12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124 |
- //===- InstCombineCompares.cpp --------------------------------------------===//
- //
- // The LLVM Compiler Infrastructure
- //
- // This file is distributed under the University of Illinois Open Source
- // License. See LICENSE.TXT for details.
- //
- //===----------------------------------------------------------------------===//
- //
- // This file implements the visitICmp and visitFCmp functions.
- //
- //===----------------------------------------------------------------------===//
- #include "InstCombineInternal.h"
- #include "llvm/ADT/APSInt.h"
- #include "llvm/ADT/Statistic.h"
- #include "llvm/Analysis/ConstantFolding.h"
- #include "llvm/Analysis/InstructionSimplify.h"
- #include "llvm/Analysis/MemoryBuiltins.h"
- #include "llvm/IR/ConstantRange.h"
- #include "llvm/IR/DataLayout.h"
- #include "llvm/IR/GetElementPtrTypeIterator.h"
- #include "llvm/IR/IntrinsicInst.h"
- #include "llvm/IR/PatternMatch.h"
- #include "llvm/Support/CommandLine.h"
- #include "llvm/Support/Debug.h"
- #include "llvm/Analysis/TargetLibraryInfo.h"
- using namespace llvm;
- using namespace PatternMatch;
- #define DEBUG_TYPE "instcombine"
- // How many times is a select replaced by one of its operands?
- STATISTIC(NumSel, "Number of select opts");
- // Initialization Routines
- static ConstantInt *getOne(Constant *C) {
- return ConstantInt::get(cast<IntegerType>(C->getType()), 1);
- }
- static ConstantInt *ExtractElement(Constant *V, Constant *Idx) {
- return cast<ConstantInt>(ConstantExpr::getExtractElement(V, Idx));
- }
- static bool HasAddOverflow(ConstantInt *Result,
- ConstantInt *In1, ConstantInt *In2,
- bool IsSigned) {
- if (!IsSigned)
- return Result->getValue().ult(In1->getValue());
- if (In2->isNegative())
- return Result->getValue().sgt(In1->getValue());
- return Result->getValue().slt(In1->getValue());
- }
- /// AddWithOverflow - Compute Result = In1+In2, returning true if the result
- /// overflowed for this type.
- static bool AddWithOverflow(Constant *&Result, Constant *In1,
- Constant *In2, bool IsSigned = false) {
- Result = ConstantExpr::getAdd(In1, In2);
- if (VectorType *VTy = dyn_cast<VectorType>(In1->getType())) {
- for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
- Constant *Idx = ConstantInt::get(Type::getInt32Ty(In1->getContext()), i);
- if (HasAddOverflow(ExtractElement(Result, Idx),
- ExtractElement(In1, Idx),
- ExtractElement(In2, Idx),
- IsSigned))
- return true;
- }
- return false;
- }
- return HasAddOverflow(cast<ConstantInt>(Result),
- cast<ConstantInt>(In1), cast<ConstantInt>(In2),
- IsSigned);
- }
- static bool HasSubOverflow(ConstantInt *Result,
- ConstantInt *In1, ConstantInt *In2,
- bool IsSigned) {
- if (!IsSigned)
- return Result->getValue().ugt(In1->getValue());
- if (In2->isNegative())
- return Result->getValue().slt(In1->getValue());
- return Result->getValue().sgt(In1->getValue());
- }
- /// SubWithOverflow - Compute Result = In1-In2, returning true if the result
- /// overflowed for this type.
- static bool SubWithOverflow(Constant *&Result, Constant *In1,
- Constant *In2, bool IsSigned = false) {
- Result = ConstantExpr::getSub(In1, In2);
- if (VectorType *VTy = dyn_cast<VectorType>(In1->getType())) {
- for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
- Constant *Idx = ConstantInt::get(Type::getInt32Ty(In1->getContext()), i);
- if (HasSubOverflow(ExtractElement(Result, Idx),
- ExtractElement(In1, Idx),
- ExtractElement(In2, Idx),
- IsSigned))
- return true;
- }
- return false;
- }
- return HasSubOverflow(cast<ConstantInt>(Result),
- cast<ConstantInt>(In1), cast<ConstantInt>(In2),
- IsSigned);
- }
- /// isSignBitCheck - Given an exploded icmp instruction, return true if the
- /// comparison only checks the sign bit. If it only checks the sign bit, set
- /// TrueIfSigned if the result of the comparison is true when the input value is
- /// signed.
