12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946 |
- //===- InstCombineCalls.cpp -----------------------------------------------===//
- //
- // The LLVM Compiler Infrastructure
- //
- // This file is distributed under the University of Illinois Open Source
- // License. See LICENSE.TXT for details.
- //
- //===----------------------------------------------------------------------===//
- //
- // This file implements the visitCall and visitInvoke functions.
- //
- //===----------------------------------------------------------------------===//
- #include "InstCombineInternal.h"
- #include "llvm/ADT/Statistic.h"
- #include "llvm/Analysis/InstructionSimplify.h"
- #include "llvm/Analysis/MemoryBuiltins.h"
- #include "llvm/IR/CallSite.h"
- #include "llvm/IR/Dominators.h"
- #include "llvm/IR/PatternMatch.h"
- #include "llvm/IR/Statepoint.h"
- #include "llvm/Transforms/Utils/BuildLibCalls.h"
- #include "llvm/Transforms/Utils/Local.h"
- #include "llvm/Transforms/Utils/SimplifyLibCalls.h"
- using namespace llvm;
- using namespace PatternMatch;
- #define DEBUG_TYPE "instcombine"
- STATISTIC(NumSimplified, "Number of library calls simplified");
- /// getPromotedType - Return the specified type promoted as it would be to pass
- /// though a va_arg area.
- static Type *getPromotedType(Type *Ty) {
- if (IntegerType* ITy = dyn_cast<IntegerType>(Ty)) {
- if (ITy->getBitWidth() < 32)
- return Type::getInt32Ty(Ty->getContext());
- }
- return Ty;
- }
- /// reduceToSingleValueType - Given an aggregate type which ultimately holds a
- /// single scalar element, like {{{type}}} or [1 x type], return type.
- static Type *reduceToSingleValueType(Type *T) {
- while (!T->isSingleValueType()) {
- if (StructType *STy = dyn_cast<StructType>(T)) {
- if (STy->getNumElements() == 1)
- T = STy->getElementType(0);
- else
- break;
- } else if (ArrayType *ATy = dyn_cast<ArrayType>(T)) {
- if (ATy->getNumElements() == 1)
- T = ATy->getElementType();
- else
- break;
- } else
- break;
- }
- return T;
- }
- Instruction *InstCombiner::SimplifyMemTransfer(MemIntrinsic *MI) {
- unsigned DstAlign = getKnownAlignment(MI->getArgOperand(0), DL, MI, AC, DT);
- unsigned SrcAlign = getKnownAlignment(MI->getArgOperand(1), DL, MI, AC, DT);
- unsigned MinAlign = std::min(DstAlign, SrcAlign);
- unsigned CopyAlign = MI->getAlignment();
- if (CopyAlign < MinAlign) {
- MI->setAlignment(ConstantInt::get(MI->getAlignmentType(),
- MinAlign, false));
- return MI;
- }
- // If MemCpyInst length is 1/2/4/8 bytes then replace memcpy with
- // load/store.
- ConstantInt *MemOpLength = dyn_cast<ConstantInt>(MI->getArgOperand(2));
- if (!MemOpLength) return nullptr;
- // Source and destination pointer types are always "i8*" for intrinsic. See
- // if the size is something we can handle with a single primitive load/store.
- // A single load+store correctly handles overlapping memory in the memmove
- // case.
- uint64_t Size = MemOpLength->getLimitedValue();
- assert(Size && "0-sized memory transferring should be removed already.");
- if (Size > 8 || (Size&(Size-1)))
- return nullptr; // If not 1/2/4/8 bytes, exit.
- // Use an integer load+store unless we can find something better.
- unsigned SrcAddrSp =
- cast<PointerType>(MI->getArgOperand(1)->getType())->getAddressSpace();
- unsigned DstAddrSp =
- cast<PointerType>(MI->getArgOperand(0)->getType())->getAddressSpace();
- IntegerType* IntType = IntegerType::get(MI->getContext(), Size<<3);
- Type *NewSrcPtrTy = PointerType::get(IntType, SrcAddrSp);
- Type *NewDstPtrTy = PointerType::get(IntType, DstAddrSp);
- // Memcpy forces the use of i8* for the source and destination. That means
- // that if you're using memcpy to move one double around, you'll get a cast
- // from double* to i8*. We'd much rather use a double load+store rather than
- // an i64 load+store, here because this improves the odds that the source or
- // dest address will be promotable. See if we can find a better type than the
- // integer datatype.
- Value *StrippedDest = MI->getArgOperand(0)->stripPointerCasts();
- MDNode *CopyMD = nullptr;
- if (StrippedDest != MI->getArgOperand(0)) {
- Type *SrcETy = cast<PointerType>(StrippedDest->getType())
- ->getElementType();
- if (SrcETy->isSized() && DL.getTypeStoreSize(SrcETy) == Size) {
- // The SrcETy might be something like {{{double}}} or [1 x double]. Rip
- // down through these levels if so.
- SrcETy = reduceToSingleValueType(SrcETy);
- if (SrcETy->isSingleValueType()) {
- NewSrcPtrTy = PointerType::get(SrcETy, SrcAddrSp);
- NewDstPtrTy = PointerType::get(SrcETy, DstAddrSp);
- // If the memcpy has metadata describing the members, see if we can
- // get the TBAA tag describing our copy.
- if (MDNode *M = MI->getMetadata(LLVMContext::MD_tbaa_struct)) {
- if (M->getNumOperands() == 3 && M->getOperand(0) &&
- mdconst::hasa<ConstantInt>(M->getOperand(0)) &&
- mdconst::extract<ConstantInt>(M->getOperand(0))->isNullValue() &&
- M->getOperand(1) &&
- mdconst::hasa<ConstantInt>(M->getOperand(1)) &&
- mdconst::extract<ConstantInt>(M->getOperand(1))->getValue() ==
- Size &&
- M->getOperand(2) && isa<MDNode>(M->getOperand(2)))
- CopyMD = cast<MDNode>(M->getOperand(2));
- }
- }
- }
- }
- // If the memcpy/memmove provides better alignment info than we can
- // infer, use it.
- SrcAlign = std::max(SrcAlign, CopyAlign);
- DstAlign = std::max(DstAlign, CopyAlign);
- Value *Src = Builder->CreateBitCast(MI->getArgOperand(1), NewSrcPtrTy);
- Value *Dest = Builder->CreateBitCast(MI->getArgOperand(0), NewDstPtrTy);
- LoadInst *L = Builder->CreateLoad(Src, MI->isVolatile());
- L->setAlignment(SrcAlign);
- if (CopyMD)
- L->setMetadata(LLVMContext::MD_tbaa, CopyMD);
- StoreInst *S = Builder->CreateStore(L, Dest, MI->isVolatile());
- S->setAlignment(DstAlign);
- if (CopyMD)
- S->setMetadata(LLVMContext::MD_tbaa, CopyMD);
- // Set the size of the copy to 0, it will be deleted on the next iteration.
- MI->setArgOperand(2, Constant::getNullValue(MemOpLength->getType()));
- return MI;
- }
- Instruction *InstCombiner::SimplifyMemSet(MemSetInst *MI) {
- unsigned Alignment = getKnownAlignment(MI->getDest(), DL, MI, AC, DT);
- if (MI->getAlignment() < Alignment) {
- MI->setAlignment(ConstantInt::get(MI->getAlignmentType(),
- Alignment, false));
- return MI;
- }
- // Extract the length and alignment and fill if they are constant.
- ConstantInt *LenC = dyn_cast<ConstantInt>(MI->getLength());
- ConstantInt *FillC = dyn_cast<ConstantInt>(MI->getValue());
- if (!LenC || !FillC || !FillC->getType()->isIntegerTy(8))
- return nullptr;
- uint64_t Len = LenC->getLimitedValue();
- Alignment = MI->getAlignment();
- assert(Len && "0-sized memory setting should be removed already.");
- // memset(s,c,n) -> store s, c (for n=1,2,4,8)
- if (Len <= 8 && isPowerOf2_32((uint32_t)Len)) {
- Type *ITy = IntegerType::get(MI->getContext(), Len*8); // n=1 -> i8.
- Value *Dest = MI->getDest();
- unsigned DstAddrSp = cast<PointerType>(Dest->getType())->getAddressSpace();
- Type *NewDstPtrTy = PointerType::get(ITy, DstAddrSp);
- Dest = Builder->CreateBitCast(Dest, NewDstPtrTy);
- // Alignment 0 is identity for alignment 1 for memset, but not store.
- if (Alignment == 0) Alignment = 1;
- // Extract the fill value and store.
- uint64_t Fill = FillC->getZExtValue()*0x0101010101010101ULL;
- StoreInst *S = Builder->CreateStore(ConstantInt::get(ITy, Fill), Dest,
- MI->isVolatile());
- S->setAlignment(Alignment);
- // Set the size of the copy to 0, it will be deleted on the next iteration.
- MI->setLength(Constant::getNullValue(LenC->getType()));
- return MI;
- }
- return nullptr;
- }
- #if 0 // HLSL Change - remove platform intrinsics
- static Value *SimplifyX86insertps(const IntrinsicInst &II,
- InstCombiner::BuilderTy &Builder) {
- if (auto *CInt = dyn_cast<ConstantInt>(II.getArgOperand(2))) {
- VectorType *VecTy = cast<VectorType>(II.getType());
- assert(VecTy->getNumElements() == 4 && "insertps with wrong vector type");
-
- // The immediate permute control byte looks like this:
- // [3:0] - zero mask for each 32-bit lane
- // [5:4] - select one 32-bit destination lane
- // [7:6] - select one 32-bit source lane
- uint8_t Imm = CInt->getZExtValue();
- uint8_t ZMask = Imm & 0xf;
- uint8_t DestLane = (Imm >> 4) & 0x3;
- uint8_t SourceLane = (Imm >> 6) & 0x3;
- ConstantAggregateZero *ZeroVector = ConstantAggregateZero::get(VecTy);
- // If all zero mask bits are set, this was just a weird way to
- // generate a zero vector.
- if (ZMask == 0xf)
- return ZeroVector;
- // Initialize by passing all of the first source bits through.
- int ShuffleMask[4] = { 0, 1, 2, 3 };
- // We may replace the second operand with the zero vector.
- Value *V1 = II.getArgOperand(1);
- if (ZMask) {
- // If the zero mask is being used with a single input or the zero mask
- // overrides the destination lane, this is a shuffle with the zero vector.
