1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906 |
- //===- InstCombineCasts.cpp -----------------------------------------------===//
- //
- // The LLVM Compiler Infrastructure
- //
- // This file is distributed under the University of Illinois Open Source
- // License. See LICENSE.TXT for details.
- //
- //===----------------------------------------------------------------------===//
- //
- // This file implements the visit functions for cast operations.
- //
- //===----------------------------------------------------------------------===//
- #include "InstCombineInternal.h"
- #include "llvm/Analysis/ConstantFolding.h"
- #include "llvm/IR/DataLayout.h"
- #include "llvm/IR/PatternMatch.h"
- #include "llvm/Analysis/TargetLibraryInfo.h"
- using namespace llvm;
- using namespace PatternMatch;
- #define DEBUG_TYPE "instcombine"
- /// DecomposeSimpleLinearExpr - Analyze 'Val', seeing if it is a simple linear
- /// expression. If so, decompose it, returning some value X, such that Val is
- /// X*Scale+Offset.
- ///
- static Value *DecomposeSimpleLinearExpr(Value *Val, unsigned &Scale,
- uint64_t &Offset) {
- if (ConstantInt *CI = dyn_cast<ConstantInt>(Val)) {
- Offset = CI->getZExtValue();
- Scale = 0;
- return ConstantInt::get(Val->getType(), 0);
- }
- if (BinaryOperator *I = dyn_cast<BinaryOperator>(Val)) {
- // Cannot look past anything that might overflow.
- OverflowingBinaryOperator *OBI = dyn_cast<OverflowingBinaryOperator>(Val);
- if (OBI && !OBI->hasNoUnsignedWrap() && !OBI->hasNoSignedWrap()) {
- Scale = 1;
- Offset = 0;
- return Val;
- }
- if (ConstantInt *RHS = dyn_cast<ConstantInt>(I->getOperand(1))) {
- if (I->getOpcode() == Instruction::Shl) {
- // This is a value scaled by '1 << the shift amt'.
- Scale = UINT64_C(1) << RHS->getZExtValue();
- Offset = 0;
- return I->getOperand(0);
- }
- if (I->getOpcode() == Instruction::Mul) {
- // This value is scaled by 'RHS'.
- Scale = RHS->getZExtValue();
- Offset = 0;
- return I->getOperand(0);
- }
- if (I->getOpcode() == Instruction::Add) {
- // We have X+C. Check to see if we really have (X*C2)+C1,
- // where C1 is divisible by C2.
- unsigned SubScale;
- Value *SubVal =
- DecomposeSimpleLinearExpr(I->getOperand(0), SubScale, Offset);
- Offset += RHS->getZExtValue();
- Scale = SubScale;
- return SubVal;
- }
- }
- }
- // Otherwise, we can't look past this.
- Scale = 1;
- Offset = 0;
- return Val;
- }
- /// PromoteCastOfAllocation - If we find a cast of an allocation instruction,
- /// try to eliminate the cast by moving the type information into the alloc.
- Instruction *InstCombiner::PromoteCastOfAllocation(BitCastInst &CI,
- AllocaInst &AI) {
- PointerType *PTy = cast<PointerType>(CI.getType());
- BuilderTy AllocaBuilder(*Builder);
- AllocaBuilder.SetInsertPoint(AI.getParent(), &AI);
- // Get the type really allocated and the type casted to.
- Type *AllocElTy = AI.getAllocatedType();
- Type *CastElTy = PTy->getElementType();
- if (!AllocElTy->isSized() || !CastElTy->isSized()) return nullptr;
- unsigned AllocElTyAlign = DL.getABITypeAlignment(AllocElTy);
- unsigned CastElTyAlign = DL.getABITypeAlignment(CastElTy);
- if (CastElTyAlign < AllocElTyAlign) return nullptr;
- // If the allocation has multiple uses, only promote it if we are strictly
- // increasing the alignment of the resultant allocation. If we keep it the
- // same, we open the door to infinite loops of various kinds.
- if (!AI.hasOneUse() && CastElTyAlign == AllocElTyAlign) return nullptr;
- uint64_t AllocElTySize = DL.getTypeAllocSize(AllocElTy);
- uint64_t CastElTySize = DL.getTypeAllocSize(CastElTy);
- if (CastElTySize == 0 || AllocElTySize == 0) return nullptr;
- // If the allocation has multiple uses, only promote it if we're not
- // shrinking the amount of memory being allocated.
- uint64_t AllocElTyStoreSize = DL.getTypeStoreSize(AllocElTy);
- uint64_t CastElTyStoreSize = DL.getTypeStoreSize(CastElTy);
- if (!AI.hasOneUse() && CastElTyStoreSize < AllocElTyStoreSize) return nullptr;
- // See if we can satisfy the modulus by pulling a scale out of the array
- // size argument.
- unsigned ArraySizeScale;
- uint64_t ArrayOffset;
- Value *NumElements = // See if the array size is a decomposable linear expr.
- DecomposeSimpleLinearExpr(AI.getOperand(0), ArraySizeScale, ArrayOffset);
- // If we can now satisfy the modulus, by using a non-1 scale, we really can
- // do the xform.
- if ((AllocElTySize*ArraySizeScale) % CastElTySize != 0 ||
- (AllocElTySize*ArrayOffset ) % CastElTySize != 0) return nullptr;
- unsigned Scale = (AllocElTySize*ArraySizeScale)/CastElTySize;
- Value *Amt = nullptr;
- if (Scale == 1) {
- Amt = NumElements;
- } else {
- Amt = ConstantInt::get(AI.getArraySize()->getType(), Scale);
- // Insert before the alloca, not before the cast.
- Amt = AllocaBuilder.CreateMul(Amt, NumElements);
- }
- if (uint64_t Offset = (AllocElTySize*ArrayOffset)/CastElTySize) {
- Value *Off = ConstantInt::get(AI.getArraySize()->getType(),
- Offset, true);
- Amt = AllocaBuilder.CreateAdd(Amt, Off);
- }
- AllocaInst *New = AllocaBuilder.CreateAlloca(CastElTy, Amt);
- New->setAlignment(AI.getAlignment());
- New->takeName(&AI);
- New->setUsedWithInAlloca(AI.isUsedWithInAlloca());
- // If the allocation has multiple real uses, insert a cast and change all
- // things that used it to use the new cast. This will also hack on CI, but it
- // will die soon.
- if (!AI.hasOneUse()) {
- // New is the allocation instruction, pointer typed. AI is the original
- // allocation instruction, also pointer typed. Thus, cast to use is BitCast.
- Value *NewCast = AllocaBuilder.CreateBitCast(New, AI.getType(), "tmpcast");
- ReplaceInstUsesWith(AI, NewCast);
- }
- return ReplaceInstUsesWith(CI, New);
- }
- /// EvaluateInDifferentType - Given an expression that
- /// CanEvaluateTruncated or CanEvaluateSExtd returns true for, actually
- /// insert the code to evaluate the expression.
- Value *InstCombiner::EvaluateInDifferentType(Value *V, Type *Ty,
- bool isSigned) {
- if (Constant *C = dyn_cast<Constant>(V)) {
- C = ConstantExpr::getIntegerCast(C, Ty, isSigned /*Sext or ZExt*/);
- // If we got a constantexpr back, try to simplify it with DL info.
- if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
- C = ConstantFoldConstantExpression(CE, DL, TLI);
- return C;
- }
- // Otherwise, it must be an instruction.
- Instruction *I = cast<Instruction>(V);
- Instruction *Res = nullptr;
- unsigned Opc = I->getOpcode();
- switch (Opc) {
- case Instruction::Add:
- case Instruction::Sub:
- case Instruction::Mul:
- case Instruction::And:
- case Instruction::Or:
- case Instruction::Xor:
- case Instruction::AShr:
- case Instruction::LShr:
- case Instruction::Shl:
- case Instruction::UDiv:
- case Instruction::URem: {
- Value *LHS = EvaluateInDifferentType(I->getOperand(0), Ty, isSigned);
- Value *RHS = EvaluateInDifferentType(I->getOperand(1), Ty, isSigned);
- Res = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
- break;
- }
- case Instruction::Trunc:
- case Instruction::ZExt:
- case Instruction::SExt:
- // If the source type of the cast is the type we're trying for then we can
- // just return the source. There's no need to insert it because it is not
- // new.
- if (I->getOperand(0)->getType() == Ty)
- return I->getOperand(0);
- // Otherwise, must be the same type of cast, so just reinsert a new one.
- // This also handles the case of zext(trunc(x)) -> zext(x).
- Res = CastInst::CreateIntegerCast(I->getOperand(0), Ty,
- Opc == Instruction::SExt);
- break;
- case Instruction::Select: {
- Value *True = EvaluateInDifferentType(I->getOperand(1), Ty, isSigned);
- Value *False = EvaluateInDifferentType(I->getOperand(2), Ty, isSigned);
- Res = SelectInst::Create(I->getOperand(0), True, False);
- break;
- }
- case Instruction::PHI: {
- PHINode *OPN = cast<PHINode>(I);
- PHINode *NPN = PHINode::Create(Ty, OPN->getNumIncomingValues());
- for (unsigned i = 0, e = OPN->getNumIncomingValues(); i != e; ++i) {
- Value *V =
- EvaluateInDifferentType(OPN->getIncomingValue(i), Ty, isSigned);
- NPN->addIncoming(V, OPN->getIncomingBlock(i));
- }
- Res = NPN;
- break;
- }
- default:
- // TODO: Can handle more cases here.
- llvm_unreachable("Unreachable!");
- }
- Res->takeName(I);
- return InsertNewInstWith(Res, *I);
- }
- /// This function is a wrapper around CastInst::isEliminableCastPair. It
- /// simply extracts arguments and returns what that function returns.
- static Instruction::CastOps
- isEliminableCastPair(const CastInst *CI, ///< First cast instruction
- unsigned opcode, ///< Opcode for the second cast
- Type *DstTy, ///< Target type for the second cast
- const DataLayout &DL) {
- Type *SrcTy = CI->getOperand(0)->getType(); // A from above
- Type *MidTy = CI->getType(); // B from above
- // Get the opcodes of the two Cast instructions
- Instruction::CastOps firstOp = Instruction::CastOps(CI->getOpcode());
- Instruction::CastOps secondOp = Instruction::CastOps(opcode);
- Type *SrcIntPtrTy =
- SrcTy->isPtrOrPtrVectorTy() ? DL.getIntPtrType(SrcTy) : nullptr;
- Type *MidIntPtrTy =
- MidTy->isPtrOrPtrVectorTy() ? DL.getIntPtrType(MidTy) : nullptr;
- Type *DstIntPtrTy =
- DstTy->isPtrOrPtrVectorTy() ? DL.getIntPtrType(DstTy) : nullptr;
- unsigned Res = CastInst::isEliminableCastPair(firstOp, secondOp, SrcTy, MidTy,
- DstTy, SrcIntPtrTy, MidIntPtrTy,
- DstIntPtrTy);
- // We don't want to form an inttoptr or ptrtoint that converts to an integer
- // type that differs from the pointer size.