- static bool isSignBitCheck(ICmpInst::Predicate pred, ConstantInt *RHS,
- bool &TrueIfSigned) {
- switch (pred) {
- case ICmpInst::ICMP_SLT: // True if LHS s< 0
- TrueIfSigned = true;
- return RHS->isZero();
- case ICmpInst::ICMP_SLE: // True if LHS s<= RHS and RHS == -1
- TrueIfSigned = true;
- return RHS->isAllOnesValue();
- case ICmpInst::ICMP_SGT: // True if LHS s> -1
- TrueIfSigned = false;
- return RHS->isAllOnesValue();
- case ICmpInst::ICMP_UGT:
- // True if LHS u> RHS and RHS == high-bit-mask - 1
- TrueIfSigned = true;
- return RHS->isMaxValue(true);
- case ICmpInst::ICMP_UGE:
- // True if LHS u>= RHS and RHS == high-bit-mask (2^7, 2^15, 2^31, etc)
- TrueIfSigned = true;
- return RHS->getValue().isSignBit();
- default:
- return false;
- }
- }
- /// Returns true if the exploded icmp can be expressed as a signed comparison
- /// to zero and updates the predicate accordingly.
- /// The signedness of the comparison is preserved.
- static bool isSignTest(ICmpInst::Predicate &pred, const ConstantInt *RHS) {
- if (!ICmpInst::isSigned(pred))
- return false;
- if (RHS->isZero())
- return ICmpInst::isRelational(pred);
- if (RHS->isOne()) {
- if (pred == ICmpInst::ICMP_SLT) {
- pred = ICmpInst::ICMP_SLE;
- return true;
- }
- } else if (RHS->isAllOnesValue()) {
- if (pred == ICmpInst::ICMP_SGT) {
- pred = ICmpInst::ICMP_SGE;
- return true;
- }
- }
- return false;
- }
- // isHighOnes - Return true if the constant is of the form 1+0+.
- // This is the same as lowones(~X).
- static bool isHighOnes(const ConstantInt *CI) {
- return (~CI->getValue() + 1).isPowerOf2();
- }
- /// ComputeSignedMinMaxValuesFromKnownBits - Given a signed integer type and a
- /// set of known zero and one bits, compute the maximum and minimum values that
- /// could have the specified known zero and known one bits, returning them in
- /// min/max.
- static void ComputeSignedMinMaxValuesFromKnownBits(const APInt& KnownZero,
- const APInt& KnownOne,
- APInt& Min, APInt& Max) {
- assert(KnownZero.getBitWidth() == KnownOne.getBitWidth() &&
- KnownZero.getBitWidth() == Min.getBitWidth() &&
- KnownZero.getBitWidth() == Max.getBitWidth() &&
- "KnownZero, KnownOne and Min, Max must have equal bitwidth.");
- APInt UnknownBits = ~(KnownZero|KnownOne);
- // The minimum value is when all unknown bits are zeros, EXCEPT for the sign
- // bit if it is unknown.
- Min = KnownOne;
- Max = KnownOne|UnknownBits;
- if (UnknownBits.isNegative()) { // Sign bit is unknown
- Min.setBit(Min.getBitWidth()-1);
- Max.clearBit(Max.getBitWidth()-1);
- }
- }
- // ComputeUnsignedMinMaxValuesFromKnownBits - Given an unsigned integer type and
- // a set of known zero and one bits, compute the maximum and minimum values that
- // could have the specified known zero and known one bits, returning them in
- // min/max.
- static void ComputeUnsignedMinMaxValuesFromKnownBits(const APInt &KnownZero,
- const APInt &KnownOne,
- APInt &Min, APInt &Max) {
- assert(KnownZero.getBitWidth() == KnownOne.getBitWidth() &&
- KnownZero.getBitWidth() == Min.getBitWidth() &&
- KnownZero.getBitWidth() == Max.getBitWidth() &&
- "Ty, KnownZero, KnownOne and Min, Max must have equal bitwidth.");
- APInt UnknownBits = ~(KnownZero|KnownOne);
- // The minimum value is when the unknown bits are all zeros.
- Min = KnownOne;
- // The maximum value is when the unknown bits are all ones.
- Max = KnownOne|UnknownBits;
- }
- /// FoldCmpLoadFromIndexedGlobal - Called we see this pattern:
- /// cmp pred (load (gep GV, ...)), cmpcst
- /// where GV is a global variable with a constant initializer. Try to simplify
- /// this into some simple computation that does not need the load. For example
- /// we can optimize "icmp eq (load (gep "foo", 0, i)), 0" into "icmp eq i, 3".