- if ((II.getArgOperand(0) == II.getArgOperand(1)) ||
- (ZMask & (1 << DestLane))) {
- V1 = ZeroVector;
- // We may still move 32-bits of the first source vector from one lane
- // to another.
- ShuffleMask[DestLane] = SourceLane;
- // The zero mask may override the previous insert operation.
- for (unsigned i = 0; i < 4; ++i)
- if ((ZMask >> i) & 0x1)
- ShuffleMask[i] = i + 4;
- } else {
- // TODO: Model this case as 2 shuffles or a 'logical and' plus shuffle?
- return nullptr;
- }
- } else {
- // Replace the selected destination lane with the selected source lane.
- ShuffleMask[DestLane] = SourceLane + 4;
- }
-
- return Builder.CreateShuffleVector(II.getArgOperand(0), V1, ShuffleMask);
- }
- return nullptr;
- }
- /// The shuffle mask for a perm2*128 selects any two halves of two 256-bit
- /// source vectors, unless a zero bit is set. If a zero bit is set,
- /// then ignore that half of the mask and clear that half of the vector.
- static Value *SimplifyX86vperm2(const IntrinsicInst &II,
- InstCombiner::BuilderTy &Builder) {
- if (auto *CInt = dyn_cast<ConstantInt>(II.getArgOperand(2))) {
- VectorType *VecTy = cast<VectorType>(II.getType());
- ConstantAggregateZero *ZeroVector = ConstantAggregateZero::get(VecTy);
- // The immediate permute control byte looks like this:
- // [1:0] - select 128 bits from sources for low half of destination
- // [2] - ignore
- // [3] - zero low half of destination
- // [5:4] - select 128 bits from sources for high half of destination
- // [6] - ignore
- // [7] - zero high half of destination
- uint8_t Imm = CInt->getZExtValue();
- bool LowHalfZero = Imm & 0x08;
- bool HighHalfZero = Imm & 0x80;
- // If both zero mask bits are set, this was just a weird way to
- // generate a zero vector.
- if (LowHalfZero && HighHalfZero)
- return ZeroVector;
- // If 0 or 1 zero mask bits are set, this is a simple shuffle.
- unsigned NumElts = VecTy->getNumElements();
- unsigned HalfSize = NumElts / 2;
- SmallVector<int, 8> ShuffleMask(NumElts);
- // The high bit of the selection field chooses the 1st or 2nd operand.
- bool LowInputSelect = Imm & 0x02;
- bool HighInputSelect = Imm & 0x20;
-
- // The low bit of the selection field chooses the low or high half
- // of the selected operand.
- bool LowHalfSelect = Imm & 0x01;
- bool HighHalfSelect = Imm & 0x10;
- // Determine which operand(s) are actually in use for this instruction.
- Value *V0 = LowInputSelect ? II.getArgOperand(1) : II.getArgOperand(0);
- Value *V1 = HighInputSelect ? II.getArgOperand(1) : II.getArgOperand(0);
-
- // If needed, replace operands based on zero mask.
- V0 = LowHalfZero ? ZeroVector : V0;
- V1 = HighHalfZero ? ZeroVector : V1;
-
- // Permute low half of result.
- unsigned StartIndex = LowHalfSelect ? HalfSize : 0;
- for (unsigned i = 0; i < HalfSize; ++i)
- ShuffleMask[i] = StartIndex + i;
- // Permute high half of result.
- StartIndex = HighHalfSelect ? HalfSize : 0;
- StartIndex += NumElts;
- for (unsigned i = 0; i < HalfSize; ++i)
- ShuffleMask[i + HalfSize] = StartIndex + i;
- return Builder.CreateShuffleVector(V0, V1, ShuffleMask);
- }
- return nullptr;
- }
- #endif // HLSL Change - remove platform intrinsics
- /// visitCallInst - CallInst simplification. This mostly only handles folding
- /// of intrinsic instructions. For normal calls, it allows visitCallSite to do
- /// the heavy lifting.
- ///
- Instruction *InstCombiner::visitCallInst(CallInst &CI) {
- auto Args = CI.arg_operands();
- if (Value *V = SimplifyCall(CI.getCalledValue(), Args.begin(), Args.end(), DL,
- TLI, DT, AC))
- return ReplaceInstUsesWith(CI, V);
- if (isFreeCall(&CI, TLI))
- return visitFree(CI);
- // If the caller function is nounwind, mark the call as nounwind, even if the
- // callee isn't.
- if (CI.getParent()->getParent()->doesNotThrow() &&
- !CI.doesNotThrow()) {
- CI.setDoesNotThrow();
- return &CI;
- }
- IntrinsicInst *II = dyn_cast<IntrinsicInst>(&CI);
- if (!II) return visitCallSite(&CI);
- // Intrinsics cannot occur in an invoke, so handle them here instead of in
- // visitCallSite.
- if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(II)) {
- bool Changed = false;
- // memmove/cpy/set of zero bytes is a noop.
- if (Constant *NumBytes = dyn_cast<Constant>(MI->getLength())) {
- if (NumBytes->isNullValue())
- return EraseInstFromFunction(CI);
- if (ConstantInt *CI = dyn_cast<ConstantInt>(NumBytes))
- if (CI->getZExtValue() == 1) {
- // Replace the instruction with just byte operations. We would
- // transform other cases to loads/stores, but we don't know if
- // alignment is sufficient.
- }
- }
- // No other transformations apply to volatile transfers.
- if (MI->isVolatile())
- return nullptr;
- // If we have a memmove and the source operation is a constant global,
- // then the source and dest pointers can't alias, so we can change this
- // into a call to memcpy.
- if (MemMoveInst *MMI = dyn_cast<MemMoveInst>(MI)) {
- if (GlobalVariable *GVSrc = dyn_cast<GlobalVariable>(MMI->getSource()))
- if (GVSrc->isConstant()) {
- Module *M = CI.getParent()->getParent()->getParent();
- Intrinsic::ID MemCpyID = Intrinsic::memcpy;
- Type *Tys[3] = { CI.getArgOperand(0)->getType(),
- CI.getArgOperand(1)->getType(),
- CI.getArgOperand(2)->getType() };
- CI.setCalledFunction(Intrinsic::getDeclaration(M, MemCpyID, Tys));
- Changed = true;
- }
- }
- if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI)) {
- // memmove(x,x,size) -> noop.
- if (MTI->getSource() == MTI->getDest())
- return EraseInstFromFunction(CI);
- }
- // If we can determine a pointer alignment that is bigger than currently
- // set, update the alignment.
- if (isa<MemTransferInst>(MI)) {
- if (Instruction *I = SimplifyMemTransfer(MI))
- return I;
- } else if (MemSetInst *MSI = dyn_cast<MemSetInst>(MI)) {
- if (Instruction *I = SimplifyMemSet(MSI))
- return I;
- }
- if (Changed) return II;
- }
- switch (II->getIntrinsicID()) {
- default: break;
- case Intrinsic::objectsize: {
- uint64_t Size;
- if (getObjectSize(II->getArgOperand(0), Size, DL, TLI))
- return ReplaceInstUsesWith(CI, ConstantInt::get(CI.getType(), Size));
- return nullptr;
- }
- case Intrinsic::bswap: {
- Value *IIOperand = II->getArgOperand(0);
- Value *X = nullptr;
- // bswap(bswap(x)) -> x
- if (match(IIOperand, m_BSwap(m_Value(X))))
- return ReplaceInstUsesWith(CI, X);
- // bswap(trunc(bswap(x))) -> trunc(lshr(x, c))
- if (match(IIOperand, m_Trunc(m_BSwap(m_Value(X))))) {
- unsigned C = X->getType()->getPrimitiveSizeInBits() -
- IIOperand->getType()->getPrimitiveSizeInBits();
- Value *CV = ConstantInt::get(X->getType(), C);
- Value *V = Builder->CreateLShr(X, CV);
- return new TruncInst(V, IIOperand->getType());
- }
- break;
- }
- case Intrinsic::powi:
- if (ConstantInt *Power = dyn_cast<ConstantInt>(II->getArgOperand(1))) {
- // powi(x, 0) -> 1.0
- if (Power->isZero())
- return ReplaceInstUsesWith(CI, ConstantFP::get(CI.getType(), 1.0));
- // powi(x, 1) -> x
- if (Power->isOne())
- return ReplaceInstUsesWith(CI, II->getArgOperand(0));
- // powi(x, -1) -> 1/x
- if (Power->isAllOnesValue())
- return BinaryOperator::CreateFDiv(ConstantFP::get(CI.getType(), 1.0),
- II->getArgOperand(0));
- }
- break;
- case Intrinsic::cttz: {
- // If all bits below the first known one are known zero,
- // this value is constant.
- IntegerType *IT = dyn_cast<IntegerType>(II->getArgOperand(0)->getType());
- // FIXME: Try to simplify vectors of integers.
- if (!IT) break;
- uint32_t BitWidth = IT->getBitWidth();
- APInt KnownZero(BitWidth, 0);
- APInt KnownOne(BitWidth, 0);
- computeKnownBits(II->getArgOperand(0), KnownZero, KnownOne, 0, II);
- unsigned TrailingZeros = KnownOne.countTrailingZeros();
- APInt Mask(APInt::getLowBitsSet(BitWidth, TrailingZeros));
- if ((Mask & KnownZero) == Mask)
- return ReplaceInstUsesWith(CI, ConstantInt::get(IT,
- APInt(BitWidth, TrailingZeros)));
- }
- break;
- case Intrinsic::ctlz: {
- // If all bits above the first known one are known zero,
- // this value is constant.
- IntegerType *IT = dyn_cast<IntegerType>(II->getArgOperand(0)->getType());
- // FIXME: Try to simplify vectors of integers.
- if (!IT) break;
- uint32_t BitWidth = IT->getBitWidth();
- APInt KnownZero(BitWidth, 0);
- APInt KnownOne(BitWidth, 0);
- computeKnownBits(II->getArgOperand(0), KnownZero, KnownOne, 0, II);
- unsigned LeadingZeros = KnownOne.countLeadingZeros();
- APInt Mask(APInt::getHighBitsSet(BitWidth, LeadingZeros));
- if ((Mask & KnownZero) == Mask)
- return ReplaceInstUsesWith(CI, ConstantInt::get(IT,
- APInt(BitWidth, LeadingZeros)));
- }
- break;
- case Intrinsic::uadd_with_overflow:
- case Intrinsic::sadd_with_overflow:
- case Intrinsic::umul_with_overflow:
- case Intrinsic::smul_with_overflow:
- if (isa<Constant>(II->getArgOperand(0)) &&
- !isa<Constant>(II->getArgOperand(1))) {
- // Canonicalize constants into the RHS.
