(m_Not(m_Specific(A)), m_Specific(B)))) {
- return BinaryOperator::CreateXor(A, B);
- }
- // (~A | B) ^ (A | ~B) -> A ^ B
- if (match(Op0I, m_Or(m_Not(m_Value(A)), m_Value(B))) &&
- match(Op1I, m_Or(m_Specific(A), m_Not(m_Specific(B))))) {
- return BinaryOperator::CreateXor(A, B);
- }
- // (A & ~B) ^ (~A & B) -> A ^ B
- if (match(Op0I, m_And(m_Value(A), m_Not(m_Value(B)))) &&
- match(Op1I, m_And(m_Not(m_Specific(A)), m_Specific(B)))) {
- return BinaryOperator::CreateXor(A, B);
- }
- // (~A & B) ^ (A & ~B) -> A ^ B
- if (match(Op0I, m_And(m_Not(m_Value(A)), m_Value(B))) &&
- match(Op1I, m_And(m_Specific(A), m_Not(m_Specific(B))))) {
- return BinaryOperator::CreateXor(A, B);
- }
- // (A ^ C)^(A | B) -> ((~A) & B) ^ C
- if (match(Op0I, m_Xor(m_Value(D), m_Value(C))) &&
- match(Op1I, m_Or(m_Value(A), m_Value(B)))) {
- if (D == A)
- return BinaryOperator::CreateXor(
- Builder->CreateAnd(Builder->CreateNot(A), B), C);
- if (D == B)
- return BinaryOperator::CreateXor(
- Builder->CreateAnd(Builder->CreateNot(B), A), C);
- }
- // (A | B)^(A ^ C) -> ((~A) & B) ^ C
- if (match(Op0I, m_Or(m_Value(A), m_Value(B))) &&
- match(Op1I, m_Xor(m_Value(D), m_Value(C)))) {
- if (D == A)
- return BinaryOperator::CreateXor(
- Builder->CreateAnd(Builder->CreateNot(A), B), C);
- if (D == B)
- return BinaryOperator::CreateXor(
- Builder->CreateAnd(Builder->CreateNot(B), A), C);
- }
- // (A & B) ^ (A ^ B) -> (A | B)
- if (match(Op0I, m_And(m_Value(A), m_Value(B))) &&
- match(Op1I, m_Xor(m_Specific(A), m_Specific(B))))
- return BinaryOperator::CreateOr(A, B);
- // (A ^ B) ^ (A & B) -> (A | B)
- if (match(Op0I, m_Xor(m_Value(A), m_Value(B))) &&
- match(Op1I, m_And(m_Specific(A), m_Specific(B))))
- return BinaryOperator::CreateOr(A, B);
- }
- Value *A = nullptr, *B = nullptr;
- // (A & ~B) ^ (~A) -> ~(A & B)
- if (match(Op0, m_And(m_Value(A), m_Not(m_Value(B)))) &&
- match(Op1, m_Not(m_Specific(A))))
- return BinaryOperator::CreateNot(Builder->CreateAnd(A, B));
- // (icmp1 A, B) ^ (icmp2 A, B) --> (icmp3 A, B)
- if (ICmpInst *RHS = dyn_cast<ICmpInst>(I.getOperand(1)))
- if (ICmpInst *LHS = dyn_cast<ICmpInst>(I.getOperand(0)))
- if (PredicatesFoldable(LHS->getPredicate(), RHS->getPredicate())) {
- if (LHS->getOperand(0) == RHS->getOperand(1) &&
- LHS->getOperand(1) == RHS->getOperand(0))
- LHS->swapOperands();
- if (LHS->getOperand(0) == RHS->getOperand(0) &&
- LHS->getOperand(1) == RHS->getOperand(1)) {
- Value *Op0 = LHS->getOperand(0), *Op1 = LHS->getOperand(1);
- unsigned Code = getICmpCode(LHS) ^ getICmpCode(RHS);
- bool isSigned = LHS->isSigned() || RHS->isSigned();
- return ReplaceInstUsesWith(I,
- getNewICmpValue(isSigned, Code, Op0, Op1,
- Builder));
- }
- }
- // fold (xor (cast A), (cast B)) -> (cast (xor A, B))
- if (CastInst *Op0C = dyn_cast<CastInst>(Op0)) {
- if (CastInst *Op1C = dyn_cast<CastInst>(Op1))
- if (Op0C->getOpcode() == Op1C->getOpcode()) { // same cast kind?
- Type *SrcTy = Op0C->getOperand(0)->getType();
- if (SrcTy == Op1C->getOperand(0)->getType() && SrcTy->isIntegerTy() &&
- // Only do this if the casts both really cause code to be generated.
- ShouldOptimizeCast(Op0C->getOpcode(), Op0C->getOperand(0),
- I.getType()) &&
- ShouldOptimizeCast(Op1C->getOpcode(), Op1C->getOperand(0),
- I.getType())) {
- Value *NewOp = Builder->CreateXor(Op0C->getOperand(0),
- Op1C->getOperand(0), I.getName());
- return CastInst::Create(Op0C->getOpcode(), NewOp, I.getType());
- }
- }
- }
- return Changed ? &I : nullptr;
- }
|