- ///
- /// If AndCst is non-null, then the loaded value is masked with that constant
- /// before doing the comparison. This handles cases like "A[i]&4 == 0".
- Instruction *InstCombiner::
- FoldCmpLoadFromIndexedGlobal(GetElementPtrInst *GEP, GlobalVariable *GV,
- CmpInst &ICI, ConstantInt *AndCst) {
- Constant *Init = GV->getInitializer();
- if (!isa<ConstantArray>(Init) && !isa<ConstantDataArray>(Init))
- return nullptr;
- uint64_t ArrayElementCount = Init->getType()->getArrayNumElements();
- if (ArrayElementCount > 1024) return nullptr; // Don't blow up on huge arrays.
- // There are many forms of this optimization we can handle, for now, just do
- // the simple index into a single-dimensional array.
- //
- // Require: GEP GV, 0, i {{, constant indices}}
- if (GEP->getNumOperands() < 3 ||
- !isa<ConstantInt>(GEP->getOperand(1)) ||
- !cast<ConstantInt>(GEP->getOperand(1))->isZero() ||
- isa<Constant>(GEP->getOperand(2)))
- return nullptr;
- // Check that indices after the variable are constants and in-range for the
- // type they index. Collect the indices. This is typically for arrays of
- // structs.
- SmallVector<unsigned, 4> LaterIndices;
- Type *EltTy = Init->getType()->getArrayElementType();
- for (unsigned i = 3, e = GEP->getNumOperands(); i != e; ++i) {
- ConstantInt *Idx = dyn_cast<ConstantInt>(GEP->getOperand(i));
- if (!Idx) return nullptr; // Variable index.
- uint64_t IdxVal = Idx->getZExtValue();
- if ((unsigned)IdxVal != IdxVal) return nullptr; // Too large array index.
- if (StructType *STy = dyn_cast<StructType>(EltTy))
- EltTy = STy->getElementType(IdxVal);
- else if (ArrayType *ATy = dyn_cast<ArrayType>(EltTy)) {
- if (IdxVal >= ATy->getNumElements()) return nullptr;
- EltTy = ATy->getElementType();
- } else {
- return nullptr; // Unknown type.
- }
- LaterIndices.push_back(IdxVal);
- }
- enum { Overdefined = -3, Undefined = -2 };
- // Variables for our state machines.
- // FirstTrueElement/SecondTrueElement - Used to emit a comparison of the form
- // "i == 47 | i == 87", where 47 is the first index the condition is true for,
- // and 87 is the second (and last) index. FirstTrueElement is -2 when
- // undefined, otherwise set to the first true element. SecondTrueElement is
- // -2 when undefined, -3 when overdefined and >= 0 when that index is true.
- int FirstTrueElement = Undefined, SecondTrueElement = Undefined;
- // FirstFalseElement/SecondFalseElement - Used to emit a comparison of the
- // form "i != 47 & i != 87". Same state transitions as for true elements.
- int FirstFalseElement = Undefined, SecondFalseElement = Undefined;
- /// TrueRangeEnd/FalseRangeEnd - In conjunction with First*Element, these
- /// define a state machine that triggers for ranges of values that the index
- /// is true or false for. This triggers on things like "abbbbc"[i] == 'b'.
- /// This is -2 when undefined, -3 when overdefined, and otherwise the last
- /// index in the range (inclusive). We use -2 for undefined here because we
- /// use relative comparisons and don't want 0-1 to match -1.
- int TrueRangeEnd = Undefined, FalseRangeEnd = Undefined;
- // MagicBitvector - This is a magic bitvector where we set a bit if the
- // comparison is true for element 'i'. If there are 64 elements or less in
- // the array, this will fully represent all the comparison results.
- uint64_t MagicBitvector = 0;
- // Scan the array and see if one of our patterns matches.
- Constant *CompareRHS = cast<Constant>(ICI.getOperand(1));
- for (unsigned i = 0, e = ArrayElementCount; i != e; ++i) {
- Constant *Elt = Init->getAggregateElement(i);
- if (!Elt) return nullptr;
- // If this is indexing an array of structures, get the structure element.
- if (!LaterIndices.empty())
- Elt = ConstantExpr::getExtractValue(Elt, LaterIndices);
- // If the element is masked, handle it.