- Value *LHS = II->getArgOperand(0);
- II->setArgOperand(0, II->getArgOperand(1));
- II->setArgOperand(1, LHS);
- return II;
- }
- // fall through
- case Intrinsic::usub_with_overflow:
- case Intrinsic::ssub_with_overflow: {
- OverflowCheckFlavor OCF =
- IntrinsicIDToOverflowCheckFlavor(II->getIntrinsicID());
- assert(OCF != OCF_INVALID && "unexpected!");
- Value *OperationResult = nullptr;
- Constant *OverflowResult = nullptr;
- if (OptimizeOverflowCheck(OCF, II->getArgOperand(0), II->getArgOperand(1),
- *II, OperationResult, OverflowResult))
- return CreateOverflowTuple(II, OperationResult, OverflowResult);
- break;
- }
- case Intrinsic::minnum:
- case Intrinsic::maxnum: {
- Value *Arg0 = II->getArgOperand(0);
- Value *Arg1 = II->getArgOperand(1);
- // fmin(x, x) -> x
- if (Arg0 == Arg1)
- return ReplaceInstUsesWith(CI, Arg0);
- const ConstantFP *C0 = dyn_cast<ConstantFP>(Arg0);
- const ConstantFP *C1 = dyn_cast<ConstantFP>(Arg1);
- // Canonicalize constants into the RHS.
- if (C0 && !C1) {
- II->setArgOperand(0, Arg1);
- II->setArgOperand(1, Arg0);
- return II;
- }
- // fmin(x, nan) -> x
- if (C1 && C1->isNaN())
- return ReplaceInstUsesWith(CI, Arg0);
- // This is the value because if undef were NaN, we would return the other
- // value and cannot return a NaN unless both operands are.
- //
- // fmin(undef, x) -> x
- if (isa<UndefValue>(Arg0))
- return ReplaceInstUsesWith(CI, Arg1);
- // fmin(x, undef) -> x
- if (isa<UndefValue>(Arg1))
- return ReplaceInstUsesWith(CI, Arg0);
- Value *X = nullptr;
- Value *Y = nullptr;
- if (II->getIntrinsicID() == Intrinsic::minnum) {
- // fmin(x, fmin(x, y)) -> fmin(x, y)
- // fmin(y, fmin(x, y)) -> fmin(x, y)
- if (match(Arg1, m_FMin(m_Value(X), m_Value(Y)))) {
- if (Arg0 == X || Arg0 == Y)
- return ReplaceInstUsesWith(CI, Arg1);
- }
- // fmin(fmin(x, y), x) -> fmin(x, y)
- // fmin(fmin(x, y), y) -> fmin(x, y)
- if (match(Arg0, m_FMin(m_Value(X), m_Value(Y)))) {
- if (Arg1 == X || Arg1 == Y)
- return ReplaceInstUsesWith(CI, Arg0);
- }
- // TODO: fmin(nnan x, inf) -> x
- // TODO: fmin(nnan ninf x, flt_max) -> x
- if (C1 && C1->isInfinity()) {
- // fmin(x, -inf) -> -inf
- if (C1->isNegative())
- return ReplaceInstUsesWith(CI, Arg1);
- }
- } else {
- assert(II->getIntrinsicID() == Intrinsic::maxnum);
- // fmax(x, fmax(x, y)) -> fmax(x, y)
- // fmax(y, fmax(x, y)) -> fmax(x, y)
- if (match(Arg1, m_FMax(m_Value(X), m_Value(Y)))) {
- if (Arg0 == X || Arg0 == Y)
- return ReplaceInstUsesWith(CI, Arg1);
- }
- // fmax(fmax(x, y), x) -> fmax(x, y)
- // fmax(fmax(x, y), y) -> fmax(x, y)
- if (match(Arg0, m_FMax(m_Value(X), m_Value(Y)))) {
- if (Arg1 == X || Arg1 == Y)
- return ReplaceInstUsesWith(CI, Arg0);
- }
- // TODO: fmax(nnan x, -inf) -> x
- // TODO: fmax(nnan ninf x, -flt_max) -> x
- if (C1 && C1->isInfinity()) {
- // fmax(x, inf) -> inf
- if (!C1->isNegative())
- return ReplaceInstUsesWith(CI, Arg1);
- }
- }
- break;
- }
- #if 0 // HLSL Change - remove platform intrinsics
- case Intrinsic::ppc_altivec_lvx:
- case Intrinsic::ppc_altivec_lvxl:
- // Turn PPC lvx -> load if the pointer is known aligned.
- if (getOrEnforceKnownAlignment(II->getArgOperand(0), 16, DL, II, AC, DT) >=
- 16) {
- Value *Ptr = Builder->CreateBitCast(II->getArgOperand(0),
- PointerType::getUnqual(II->getType()));
- return new LoadInst(Ptr);
- }
- break;
- case Intrinsic::ppc_vsx_lxvw4x:
- case Intrinsic::ppc_vsx_lxvd2x: {
- // Turn PPC VSX loads into normal loads.
- Value *Ptr = Builder->CreateBitCast(II->getArgOperand(0),
- PointerType::getUnqual(II->getType()));
- return new LoadInst(Ptr, Twine(""), false, 1);
- }
- case Intrinsic::ppc_altivec_stvx:
- case Intrinsic::ppc_altivec_stvxl:
- // Turn stvx -> store if the pointer is known aligned.
- if (getOrEnforceKnownAlignment(II->getArgOperand(1), 16, DL, II, AC, DT) >=
- 16) {
- Type *OpPtrTy =
- PointerType::getUnqual(II->getArgOperand(0)->getType());
- Value *Ptr = Builder->CreateBitCast(II->getArgOperand(1), OpPtrTy);
- return new StoreInst(II->getArgOperand(0), Ptr);
- }
- break;
- case Intrinsic::ppc_vsx_stxvw4x:
- case Intrinsic::ppc_vsx_stxvd2x: {
- // Turn PPC VSX stores into normal stores.
- Type *OpPtrTy = PointerType::getUnqual(II->getArgOperand(0)->getType());
- Value *Ptr = Builder->CreateBitCast(II->getArgOperand(1), OpPtrTy);
- return new StoreInst(II->getArgOperand(0), Ptr, false, 1);
- }
- case Intrinsic::ppc_qpx_qvlfs:
- // Turn PPC QPX qvlfs -> load if the pointer is known aligned.
- if (getOrEnforceKnownAlignment(II->getArgOperand(0), 16, DL, II, AC, DT) >=
- 16) {
- Type *VTy = VectorType::get(Builder->getFloatTy(),
- II->getType()->getVectorNumElements());
- Value *Ptr = Builder->CreateBitCast(II->getArgOperand(0),
- PointerType::getUnqual(VTy));
- Value *Load = Builder->CreateLoad(Ptr);
- return new FPExtInst(Load, II->getType());
- }
- break;
- case Intrinsic::ppc_qpx_qvlfd:
- // Turn PPC QPX qvlfd -> load if the pointer is known aligned.
- if (getOrEnforceKnownAlignment(II->getArgOperand(0), 32, DL, II, AC, DT) >=
- 32) {
- Value *Ptr = Builder->CreateBitCast(II->getArgOperand(0),
- PointerType::getUnqual(II->getType()));
- return new LoadInst(Ptr);
- }
- break;
- case Intrinsic::ppc_qpx_qvstfs:
- // Turn PPC QPX qvstfs -> store if the pointer is known aligned.
- if (getOrEnforceKnownAlignment(II->getArgOperand(1), 16, DL, II, AC, DT) >=
- 16) {
- Type *VTy = VectorType::get(Builder->getFloatTy(),
- II->getArgOperand(0)->getType()->getVectorNumElements());
- Value *TOp = Builder->CreateFPTrunc(II->getArgOperand(0), VTy);
- Type *OpPtrTy = PointerType::getUnqual(VTy);
- Value *Ptr = Builder->CreateBitCast(II->getArgOperand(1), OpPtrTy);
- return new StoreInst(TOp, Ptr);
- }
- break;
- case Intrinsic::ppc_qpx_qvstfd:
- // Turn PPC QPX qvstfd -> store if the pointer is known aligned.
- if (getOrEnforceKnownAlignment(II->getArgOperand(1), 32, DL, II, AC, DT) >=
- 32) {
- Type *OpPtrTy =
- PointerType::getUnqual(II->getArgOperand(0)->getType());
- Value *Ptr = Builder->CreateBitCast(II->getArgOperand(1), OpPtrTy);
- return new StoreInst(II->getArgOperand(0), Ptr);
- }
- break;
- case Intrinsic::x86_sse_storeu_ps:
- case Intrinsic::x86_sse2_storeu_pd:
- case Intrinsic::x86_sse2_storeu_dq:
- // Turn X86 storeu -> store if the pointer is known aligned.
- if (getOrEnforceKnownAlignment(II->getArgOperand(0), 16, DL, II, AC, DT) >=
- 16) {
- Type *OpPtrTy =
- PointerType::getUnqual(II->getArgOperand(1)->getType());
- Value *Ptr = Builder->CreateBitCast(II->getArgOperand(0), OpPtrTy);
- return new StoreInst(II->getArgOperand(1), Ptr);
- }
- break;
- case Intrinsic::x86_sse_cvtss2si:
- case Intrinsic::x86_sse_cvtss2si64:
- case Intrinsic::x86_sse_cvttss2si:
- case Intrinsic::x86_sse_cvttss2si64:
- case Intrinsic::x86_sse2_cvtsd2si:
- case Intrinsic::x86_sse2_cvtsd2si64:
- case Intrinsic::x86_sse2_cvttsd2si:
- case Intrinsic::x86_sse2_cvttsd2si64: {
- // These intrinsics only demand the 0th element of their input vectors. If
- // we can simplify the input based on that, do so now.
- unsigned VWidth =
- cast<VectorType>(II->getArgOperand(0)->getType())->getNumElements();
- APInt DemandedElts(VWidth, 1);
- APInt UndefElts(VWidth, 0);
- if (Value *V = SimplifyDemandedVectorElts(II->getArgOperand(0),
- DemandedElts, UndefElts)) {
- II->setArgOperand(0, V);
- return II;
- }
- break;
- }
- // Constant fold <A x Bi> << Ci.
- // FIXME: We don't handle _dq because it's a shift of an i128, but is
- // represented in the IR as <2 x i64>. A per element shift is wrong.