- if ((Res == Instruction::IntToPtr && SrcTy != DstIntPtrTy) ||
- (Res == Instruction::PtrToInt && DstTy != SrcIntPtrTy))
- Res = 0;
- return Instruction::CastOps(Res);
- }
- /// ShouldOptimizeCast - Return true if the cast from "V to Ty" actually
- /// results in any code being generated and is interesting to optimize out. If
- /// the cast can be eliminated by some other simple transformation, we prefer
- /// to do the simplification first.
- bool InstCombiner::ShouldOptimizeCast(Instruction::CastOps opc, const Value *V,
- Type *Ty) {
- // Noop casts and casts of constants should be eliminated trivially.
- if (V->getType() == Ty || isa<Constant>(V)) return false;
- // If this is another cast that can be eliminated, we prefer to have it
- // eliminated.
- if (const CastInst *CI = dyn_cast<CastInst>(V))
- if (isEliminableCastPair(CI, opc, Ty, DL))
- return false;
- // If this is a vector sext from a compare, then we don't want to break the
- // idiom where each element of the extended vector is either zero or all ones.
- if (opc == Instruction::SExt && isa<CmpInst>(V) && Ty->isVectorTy())
- return false;
- return true;
- }
- /// @brief Implement the transforms common to all CastInst visitors.
- Instruction *InstCombiner::commonCastTransforms(CastInst &CI) {
- Value *Src = CI.getOperand(0);
- // Many cases of "cast of a cast" are eliminable. If it's eliminable we just
- // eliminate it now.
- if (CastInst *CSrc = dyn_cast<CastInst>(Src)) { // A->B->C cast
- if (Instruction::CastOps opc =
- isEliminableCastPair(CSrc, CI.getOpcode(), CI.getType(), DL)) {
- // The first cast (CSrc) is eliminable so we need to fix up or replace
- // the second cast (CI). CSrc will then have a good chance of being dead.
- return CastInst::Create(opc, CSrc->getOperand(0), CI.getType());
- }
- }
- // If we are casting a select then fold the cast into the select
- if (SelectInst *SI = dyn_cast<SelectInst>(Src))
- if (Instruction *NV = FoldOpIntoSelect(CI, SI))
- return NV;
- // If we are casting a PHI then fold the cast into the PHI
- if (isa<PHINode>(Src)) {
- // We don't do this if this would create a PHI node with an illegal type if
- // it is currently legal.
- if (!Src->getType()->isIntegerTy() || !CI.getType()->isIntegerTy() ||
- ShouldChangeType(CI.getType(), Src->getType()))
- if (Instruction *NV = FoldOpIntoPhi(CI))
- return NV;
- }
- return nullptr;
- }
- /// CanEvaluateTruncated - Return true if we can evaluate the specified
- /// expression tree as type Ty instead of its larger type, and arrive with the
- /// same value. This is used by code that tries to eliminate truncates.
- ///
- /// Ty will always be a type smaller than V. We should return true if trunc(V)
- /// can be computed by computing V in the smaller type. If V is an instruction,
- /// then trunc(inst(x,y)) can be computed as inst(trunc(x),trunc(y)), which only
- /// makes sense if x and y can be efficiently truncated.
- ///
- /// This function works on both vectors and scalars.
- ///
- static bool CanEvaluateTruncated(Value *V, Type *Ty, InstCombiner &IC,
- Instruction *CxtI) {
- // We can always evaluate constants in another type.
- if (isa<Constant>(V))
- return true;
- Instruction *I = dyn_cast<Instruction>(V);
- if (!I) return false;
- Type *OrigTy = V->getType();
- // If this is an extension from the dest type, we can eliminate it, even if it
- // has multiple uses.
- if ((isa<ZExtInst>(I) || isa<SExtInst>(I)) &&
- I->getOperand(0)->getType() == Ty)
- return true;
- // We can't extend or shrink something that has multiple uses: doing so would
- // require duplicating the instruction in general, which isn't profitable.
- if (!I->hasOneUse()) return false;
- unsigned Opc = I->getOpcode();
- switch (Opc) {
- case Instruction::Add:
- case Instruction::Sub:
- case Instruction::Mul:
- case Instruction::And:
- case Instruction::Or:
- case Instruction::Xor:
- // These operators can all arbitrarily be extended or truncated.
- return CanEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI) &&
- CanEvaluateTruncated(I->getOperand(1), Ty, IC, CxtI);
- case Instruction::UDiv:
- case Instruction::URem: {
- // UDiv and URem can be truncated if all the truncated bits are zero.
- uint32_t OrigBitWidth = OrigTy->getScalarSizeInBits();
- uint32_t BitWidth = Ty->getScalarSizeInBits();
- if (BitWidth < OrigBitWidth) {
- APInt Mask = APInt::getHighBitsSet(OrigBitWidth, OrigBitWidth-BitWidth);
- if (IC.MaskedValueIsZero(I->getOperand(0), Mask, 0, CxtI) &&
- IC.MaskedValueIsZero(I->getOperand(1), Mask, 0, CxtI)) {
- return CanEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI) &&
- CanEvaluateTruncated(I->getOperand(1), Ty, IC, CxtI);
- }
- }
- break;
- }
- case Instruction::Shl:
- // If we are truncating the result of this SHL, and if it's a shift of a
- // constant amount, we can always perform a SHL in a smaller type.
- if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) {
- uint32_t BitWidth = Ty->getScalarSizeInBits();
- if (CI->getLimitedValue(BitWidth) < BitWidth)
- return CanEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI);
- }
- break;
- case Instruction::LShr:
- // If this is a truncate of a logical shr, we can truncate it to a smaller
- // lshr iff we know that the bits we would otherwise be shifting in are
- // already zeros.
- if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) {
- uint32_t OrigBitWidth = OrigTy->getScalarSizeInBits();
- uint32_t BitWidth = Ty->getScalarSizeInBits();
- if (IC.MaskedValueIsZero(I->getOperand(0),
- APInt::getHighBitsSet(OrigBitWidth, OrigBitWidth-BitWidth), 0, CxtI) &&
- CI->getLimitedValue(BitWidth) < BitWidth) {
- return CanEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI);
- }
- }
- break;
- case Instruction::Trunc:
- // trunc(trunc(x)) -> trunc(x)
- return true;
- case Instruction::ZExt:
- case Instruction::SExt:
- // trunc(ext(x)) -> ext(x) if the source type is smaller than the new dest
- // trunc(ext(x)) -> trunc(x) if the source type is larger than the new dest
- return true;
- case Instruction::Select: {
- SelectInst *SI = cast<SelectInst>(I);
- return CanEvaluateTruncated(SI->getTrueValue(), Ty, IC, CxtI) &&
- CanEvaluateTruncated(SI->getFalseValue(), Ty, IC, CxtI);
- }
- case Instruction::PHI: {
- // We can change a phi if we can change all operands. Note that we never
- // get into trouble with cyclic PHIs here because we only consider
- // instructions with a single use.
- PHINode *PN = cast<PHINode>(I);
- for (Value *IncValue : PN->incoming_values())
- if (!CanEvaluateTruncated(IncValue, Ty, IC, CxtI))
- return false;
- return true;
- }
- default:
- // TODO: Can handle more cases here.
- break;
- }
- return false;
- }
- Instruction *InstCombiner::visitTrunc(TruncInst &CI) {
- if (Instruction *Result = commonCastTransforms(CI))
- return Result;
- // Test if the trunc is the user of a select which is part of a
- // minimum or maximum operation. If so, don't do any more simplification.
- // Even simplifying demanded bits can break the canonical form of a
- // min/max.
- Value *LHS, *RHS;
- if (SelectInst *SI = dyn_cast<SelectInst>(CI.getOperand(0)))
- if (matchSelectPattern(SI, LHS, RHS) != SPF_UNKNOWN)
- return nullptr;
-
- // See if we can simplify any instructions used by the input whose sole
- // purpose is to compute bits we don't care about.
- if (SimplifyDemandedInstructionBits(CI))
- return &CI;
- Value *Src = CI.getOperand(0);
- Type *DestTy = CI.getType(), *SrcTy = Src->getType();
- // Attempt to truncate the entire input expression tree to the destination
- // type. Only do this if the dest type is a simple type, don't convert the
- // expression tree to something weird like i93 unless the source is also
- // strange.
- if ((DestTy->isVectorTy() || ShouldChangeType(SrcTy, DestTy)) &&
- CanEvaluateTruncated(Src, DestTy, *this, &CI)) {
- // If this cast is a truncate, evaluting in a different type always
- // eliminates the cast, so it is always a win.
- DEBUG(dbgs() << "ICE: EvaluateInDifferentType converting expression type"
- " to avoid cast: " << CI << '\n');
- Value *Res = EvaluateInDifferentType(Src, DestTy, false);
- assert(Res->getType() == DestTy);
- return ReplaceInstUsesWith(CI, Res);
- }
- // Canonicalize trunc x to i1 -> (icmp ne (and x, 1), 0), likewise for vector.
- if (DestTy->getScalarSizeInBits() == 1) {
- Constant *One = ConstantInt::get(Src->getType(), 1);
- Src = Builder->CreateAnd(Src, One);
- Value *Zero = Constant::getNullValue(Src->getType());
- return new ICmpInst(ICmpInst::ICMP_NE, Src, Zero);
- }
- // Transform trunc(lshr (zext A), Cst) to eliminate one type conversion.
- Value *A = nullptr; ConstantInt *Cst = nullptr;
- if (Src->hasOneUse() &&
- match(Src, m_LShr(m_ZExt(m_Value(A)), m_ConstantInt(Cst)))) {
- // We have three types to worry about here, the type of A, the source of
- // the truncate (MidSize), and the destination of the truncate. We know that
- // ASize < MidSize and MidSize > ResultSize, but don't know the relation
- // between ASize and ResultSize.
- unsigned ASize = A->getType()->getPrimitiveSizeInBits();
- // If the shift amount is larger than the size of A, then the result is
- // known to be zero because all the input bits got shifted out.
- if (Cst->getZExtValue() >= ASize)
- return ReplaceInstUsesWith(CI, Constant::getNullValue(CI.getType()));
- // Since we're doing an lshr and a zero extend, and know that the shift
- // amount is smaller than ASize, it is always safe to do the shift in A's
- // type, then zero extend or truncate to the result.