- if (AndCst) Elt = ConstantExpr::getAnd(Elt, AndCst);
- // Find out if the comparison would be true or false for the i'th element.
- Constant *C = ConstantFoldCompareInstOperands(ICI.getPredicate(), Elt,
- CompareRHS, DL, TLI);
- // If the result is undef for this element, ignore it.
- if (isa<UndefValue>(C)) {
- // Extend range state machines to cover this element in case there is an
- // undef in the middle of the range.
- if (TrueRangeEnd == (int)i-1)
- TrueRangeEnd = i;
- if (FalseRangeEnd == (int)i-1)
- FalseRangeEnd = i;
- continue;
- }
- // If we can't compute the result for any of the elements, we have to give
- // up evaluating the entire conditional.
- if (!isa<ConstantInt>(C)) return nullptr;
- // Otherwise, we know if the comparison is true or false for this element,
- // update our state machines.
- bool IsTrueForElt = !cast<ConstantInt>(C)->isZero();
- // State machine for single/double/range index comparison.
- if (IsTrueForElt) {
- // Update the TrueElement state machine.
- if (FirstTrueElement == Undefined)
- FirstTrueElement = TrueRangeEnd = i; // First true element.
- else {
- // Update double-compare state machine.
- if (SecondTrueElement == Undefined)
- SecondTrueElement = i;
- else
- SecondTrueElement = Overdefined;
- // Update range state machine.
- if (TrueRangeEnd == (int)i-1)
- TrueRangeEnd = i;
- else
- TrueRangeEnd = Overdefined;
- }
- } else {
- // Update the FalseElement state machine.
- if (FirstFalseElement == Undefined)
- FirstFalseElement = FalseRangeEnd = i; // First false element.
- else {
- // Update double-compare state machine.
- if (SecondFalseElement == Undefined)
- SecondFalseElement = i;
- else
- SecondFalseElement = Overdefined;
- // Update range state machine.
- if (FalseRangeEnd == (int)i-1)
- FalseRangeEnd = i;
- else
- FalseRangeEnd = Overdefined;
- }
- }
- // If this element is in range, update our magic bitvector.
- if (i < 64 && IsTrueForElt)
- MagicBitvector |= 1ULL << i;
- // If all of our states become overdefined, bail out early. Since the
- // predicate is expensive, only check it every 8 elements. This is only
- // really useful for really huge arrays.
- if ((i & 8) == 0 && i >= 64 && SecondTrueElement == Overdefined &&
- SecondFalseElement == Overdefined && TrueRangeEnd == Overdefined &&
- FalseRangeEnd == Overdefined)
- return nullptr;
- }
- // Now that we've scanned the entire array, emit our new comparison(s). We
- // order the state machines in complexity of the generated code.
- Value *Idx = GEP->getOperand(2);
- // If the index is larger than the pointer size of the target, truncate the
- // index down like the GEP would do implicitly. We don't have to do this for
- // an inbounds GEP because the index can't be out of range.
- if (!GEP->isInBounds()) {
- Type *IntPtrTy = DL.getIntPtrType(GEP->getType());
- unsigned PtrSize = IntPtrTy->getIntegerBitWidth();
- if (Idx->getType()->getPrimitiveSizeInBits() > PtrSize)
- Idx = Builder->CreateTrunc(Idx, IntPtrTy);
- }
- // If the comparison is only true for one or two elements, emit direct
- // comparisons.
- if (SecondTrueElement != Overdefined) {
- // None true -> false.
- if (FirstTrueElement == Undefined)
- return ReplaceInstUsesWith(ICI, Builder->getFalse());
- Value *FirstTrueIdx = ConstantInt::get(Idx->getType(), FirstTrueElement);
- // True for one element -> 'i == 47'.
- if (SecondTrueElement == Undefined)
- return new ICmpInst(ICmpInst::ICMP_EQ, Idx, FirstTrueIdx);
- // True for two elements -> 'i == 47 | i == 72'.
- Value *C1 = Builder->CreateICmpEQ(Idx, FirstTrueIdx);
- Value *SecondTrueIdx = ConstantInt::get(Idx->getType(), SecondTrueElement);
- Value *C2 = Builder->CreateICmpEQ(Idx, SecondTrueIdx);
- return BinaryOperator::CreateOr(C1, C2);
- }
- // If the comparison is only false for one or two elements, emit direct
- // comparisons.
- if (SecondFalseElement != Overdefined) {
- // None false -> true.