- case Intrinsic::x86_sse2_psll_d:
- case Intrinsic::x86_sse2_psll_q:
- case Intrinsic::x86_sse2_psll_w:
- case Intrinsic::x86_sse2_pslli_d:
- case Intrinsic::x86_sse2_pslli_q:
- case Intrinsic::x86_sse2_pslli_w:
- case Intrinsic::x86_avx2_psll_d:
- case Intrinsic::x86_avx2_psll_q:
- case Intrinsic::x86_avx2_psll_w:
- case Intrinsic::x86_avx2_pslli_d:
- case Intrinsic::x86_avx2_pslli_q:
- case Intrinsic::x86_avx2_pslli_w:
- case Intrinsic::x86_sse2_psrl_d:
- case Intrinsic::x86_sse2_psrl_q:
- case Intrinsic::x86_sse2_psrl_w:
- case Intrinsic::x86_sse2_psrli_d:
- case Intrinsic::x86_sse2_psrli_q:
- case Intrinsic::x86_sse2_psrli_w:
- case Intrinsic::x86_avx2_psrl_d:
- case Intrinsic::x86_avx2_psrl_q:
- case Intrinsic::x86_avx2_psrl_w:
- case Intrinsic::x86_avx2_psrli_d:
- case Intrinsic::x86_avx2_psrli_q:
- case Intrinsic::x86_avx2_psrli_w: {
- // Simplify if count is constant. To 0 if >= BitWidth,
- // otherwise to shl/lshr.
- auto CDV = dyn_cast<ConstantDataVector>(II->getArgOperand(1));
- auto CInt = dyn_cast<ConstantInt>(II->getArgOperand(1));
- if (!CDV && !CInt)
- break;
- ConstantInt *Count;
- if (CDV)
- Count = cast<ConstantInt>(CDV->getElementAsConstant(0));
- else
- Count = CInt;
- auto Vec = II->getArgOperand(0);
- auto VT = cast<VectorType>(Vec->getType());
- if (Count->getZExtValue() >
- VT->getElementType()->getPrimitiveSizeInBits() - 1)
- return ReplaceInstUsesWith(
- CI, ConstantAggregateZero::get(Vec->getType()));
- bool isPackedShiftLeft = true;
- switch (II->getIntrinsicID()) {
- default : break;
- case Intrinsic::x86_sse2_psrl_d:
- case Intrinsic::x86_sse2_psrl_q:
- case Intrinsic::x86_sse2_psrl_w:
- case Intrinsic::x86_sse2_psrli_d:
- case Intrinsic::x86_sse2_psrli_q:
- case Intrinsic::x86_sse2_psrli_w:
- case Intrinsic::x86_avx2_psrl_d:
- case Intrinsic::x86_avx2_psrl_q:
- case Intrinsic::x86_avx2_psrl_w:
- case Intrinsic::x86_avx2_psrli_d:
- case Intrinsic::x86_avx2_psrli_q:
- case Intrinsic::x86_avx2_psrli_w: isPackedShiftLeft = false; break;
- }
- unsigned VWidth = VT->getNumElements();
- // Get a constant vector of the same type as the first operand.
- auto VTCI = ConstantInt::get(VT->getElementType(), Count->getZExtValue());
- if (isPackedShiftLeft)
- return BinaryOperator::CreateShl(Vec,
- Builder->CreateVectorSplat(VWidth, VTCI));
- return BinaryOperator::CreateLShr(Vec,
- Builder->CreateVectorSplat(VWidth, VTCI));
- }
- case Intrinsic::x86_sse41_pmovsxbw:
- case Intrinsic::x86_sse41_pmovsxwd:
- case Intrinsic::x86_sse41_pmovsxdq:
- case Intrinsic::x86_sse41_pmovzxbw:
- case Intrinsic::x86_sse41_pmovzxwd:
- case Intrinsic::x86_sse41_pmovzxdq: {
- // pmov{s|z}x ignores the upper half of their input vectors.
- unsigned VWidth =
- cast<VectorType>(II->getArgOperand(0)->getType())->getNumElements();
- unsigned LowHalfElts = VWidth / 2;
- APInt InputDemandedElts(APInt::getBitsSet(VWidth, 0, LowHalfElts));
- APInt UndefElts(VWidth, 0);
- if (Value *TmpV = SimplifyDemandedVectorElts(
- II->getArgOperand(0), InputDemandedElts, UndefElts)) {
- II->setArgOperand(0, TmpV);
- return II;
- }
- break;
- }
- case Intrinsic::x86_sse41_insertps:
- if (Value *V = SimplifyX86insertps(*II, *Builder))
- return ReplaceInstUsesWith(*II, V);
- break;
-
- case Intrinsic::x86_sse4a_insertqi: {
- // insertqi x, y, 64, 0 can just copy y's lower bits and leave the top
- // ones undef
- // TODO: eventually we should lower this intrinsic to IR
- if (auto CIWidth = dyn_cast<ConstantInt>(II->getArgOperand(2))) {
- if (auto CIStart = dyn_cast<ConstantInt>(II->getArgOperand(3))) {
- unsigned Index = CIStart->getZExtValue();
- // From AMD documentation: "a value of zero in the field length is
- // defined as length of 64".
- unsigned Length = CIWidth->equalsInt(0) ? 64 : CIWidth->getZExtValue();
- // From AMD documentation: "If the sum of the bit index + length field
- // is greater than 64, the results are undefined".
- // Note that both field index and field length are 8-bit quantities.
- // Since variables 'Index' and 'Length' are unsigned values
- // obtained from zero-extending field index and field length
- // respectively, their sum should never wrap around.
- if ((Index + Length) > 64)
- return ReplaceInstUsesWith(CI, UndefValue::get(II->getType()));
- if (Length == 64 && Index == 0) {
- Value *Vec = II->getArgOperand(1);
- Value *Undef = UndefValue::get(Vec->getType());
- const uint32_t Mask[] = { 0, 2 };
- return ReplaceInstUsesWith(
- CI,
- Builder->CreateShuffleVector(
- Vec, Undef, ConstantDataVector::get(
- II->getContext(), makeArrayRef(Mask))));
- } else if (auto Source =
- dyn_cast<IntrinsicInst>(II->getArgOperand(0))) {
- if (Source->hasOneUse() &&
- Source->getArgOperand(1) == II->getArgOperand(1)) {
- // If the source of the insert has only one use and it's another
- // insert (and they're both inserting from the same vector), try to
- // bundle both together.
- auto CISourceWidth =
- dyn_cast<ConstantInt>(Source->getArgOperand(2));
- auto CISourceStart =
- dyn_cast<ConstantInt>(Source->getArgOperand(3));
- if (CISourceStart && CISourceWidth) {
- unsigned Start = CIStart->getZExtValue();
- unsigned Width = CIWidth->getZExtValue();
- unsigned End = Start + Width;
- unsigned SourceStart = CISourceStart->getZExtValue();
- unsigned SourceWidth = CISourceWidth->getZExtValue();
- unsigned SourceEnd = SourceStart + SourceWidth;
- unsigned NewStart, NewWidth;
- bool ShouldReplace = false;
- if (Start <= SourceStart && SourceStart <= End) {
- NewStart = Start;
- NewWidth = std::max(End, SourceEnd) - NewStart;
- ShouldReplace = true;
- } else if (SourceStart <= Start && Start <= SourceEnd) {
- NewStart = SourceStart;
- NewWidth = std::max(SourceEnd, End) - NewStart;
- ShouldReplace = true;
- }
- if (ShouldReplace) {
- Constant *ConstantWidth = ConstantInt::get(
- II->getArgOperand(2)->getType(), NewWidth, false);
- Constant *ConstantStart = ConstantInt::get(
- II->getArgOperand(3)->getType(), NewStart, false);
- Value *Args[4] = { Source->getArgOperand(0),
- II->getArgOperand(1), ConstantWidth,
- ConstantStart };
- Module *M = CI.getParent()->getParent()->getParent();
- Value *F =
- Intrinsic::getDeclaration(M, Intrinsic::x86_sse4a_insertqi);
- return ReplaceInstUsesWith(CI, Builder->CreateCall(F, Args));
- }
- }
- }
- }
- }
- }
- break;
- }
- case Intrinsic::x86_sse41_pblendvb:
- case Intrinsic::x86_sse41_blendvps:
- case Intrinsic::x86_sse41_blendvpd:
- case Intrinsic::x86_avx_blendv_ps_256:
- case Intrinsic::x86_avx_blendv_pd_256:
- case Intrinsic::x86_avx2_pblendvb: {
- // Convert blendv* to vector selects if the mask is constant.
- // This optimization is convoluted because the intrinsic is defined as
- // getting a vector of floats or doubles for the ps and pd versions.
- // FIXME: That should be changed.
- Value *Mask = II->getArgOperand(2);
- if (auto C = dyn_cast<ConstantDataVector>(Mask)) {
- auto Tyi1 = Builder->getInt1Ty();
- auto SelectorType = cast<VectorType>(Mask->getType());
- auto EltTy = SelectorType->getElementType();
- unsigned Size = SelectorType->getNumElements();
- unsigned BitWidth =
- EltTy->isFloatTy()
- ? 32
- : (EltTy->isDoubleTy() ? 64 : EltTy->getIntegerBitWidth());
- assert((BitWidth == 64 || BitWidth == 32 || BitWidth == 8) &&
- "Wrong arguments for variable blend intrinsic");
- SmallVector<Constant *, 32> Selectors;
- for (unsigned I = 0; I < Size; ++I) {
- // The intrinsics only read the top bit
- uint64_t Selector;
- if (BitWidth == 8)
- Selector = C->getElementAsInteger(I);
- else
- Selector = C->getElementAsAPFloat(I).bitcastToAPInt().getZExtValue();
- Selectors.push_back(ConstantInt::get(Tyi1, Selector >> (BitWidth - 1)));
- }
- auto NewSelector = ConstantVector::get(Selectors);
- return SelectInst::Create(NewSelector, II->getArgOperand(1),
- II->getArgOperand(0), "blendv");
- } else {
- break;
- }
- }
- case Intrinsic::x86_avx_vpermilvar_ps:
- case Intrinsic::x86_avx_vpermilvar_ps_256:
- case Intrinsic::x86_avx_vpermilvar_pd:
- case Intrinsic::x86_avx_vpermilvar_pd_256: {
- // Convert vpermil* to shufflevector if the mask is constant.
- Value *V = II->getArgOperand(1);
- unsigned Size = cast<VectorType>(V->getType())->getNumElements();
- assert(Size == 8 || Size == 4 || Size == 2);
- uint32_t Indexes[8];
- if (auto C = dyn_cast<ConstantDataVector>(V)) {
- // The intrinsics only read one or two bits, clear the rest.