- Value *Shift = Builder->CreateLShr(A, Cst->getZExtValue());
- Shift->takeName(Src);
- return CastInst::CreateIntegerCast(Shift, CI.getType(), false);
- }
- // Transform "trunc (and X, cst)" -> "and (trunc X), cst" so long as the dest
- // type isn't non-native.
- if (Src->hasOneUse() && isa<IntegerType>(Src->getType()) &&
- ShouldChangeType(Src->getType(), CI.getType()) &&
- match(Src, m_And(m_Value(A), m_ConstantInt(Cst)))) {
- Value *NewTrunc = Builder->CreateTrunc(A, CI.getType(), A->getName()+".tr");
- return BinaryOperator::CreateAnd(NewTrunc,
- ConstantExpr::getTrunc(Cst, CI.getType()));
- }
- return nullptr;
- }
- /// transformZExtICmp - Transform (zext icmp) to bitwise / integer operations
- /// in order to eliminate the icmp.
- Instruction *InstCombiner::transformZExtICmp(ICmpInst *ICI, Instruction &CI,
- bool DoXform) {
- // If we are just checking for a icmp eq of a single bit and zext'ing it
- // to an integer, then shift the bit to the appropriate place and then
- // cast to integer to avoid the comparison.
- if (ConstantInt *Op1C = dyn_cast<ConstantInt>(ICI->getOperand(1))) {
- const APInt &Op1CV = Op1C->getValue();
- // zext (x <s 0) to i32 --> x>>u31 true if signbit set.
- // zext (x >s -1) to i32 --> (x>>u31)^1 true if signbit clear.
- if ((ICI->getPredicate() == ICmpInst::ICMP_SLT && Op1CV == 0) ||
- (ICI->getPredicate() == ICmpInst::ICMP_SGT &&Op1CV.isAllOnesValue())) {
- if (!DoXform) return ICI;
- Value *In = ICI->getOperand(0);
- Value *Sh = ConstantInt::get(In->getType(),
- In->getType()->getScalarSizeInBits()-1);
- In = Builder->CreateLShr(In, Sh, In->getName()+".lobit");
- if (In->getType() != CI.getType())
- In = Builder->CreateIntCast(In, CI.getType(), false/*ZExt*/);
- if (ICI->getPredicate() == ICmpInst::ICMP_SGT) {
- Constant *One = ConstantInt::get(In->getType(), 1);
- In = Builder->CreateXor(In, One, In->getName()+".not");
- }
- return ReplaceInstUsesWith(CI, In);
- }
- // zext (X == 0) to i32 --> X^1 iff X has only the low bit set.
- // zext (X == 0) to i32 --> (X>>1)^1 iff X has only the 2nd bit set.
- // zext (X == 1) to i32 --> X iff X has only the low bit set.
- // zext (X == 2) to i32 --> X>>1 iff X has only the 2nd bit set.
- // zext (X != 0) to i32 --> X iff X has only the low bit set.
- // zext (X != 0) to i32 --> X>>1 iff X has only the 2nd bit set.
- // zext (X != 1) to i32 --> X^1 iff X has only the low bit set.
- // zext (X != 2) to i32 --> (X>>1)^1 iff X has only the 2nd bit set.
- if ((Op1CV == 0 || Op1CV.isPowerOf2()) &&
- // This only works for EQ and NE
- ICI->isEquality()) {
- // If Op1C some other power of two, convert:
- uint32_t BitWidth = Op1C->getType()->getBitWidth();
- APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
- computeKnownBits(ICI->getOperand(0), KnownZero, KnownOne, 0, &CI);
- APInt KnownZeroMask(~KnownZero);
- if (KnownZeroMask.isPowerOf2()) { // Exactly 1 possible 1?
- if (!DoXform) return ICI;
- bool isNE = ICI->getPredicate() == ICmpInst::ICMP_NE;
- if (Op1CV != 0 && (Op1CV != KnownZeroMask)) {
- // (X&4) == 2 --> false
- // (X&4) != 2 --> true
- Constant *Res = ConstantInt::get(Type::getInt1Ty(CI.getContext()),
- isNE);
- Res = ConstantExpr::getZExt(Res, CI.getType());
- return ReplaceInstUsesWith(CI, Res);
- }
- uint32_t ShiftAmt = KnownZeroMask.logBase2();
- Value *In = ICI->getOperand(0);
- if (ShiftAmt) {
- // Perform a logical shr by shiftamt.
- // Insert the shift to put the result in the low bit.
- In = Builder->CreateLShr(In, ConstantInt::get(In->getType(),ShiftAmt),
- In->getName()+".lobit");
- }
- if ((Op1CV != 0) == isNE) { // Toggle the low bit.
- Constant *One = ConstantInt::get(In->getType(), 1);
- In = Builder->CreateXor(In, One);
- }
- if (CI.getType() == In->getType())
- return ReplaceInstUsesWith(CI, In);
- return CastInst::CreateIntegerCast(In, CI.getType(), false/*ZExt*/);
- }
- }
- }
- // icmp ne A, B is equal to xor A, B when A and B only really have one bit.
- // It is also profitable to transform icmp eq into not(xor(A, B)) because that
- // may lead to additional simplifications.
- if (ICI->isEquality() && CI.getType() == ICI->getOperand(0)->getType()) {
- if (IntegerType *ITy = dyn_cast<IntegerType>(CI.getType())) {
- uint32_t BitWidth = ITy->getBitWidth();
- Value *LHS = ICI->getOperand(0);
- Value *RHS = ICI->getOperand(1);
- APInt KnownZeroLHS(BitWidth, 0), KnownOneLHS(BitWidth, 0);
- APInt KnownZeroRHS(BitWidth, 0), KnownOneRHS(BitWidth, 0);
- computeKnownBits(LHS, KnownZeroLHS, KnownOneLHS, 0, &CI);
- computeKnownBits(RHS, KnownZeroRHS, KnownOneRHS, 0, &CI);
- if (KnownZeroLHS == KnownZeroRHS && KnownOneLHS == KnownOneRHS) {
- APInt KnownBits = KnownZeroLHS | KnownOneLHS;
- APInt UnknownBit = ~KnownBits;
- if (UnknownBit.countPopulation() == 1) {
- if (!DoXform) return ICI;
- Value *Result = Builder->CreateXor(LHS, RHS);
- // Mask off any bits that are set and won't be shifted away.
- if (KnownOneLHS.uge(UnknownBit))
- Result = Builder->CreateAnd(Result,
- ConstantInt::get(ITy, UnknownBit));
- // Shift the bit we're testing down to the lsb.
- Result = Builder->CreateLShr(
- Result, ConstantInt::get(ITy, UnknownBit.countTrailingZeros()));
- if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
- Result = Builder->CreateXor(Result, ConstantInt::get(ITy, 1));
- Result->takeName(ICI);
- return ReplaceInstUsesWith(CI, Result);
- }
- }
- }
- }
- return nullptr;
- }
- /// CanEvaluateZExtd - Determine if the specified value can be computed in the
- /// specified wider type and produce the same low bits. If not, return false.
- ///
- /// If this function returns true, it can also return a non-zero number of bits
- /// (in BitsToClear) which indicates that the value it computes is correct for
- /// the zero extend, but that the additional BitsToClear bits need to be zero'd
- /// out. For example, to promote something like:
- ///
- /// %B = trunc i64 %A to i32
- /// %C = lshr i32 %B, 8
- /// %E = zext i32 %C to i64
- ///
- /// CanEvaluateZExtd for the 'lshr' will return true, and BitsToClear will be
- /// set to 8 to indicate that the promoted value needs to have bits 24-31
- /// cleared in addition to bits 32-63. Since an 'and' will be generated to
- /// clear the top bits anyway, doing this has no extra cost.
- ///
- /// This function works on both vectors and scalars.
- static bool CanEvaluateZExtd(Value *V, Type *Ty, unsigned &BitsToClear,
- InstCombiner &IC, Instruction *CxtI) {
- BitsToClear = 0;
- if (isa<Constant>(V))
- return true;
- Instruction *I = dyn_cast<Instruction>(V);
- if (!I) return false;
- // If the input is a truncate from the destination type, we can trivially
- // eliminate it.
- if (isa<TruncInst>(I) && I->getOperand(0)->getType() == Ty)
- return true;
- // We can't extend or shrink something that has multiple uses: doing so would
- // require duplicating the instruction in general, which isn't profitable.
- if (!I->hasOneUse()) return false;
- unsigned Opc = I->getOpcode(), Tmp;
- switch (Opc) {
- case Instruction::ZExt: // zext(zext(x)) -> zext(x).
- case Instruction::SExt: // zext(sext(x)) -> sext(x).
- case Instruction::Trunc: // zext(trunc(x)) -> trunc(x) or zext(x)
- return true;
- case Instruction::And:
- case Instruction::Or:
- case Instruction::Xor:
- case Instruction::Add:
- case Instruction::Sub:
- case Instruction::Mul:
- if (!CanEvaluateZExtd(I->getOperand(0), Ty, BitsToClear, IC, CxtI) ||
- !CanEvaluateZExtd(I->getOperand(1), Ty, Tmp, IC, CxtI))
- return false;
- // These can all be promoted if neither operand has 'bits to clear'.
- if (BitsToClear == 0 && Tmp == 0)
- return true;
- // If the operation is an AND/OR/XOR and the bits to clear are zero in the
- // other side, BitsToClear is ok.
- if (Tmp == 0 &&
- (Opc == Instruction::And || Opc == Instruction::Or ||
- Opc == Instruction::Xor)) {
- // We use MaskedValueIsZero here for generality, but the case we care
- // about the most is constant RHS.
- unsigned VSize = V->getType()->getScalarSizeInBits();
- if (IC.MaskedValueIsZero(I->getOperand(1),
- APInt::getHighBitsSet(VSize, BitsToClear),
- 0, CxtI))
- return true;
- }
- // Otherwise, we don't know how to analyze this BitsToClear case yet.
- return false;
- case Instruction::Shl:
- // We can promote shl(x, cst) if we can promote x. Since shl overwrites the
- // upper bits we can reduce BitsToClear by the shift amount.
- if (ConstantInt *Amt = dyn_cast<ConstantInt>(I->getOperand(1))) {
- if (!CanEvaluateZExtd(I->getOperand(0), Ty, BitsToClear, IC, CxtI))
- return false;
- uint64_t ShiftAmt = Amt->getZExtValue();
- BitsToClear = ShiftAmt < BitsToClear ? BitsToClear - ShiftAmt : 0;
- return true;
- }
- return false;
- case Instruction::LShr:
- // We can promote lshr(x, cst) if we can promote x. This requires the
- // ultimate 'and' to clear out the high zero bits we're clearing out though.