- if (FirstFalseElement == Undefined)
- return ReplaceInstUsesWith(ICI, Builder->getTrue());
- Value *FirstFalseIdx = ConstantInt::get(Idx->getType(), FirstFalseElement);
- // False for one element -> 'i != 47'.
- if (SecondFalseElement == Undefined)
- return new ICmpInst(ICmpInst::ICMP_NE, Idx, FirstFalseIdx);
- // False for two elements -> 'i != 47 & i != 72'.
- Value *C1 = Builder->CreateICmpNE(Idx, FirstFalseIdx);
- Value *SecondFalseIdx = ConstantInt::get(Idx->getType(),SecondFalseElement);
- Value *C2 = Builder->CreateICmpNE(Idx, SecondFalseIdx);
- return BinaryOperator::CreateAnd(C1, C2);
- }
- // If the comparison can be replaced with a range comparison for the elements
- // where it is true, emit the range check.
- if (TrueRangeEnd != Overdefined) {
- assert(TrueRangeEnd != FirstTrueElement && "Should emit single compare");
- // Generate (i-FirstTrue) <u (TrueRangeEnd-FirstTrue+1).
- if (FirstTrueElement) {
- Value *Offs = ConstantInt::get(Idx->getType(), -FirstTrueElement);
- Idx = Builder->CreateAdd(Idx, Offs);
- }
- Value *End = ConstantInt::get(Idx->getType(),
- TrueRangeEnd-FirstTrueElement+1);
- return new ICmpInst(ICmpInst::ICMP_ULT, Idx, End);
- }
- // False range check.
- if (FalseRangeEnd != Overdefined) {
- assert(FalseRangeEnd != FirstFalseElement && "Should emit single compare");
- // Generate (i-FirstFalse) >u (FalseRangeEnd-FirstFalse).
- if (FirstFalseElement) {
- Value *Offs = ConstantInt::get(Idx->getType(), -FirstFalseElement);
- Idx = Builder->CreateAdd(Idx, Offs);
- }
- Value *End = ConstantInt::get(Idx->getType(),
- FalseRangeEnd-FirstFalseElement);
- return new ICmpInst(ICmpInst::ICMP_UGT, Idx, End);
- }
- // If a magic bitvector captures the entire comparison state
- // of this load, replace it with computation that does:
- // ((magic_cst >> i) & 1) != 0
- {
- Type *Ty = nullptr;
- // Look for an appropriate type:
- // - The type of Idx if the magic fits
- // - The smallest fitting legal type if we have a DataLayout
- // - Default to i32
- if (ArrayElementCount <= Idx->getType()->getIntegerBitWidth())
- Ty = Idx->getType();
- // HLSL Change Begins: Don't introduce use of i64 here.
- // TODO: Find a way to do this safely.
- //else
- // Ty = DL.getSmallestLegalIntType(Init->getContext(), ArrayElementCount);
- // Use i32 if index type was i16 and too small, for instance
- else if (ArrayElementCount <= 32)
- Ty = Builder->getInt32Ty();
- // HLSL Change Ends
- if (Ty) {
- Value *V = Builder->CreateIntCast(Idx, Ty, false);
- V = Builder->CreateLShr(ConstantInt::get(Ty, MagicBitvector), V);
- V = Builder->CreateAnd(ConstantInt::get(Ty, 1), V);
- return new ICmpInst(ICmpInst::ICMP_NE, V, ConstantInt::get(Ty, 0));
- }
- // HLSL Change Begins: Generate 32-bit pattern for 64-bit case for now.
- else if (ArrayElementCount <= 64) {
- Ty = Builder->getInt32Ty();
- Value *V = Builder->CreateIntCast(Idx, Ty, false);
- Value *Cmp = Builder->CreateICmpULT(V, ConstantInt::get(Ty, 32));
- Value *Sel = Builder->CreateSelect(Cmp,
- ConstantInt::get(Ty, MagicBitvector & 0xFFFFFFFF),
- ConstantInt::get(Ty, (MagicBitvector >> 32) & 0xFFFFFFFF));
- Value *Shift = Builder->CreateAnd(V, ConstantInt::get(Ty, 0x1F));
- V = Builder->CreateShl(ConstantInt::get(Ty, 0x1), Shift);
- V = Builder->CreateAnd(Sel, V);
- return new ICmpInst(ICmpInst::ICMP_NE, V, ConstantInt::get(Ty, 0));
- }
- // HLSL Change Ends
- }
- return nullptr;
- }
- /// EvaluateGEPOffsetExpression - Return a value that can be used to compare
- /// the *offset* implied by a GEP to zero. For example, if we have &A[i], we
- /// want to return 'i' for "icmp ne i, 0". Note that, in general, indices can
- /// be complex, and scales are involved. The above expression would also be
- /// legal to codegen as "icmp ne (i*4), 0" (assuming A is a pointer to i32).