- for (unsigned I = 0; I < Size; ++I) {
- uint32_t Index = C->getElementAsInteger(I) & 0x3;
- if (II->getIntrinsicID() == Intrinsic::x86_avx_vpermilvar_pd ||
- II->getIntrinsicID() == Intrinsic::x86_avx_vpermilvar_pd_256)
- Index >>= 1;
- Indexes[I] = Index;
- }
- } else if (isa<ConstantAggregateZero>(V)) {
- for (unsigned I = 0; I < Size; ++I)
- Indexes[I] = 0;
- } else {
- break;
- }
- // The _256 variants are a bit trickier since the mask bits always index
- // into the corresponding 128 half. In order to convert to a generic
- // shuffle, we have to make that explicit.
- if (II->getIntrinsicID() == Intrinsic::x86_avx_vpermilvar_ps_256 ||
- II->getIntrinsicID() == Intrinsic::x86_avx_vpermilvar_pd_256) {
- for (unsigned I = Size / 2; I < Size; ++I)
- Indexes[I] += Size / 2;
- }
- auto NewC =
- ConstantDataVector::get(V->getContext(), makeArrayRef(Indexes, Size));
- auto V1 = II->getArgOperand(0);
- auto V2 = UndefValue::get(V1->getType());
- auto Shuffle = Builder->CreateShuffleVector(V1, V2, NewC);
- return ReplaceInstUsesWith(CI, Shuffle);
- }
- case Intrinsic::x86_avx_vperm2f128_pd_256:
- case Intrinsic::x86_avx_vperm2f128_ps_256:
- case Intrinsic::x86_avx_vperm2f128_si_256:
- case Intrinsic::x86_avx2_vperm2i128:
- if (Value *V = SimplifyX86vperm2(*II, *Builder))
- return ReplaceInstUsesWith(*II, V);
- break;
- case Intrinsic::ppc_altivec_vperm:
- // Turn vperm(V1,V2,mask) -> shuffle(V1,V2,mask) if mask is a constant.
- // Note that ppc_altivec_vperm has a big-endian bias, so when creating
- // a vectorshuffle for little endian, we must undo the transformation
- // performed on vec_perm in altivec.h. That is, we must complement
- // the permutation mask with respect to 31 and reverse the order of
- // V1 and V2.
- if (Constant *Mask = dyn_cast<Constant>(II->getArgOperand(2))) {
- assert(Mask->getType()->getVectorNumElements() == 16 &&
- "Bad type for intrinsic!");
- // Check that all of the elements are integer constants or undefs.
- bool AllEltsOk = true;
- for (unsigned i = 0; i != 16; ++i) {
- Constant *Elt = Mask->getAggregateElement(i);
- if (!Elt || !(isa<ConstantInt>(Elt) || isa<UndefValue>(Elt))) {
- AllEltsOk = false;
- break;
- }
- }
- if (AllEltsOk) {
- // Cast the input vectors to byte vectors.
- Value *Op0 = Builder->CreateBitCast(II->getArgOperand(0),
- Mask->getType());
- Value *Op1 = Builder->CreateBitCast(II->getArgOperand(1),
- Mask->getType());
- Value *Result = UndefValue::get(Op0->getType());
- // Only extract each element once.
- Value *ExtractedElts[32];
- memset(ExtractedElts, 0, sizeof(ExtractedElts));
- for (unsigned i = 0; i != 16; ++i) {
- if (isa<UndefValue>(Mask->getAggregateElement(i)))
- continue;
- unsigned Idx =
- cast<ConstantInt>(Mask->getAggregateElement(i))->getZExtValue();
- Idx &= 31; // Match the hardware behavior.
- if (DL.isLittleEndian())
- Idx = 31 - Idx;
- if (!ExtractedElts[Idx]) {
- Value *Op0ToUse = (DL.isLittleEndian()) ? Op1 : Op0;
- Value *Op1ToUse = (DL.isLittleEndian()) ? Op0 : Op1;
- ExtractedElts[Idx] =
- Builder->CreateExtractElement(Idx < 16 ? Op0ToUse : Op1ToUse,
- Builder->getInt32(Idx&15));
- }
- // Insert this value into the result vector.
- Result = Builder->CreateInsertElement(Result, ExtractedElts[Idx],
- Builder->getInt32(i));
- }
- return CastInst::Create(Instruction::BitCast, Result, CI.getType());
- }
- }
- break;
- case Intrinsic::arm_neon_vld1:
- case Intrinsic::arm_neon_vld2:
- case Intrinsic::arm_neon_vld3:
- case Intrinsic::arm_neon_vld4:
- case Intrinsic::arm_neon_vld2lane:
- case Intrinsic::arm_neon_vld3lane:
- case Intrinsic::arm_neon_vld4lane:
- case Intrinsic::arm_neon_vst1:
- case Intrinsic::arm_neon_vst2:
- case Intrinsic::arm_neon_vst3:
- case Intrinsic::arm_neon_vst4:
- case Intrinsic::arm_neon_vst2lane:
- case Intrinsic::arm_neon_vst3lane:
- case Intrinsic::arm_neon_vst4lane: {
- unsigned MemAlign = getKnownAlignment(II->getArgOperand(0), DL, II, AC, DT);
- unsigned AlignArg = II->getNumArgOperands() - 1;
- ConstantInt *IntrAlign = dyn_cast<ConstantInt>(II->getArgOperand(AlignArg));
- if (IntrAlign && IntrAlign->getZExtValue() < MemAlign) {
- II->setArgOperand(AlignArg,
- ConstantInt::get(Type::getInt32Ty(II->getContext()),
- MemAlign, false));
- return II;
- }
- break;
- }
- case Intrinsic::arm_neon_vmulls:
- case Intrinsic::arm_neon_vmullu:
- case Intrinsic::aarch64_neon_smull:
- case Intrinsic::aarch64_neon_umull: {
- Value *Arg0 = II->getArgOperand(0);
- Value *Arg1 = II->getArgOperand(1);
- // Handle mul by zero first:
- if (isa<ConstantAggregateZero>(Arg0) || isa<ConstantAggregateZero>(Arg1)) {
- return ReplaceInstUsesWith(CI, ConstantAggregateZero::get(II->getType()));
- }
- // Check for constant LHS & RHS - in this case we just simplify.
- bool Zext = (II->getIntrinsicID() == Intrinsic::arm_neon_vmullu ||
- II->getIntrinsicID() == Intrinsic::aarch64_neon_umull);
- VectorType *NewVT = cast<VectorType>(II->getType());
- if (Constant *CV0 = dyn_cast<Constant>(Arg0)) {
- if (Constant *CV1 = dyn_cast<Constant>(Arg1)) {
- CV0 = ConstantExpr::getIntegerCast(CV0, NewVT, /*isSigned=*/!Zext);
- CV1 = ConstantExpr::getIntegerCast(CV1, NewVT, /*isSigned=*/!Zext);
- return ReplaceInstUsesWith(CI, ConstantExpr::getMul(CV0, CV1));
- }
- // Couldn't simplify - canonicalize constant to the RHS.
- std::swap(Arg0, Arg1);
- }
- // Handle mul by one:
- if (Constant *CV1 = dyn_cast<Constant>(Arg1))
- if (ConstantInt *Splat =
- dyn_cast_or_null<ConstantInt>(CV1->getSplatValue()))
- if (Splat->isOne())
- return CastInst::CreateIntegerCast(Arg0, II->getType(),
- /*isSigned=*/!Zext);
- break;
- }
- case Intrinsic::AMDGPU_rcp: {
- if (const ConstantFP *C = dyn_cast<ConstantFP>(II->getArgOperand(0))) {
- const APFloat &ArgVal = C->getValueAPF();
- APFloat Val(ArgVal.getSemantics(), 1.0);
- APFloat::opStatus Status = Val.divide(ArgVal,
- APFloat::rmNearestTiesToEven);
- // Only do this if it was exact and therefore not dependent on the
- // rounding mode.
- if (Status == APFloat::opOK)
- return ReplaceInstUsesWith(CI, ConstantFP::get(II->getContext(), Val));
- }
- break;
- }
- #endif // HLSL Change - remove platform intrinsics
- case Intrinsic::stackrestore: {
- // If the save is right next to the restore, remove the restore. This can
- // happen when variable allocas are DCE'd.
- if (IntrinsicInst *SS = dyn_cast<IntrinsicInst>(II->getArgOperand(0))) {
- if (SS->getIntrinsicID() == Intrinsic::stacksave) {
- BasicBlock::iterator BI = SS;
- if (&*++BI == II)
- return EraseInstFromFunction(CI);
- }
- }
- // Scan down this block to see if there is another stack restore in the
- // same block without an intervening call/alloca.
- BasicBlock::iterator BI = II;
- TerminatorInst *TI = II->getParent()->getTerminator();
- bool CannotRemove = false;
- for (++BI; &*BI != TI; ++BI) {
- if (isa<AllocaInst>(BI)) {
- CannotRemove = true;
- break;
- }
- if (CallInst *BCI = dyn_cast<CallInst>(BI)) {
- if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(BCI)) {
- // If there is a stackrestore below this one, remove this one.
- if (II->getIntrinsicID() == Intrinsic::stackrestore)
- return EraseInstFromFunction(CI);
- // Otherwise, ignore the intrinsic.
- } else {
- // If we found a non-intrinsic call, we can't remove the stack
- // restore.
- CannotRemove = true;
- break;
- }
- }
- }
- // If the stack restore is in a return, resume, or unwind block and if there
- // are no allocas or calls between the restore and the return, nuke the
- // restore.
- if (!CannotRemove && (isa<ReturnInst>(TI) || isa<ResumeInst>(TI)))
- return EraseInstFromFunction(CI);
- break;
- }
- case Intrinsic::assume: {
- // Canonicalize assume(a && b) -> assume(a); assume(b);
- // Note: New assumption intrinsics created here are registered by
- // the InstCombineIRInserter object.