- if (ConstantInt *Amt = dyn_cast<ConstantInt>(I->getOperand(1))) {
- if (!CanEvaluateZExtd(I->getOperand(0), Ty, BitsToClear, IC, CxtI))
- return false;
- BitsToClear += Amt->getZExtValue();
- if (BitsToClear > V->getType()->getScalarSizeInBits())
- BitsToClear = V->getType()->getScalarSizeInBits();
- return true;
- }
- // Cannot promote variable LSHR.
- return false;
- case Instruction::Select:
- if (!CanEvaluateZExtd(I->getOperand(1), Ty, Tmp, IC, CxtI) ||
- !CanEvaluateZExtd(I->getOperand(2), Ty, BitsToClear, IC, CxtI) ||
- // TODO: If important, we could handle the case when the BitsToClear are
- // known zero in the disagreeing side.
- Tmp != BitsToClear)
- return false;
- return true;
- case Instruction::PHI: {
- // We can change a phi if we can change all operands. Note that we never
- // get into trouble with cyclic PHIs here because we only consider
- // instructions with a single use.
- PHINode *PN = cast<PHINode>(I);
- if (!CanEvaluateZExtd(PN->getIncomingValue(0), Ty, BitsToClear, IC, CxtI))
- return false;
- for (unsigned i = 1, e = PN->getNumIncomingValues(); i != e; ++i)
- if (!CanEvaluateZExtd(PN->getIncomingValue(i), Ty, Tmp, IC, CxtI) ||
- // TODO: If important, we could handle the case when the BitsToClear
- // are known zero in the disagreeing input.
- Tmp != BitsToClear)
- return false;
- return true;
- }
- default:
- // TODO: Can handle more cases here.
- return false;
- }
- }
- Instruction *InstCombiner::visitZExt(ZExtInst &CI) {
- // If this zero extend is only used by a truncate, let the truncate be
- // eliminated before we try to optimize this zext.
- if (CI.hasOneUse() && isa<TruncInst>(CI.user_back()))
- return nullptr;
- // If one of the common conversion will work, do it.
- if (Instruction *Result = commonCastTransforms(CI))
- return Result;
- // See if we can simplify any instructions used by the input whose sole
- // purpose is to compute bits we don't care about.
- if (SimplifyDemandedInstructionBits(CI))
- return &CI;
- Value *Src = CI.getOperand(0);
- Type *SrcTy = Src->getType(), *DestTy = CI.getType();
- // Attempt to extend the entire input expression tree to the destination
- // type. Only do this if the dest type is a simple type, don't convert the
- // expression tree to something weird like i93 unless the source is also
- // strange.
- unsigned BitsToClear;
- if ((DestTy->isVectorTy() || ShouldChangeType(SrcTy, DestTy)) &&
- CanEvaluateZExtd(Src, DestTy, BitsToClear, *this, &CI)) {
- assert(BitsToClear < SrcTy->getScalarSizeInBits() &&
- "Unreasonable BitsToClear");
- // Okay, we can transform this! Insert the new expression now.
- DEBUG(dbgs() << "ICE: EvaluateInDifferentType converting expression type"
- " to avoid zero extend: " << CI);
- Value *Res = EvaluateInDifferentType(Src, DestTy, false);
- assert(Res->getType() == DestTy);
- uint32_t SrcBitsKept = SrcTy->getScalarSizeInBits()-BitsToClear;
- uint32_t DestBitSize = DestTy->getScalarSizeInBits();
- // If the high bits are already filled with zeros, just replace this
- // cast with the result.
- if (MaskedValueIsZero(Res,
- APInt::getHighBitsSet(DestBitSize,
- DestBitSize-SrcBitsKept),
- 0, &CI))
- return ReplaceInstUsesWith(CI, Res);
- // We need to emit an AND to clear the high bits.
- Constant *C = ConstantInt::get(Res->getType(),
- APInt::getLowBitsSet(DestBitSize, SrcBitsKept));
- return BinaryOperator::CreateAnd(Res, C);
- }
- // If this is a TRUNC followed by a ZEXT then we are dealing with integral
- // types and if the sizes are just right we can convert this into a logical
- // 'and' which will be much cheaper than the pair of casts.
- if (TruncInst *CSrc = dyn_cast<TruncInst>(Src)) { // A->B->C cast
- // TODO: Subsume this into EvaluateInDifferentType.
- // Get the sizes of the types involved. We know that the intermediate type
- // will be smaller than A or C, but don't know the relation between A and C.
- Value *A = CSrc->getOperand(0);
- unsigned SrcSize = A->getType()->getScalarSizeInBits();
- unsigned MidSize = CSrc->getType()->getScalarSizeInBits();
- unsigned DstSize = CI.getType()->getScalarSizeInBits();
- // If we're actually extending zero bits, then if
- // SrcSize < DstSize: zext(a & mask)
- // SrcSize == DstSize: a & mask
- // SrcSize > DstSize: trunc(a) & mask
- if (SrcSize < DstSize) {
- APInt AndValue(APInt::getLowBitsSet(SrcSize, MidSize));
- Constant *AndConst = ConstantInt::get(A->getType(), AndValue);
- Value *And = Builder->CreateAnd(A, AndConst, CSrc->getName()+".mask");
- return new ZExtInst(And, CI.getType());
- }
- if (SrcSize == DstSize) {
- APInt AndValue(APInt::getLowBitsSet(SrcSize, MidSize));
- return BinaryOperator::CreateAnd(A, ConstantInt::get(A->getType(),
- AndValue));
- }
- if (SrcSize > DstSize) {
- Value *Trunc = Builder->CreateTrunc(A, CI.getType());
- APInt AndValue(APInt::getLowBitsSet(DstSize, MidSize));
- return BinaryOperator::CreateAnd(Trunc,
- ConstantInt::get(Trunc->getType(),
- AndValue));
- }
- }
- if (ICmpInst *ICI = dyn_cast<ICmpInst>(Src))
- return transformZExtICmp(ICI, CI);
- BinaryOperator *SrcI = dyn_cast<BinaryOperator>(Src);
- if (SrcI && SrcI->getOpcode() == Instruction::Or) {
- // zext (or icmp, icmp) --> or (zext icmp), (zext icmp) if at least one
- // of the (zext icmp) will be transformed.
- ICmpInst *LHS = dyn_cast<ICmpInst>(SrcI->getOperand(0));
- ICmpInst *RHS = dyn_cast<ICmpInst>(SrcI->getOperand(1));
- if (LHS && RHS && LHS->hasOneUse() && RHS->hasOneUse() &&
- (transformZExtICmp(LHS, CI, false) ||
- transformZExtICmp(RHS, CI, false))) {
- Value *LCast = Builder->CreateZExt(LHS, CI.getType(), LHS->getName());
- Value *RCast = Builder->CreateZExt(RHS, CI.getType(), RHS->getName());
- return BinaryOperator::Create(Instruction::Or, LCast, RCast);
- }
- }
- // zext(trunc(X) & C) -> (X & zext(C)).
- Constant *C;
- Value *X;
- if (SrcI &&
- match(SrcI, m_OneUse(m_And(m_Trunc(m_Value(X)), m_Constant(C)))) &&
- X->getType() == CI.getType())
- return BinaryOperator::CreateAnd(X, ConstantExpr::getZExt(C, CI.getType()));
- // zext((trunc(X) & C) ^ C) -> ((X & zext(C)) ^ zext(C)).
- Value *And;
- if (SrcI && match(SrcI, m_OneUse(m_Xor(m_Value(And), m_Constant(C)))) &&
- match(And, m_OneUse(m_And(m_Trunc(m_Value(X)), m_Specific(C)))) &&
- X->getType() == CI.getType()) {
- Constant *ZC = ConstantExpr::getZExt(C, CI.getType());
- return BinaryOperator::CreateXor(Builder->CreateAnd(X, ZC), ZC);
- }
- // zext (xor i1 X, true) to i32 --> xor (zext i1 X to i32), 1
- if (SrcI && SrcI->hasOneUse() &&
- SrcI->getType()->getScalarType()->isIntegerTy(1) &&
- match(SrcI, m_Not(m_Value(X))) && (!X->hasOneUse() || !isa<CmpInst>(X))) {
- Value *New = Builder->CreateZExt(X, CI.getType());
- return BinaryOperator::CreateXor(New, ConstantInt::get(CI.getType(), 1));
- }
- return nullptr;
- }
- /// transformSExtICmp - Transform (sext icmp) to bitwise / integer operations
- /// in order to eliminate the icmp.
- Instruction *InstCombiner::transformSExtICmp(ICmpInst *ICI, Instruction &CI) {
- Value *Op0 = ICI->getOperand(0), *Op1 = ICI->getOperand(1);
- ICmpInst::Predicate Pred = ICI->getPredicate();
- // Don't bother if Op1 isn't of vector or integer type.
- if (!Op1->getType()->isIntOrIntVectorTy())
- return nullptr;
- if (Constant *Op1C = dyn_cast<Constant>(Op1)) {
- // (x <s 0) ? -1 : 0 -> ashr x, 31 -> all ones if negative
- // (x >s -1) ? -1 : 0 -> not (ashr x, 31) -> all ones if positive
- if ((Pred == ICmpInst::ICMP_SLT && Op1C->isNullValue()) ||
- (Pred == ICmpInst::ICMP_SGT && Op1C->isAllOnesValue())) {
- Value *Sh = ConstantInt::get(Op0->getType(),
- Op0->getType()->getScalarSizeInBits()-1);
- Value *In = Builder->CreateAShr(Op0, Sh, Op0->getName()+".lobit");
- if (In->getType() != CI.getType())
- In = Builder->CreateIntCast(In, CI.getType(), true/*SExt*/);
- if (Pred == ICmpInst::ICMP_SGT)
- In = Builder->CreateNot(In, In->getName()+".not");
- return ReplaceInstUsesWith(CI, In);
- }
- }
- if (ConstantInt *Op1C = dyn_cast<ConstantInt>(Op1)) {
- // If we know that only one bit of the LHS of the icmp can be set and we
- // have an equality comparison with zero or a power of 2, we can transform
- // the icmp and sext into bitwise/integer operations.
- if (ICI->hasOneUse() &&
- ICI->isEquality() && (Op1C->isZero() || Op1C->getValue().isPowerOf2())){
- unsigned BitWidth = Op1C->getType()->getBitWidth();
- APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
- computeKnownBits(Op0, KnownZero, KnownOne, 0, &CI);
- APInt KnownZeroMask(~KnownZero);
- if (KnownZeroMask.isPowerOf2()) {
- Value *In = ICI->getOperand(0);
- // If the icmp tests for a known zero bit we can constant fold it.
- if (!Op1C->isZero() && Op1C->getValue() != KnownZeroMask) {
- Value *V = Pred == ICmpInst::ICMP_NE ?