- /// This later form is less amenable to optimization though, and we are allowed
- /// to generate the first by knowing that pointer arithmetic doesn't overflow.
- ///
- /// If we can't emit an optimized form for this expression, this returns null.
- ///
- static Value *EvaluateGEPOffsetExpression(User *GEP, InstCombiner &IC,
- const DataLayout &DL) {
- gep_type_iterator GTI = gep_type_begin(GEP);
- // Check to see if this gep only has a single variable index. If so, and if
- // any constant indices are a multiple of its scale, then we can compute this
- // in terms of the scale of the variable index. For example, if the GEP
- // implies an offset of "12 + i*4", then we can codegen this as "3 + i",
- // because the expression will cross zero at the same point.
- unsigned i, e = GEP->getNumOperands();
- int64_t Offset = 0;
- for (i = 1; i != e; ++i, ++GTI) {
- if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) {
- // Compute the aggregate offset of constant indices.
- if (CI->isZero()) continue;
- // Handle a struct index, which adds its field offset to the pointer.
- if (StructType *STy = dyn_cast<StructType>(*GTI)) {
- Offset += DL.getStructLayout(STy)->getElementOffset(CI->getZExtValue());
- } else {
- uint64_t Size = DL.getTypeAllocSize(GTI.getIndexedType());
- Offset += Size*CI->getSExtValue();
- }
- } else {
- // Found our variable index.
- break;
- }
- }
- // If there are no variable indices, we must have a constant offset, just
- // evaluate it the general way.
- if (i == e) return nullptr;
- Value *VariableIdx = GEP->getOperand(i);
- // Determine the scale factor of the variable element. For example, this is
- // 4 if the variable index is into an array of i32.
- uint64_t VariableScale = DL.getTypeAllocSize(GTI.getIndexedType());
- // Verify that there are no other variable indices. If so, emit the hard way.
- for (++i, ++GTI; i != e; ++i, ++GTI) {
- ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i));
- if (!CI) return nullptr;
- // Compute the aggregate offset of constant indices.
- if (CI->isZero()) continue;
- // Handle a struct index, which adds its field offset to the pointer.
- if (StructType *STy = dyn_cast<StructType>(*GTI)) {
- Offset += DL.getStructLayout(STy)->getElementOffset(CI->getZExtValue());
- } else {
- uint64_t Size = DL.getTypeAllocSize(GTI.getIndexedType());
- Offset += Size*CI->getSExtValue();
- }
- }
- // Okay, we know we have a single variable index, which must be a
- // pointer/array/vector index. If there is no offset, life is simple, return
- // the index.
- Type *IntPtrTy = DL.getIntPtrType(GEP->getOperand(0)->getType());
- unsigned IntPtrWidth = IntPtrTy->getIntegerBitWidth();
- if (Offset == 0) {
- // Cast to intptrty in case a truncation occurs. If an extension is needed,
- // we don't need to bother extending: the extension won't affect where the
- // computation crosses zero.
- if (VariableIdx->getType()->getPrimitiveSizeInBits() > IntPtrWidth) {
- VariableIdx = IC.Builder->CreateTrunc(VariableIdx, IntPtrTy);
- }
- return VariableIdx;
- }
- // Otherwise, there is an index. The computation we will do will be modulo
- // the pointer size, so get it.
- uint64_t PtrSizeMask = ~0ULL >> (64-IntPtrWidth);
- Offset &= PtrSizeMask;
- VariableScale &= PtrSizeMask;
- // To do this transformation, any constant index must be a multiple of the
- // variable scale factor. For example, we can evaluate "12 + 4*i" as "3 + i",
- // but we can't evaluate "10 + 3*i" in terms of i. Check that the offset is a
- // multiple of the variable scale.
- int64_t NewOffs = Offset / (int64_t)VariableScale;
- if (Offset != NewOffs*(int64_t)VariableScale)
- return nullptr;
- // Okay, we can do this evaluation. Start by converting the index to intptr.