- Value *IIOperand = II->getArgOperand(0), *A, *B,
- *AssumeIntrinsic = II->getCalledValue();
- if (match(IIOperand, m_And(m_Value(A), m_Value(B)))) {
- Builder->CreateCall(AssumeIntrinsic, A, II->getName());
- Builder->CreateCall(AssumeIntrinsic, B, II->getName());
- return EraseInstFromFunction(*II);
- }
- // assume(!(a || b)) -> assume(!a); assume(!b);
- if (match(IIOperand, m_Not(m_Or(m_Value(A), m_Value(B))))) {
- Builder->CreateCall(AssumeIntrinsic, Builder->CreateNot(A),
- II->getName());
- Builder->CreateCall(AssumeIntrinsic, Builder->CreateNot(B),
- II->getName());
- return EraseInstFromFunction(*II);
- }
- // assume( (load addr) != null ) -> add 'nonnull' metadata to load
- // (if assume is valid at the load)
- if (ICmpInst* ICmp = dyn_cast<ICmpInst>(IIOperand)) {
- Value *LHS = ICmp->getOperand(0);
- Value *RHS = ICmp->getOperand(1);
- if (ICmpInst::ICMP_NE == ICmp->getPredicate() &&
- isa<LoadInst>(LHS) &&
- isa<Constant>(RHS) &&
- RHS->getType()->isPointerTy() &&
- cast<Constant>(RHS)->isNullValue()) {
- LoadInst* LI = cast<LoadInst>(LHS);
- if (isValidAssumeForContext(II, LI, DT)) {
- MDNode *MD = MDNode::get(II->getContext(), None);
- LI->setMetadata(LLVMContext::MD_nonnull, MD);
- return EraseInstFromFunction(*II);
- }
- }
- // TODO: apply nonnull return attributes to calls and invokes
- // TODO: apply range metadata for range check patterns?
- }
- // If there is a dominating assume with the same condition as this one,
- // then this one is redundant, and should be removed.
- APInt KnownZero(1, 0), KnownOne(1, 0);
- computeKnownBits(IIOperand, KnownZero, KnownOne, 0, II);
- if (KnownOne.isAllOnesValue())
- return EraseInstFromFunction(*II);
- break;
- }
- case Intrinsic::experimental_gc_relocate: {
- // Translate facts known about a pointer before relocating into
- // facts about the relocate value, while being careful to
- // preserve relocation semantics.
- GCRelocateOperands Operands(II);
- Value *DerivedPtr = Operands.getDerivedPtr();
- auto *GCRelocateType = cast<PointerType>(II->getType());
- // Remove the relocation if unused, note that this check is required
- // to prevent the cases below from looping forever.
- if (II->use_empty())
- return EraseInstFromFunction(*II);
- // Undef is undef, even after relocation.
- // TODO: provide a hook for this in GCStrategy. This is clearly legal for
- // most practical collectors, but there was discussion in the review thread
- // about whether it was legal for all possible collectors.
- if (isa<UndefValue>(DerivedPtr)) {
- // gc_relocate is uncasted. Use undef of gc_relocate's type to replace it.
- return ReplaceInstUsesWith(*II, UndefValue::get(GCRelocateType));
- }
- // The relocation of null will be null for most any collector.
- // TODO: provide a hook for this in GCStrategy. There might be some weird
- // collector this property does not hold for.
- if (isa<ConstantPointerNull>(DerivedPtr)) {
- // gc_relocate is uncasted. Use null-pointer of gc_relocate's type to replace it.
- return ReplaceInstUsesWith(*II, ConstantPointerNull::get(GCRelocateType));
- }
- // isKnownNonNull -> nonnull attribute
- if (isKnownNonNull(DerivedPtr))
- II->addAttribute(AttributeSet::ReturnIndex, Attribute::NonNull);
- // isDereferenceablePointer -> deref attribute
- if (isDereferenceablePointer(DerivedPtr, DL)) {
- if (Argument *A = dyn_cast<Argument>(DerivedPtr)) {
- uint64_t Bytes = A->getDereferenceableBytes();
- II->addDereferenceableAttr(AttributeSet::ReturnIndex, Bytes);
- }
- }
- // TODO: bitcast(relocate(p)) -> relocate(bitcast(p))
- // Canonicalize on the type from the uses to the defs
- // TODO: relocate((gep p, C, C2, ...)) -> gep(relocate(p), C, C2, ...)
- }
- }
- return visitCallSite(II);
- }
- // InvokeInst simplification
- //
- Instruction *InstCombiner::visitInvokeInst(InvokeInst &II) {
- return visitCallSite(&II);
- }
- /// isSafeToEliminateVarargsCast - If this cast does not affect the value
- /// passed through the varargs area, we can eliminate the use of the cast.
- static bool isSafeToEliminateVarargsCast(const CallSite CS,
- const DataLayout &DL,
- const CastInst *const CI,
- const int ix) {
- if (!CI->isLosslessCast())
- return false;
- // If this is a GC intrinsic, avoid munging types. We need types for
- // statepoint reconstruction in SelectionDAG.
- // TODO: This is probably something which should be expanded to all
- // intrinsics since the entire point of intrinsics is that
- // they are understandable by the optimizer.
- if (isStatepoint(CS) || isGCRelocate(CS) || isGCResult(CS))
- return false;
- // The size of ByVal or InAlloca arguments is derived from the type, so we
- // can't change to a type with a different size. If the size were
- // passed explicitly we could avoid this check.
- if (!CS.isByValOrInAllocaArgument(ix))
- return true;
- Type* SrcTy =
- cast<PointerType>(CI->getOperand(0)->getType())->getElementType();
- Type* DstTy = cast<PointerType>(CI->getType())->getElementType();
- if (!SrcTy->isSized() || !DstTy->isSized())
- return false;
- if (DL.getTypeAllocSize(SrcTy) != DL.getTypeAllocSize(DstTy))
- return false;
- return true;
- }
- // Try to fold some different type of calls here.
- // Currently we're only working with the checking functions, memcpy_chk,
- // mempcpy_chk, memmove_chk, memset_chk, strcpy_chk, stpcpy_chk, strncpy_chk,
- // strcat_chk and strncat_chk.
- Instruction *InstCombiner::tryOptimizeCall(CallInst *CI) {
- if (!CI->getCalledFunction()) return nullptr;
- auto InstCombineRAUW = [this](Instruction *From, Value *With) {
- ReplaceInstUsesWith(*From, With);
- };
- LibCallSimplifier Simplifier(DL, TLI, InstCombineRAUW);
- if (Value *With = Simplifier.optimizeCall(CI)) {
- ++NumSimplified;
- return CI->use_empty() ? CI : ReplaceInstUsesWith(*CI, With);
- }
- return nullptr;
- }
- static IntrinsicInst *FindInitTrampolineFromAlloca(Value *TrampMem) {
- // Strip off at most one level of pointer casts, looking for an alloca. This
- // is good enough in practice and simpler than handling any number of casts.
- Value *Underlying = TrampMem->stripPointerCasts();
- if (Underlying != TrampMem &&
- (!Underlying->hasOneUse() || Underlying->user_back() != TrampMem))
- return nullptr;
- if (!isa<AllocaInst>(Underlying))
- return nullptr;
- IntrinsicInst *InitTrampoline = nullptr;
- for (User *U : TrampMem->users()) {
- IntrinsicInst *II = dyn_cast<IntrinsicInst>(U);
- if (!II)
- return nullptr;
- if (II->getIntrinsicID() == Intrinsic::init_trampoline) {
- if (InitTrampoline)
- // More than one init_trampoline writes to this value. Give up.
- return nullptr;
- InitTrampoline = II;
- continue;
- }
- if (II->getIntrinsicID() == Intrinsic::adjust_trampoline)
- // Allow any number of calls to adjust.trampoline.
- continue;
- return nullptr;
- }
- // No call to init.trampoline found.
- if (!InitTrampoline)
- return nullptr;
- // Check that the alloca is being used in the expected way.
- if (InitTrampoline->getOperand(0) != TrampMem)
- return nullptr;
- return InitTrampoline;
- }
- static IntrinsicInst *FindInitTrampolineFromBB(IntrinsicInst *AdjustTramp,
- Value *TrampMem) {
- // Visit all the previous instructions in the basic block, and try to find a
- // init.trampoline which has a direct path to the adjust.trampoline.
- for (BasicBlock::iterator I = AdjustTramp,
- E = AdjustTramp->getParent()->begin(); I != E; ) {
- Instruction *Inst = --I;
- if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I))
- if (II->getIntrinsicID() == Intrinsic::init_trampoline &&
- II->getOperand(0) == TrampMem)
- return II;
- if (Inst->mayWriteToMemory())
- return nullptr;
- }
- return nullptr;
- }
- // Given a call to llvm.adjust.trampoline, find and return the corresponding
- // call to llvm.init.trampoline if the call to the trampoline can be optimized
- // to a direct call to a function. Otherwise return NULL.
- //
- static IntrinsicInst *FindInitTrampoline(Value *Callee) {
- Callee = Callee->stripPointerCasts();
- IntrinsicInst *AdjustTramp = dyn_cast<IntrinsicInst>(Callee);
- if (!AdjustTramp ||
- AdjustTramp->getIntrinsicID() != Intrinsic::adjust_trampoline)
- return nullptr;
- Value *TrampMem = AdjustTramp->getOperand(0);
- if (IntrinsicInst *IT = FindInitTrampolineFromAlloca(TrampMem))
- return IT;
- if (IntrinsicInst *IT = FindInitTrampolineFromBB(AdjustTramp, TrampMem))
- return IT;
- return nullptr;
- }
- // visitCallSite - Improvements for call and invoke instructions.
- //
- Instruction *InstCombiner::visitCallSite(CallSite CS) {
- if (isAllocLikeFn(CS.getInstruction(), TLI))
- return visitAllocSite(*CS.getInstruction());
- bool Changed = false;
- // Mark any parameters that are known to be non-null with the nonnull
- // attribute. This is helpful for inlining calls to functions with null
- // checks on their arguments.
- unsigned ArgNo = 0;
- for (Value *V : CS.args()) {
- if (!CS.paramHasAttr(ArgNo+1, Attribute::NonNull) &&
- isKnownNonNull(V)) {
- AttributeSet AS = CS.getAttributes();
- AS = AS.addAttribute(CS.getInstruction()->getContext(), ArgNo+1,
- Attribute::NonNull);
- CS.setAttributes(AS);
- Changed = true;
- }
- ArgNo++;
- }
- assert(ArgNo == CS.arg_size() && "sanity check");
- // If the callee is a pointer to a function, attempt to move any casts to the
- // arguments of the call/invoke.
- Value *Callee = CS.getCalledValue();
- if (!isa<Function>(Callee) && transformConstExprCastCall(CS))
- return nullptr;
- if (Function *CalleeF = dyn_cast<Function>(Callee))
- // If the call and callee calling conventions don't match, this call must
- // be unreachable, as the call is undefined.