- ConstantInt::getAllOnesValue(CI.getType()) :
- ConstantInt::getNullValue(CI.getType());
- return ReplaceInstUsesWith(CI, V);
- }
- if (!Op1C->isZero() == (Pred == ICmpInst::ICMP_NE)) {
- // sext ((x & 2^n) == 0) -> (x >> n) - 1
- // sext ((x & 2^n) != 2^n) -> (x >> n) - 1
- unsigned ShiftAmt = KnownZeroMask.countTrailingZeros();
- // Perform a right shift to place the desired bit in the LSB.
- if (ShiftAmt)
- In = Builder->CreateLShr(In,
- ConstantInt::get(In->getType(), ShiftAmt));
- // At this point "In" is either 1 or 0. Subtract 1 to turn
- // {1, 0} -> {0, -1}.
- In = Builder->CreateAdd(In,
- ConstantInt::getAllOnesValue(In->getType()),
- "sext");
- } else {
- // sext ((x & 2^n) != 0) -> (x << bitwidth-n) a>> bitwidth-1
- // sext ((x & 2^n) == 2^n) -> (x << bitwidth-n) a>> bitwidth-1
- unsigned ShiftAmt = KnownZeroMask.countLeadingZeros();
- // Perform a left shift to place the desired bit in the MSB.
- if (ShiftAmt)
- In = Builder->CreateShl(In,
- ConstantInt::get(In->getType(), ShiftAmt));
- // Distribute the bit over the whole bit width.
- In = Builder->CreateAShr(In, ConstantInt::get(In->getType(),
- BitWidth - 1), "sext");
- }
- if (CI.getType() == In->getType())
- return ReplaceInstUsesWith(CI, In);
- return CastInst::CreateIntegerCast(In, CI.getType(), true/*SExt*/);
- }
- }
- }
- return nullptr;
- }
- /// CanEvaluateSExtd - Return true if we can take the specified value
- /// and return it as type Ty without inserting any new casts and without
- /// changing the value of the common low bits. This is used by code that tries
- /// to promote integer operations to a wider types will allow us to eliminate
- /// the extension.
- ///
- /// This function works on both vectors and scalars.
- ///
- static bool CanEvaluateSExtd(Value *V, Type *Ty) {
- assert(V->getType()->getScalarSizeInBits() < Ty->getScalarSizeInBits() &&
- "Can't sign extend type to a smaller type");
- // If this is a constant, it can be trivially promoted.
- if (isa<Constant>(V))
- return true;
- Instruction *I = dyn_cast<Instruction>(V);
- if (!I) return false;
- // If this is a truncate from the dest type, we can trivially eliminate it.
- if (isa<TruncInst>(I) && I->getOperand(0)->getType() == Ty)
- return true;
- // We can't extend or shrink something that has multiple uses: doing so would
- // require duplicating the instruction in general, which isn't profitable.
- if (!I->hasOneUse()) return false;
- switch (I->getOpcode()) {
- case Instruction::SExt: // sext(sext(x)) -> sext(x)
- case Instruction::ZExt: // sext(zext(x)) -> zext(x)
- case Instruction::Trunc: // sext(trunc(x)) -> trunc(x) or sext(x)
- return true;
- case Instruction::And:
- case Instruction::Or:
- case Instruction::Xor:
- case Instruction::Add:
- case Instruction::Sub:
- case Instruction::Mul:
- // These operators can all arbitrarily be extended if their inputs can.
- return CanEvaluateSExtd(I->getOperand(0), Ty) &&
- CanEvaluateSExtd(I->getOperand(1), Ty);
- //case Instruction::Shl: TODO
- //case Instruction::LShr: TODO
- case Instruction::Select:
- return CanEvaluateSExtd(I->getOperand(1), Ty) &&
- CanEvaluateSExtd(I->getOperand(2), Ty);
- case Instruction::PHI: {
- // We can change a phi if we can change all operands. Note that we never
- // get into trouble with cyclic PHIs here because we only consider
- // instructions with a single use.
- PHINode *PN = cast<PHINode>(I);
- for (Value *IncValue : PN->incoming_values())
- if (!CanEvaluateSExtd(IncValue, Ty)) return false;
- return true;
- }
- default:
- // TODO: Can handle more cases here.
- break;
- }
- return false;
- }
- Instruction *InstCombiner::visitSExt(SExtInst &CI) {
- // If this sign extend is only used by a truncate, let the truncate be
- // eliminated before we try to optimize this sext.
- if (CI.hasOneUse() && isa<TruncInst>(CI.user_back()))
- return nullptr;
- if (Instruction *I = commonCastTransforms(CI))
- return I;
- // See if we can simplify any instructions used by the input whose sole
- // purpose is to compute bits we don't care about.
- if (SimplifyDemandedInstructionBits(CI))
- return &CI;
- Value *Src = CI.getOperand(0);
- Type *SrcTy = Src->getType(), *DestTy = CI.getType();
- // If we know that the value being extended is positive, we can use a zext
- // instead.
- bool KnownZero, KnownOne;
- ComputeSignBit(Src, KnownZero, KnownOne, 0, &CI);
- if (KnownZero) {
- Value *ZExt = Builder->CreateZExt(Src, DestTy);
- return ReplaceInstUsesWith(CI, ZExt);
- }
- // Attempt to extend the entire input expression tree to the destination
- // type. Only do this if the dest type is a simple type, don't convert the
- // expression tree to something weird like i93 unless the source is also
- // strange.
- if ((DestTy->isVectorTy() || ShouldChangeType(SrcTy, DestTy)) &&
- CanEvaluateSExtd(Src, DestTy)) {
- // Okay, we can transform this! Insert the new expression now.
- DEBUG(dbgs() << "ICE: EvaluateInDifferentType converting expression type"
- " to avoid sign extend: " << CI);
- Value *Res = EvaluateInDifferentType(Src, DestTy, true);
- assert(Res->getType() == DestTy);
- uint32_t SrcBitSize = SrcTy->getScalarSizeInBits();
- uint32_t DestBitSize = DestTy->getScalarSizeInBits();
- // If the high bits are already filled with sign bit, just replace this
- // cast with the result.
- if (ComputeNumSignBits(Res, 0, &CI) > DestBitSize - SrcBitSize)
- return ReplaceInstUsesWith(CI, Res);
- // We need to emit a shl + ashr to do the sign extend.
- Value *ShAmt = ConstantInt::get(DestTy, DestBitSize-SrcBitSize);
- return BinaryOperator::CreateAShr(Builder->CreateShl(Res, ShAmt, "sext"),
- ShAmt);
- }
- // If this input is a trunc from our destination, then turn sext(trunc(x))
- // into shifts.
- if (TruncInst *TI = dyn_cast<TruncInst>(Src))
- if (TI->hasOneUse() && TI->getOperand(0)->getType() == DestTy) {
- uint32_t SrcBitSize = SrcTy->getScalarSizeInBits();
- uint32_t DestBitSize = DestTy->getScalarSizeInBits();
- // We need to emit a shl + ashr to do the sign extend.
- Value *ShAmt = ConstantInt::get(DestTy, DestBitSize-SrcBitSize);
- Value *Res = Builder->CreateShl(TI->getOperand(0), ShAmt, "sext");
- return BinaryOperator::CreateAShr(Res, ShAmt);
- }
- if (ICmpInst *ICI = dyn_cast<ICmpInst>(Src))
- return transformSExtICmp(ICI, CI);
- // If the input is a shl/ashr pair of a same constant, then this is a sign
- // extension from a smaller value. If we could trust arbitrary bitwidth
- // integers, we could turn this into a truncate to the smaller bit and then
- // use a sext for the whole extension. Since we don't, look deeper and check
- // for a truncate. If the source and dest are the same type, eliminate the
- // trunc and extend and just do shifts. For example, turn:
- // %a = trunc i32 %i to i8
- // %b = shl i8 %a, 6
- // %c = ashr i8 %b, 6
- // %d = sext i8 %c to i32
- // into:
- // %a = shl i32 %i, 30
- // %d = ashr i32 %a, 30
- Value *A = nullptr;
- // TODO: Eventually this could be subsumed by EvaluateInDifferentType.
- ConstantInt *BA = nullptr, *CA = nullptr;
- if (match(Src, m_AShr(m_Shl(m_Trunc(m_Value(A)), m_ConstantInt(BA)),
- m_ConstantInt(CA))) &&
- BA == CA && A->getType() == CI.getType()) {
- unsigned MidSize = Src->getType()->getScalarSizeInBits();
- unsigned SrcDstSize = CI.getType()->getScalarSizeInBits();
- unsigned ShAmt = CA->getZExtValue()+SrcDstSize-MidSize;
- Constant *ShAmtV = ConstantInt::get(CI.getType(), ShAmt);
- A = Builder->CreateShl(A, ShAmtV, CI.getName());
- return BinaryOperator::CreateAShr(A, ShAmtV);
- }
- return nullptr;
- }
- /// FitsInFPType - Return a Constant* for the specified FP constant if it fits
- /// in the specified FP type without changing its value.
- static Constant *FitsInFPType(ConstantFP *CFP, const fltSemantics &Sem) {
- bool losesInfo;
- APFloat F = CFP->getValueAPF();
- (void)F.convert(Sem, APFloat::rmNearestTiesToEven, &losesInfo);
- if (!losesInfo)
- return ConstantFP::get(CFP->getContext(), F);
- return nullptr;
- }
- /// LookThroughFPExtensions - If this is an fp extension instruction, look
- /// through it until we get the source value.
- static Value *LookThroughFPExtensions(Value *V) {
- if (Instruction *I = dyn_cast<Instruction>(V))
- if (I->getOpcode() == Instruction::FPExt)
- return LookThroughFPExtensions(I->getOperand(0));
- // If this value is a constant, return the constant in the smallest FP type
- // that can accurately represent it. This allows us to turn
- // (float)((double)X+2.0) into x+2.0f.
- if (ConstantFP *CFP = dyn_cast<ConstantFP>(V)) {
- if (CFP->getType() == Type::getPPC_FP128Ty(V->getContext()))
- return V; // No constant folding of this.
- // See if the value can be truncated to half and then reextended.
- if (Value *V = FitsInFPType(CFP, APFloat::IEEEhalf))
- return V;
- // See if the value can be truncated to float and then reextended.
- if (Value *V = FitsInFPType(CFP, APFloat::IEEEsingle))
- return V;
- if (CFP->getType()->isDoubleTy())
- return V; // Won't shrink.
- if (Value *V = FitsInFPType(CFP, APFloat::IEEEdouble))
- return V;
- // Don't try to shrink to various long double types.
- }
- return V;
- }
- Instruction *InstCombiner::visitFPTrunc(FPTruncInst &CI) {
- if (Instruction *I = commonCastTransforms(CI))
- return I;
- // If we have fptrunc(OpI (fpextend x), (fpextend y)), we would like to
- // simpilify this expression to avoid one or more of the trunc/extend
- // operations if we can do so without changing the numerical results.