- if (VariableIdx->getType() != IntPtrTy)
- VariableIdx = IC.Builder->CreateIntCast(VariableIdx, IntPtrTy,
- true /*Signed*/);
- Constant *OffsetVal = ConstantInt::get(IntPtrTy, NewOffs);
- return IC.Builder->CreateAdd(VariableIdx, OffsetVal, "offset");
- }
- /// FoldGEPICmp - Fold comparisons between a GEP instruction and something
- /// else. At this point we know that the GEP is on the LHS of the comparison.
- Instruction *InstCombiner::FoldGEPICmp(GEPOperator *GEPLHS, Value *RHS,
- ICmpInst::Predicate Cond,
- Instruction &I) {
- // Don't transform signed compares of GEPs into index compares. Even if the
- // GEP is inbounds, the final add of the base pointer can have signed overflow
- // and would change the result of the icmp.
- // e.g. "&foo[0] <s &foo[1]" can't be folded to "true" because "foo" could be
- // the maximum signed value for the pointer type.
- if (ICmpInst::isSigned(Cond))
- return nullptr;
- // Look through bitcasts and addrspacecasts. We do not however want to remove
- // 0 GEPs.
- if (!isa<GetElementPtrInst>(RHS))
- RHS = RHS->stripPointerCasts();
- Value *PtrBase = GEPLHS->getOperand(0);
- if (PtrBase == RHS && GEPLHS->isInBounds()) {
- // ((gep Ptr, OFFSET) cmp Ptr) ---> (OFFSET cmp 0).
- // This transformation (ignoring the base and scales) is valid because we
- // know pointers can't overflow since the gep is inbounds. See if we can
- // output an optimized form.
- Value *Offset = EvaluateGEPOffsetExpression(GEPLHS, *this, DL);
- // If not, synthesize the offset the hard way.
- if (!Offset)
- Offset = EmitGEPOffset(GEPLHS);
- return new ICmpInst(ICmpInst::getSignedPredicate(Cond), Offset,
- Constant::getNullValue(Offset->getType()));
- } else if (GEPOperator *GEPRHS = dyn_cast<GEPOperator>(RHS)) {
- // If the base pointers are different, but the indices are the same, just
- // compare the base pointer.
- if (PtrBase != GEPRHS->getOperand(0)) {
- bool IndicesTheSame = GEPLHS->getNumOperands()==GEPRHS->getNumOperands();
- IndicesTheSame &= GEPLHS->getOperand(0)->getType() ==
- GEPRHS->getOperand(0)->getType();
- if (IndicesTheSame)
- for (unsigned i = 1, e = GEPLHS->getNumOperands(); i != e; ++i)
- if (GEPLHS->getOperand(i) != GEPRHS->getOperand(i)) {
- IndicesTheSame = false;
- break;
- }
- // If all indices are the same, just compare the base pointers.
- if (IndicesTheSame)
- return new ICmpInst(Cond, GEPLHS->getOperand(0), GEPRHS->getOperand(0));
- // If we're comparing GEPs with two base pointers that only differ in type
- // and both GEPs have only constant indices or just one use, then fold
- // the compare with the adjusted indices.
- if (GEPLHS->isInBounds() && GEPRHS->isInBounds() &&
- (GEPLHS->hasAllConstantIndices() || GEPLHS->hasOneUse()) &&
- (GEPRHS->hasAllConstantIndices() || GEPRHS->hasOneUse()) &&
- PtrBase->stripPointerCasts() ==
- GEPRHS->getOperand(0)->stripPointerCasts()) {
- Value *LOffset = EmitGEPOffset(GEPLHS);
- Value *ROffset = EmitGEPOffset(GEPRHS);
- // If we looked through an addrspacecast between different sized address
- // spaces, the LHS and RHS pointers are different sized
- // integers. Truncate to the smaller one.
- Type *LHSIndexTy = LOffset->getType();
- Type *RHSIndexTy = ROffset->getType();
- if (LHSIndexTy != RHSIndexTy) {
- if (LHSIndexTy->getPrimitiveSizeInBits() <
- RHSIndexTy->getPrimitiveSizeInBits()) {
- ROffset = Builder->CreateTrunc(ROffset, LHSIndexTy);
- } else
- LOffset = Builder->CreateTrunc(LOffset, RHSIndexTy);
- }
- Value *Cmp = Builder->CreateICmp(ICmpInst::getSignedPredicate(Cond),
- LOffset, ROffset);
- return ReplaceInstUsesWith(I, Cmp);
- }
- // Otherwise, the base pointers are different and the indices are
- // different, bail out.