- if (CalleeF->getCallingConv() != CS.getCallingConv() &&
- // Only do this for calls to a function with a body. A prototype may
- // not actually end up matching the implementation's calling conv for a
- // variety of reasons (e.g. it may be written in assembly).
- !CalleeF->isDeclaration()) {
- Instruction *OldCall = CS.getInstruction();
- new StoreInst(ConstantInt::getTrue(Callee->getContext()),
- UndefValue::get(Type::getInt1PtrTy(Callee->getContext())),
- OldCall);
- // If OldCall does not return void then replaceAllUsesWith undef.
- // This allows ValueHandlers and custom metadata to adjust itself.
- if (!OldCall->getType()->isVoidTy())
- ReplaceInstUsesWith(*OldCall, UndefValue::get(OldCall->getType()));
- if (isa<CallInst>(OldCall))
- return EraseInstFromFunction(*OldCall);
- // We cannot remove an invoke, because it would change the CFG, just
- // change the callee to a null pointer.
- cast<InvokeInst>(OldCall)->setCalledFunction(
- Constant::getNullValue(CalleeF->getType()));
- return nullptr;
- }
- if (isa<ConstantPointerNull>(Callee) || isa<UndefValue>(Callee)) {
- // If CS does not return void then replaceAllUsesWith undef.
- // This allows ValueHandlers and custom metadata to adjust itself.
- if (!CS.getInstruction()->getType()->isVoidTy())
- ReplaceInstUsesWith(*CS.getInstruction(),
- UndefValue::get(CS.getInstruction()->getType()));
- if (isa<InvokeInst>(CS.getInstruction())) {
- // Can't remove an invoke because we cannot change the CFG.
- return nullptr;
- }
- // This instruction is not reachable, just remove it. We insert a store to
- // undef so that we know that this code is not reachable, despite the fact
- // that we can't modify the CFG here.
- new StoreInst(ConstantInt::getTrue(Callee->getContext()),
- UndefValue::get(Type::getInt1PtrTy(Callee->getContext())),
- CS.getInstruction());
- return EraseInstFromFunction(*CS.getInstruction());
- }
- if (IntrinsicInst *II = FindInitTrampoline(Callee))
- return transformCallThroughTrampoline(CS, II);
- PointerType *PTy = cast<PointerType>(Callee->getType());
- FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
- if (FTy->isVarArg()) {
- int ix = FTy->getNumParams();
- // See if we can optimize any arguments passed through the varargs area of
- // the call.
- for (CallSite::arg_iterator I = CS.arg_begin() + FTy->getNumParams(),
- E = CS.arg_end(); I != E; ++I, ++ix) {
- CastInst *CI = dyn_cast<CastInst>(*I);
- if (CI && isSafeToEliminateVarargsCast(CS, DL, CI, ix)) {
- *I = CI->getOperand(0);
- Changed = true;
- }
- }
- }
- if (isa<InlineAsm>(Callee) && !CS.doesNotThrow()) {
- // Inline asm calls cannot throw - mark them 'nounwind'.
- CS.setDoesNotThrow();
- Changed = true;
- }
- // Try to optimize the call if possible, we require DataLayout for most of
- // this. None of these calls are seen as possibly dead so go ahead and
- // delete the instruction now.
- if (CallInst *CI = dyn_cast<CallInst>(CS.getInstruction())) {
- Instruction *I = tryOptimizeCall(CI);
- // If we changed something return the result, etc. Otherwise let
- // the fallthrough check.
- if (I) return EraseInstFromFunction(*I);
- }
- return Changed ? CS.getInstruction() : nullptr;
- }
- // transformConstExprCastCall - If the callee is a constexpr cast of a function,
- // attempt to move the cast to the arguments of the call/invoke.
- //
- bool InstCombiner::transformConstExprCastCall(CallSite CS) {
- Function *Callee =
- dyn_cast<Function>(CS.getCalledValue()->stripPointerCasts());
- if (!Callee)
- return false;
- // The prototype of thunks are a lie, don't try to directly call such
- // functions.
- if (Callee->hasFnAttribute("thunk"))
- return false;
- Instruction *Caller = CS.getInstruction();
- const AttributeSet &CallerPAL = CS.getAttributes();
- // Okay, this is a cast from a function to a different type. Unless doing so
- // would cause a type conversion of one of our arguments, change this call to
- // be a direct call with arguments casted to the appropriate types.
- //
- FunctionType *FT = Callee->getFunctionType();
- Type *OldRetTy = Caller->getType();
- Type *NewRetTy = FT->getReturnType();
- // Check to see if we are changing the return type...
- if (OldRetTy != NewRetTy) {
- if (NewRetTy->isStructTy())
- return false; // TODO: Handle multiple return values.
- if (!CastInst::isBitOrNoopPointerCastable(NewRetTy, OldRetTy, DL)) {
- if (Callee->isDeclaration())
- return false; // Cannot transform this return value.
- if (!Caller->use_empty() &&
- // void -> non-void is handled specially
- !NewRetTy->isVoidTy())
- return false; // Cannot transform this return value.
- }
- if (!CallerPAL.isEmpty() && !Caller->use_empty()) {
- AttrBuilder RAttrs(CallerPAL, AttributeSet::ReturnIndex);
- if (RAttrs.overlaps(AttributeFuncs::typeIncompatible(NewRetTy)))
- return false; // Attribute not compatible with transformed value.
- }
- // If the callsite is an invoke instruction, and the return value is used by
- // a PHI node in a successor, we cannot change the return type of the call
- // because there is no place to put the cast instruction (without breaking
- // the critical edge). Bail out in this case.
- if (!Caller->use_empty())
- if (InvokeInst *II = dyn_cast<InvokeInst>(Caller))
- for (User *U : II->users())
- if (PHINode *PN = dyn_cast<PHINode>(U))
- if (PN->getParent() == II->getNormalDest() ||
- PN->getParent() == II->getUnwindDest())
- return false;
- }
- unsigned NumActualArgs = CS.arg_size();
- unsigned NumCommonArgs = std::min(FT->getNumParams(), NumActualArgs);
- // Prevent us turning:
- // declare void @takes_i32_inalloca(i32* inalloca)
- // call void bitcast (void (i32*)* @takes_i32_inalloca to void (i32)*)(i32 0)
- //
- // into:
- // call void @takes_i32_inalloca(i32* null)
- //
- // Similarly, avoid folding away bitcasts of byval calls.
- if (Callee->getAttributes().hasAttrSomewhere(Attribute::InAlloca) ||
- Callee->getAttributes().hasAttrSomewhere(Attribute::ByVal))
- return false;
- CallSite::arg_iterator AI = CS.arg_begin();
- for (unsigned i = 0, e = NumCommonArgs; i != e; ++i, ++AI) {
- Type *ParamTy = FT->getParamType(i);
- Type *ActTy = (*AI)->getType();
- if (!CastInst::isBitOrNoopPointerCastable(ActTy, ParamTy, DL))
- return false; // Cannot transform this parameter value.
- if (AttrBuilder(CallerPAL.getParamAttributes(i + 1), i + 1).
- overlaps(AttributeFuncs::typeIncompatible(ParamTy)))
- return false; // Attribute not compatible with transformed value.
- if (CS.isInAllocaArgument(i))
- return false; // Cannot transform to and from inalloca.
- // If the parameter is passed as a byval argument, then we have to have a
- // sized type and the sized type has to have the same size as the old type.
- if (ParamTy != ActTy &&
- CallerPAL.getParamAttributes(i + 1).hasAttribute(i + 1,
- Attribute::ByVal)) {
- PointerType *ParamPTy = dyn_cast<PointerType>(ParamTy);
- if (!ParamPTy || !ParamPTy->getElementType()->isSized())
- return false;
- Type *CurElTy = ActTy->getPointerElementType();
- if (DL.getTypeAllocSize(CurElTy) !=
- DL.getTypeAllocSize(ParamPTy->getElementType()))
- return false;
- }
- }
- if (Callee->isDeclaration()) {
- // Do not delete arguments unless we have a function body.
- if (FT->getNumParams() < NumActualArgs && !FT->isVarArg())
- return false;
- // If the callee is just a declaration, don't change the varargsness of the
- // call. We don't want to introduce a varargs call where one doesn't
- // already exist.
- PointerType *APTy = cast<PointerType>(CS.getCalledValue()->getType());
- if (FT->isVarArg()!=cast<FunctionType>(APTy->getElementType())->isVarArg())
- return false;
- // If both the callee and the cast type are varargs, we still have to make
- // sure the number of fixed parameters are the same or we have the same
- // ABI issues as if we introduce a varargs call.
- if (FT->isVarArg() &&
- cast<FunctionType>(APTy->getElementType())->isVarArg() &&
- FT->getNumParams() !=
- cast<FunctionType>(APTy->getElementType())->getNumParams())
- return false;
- }
- if (FT->getNumParams() < NumActualArgs && FT->isVarArg() &&
- !CallerPAL.isEmpty())
- // In this case we have more arguments than the new function type, but we
- // won't be dropping them. Check that these extra arguments have attributes
- // that are compatible with being a vararg call argument.
- for (unsigned i = CallerPAL.getNumSlots(); i; --i) {
- unsigned Index = CallerPAL.getSlotIndex(i - 1);
- if (Index <= FT->getNumParams())
- break;
- // Check if it has an attribute that's incompatible with varargs.
- AttributeSet PAttrs = CallerPAL.getSlotAttributes(i - 1);
- if (PAttrs.hasAttribute(Index, Attribute::StructRet))
- return false;
- }
- // Okay, we decided that this is a safe thing to do: go ahead and start
- // inserting cast instructions as necessary.
- std::vector<Value*> Args;
- Args.reserve(NumActualArgs);
- SmallVector<AttributeSet, 8> attrVec;
- attrVec.reserve(NumCommonArgs);
- // Get any return attributes.
- AttrBuilder RAttrs(CallerPAL, AttributeSet::ReturnIndex);
- // If the return value is not being used, the type may not be compatible
- // with the existing attributes. Wipe out any problematic attributes.
- RAttrs.remove(AttributeFuncs::typeIncompatible(NewRetTy));
- // Add the new return attributes.
- if (RAttrs.hasAttributes())
- attrVec.push_back(AttributeSet::get(Caller->getContext(),
- AttributeSet::ReturnIndex, RAttrs));
- AI = CS.arg_begin();
- for (unsigned i = 0; i != NumCommonArgs; ++i, ++AI) {
- Type *ParamTy = FT->getParamType(i);
- if ((*AI)->getType() == ParamTy) {
- Args.push_back(*AI);
- } else {
- Args.push_back(Builder->CreateBitOrPointerCast(*AI, ParamTy));
- }
- // Add any parameter attributes.