- //
- // The exact manner in which the widths of the operands interact to limit
- // what we can and cannot do safely varies from operation to operation, and
- // is explained below in the various case statements.
- BinaryOperator *OpI = dyn_cast<BinaryOperator>(CI.getOperand(0));
- if (OpI && OpI->hasOneUse()) {
- Value *LHSOrig = LookThroughFPExtensions(OpI->getOperand(0));
- Value *RHSOrig = LookThroughFPExtensions(OpI->getOperand(1));
- unsigned OpWidth = OpI->getType()->getFPMantissaWidth();
- unsigned LHSWidth = LHSOrig->getType()->getFPMantissaWidth();
- unsigned RHSWidth = RHSOrig->getType()->getFPMantissaWidth();
- unsigned SrcWidth = std::max(LHSWidth, RHSWidth);
- unsigned DstWidth = CI.getType()->getFPMantissaWidth();
- switch (OpI->getOpcode()) {
- default: break;
- case Instruction::FAdd:
- case Instruction::FSub:
- // For addition and subtraction, the infinitely precise result can
- // essentially be arbitrarily wide; proving that double rounding
- // will not occur because the result of OpI is exact (as we will for
- // FMul, for example) is hopeless. However, we *can* nonetheless
- // frequently know that double rounding cannot occur (or that it is
- // innocuous) by taking advantage of the specific structure of
- // infinitely-precise results that admit double rounding.
- //
- // Specifically, if OpWidth >= 2*DstWdith+1 and DstWidth is sufficient
- // to represent both sources, we can guarantee that the double
- // rounding is innocuous (See p50 of Figueroa's 2000 PhD thesis,
- // "A Rigorous Framework for Fully Supporting the IEEE Standard ..."
- // for proof of this fact).
- //
- // Note: Figueroa does not consider the case where DstFormat !=
- // SrcFormat. It's possible (likely even!) that this analysis
- // could be tightened for those cases, but they are rare (the main
- // case of interest here is (float)((double)float + float)).
- if (OpWidth >= 2*DstWidth+1 && DstWidth >= SrcWidth) {
- if (LHSOrig->getType() != CI.getType())
- LHSOrig = Builder->CreateFPExt(LHSOrig, CI.getType());
- if (RHSOrig->getType() != CI.getType())
- RHSOrig = Builder->CreateFPExt(RHSOrig, CI.getType());
- Instruction *RI =
- BinaryOperator::Create(OpI->getOpcode(), LHSOrig, RHSOrig);
- RI->copyFastMathFlags(OpI);
- return RI;
- }
- break;
- case Instruction::FMul:
- // For multiplication, the infinitely precise result has at most
- // LHSWidth + RHSWidth significant bits; if OpWidth is sufficient
- // that such a value can be exactly represented, then no double
- // rounding can possibly occur; we can safely perform the operation
- // in the destination format if it can represent both sources.
- if (OpWidth >= LHSWidth + RHSWidth && DstWidth >= SrcWidth) {
- if (LHSOrig->getType() != CI.getType())
- LHSOrig = Builder->CreateFPExt(LHSOrig, CI.getType());
- if (RHSOrig->getType() != CI.getType())
- RHSOrig = Builder->CreateFPExt(RHSOrig, CI.getType());
- Instruction *RI =
- BinaryOperator::CreateFMul(LHSOrig, RHSOrig);
- RI->copyFastMathFlags(OpI);
- return RI;
- }
- break;
- case Instruction::FDiv:
- // For division, we use again use the bound from Figueroa's
- // dissertation. I am entirely certain that this bound can be
- // tightened in the unbalanced operand case by an analysis based on
- // the diophantine rational approximation bound, but the well-known
- // condition used here is a good conservative first pass.
- // TODO: Tighten bound via rigorous analysis of the unbalanced case.
- if (OpWidth >= 2*DstWidth && DstWidth >= SrcWidth) {
- if (LHSOrig->getType() != CI.getType())
- LHSOrig = Builder->CreateFPExt(LHSOrig, CI.getType());
- if (RHSOrig->getType() != CI.getType())
- RHSOrig = Builder->CreateFPExt(RHSOrig, CI.getType());
- Instruction *RI =
- BinaryOperator::CreateFDiv(LHSOrig, RHSOrig);
- RI->copyFastMathFlags(OpI);
- return RI;
- }
- break;
- case Instruction::FRem:
- // Remainder is straightforward. Remainder is always exact, so the
- // type of OpI doesn't enter into things at all. We simply evaluate
- // in whichever source type is larger, then convert to the
- // destination type.
- if (SrcWidth == OpWidth)
- break;
- if (LHSWidth < SrcWidth)
- LHSOrig = Builder->CreateFPExt(LHSOrig, RHSOrig->getType());
- else if (RHSWidth <= SrcWidth)
- RHSOrig = Builder->CreateFPExt(RHSOrig, LHSOrig->getType());
- if (LHSOrig != OpI->getOperand(0) || RHSOrig != OpI->getOperand(1)) {
- Value *ExactResult = Builder->CreateFRem(LHSOrig, RHSOrig);
- if (Instruction *RI = dyn_cast<Instruction>(ExactResult))
- RI->copyFastMathFlags(OpI);
- return CastInst::CreateFPCast(ExactResult, CI.getType());
- }
- }
- // (fptrunc (fneg x)) -> (fneg (fptrunc x))
- if (BinaryOperator::isFNeg(OpI)) {
- Value *InnerTrunc = Builder->CreateFPTrunc(OpI->getOperand(1),
- CI.getType());
- Instruction *RI = BinaryOperator::CreateFNeg(InnerTrunc);
- RI->copyFastMathFlags(OpI);
- return RI;
- }
- }
- // (fptrunc (select cond, R1, Cst)) -->
- // (select cond, (fptrunc R1), (fptrunc Cst))
- SelectInst *SI = dyn_cast<SelectInst>(CI.getOperand(0));
- if (SI &&
- (isa<ConstantFP>(SI->getOperand(1)) ||
- isa<ConstantFP>(SI->getOperand(2)))) {
- Value *LHSTrunc = Builder->CreateFPTrunc(SI->getOperand(1),
- CI.getType());
- Value *RHSTrunc = Builder->CreateFPTrunc(SI->getOperand(2),
- CI.getType());
- return SelectInst::Create(SI->getOperand(0), LHSTrunc, RHSTrunc);
- }
- IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI.getOperand(0));
- if (II) {
- switch (II->getIntrinsicID()) {
- default: break;
- case Intrinsic::fabs: {
- // (fptrunc (fabs x)) -> (fabs (fptrunc x))
- Value *InnerTrunc = Builder->CreateFPTrunc(II->getArgOperand(0),
- CI.getType());
- Type *IntrinsicType[] = { CI.getType() };
- Function *Overload =
- Intrinsic::getDeclaration(CI.getParent()->getParent()->getParent(),
- II->getIntrinsicID(), IntrinsicType);
- Value *Args[] = { InnerTrunc };
- return CallInst::Create(Overload, Args, II->getName());
- }
- }
- }
- return nullptr;
- }
- Instruction *InstCombiner::visitFPExt(CastInst &CI) {
- return commonCastTransforms(CI);
- }
- // fpto{s/u}i({u/s}itofp(X)) --> X or zext(X) or sext(X) or trunc(X)
- // This is safe if the intermediate type has enough bits in its mantissa to
- // accurately represent all values of X. For example, this won't work with
- // i64 -> float -> i64.
- Instruction *InstCombiner::FoldItoFPtoI(Instruction &FI) {
- if (!isa<UIToFPInst>(FI.getOperand(0)) && !isa<SIToFPInst>(FI.getOperand(0)))
- return nullptr;
- Instruction *OpI = cast<Instruction>(FI.getOperand(0));
- Value *SrcI = OpI->getOperand(0);
- Type *FITy = FI.getType();
- Type *OpITy = OpI->getType();
- Type *SrcTy = SrcI->getType();
- bool IsInputSigned = isa<SIToFPInst>(OpI);
- bool IsOutputSigned = isa<FPToSIInst>(FI);
- // We can safely assume the conversion won't overflow the output range,
- // because (for example) (uint8_t)18293.f is undefined behavior.
- // Since we can assume the conversion won't overflow, our decision as to
- // whether the input will fit in the float should depend on the minimum
- // of the input range and output range.
- // This means this is also safe for a signed input and unsigned output, since
- // a negative input would lead to undefined behavior.
- int InputSize = (int)SrcTy->getScalarSizeInBits() - IsInputSigned;
- int OutputSize = (int)FITy->getScalarSizeInBits() - IsOutputSigned;
- int ActualSize = std::min(InputSize, OutputSize);
- if (ActualSize <= OpITy->getFPMantissaWidth()) {
- if (FITy->getScalarSizeInBits() > SrcTy->getScalarSizeInBits()) {
- if (IsInputSigned && IsOutputSigned)
- return new SExtInst(SrcI, FITy);
- return new ZExtInst(SrcI, FITy);
- }
- if (FITy->getScalarSizeInBits() < SrcTy->getScalarSizeInBits())
- return new TruncInst(SrcI, FITy);
- if (SrcTy == FITy)
- return ReplaceInstUsesWith(FI, SrcI);
- return new BitCastInst(SrcI, FITy);
- }
- return nullptr;
- }
- Instruction *InstCombiner::visitFPToUI(FPToUIInst &FI) {
- Instruction *OpI = dyn_cast<Instruction>(FI.getOperand(0));
- if (!OpI)
- return commonCastTransforms(FI);
- if (Instruction *I = FoldItoFPtoI(FI))
- return I;
- return commonCastTransforms(FI);
- }
- Instruction *InstCombiner::visitFPToSI(FPToSIInst &FI) {
- Instruction *OpI = dyn_cast<Instruction>(FI.getOperand(0));
- if (!OpI)
- return commonCastTransforms(FI);
- if (Instruction *I = FoldItoFPtoI(FI))
- return I;
- return commonCastTransforms(FI);
- }
- Instruction *InstCombiner::visitUIToFP(CastInst &CI) {
- return commonCastTransforms(CI);
- }
- Instruction *InstCombiner::visitSIToFP(CastInst &CI) {
- return commonCastTransforms(CI);
- }
- Instruction *InstCombiner::visitIntToPtr(IntToPtrInst &CI) {
- // If the source integer type is not the intptr_t type for this target, do a
- // trunc or zext to the intptr_t type, then inttoptr of it. This allows the
- // cast to be exposed to other transforms.