- AttrBuilder PAttrs(CallerPAL.getParamAttributes(i + 1), i + 1);
- if (PAttrs.hasAttributes())
- attrVec.push_back(AttributeSet::get(Caller->getContext(), i + 1,
- PAttrs));
- }
- // If the function takes more arguments than the call was taking, add them
- // now.
- for (unsigned i = NumCommonArgs; i != FT->getNumParams(); ++i)
- Args.push_back(Constant::getNullValue(FT->getParamType(i)));
- // If we are removing arguments to the function, emit an obnoxious warning.
- if (FT->getNumParams() < NumActualArgs) {
- // TODO: if (!FT->isVarArg()) this call may be unreachable. PR14722
- if (FT->isVarArg()) {
- // Add all of the arguments in their promoted form to the arg list.
- for (unsigned i = FT->getNumParams(); i != NumActualArgs; ++i, ++AI) {
- Type *PTy = getPromotedType((*AI)->getType());
- if (PTy != (*AI)->getType()) {
- // Must promote to pass through va_arg area!
- Instruction::CastOps opcode =
- CastInst::getCastOpcode(*AI, false, PTy, false);
- Args.push_back(Builder->CreateCast(opcode, *AI, PTy));
- } else {
- Args.push_back(*AI);
- }
- // Add any parameter attributes.
- AttrBuilder PAttrs(CallerPAL.getParamAttributes(i + 1), i + 1);
- if (PAttrs.hasAttributes())
- attrVec.push_back(AttributeSet::get(FT->getContext(), i + 1,
- PAttrs));
- }
- }
- }
- AttributeSet FnAttrs = CallerPAL.getFnAttributes();
- if (CallerPAL.hasAttributes(AttributeSet::FunctionIndex))
- attrVec.push_back(AttributeSet::get(Callee->getContext(), FnAttrs));
- if (NewRetTy->isVoidTy())
- Caller->setName(""); // Void type should not have a name.
- const AttributeSet &NewCallerPAL = AttributeSet::get(Callee->getContext(),
- attrVec);
- Instruction *NC;
- if (InvokeInst *II = dyn_cast<InvokeInst>(Caller)) {
- NC = Builder->CreateInvoke(Callee, II->getNormalDest(),
- II->getUnwindDest(), Args);
- NC->takeName(II);
- cast<InvokeInst>(NC)->setCallingConv(II->getCallingConv());
- cast<InvokeInst>(NC)->setAttributes(NewCallerPAL);
- } else {
- CallInst *CI = cast<CallInst>(Caller);
- NC = Builder->CreateCall(Callee, Args);
- NC->takeName(CI);
- if (CI->isTailCall())
- cast<CallInst>(NC)->setTailCall();
- cast<CallInst>(NC)->setCallingConv(CI->getCallingConv());
- cast<CallInst>(NC)->setAttributes(NewCallerPAL);
- }
- // Insert a cast of the return type as necessary.
- Value *NV = NC;
- if (OldRetTy != NV->getType() && !Caller->use_empty()) {
- if (!NV->getType()->isVoidTy()) {
- NV = NC = CastInst::CreateBitOrPointerCast(NC, OldRetTy);
- NC->setDebugLoc(Caller->getDebugLoc());
- // If this is an invoke instruction, we should insert it after the first
- // non-phi, instruction in the normal successor block.
- if (InvokeInst *II = dyn_cast<InvokeInst>(Caller)) {
- BasicBlock::iterator I = II->getNormalDest()->getFirstInsertionPt();
- InsertNewInstBefore(NC, *I);
- } else {
- // Otherwise, it's a call, just insert cast right after the call.
- InsertNewInstBefore(NC, *Caller);
- }
- Worklist.AddUsersToWorkList(*Caller);
- } else {
- NV = UndefValue::get(Caller->getType());
- }
- }
- if (!Caller->use_empty())
- ReplaceInstUsesWith(*Caller, NV);
- else if (Caller->hasValueHandle()) {
- if (OldRetTy == NV->getType())
- ValueHandleBase::ValueIsRAUWd(Caller, NV);
- else
- // We cannot call ValueIsRAUWd with a different type, and the
- // actual tracked value will disappear.
- ValueHandleBase::ValueIsDeleted(Caller);
- }
- EraseInstFromFunction(*Caller);
- return true;
- }
- // transformCallThroughTrampoline - Turn a call to a function created by
- // init_trampoline / adjust_trampoline intrinsic pair into a direct call to the
- // underlying function.
- //
- Instruction *
- InstCombiner::transformCallThroughTrampoline(CallSite CS,
- IntrinsicInst *Tramp) {
- Value *Callee = CS.getCalledValue();
- PointerType *PTy = cast<PointerType>(Callee->getType());
- FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
- const AttributeSet &Attrs = CS.getAttributes();
- // If the call already has the 'nest' attribute somewhere then give up -
- // otherwise 'nest' would occur twice after splicing in the chain.
- if (Attrs.hasAttrSomewhere(Attribute::Nest))
- return nullptr;
- assert(Tramp &&
- "transformCallThroughTrampoline called with incorrect CallSite.");
- Function *NestF =cast<Function>(Tramp->getArgOperand(1)->stripPointerCasts());
- PointerType *NestFPTy = cast<PointerType>(NestF->getType());
- FunctionType *NestFTy = cast<FunctionType>(NestFPTy->getElementType());
- const AttributeSet &NestAttrs = NestF->getAttributes();
- if (!NestAttrs.isEmpty()) {
- unsigned NestIdx = 1;
- Type *NestTy = nullptr;
- AttributeSet NestAttr;
- // Look for a parameter marked with the 'nest' attribute.
- for (FunctionType::param_iterator I = NestFTy->param_begin(),
- E = NestFTy->param_end(); I != E; ++NestIdx, ++I)
- if (NestAttrs.hasAttribute(NestIdx, Attribute::Nest)) {
- // Record the parameter type and any other attributes.
- NestTy = *I;
- NestAttr = NestAttrs.getParamAttributes(NestIdx);
- break;
- }
- if (NestTy) {
- Instruction *Caller = CS.getInstruction();
- std::vector<Value*> NewArgs;
- NewArgs.reserve(CS.arg_size() + 1);
- SmallVector<AttributeSet, 8> NewAttrs;
- NewAttrs.reserve(Attrs.getNumSlots() + 1);
- // Insert the nest argument into the call argument list, which may
- // mean appending it. Likewise for attributes.
- // Add any result attributes.
- if (Attrs.hasAttributes(AttributeSet::ReturnIndex))
- NewAttrs.push_back(AttributeSet::get(Caller->getContext(),
- Attrs.getRetAttributes()));
- {
- unsigned Idx = 1;
- CallSite::arg_iterator I = CS.arg_begin(), E = CS.arg_end();
- do {
- if (Idx == NestIdx) {
- // Add the chain argument and attributes.
- Value *NestVal = Tramp->getArgOperand(2);
- if (NestVal->getType() != NestTy)
- NestVal = Builder->CreateBitCast(NestVal, NestTy, "nest");
- NewArgs.push_back(NestVal);
- NewAttrs.push_back(AttributeSet::get(Caller->getContext(),
- NestAttr));
- }
- if (I == E)
- break;
- // Add the original argument and attributes.
- NewArgs.push_back(*I);
- AttributeSet Attr = Attrs.getParamAttributes(Idx);
- if (Attr.hasAttributes(Idx)) {
- AttrBuilder B(Attr, Idx);
- NewAttrs.push_back(AttributeSet::get(Caller->getContext(),
- Idx + (Idx >= NestIdx), B));
- }
- ++Idx, ++I;
- } while (1);
- }
- // Add any function attributes.
- if (Attrs.hasAttributes(AttributeSet::FunctionIndex))
- NewAttrs.push_back(AttributeSet::get(FTy->getContext(),
- Attrs.getFnAttributes()));
- // The trampoline may have been bitcast to a bogus type (FTy).
- // Handle this by synthesizing a new function type, equal to FTy
- // with the chain parameter inserted.
- std::vector<Type*> NewTypes;
- NewTypes.reserve(FTy->getNumParams()+1);
- // Insert the chain's type into the list of parameter types, which may
- // mean appending it.
- {
- unsigned Idx = 1;
- FunctionType::param_iterator I = FTy->param_begin(),
- E = FTy->param_end();
- do {
- if (Idx == NestIdx)
- // Add the chain's type.
- NewTypes.push_back(NestTy);
- if (I == E)
- break;
- // Add the original type.
- NewTypes.push_back(*I);
- ++Idx, ++I;
- } while (1);
- }
- // Replace the trampoline call with a direct call. Let the generic
- // code sort out any function type mismatches.
- FunctionType *NewFTy = FunctionType::get(FTy->getReturnType(), NewTypes,
- FTy->isVarArg());
- Constant *NewCallee =
- NestF->getType() == PointerType::getUnqual(NewFTy) ?
- NestF : ConstantExpr::getBitCast(NestF,
- PointerType::getUnqual(NewFTy));
- const AttributeSet &NewPAL =
- AttributeSet::get(FTy->getContext(), NewAttrs);
- Instruction *NewCaller;
- if (InvokeInst *II = dyn_cast<InvokeInst>(Caller)) {
- NewCaller = InvokeInst::Create(NewCallee,
- II->getNormalDest(), II->getUnwindDest(),
- NewArgs);
- cast<InvokeInst>(NewCaller)->setCallingConv(II->getCallingConv());
- cast<InvokeInst>(NewCaller)->setAttributes(NewPAL);
- } else {
- NewCaller = CallInst::Create(NewCallee, NewArgs);
- if (cast<CallInst>(Caller)->isTailCall())
- cast<CallInst>(NewCaller)->setTailCall();
- cast<CallInst>(NewCaller)->
- setCallingConv(cast<CallInst>(Caller)->getCallingConv());
- cast<CallInst>(NewCaller)->setAttributes(NewPAL);
- }
- return NewCaller;
- }
- }
- // Replace the trampoline call with a direct call. Since there is no 'nest'
- // parameter, there is no need to adjust the argument list. Let the generic
- // code sort out any function type mismatches.
- Constant *NewCallee =
- NestF->getType() == PTy ? NestF :
- ConstantExpr::getBitCast(NestF, PTy);
- CS.setCalledFunction(NewCallee);
- return CS.getInstruction();
- }
|