- unsigned AS = CI.getAddressSpace();
- if (CI.getOperand(0)->getType()->getScalarSizeInBits() !=
- DL.getPointerSizeInBits(AS)) {
- Type *Ty = DL.getIntPtrType(CI.getContext(), AS);
- if (CI.getType()->isVectorTy()) // Handle vectors of pointers.
- Ty = VectorType::get(Ty, CI.getType()->getVectorNumElements());
- Value *P = Builder->CreateZExtOrTrunc(CI.getOperand(0), Ty);
- return new IntToPtrInst(P, CI.getType());
- }
- if (Instruction *I = commonCastTransforms(CI))
- return I;
- return nullptr;
- }
- /// @brief Implement the transforms for cast of pointer (bitcast/ptrtoint)
- Instruction *InstCombiner::commonPointerCastTransforms(CastInst &CI) {
- Value *Src = CI.getOperand(0);
- if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Src)) {
- // If casting the result of a getelementptr instruction with no offset, turn
- // this into a cast of the original pointer!
- if (GEP->hasAllZeroIndices() &&
- // HLSL Change Begin.
- // Ignore this optimization for pointer bitcast to pass validation.
- // TODO: enable this optimization when validation is updated.
- 0 &&
- // HLSL Change End.
- // If CI is an addrspacecast and GEP changes the poiner type, merging
- // GEP into CI would undo canonicalizing addrspacecast with different
- // pointer types, causing infinite loops.
- (!isa<AddrSpaceCastInst>(CI) ||
- GEP->getType() == GEP->getPointerOperand()->getType())) {
- // Changing the cast operand is usually not a good idea but it is safe
- // here because the pointer operand is being replaced with another
- // pointer operand so the opcode doesn't need to change.
- Worklist.Add(GEP);
- CI.setOperand(0, GEP->getOperand(0));
- return &CI;
- }
- }
- return commonCastTransforms(CI);
- }
- Instruction *InstCombiner::visitPtrToInt(PtrToIntInst &CI) {
- // If the destination integer type is not the intptr_t type for this target,
- // do a ptrtoint to intptr_t then do a trunc or zext. This allows the cast
- // to be exposed to other transforms.
- Type *Ty = CI.getType();
- unsigned AS = CI.getPointerAddressSpace();
- if (Ty->getScalarSizeInBits() == DL.getPointerSizeInBits(AS))
- return commonPointerCastTransforms(CI);
- Type *PtrTy = DL.getIntPtrType(CI.getContext(), AS);
- if (Ty->isVectorTy()) // Handle vectors of pointers.
- PtrTy = VectorType::get(PtrTy, Ty->getVectorNumElements());
- Value *P = Builder->CreatePtrToInt(CI.getOperand(0), PtrTy);
- return CastInst::CreateIntegerCast(P, Ty, /*isSigned=*/false);
- }
- /// OptimizeVectorResize - This input value (which is known to have vector type)
- /// is being zero extended or truncated to the specified vector type. Try to
- /// replace it with a shuffle (and vector/vector bitcast) if possible.
- ///
- /// The source and destination vector types may have different element types.
- static Instruction *OptimizeVectorResize(Value *InVal, VectorType *DestTy,
- InstCombiner &IC) {
- // We can only do this optimization if the output is a multiple of the input
- // element size, or the input is a multiple of the output element size.
- // Convert the input type to have the same element type as the output.
- VectorType *SrcTy = cast<VectorType>(InVal->getType());
- if (SrcTy->getElementType() != DestTy->getElementType()) {
- // The input types don't need to be identical, but for now they must be the
- // same size. There is no specific reason we couldn't handle things like
- // <4 x i16> -> <4 x i32> by bitcasting to <2 x i32> but haven't gotten
- // there yet.
- if (SrcTy->getElementType()->getPrimitiveSizeInBits() !=
- DestTy->getElementType()->getPrimitiveSizeInBits())
- return nullptr;
- SrcTy = VectorType::get(DestTy->getElementType(), SrcTy->getNumElements());
- InVal = IC.Builder->CreateBitCast(InVal, SrcTy);
- }
- // Now that the element types match, get the shuffle mask and RHS of the
- // shuffle to use, which depends on whether we're increasing or decreasing the
- // size of the input.
- SmallVector<uint32_t, 16> ShuffleMask;
- Value *V2;
- if (SrcTy->getNumElements() > DestTy->getNumElements()) {
- // If we're shrinking the number of elements, just shuffle in the low
- // elements from the input and use undef as the second shuffle input.
- V2 = UndefValue::get(SrcTy);
- for (unsigned i = 0, e = DestTy->getNumElements(); i != e; ++i)
- ShuffleMask.push_back(i);
- } else {
- // If we're increasing the number of elements, shuffle in all of the
- // elements from InVal and fill the rest of the result elements with zeros
- // from a constant zero.
- V2 = Constant::getNullValue(SrcTy);
- unsigned SrcElts = SrcTy->getNumElements();
- for (unsigned i = 0, e = SrcElts; i != e; ++i)
- ShuffleMask.push_back(i);
- // The excess elements reference the first element of the zero input.
- for (unsigned i = 0, e = DestTy->getNumElements()-SrcElts; i != e; ++i)
- ShuffleMask.push_back(SrcElts);
- }
- return new ShuffleVectorInst(InVal, V2,
- ConstantDataVector::get(V2->getContext(),
- ShuffleMask));
- }
- static bool isMultipleOfTypeSize(unsigned Value, Type *Ty) {
- return Value % Ty->getPrimitiveSizeInBits() == 0;
- }
- static unsigned getTypeSizeIndex(unsigned Value, Type *Ty) {
- return Value / Ty->getPrimitiveSizeInBits();
- }
- /// CollectInsertionElements - V is a value which is inserted into a vector of
- /// VecEltTy. Look through the value to see if we can decompose it into
- /// insertions into the vector. See the example in the comment for
- /// OptimizeIntegerToVectorInsertions for the pattern this handles.
- /// The type of V is always a non-zero multiple of VecEltTy's size.
- /// Shift is the number of bits between the lsb of V and the lsb of
- /// the vector.
- ///
- /// This returns false if the pattern can't be matched or true if it can,
- /// filling in Elements with the elements found here.
- static bool CollectInsertionElements(Value *V, unsigned Shift,
- SmallVectorImpl<Value *> &Elements,
- Type *VecEltTy, bool isBigEndian) {
- assert(isMultipleOfTypeSize(Shift, VecEltTy) &&
- "Shift should be a multiple of the element type size");
- // Undef values never contribute useful bits to the result.
- if (isa<UndefValue>(V)) return true;
- // If we got down to a value of the right type, we win, try inserting into the
- // right element.
- if (V->getType() == VecEltTy) {
- // Inserting null doesn't actually insert any elements.
- if (Constant *C = dyn_cast<Constant>(V))
- if (C->isNullValue())
- return true;
- unsigned ElementIndex = getTypeSizeIndex(Shift, VecEltTy);
- if (isBigEndian)
- ElementIndex = Elements.size() - ElementIndex - 1;
- // Fail if multiple elements are inserted into this slot.
- if (Elements[ElementIndex])
- return false;
- Elements[ElementIndex] = V;
- return true;
- }
- if (Constant *C = dyn_cast<Constant>(V)) {
- // Figure out the # elements this provides, and bitcast it or slice it up
- // as required.
- unsigned NumElts = getTypeSizeIndex(C->getType()->getPrimitiveSizeInBits(),
- VecEltTy);
- // If the constant is the size of a vector element, we just need to bitcast
- // it to the right type so it gets properly inserted.
- if (NumElts == 1)
- return CollectInsertionElements(ConstantExpr::getBitCast(C, VecEltTy),
- Shift, Elements, VecEltTy, isBigEndian);
- // Okay, this is a constant that covers multiple elements. Slice it up into
- // pieces and insert each element-sized piece into the vector.
- if (!isa<IntegerType>(C->getType()))
- C = ConstantExpr::getBitCast(C, IntegerType::get(V->getContext(),
- C->getType()->getPrimitiveSizeInBits()));
- unsigned ElementSize = VecEltTy->getPrimitiveSizeInBits();
- Type *ElementIntTy = IntegerType::get(C->getContext(), ElementSize);
- for (unsigned i = 0; i != NumElts; ++i) {
- unsigned ShiftI = Shift+i*ElementSize;
- Constant *Piece = ConstantExpr::getLShr(C, ConstantInt::get(C->getType(),
- ShiftI));
- Piece = ConstantExpr::getTrunc(Piece, ElementIntTy);
- if (!CollectInsertionElements(Piece, ShiftI, Elements, VecEltTy,
- isBigEndian))
- return false;
- }
- return true;
- }
- if (!V->hasOneUse()) return false;
- Instruction *I = dyn_cast<Instruction>(V);
- if (!I) return false;
- switch (I->getOpcode()) {
- default: return false; // Unhandled case.
- case Instruction::BitCast:
- return CollectInsertionElements(I->getOperand(0), Shift, Elements, VecEltTy,
- isBigEndian);
- case Instruction::ZExt:
- if (!isMultipleOfTypeSize(
- I->getOperand(0)->getType()->getPrimitiveSizeInBits(),
- VecEltTy))
- return false;
- return CollectInsertionElements(I->getOperand(0), Shift, Elements, VecEltTy,
- isBigEndian);
- case Instruction::Or:
- return CollectInsertionElements(I->getOperand(0), Shift, Elements, VecEltTy,
- isBigEndian) &&
- CollectInsertionElements(I->getOperand(1), Shift, Elements, VecEltTy,
- isBigEndian);
- case Instruction::Shl: {
- // Must be shifting by a constant that is a multiple of the element size.
- ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1));
- if (!CI) return false;
- Shift += CI->getZExtValue();
- if (!isMultipleOfTypeSize(Shift, VecEltTy)) return false;
- return CollectInsertionElements(I->getOperand(0), Shift, Elements, VecEltTy,
- isBigEndian);
- }
- }
- }
- /// OptimizeIntegerToVectorInsertions - If the input is an 'or' instruction, we
- /// may be doing shifts and ors to assemble the elements of the vector manually.
- /// Try to rip the code out and replace it with insertelements. This is to
- /// optimize code like this:
- ///
- /// %tmp37 = bitcast float %inc to i32
- /// %tmp38 = zext i32 %tmp37 to i64
- /// %tmp31 = bitcast float %inc5 to i32
- /// %tmp32 = zext i32 %tmp31 to i64
- /// %tmp33 = shl i64 %tmp32, 32
- /// %ins35 = or i64 %tmp33, %tmp38
- /// %tmp43 = bitcast i64 %ins35 to <2 x float>
- ///
- /// Into two insertelements that do "buildvector{%inc, %inc5}".
- static Value *OptimizeIntegerToVectorInsertions(BitCastInst &CI,
- InstCombiner &IC) {
- VectorType *DestVecTy = cast<VectorType>(CI.getType());
- Value *IntInput = CI.getOperand(0);
- SmallVector<Value*, 8> Elements(DestVecTy->getNumElements());
- if (!CollectInsertionElements(IntInput, 0, Elements,
- DestVecTy->getElementType(),
- IC.getDataLayout().isBigEndian()))
- return nullptr;
- // If we succeeded, we know that all of the element are specified by Elements
- // or are zero if Elements has a null entry. Recast this as a set of
- // insertions.
- Value *Result = Constant::getNullValue(CI.getType());
- for (unsigned i = 0, e = Elements.size(); i != e; ++i) {
- if (!Elements[i]) continue; // Unset element.
- Result = IC.Builder->CreateInsertElement(Result, Elements[i],
- IC.Builder->getInt32(i));
- }
- return Result;
- }
- /// OptimizeIntToFloatBitCast - See if we can optimize an integer->float/double
- /// bitcast. The various long double bitcasts can't get in here.
- static Instruction *OptimizeIntToFloatBitCast(BitCastInst &CI, InstCombiner &IC,
- const DataLayout &DL) {
- Value *Src = CI.getOperand(0);
- Type *DestTy = CI.getType();
- // If this is a bitcast from int to float, check to see if the int is an
- // extraction from a vector.
- Value *VecInput = nullptr;
- // bitcast(trunc(bitcast(somevector)))
- if (match(Src, m_Trunc(m_BitCast(m_Value(VecInput)))) &&
- isa<VectorType>(VecInput->getType())) {
- VectorType *VecTy = cast<VectorType>(VecInput->getType());
- unsigned DestWidth = DestTy->getPrimitiveSizeInBits();
- if (VecTy->getPrimitiveSizeInBits() % DestWidth == 0) {
- // If the element type of the vector doesn't match the result type,
- // bitcast it to be a vector type we can extract from.
- if (VecTy->getElementType() != DestTy) {
- VecTy = VectorType::get(DestTy,
- VecTy->getPrimitiveSizeInBits() / DestWidth);
- VecInput = IC.Builder->CreateBitCast(VecInput, VecTy);
- }
- unsigned Elt = 0;
- if (DL.isBigEndian())
- Elt = VecTy->getPrimitiveSizeInBits() / DestWidth - 1;
- return ExtractElementInst::Create(VecInput, IC.Builder->getInt32(Elt));
- }
- }
- // bitcast(trunc(lshr(bitcast(somevector), cst))
- ConstantInt *ShAmt = nullptr;
- if (match(Src, m_Trunc(m_LShr(m_BitCast(m_Value(VecInput)),
- m_ConstantInt(ShAmt)))) &&
- isa<VectorType>(VecInput->getType())) {
- VectorType *VecTy = cast<VectorType>(VecInput->getType());
- unsigned DestWidth = DestTy->getPrimitiveSizeInBits();
- if (VecTy->getPrimitiveSizeInBits() % DestWidth == 0 &&
- ShAmt->getZExtValue() % DestWidth == 0) {
- // If the element type of the vector doesn't match the result type,
- // bitcast it to be a vector type we can extract from.
- if (VecTy->getElementType() != DestTy) {
- VecTy = VectorType::get(DestTy,
- VecTy->getPrimitiveSizeInBits() / DestWidth);
- VecInput = IC.Builder->CreateBitCast(VecInput, VecTy);
- }
- unsigned Elt = ShAmt->getZExtValue() / DestWidth;
- if (DL.isBigEndian())
- Elt = VecTy->getPrimitiveSizeInBits() / DestWidth - 1 - Elt;
- return ExtractElementInst::Create(VecInput, IC.Builder->getInt32(Elt));
- }
- }
- return nullptr;
- }
- Instruction *InstCombiner::visitBitCast(BitCastInst &CI) {
- // If the operands are integer typed then apply the integer transforms,
- // otherwise just apply the common ones.
- Value *Src = CI.getOperand(0);
- Type *SrcTy = Src->getType();
- Type *DestTy = CI.getType();
- // Get rid of casts from one type to the same type. These are useless and can
- // be replaced by the operand.
- if (DestTy == Src->getType())
- return ReplaceInstUsesWith(CI, Src);
- if (PointerType *DstPTy = dyn_cast<PointerType>(DestTy)) {
- PointerType *SrcPTy = cast<PointerType>(SrcTy);
- Type *DstElTy = DstPTy->getElementType();
- Type *SrcElTy = SrcPTy->getElementType();
- // If we are casting a alloca to a pointer to a type of the same
- // size, rewrite the allocation instruction to allocate the "right" type.
- // There is no need to modify malloc calls because it is their bitcast that
- // needs to be cleaned up.
- if (AllocaInst *AI = dyn_cast<AllocaInst>(Src))
- if (Instruction *V = PromoteCastOfAllocation(CI, *AI))
- return V;
- // If the source and destination are pointers, and this cast is equivalent
- // to a getelementptr X, 0, 0, 0... turn it into the appropriate gep.
- // This can enhance SROA and other transforms that want type-safe pointers.
- unsigned NumZeros = 0;
- while (SrcElTy != DstElTy &&
- isa<CompositeType>(SrcElTy) && !SrcElTy->isPointerTy() &&
- SrcElTy->getNumContainedTypes() /* not "{}" */) {
- SrcElTy = cast<CompositeType>(SrcElTy)->getTypeAtIndex(0U);
- ++NumZeros;
- }
- // If we found a path from the src to dest, create the getelementptr now.
- if (SrcElTy == DstElTy) {
- SmallVector<Value *, 8> Idxs(NumZeros + 1, Builder->getInt32(0));
- return GetElementPtrInst::CreateInBounds(Src, Idxs);
- }
- }
- // Try to optimize int -> float bitcasts.
- if ((DestTy->isFloatTy() || DestTy->isDoubleTy()) && isa<IntegerType>(SrcTy))
- if (Instruction *I = OptimizeIntToFloatBitCast(CI, *this, DL))
- return I;
- if (VectorType *DestVTy = dyn_cast<VectorType>(DestTy)) {
- if (DestVTy->getNumElements() == 1 && !SrcTy->isVectorTy()) {
- Value *Elem = Builder->CreateBitCast(Src, DestVTy->getElementType());
- return InsertElementInst::Create(UndefValue::get(DestTy), Elem,
- Constant::getNullValue(Type::getInt32Ty(CI.getContext())));
- // FIXME: Canonicalize bitcast(insertelement) -> insertelement(bitcast)
- }
- if (isa<IntegerType>(SrcTy)) {
- // If this is a cast from an integer to vector, check to see if the input
- // is a trunc or zext of a bitcast from vector. If so, we can replace all
- // the casts with a shuffle and (potentially) a bitcast.
- if (isa<TruncInst>(Src) || isa<ZExtInst>(Src)) {
- CastInst *SrcCast = cast<CastInst>(Src);
- if (BitCastInst *BCIn = dyn_cast<BitCastInst>(SrcCast->getOperand(0)))
- if (isa<VectorType>(BCIn->getOperand(0)->getType()))
- if (Instruction *I = OptimizeVectorResize(BCIn->getOperand(0),
- cast<VectorType>(DestTy), *this))
- return I;
- }
- // If the input is an 'or' instruction, we may be doing shifts and ors to
- // assemble the elements of the vector manually. Try to rip the code out
- // and replace it with insertelements.
- if (Value *V = OptimizeIntegerToVectorInsertions(CI, *this))
- return ReplaceInstUsesWith(CI, V);
- }
- }
- if (VectorType *SrcVTy = dyn_cast<VectorType>(SrcTy)) {
- if (SrcVTy->getNumElements() == 1) {
- // If our destination is not a vector, then make this a straight
- // scalar-scalar cast.
- if (!DestTy->isVectorTy()) {
- Value *Elem =
- Builder->CreateExtractElement(Src,
- Constant::getNullValue(Type::getInt32Ty(CI.getContext())));
- return CastInst::Create(Instruction::BitCast, Elem, DestTy);
- }
- // Otherwise, see if our source is an insert. If so, then use the scalar
- // component directly.
- if (InsertElementInst *IEI =
- dyn_cast<InsertElementInst>(CI.getOperand(0)))
- return CastInst::Create(Instruction::BitCast, IEI->getOperand(1),
- DestTy);
- }
- }
- if (ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(Src)) {
- // Okay, we have (bitcast (shuffle ..)). Check to see if this is
- // a bitcast to a vector with the same # elts.
- if (SVI->hasOneUse() && DestTy->isVectorTy() &&
- DestTy->getVectorNumElements() == SVI->getType()->getNumElements() &&
- SVI->getType()->getNumElements() ==
- SVI->getOperand(0)->getType()->getVectorNumElements()) {
- BitCastInst *Tmp;
- // If either of the operands is a cast from CI.getType(), then
- // evaluating the shuffle in the casted destination's type will allow
- // us to eliminate at least one cast.
- if (((Tmp = dyn_cast<BitCastInst>(SVI->getOperand(0))) &&
- Tmp->getOperand(0)->getType() == DestTy) ||
- ((Tmp = dyn_cast<BitCastInst>(SVI->getOperand(1))) &&
- Tmp->getOperand(0)->getType() == DestTy)) {
- Value *LHS = Builder->CreateBitCast(SVI->getOperand(0), DestTy);
- Value *RHS = Builder->CreateBitCast(SVI->getOperand(1), DestTy);
- // Return a new shuffle vector. Use the same element ID's, as we
- // know the vector types match #elts.
- return new ShuffleVectorInst(LHS, RHS, SVI->getOperand(2));
- }
- }
- }
- if (SrcTy->isPointerTy())
- return commonPointerCastTransforms(CI);
- return commonCastTransforms(CI);
- }
- Instruction *InstCombiner::visitAddrSpaceCast(AddrSpaceCastInst &CI) {
- // If the destination pointer element type is not the same as the source's
- // first do a bitcast to the destination type, and then the addrspacecast.
- // This allows the cast to be exposed to other transforms.
- Value *Src = CI.getOperand(0);
- PointerType *SrcTy = cast<PointerType>(Src->getType()->getScalarType());
- PointerType *DestTy = cast<PointerType>(CI.getType()->getScalarType());
- Type *DestElemTy = DestTy->getElementType();
- if (SrcTy->getElementType() != DestElemTy) {
- Type *MidTy = PointerType::get(DestElemTy, SrcTy->getAddressSpace());
- if (VectorType *VT = dyn_cast<VectorType>(CI.getType())) {
- // Handle vectors of pointers.
- MidTy = VectorType::get(MidTy, VT->getNumElements());
- }
- Value *NewBitCast = Builder->CreateBitCast(Src, MidTy);
- return new AddrSpaceCastInst(NewBitCast, CI.getType());
- }
- return commonPointerCastTransforms(CI);
- }
|