- return nullptr;
- }
- // If one of the GEPs has all zero indices, recurse.
- if (GEPLHS->hasAllZeroIndices())
- return FoldGEPICmp(GEPRHS, GEPLHS->getOperand(0),
- ICmpInst::getSwappedPredicate(Cond), I);
- // If the other GEP has all zero indices, recurse.
- if (GEPRHS->hasAllZeroIndices())
- return FoldGEPICmp(GEPLHS, GEPRHS->getOperand(0), Cond, I);
- bool GEPsInBounds = GEPLHS->isInBounds() && GEPRHS->isInBounds();
- if (GEPLHS->getNumOperands() == GEPRHS->getNumOperands()) {
- // If the GEPs only differ by one index, compare it.
- unsigned NumDifferences = 0; // Keep track of # differences.
- unsigned DiffOperand = 0; // The operand that differs.
- for (unsigned i = 1, e = GEPRHS->getNumOperands(); i != e; ++i)
- if (GEPLHS->getOperand(i) != GEPRHS->getOperand(i)) {
- if (GEPLHS->getOperand(i)->getType()->getPrimitiveSizeInBits() !=
- GEPRHS->getOperand(i)->getType()->getPrimitiveSizeInBits()) {
- // Irreconcilable differences.
- NumDifferences = 2;
- break;
- } else {
- if (NumDifferences++) break;
- DiffOperand = i;
- }
- }
- if (NumDifferences == 0) // SAME GEP?
- return ReplaceInstUsesWith(I, // No comparison is needed here.
- Builder->getInt1(ICmpInst::isTrueWhenEqual(Cond)));
- else if (NumDifferences == 1 && GEPsInBounds) {
- Value *LHSV = GEPLHS->getOperand(DiffOperand);
- Value *RHSV = GEPRHS->getOperand(DiffOperand);
- // Make sure we do a signed comparison here.
- return new ICmpInst(ICmpInst::getSignedPredicate(Cond), LHSV, RHSV);
- }
- }
- // Only lower this if the icmp is the only user of the GEP or if we expect
- // the result to fold to a constant!
- if (GEPsInBounds && (isa<ConstantExpr>(GEPLHS) || GEPLHS->hasOneUse()) &&
- (isa<ConstantExpr>(GEPRHS) || GEPRHS->hasOneUse())) {
- // ((gep Ptr, OFFSET1) cmp (gep Ptr, OFFSET2) ---> (OFFSET1 cmp OFFSET2)
- Value *L = EmitGEPOffset(GEPLHS);
- Value *R = EmitGEPOffset(GEPRHS);
- return new ICmpInst(ICmpInst::getSignedPredicate(Cond), L, R);
- }
- }
- return nullptr;
- }
- /// FoldICmpAddOpCst - Fold "icmp pred (X+CI), X".
- Instruction *InstCombiner::FoldICmpAddOpCst(Instruction &ICI,
- Value *X, ConstantInt *CI,
- ICmpInst::Predicate Pred) {
- // From this point on, we know that (X+C <= X) --> (X+C < X) because C != 0,
- // so the values can never be equal. Similarly for all other "or equals"
- // operators.
- // (X+1) <u X --> X >u (MAXUINT-1) --> X == 255
- // (X+2) <u X --> X >u (MAXUINT-2) --> X > 253
- // (X+MAXUINT) <u X --> X >u (MAXUINT-MAXUINT) --> X != 0
- if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) {
- Value *R =
- ConstantExpr::getSub(ConstantInt::getAllOnesValue(CI->getType()), CI);
- return new ICmpInst(ICmpInst::ICMP_UGT, X, R);
- }
- // (X+1) >u X --> X <u (0-1) --> X != 255
- // (X+2) >u X --> X <u (0-2) --> X <u 254
- // (X+MAXUINT) >u X --> X <u (0-MAXUINT) --> X <u 1 --> X == 0
- if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE)
- return new ICmpInst(ICmpInst::ICMP_ULT, X, ConstantExpr::getNeg(CI));
- unsigned BitWidth = CI->getType()->getPrimitiveSizeInBits();
- ConstantInt *SMax = ConstantInt::get(X->getContext(),
- APInt::getSignedMaxValue(BitWidth));
- // (X+ 1) <s X --> X >s (MAXSINT-1) --> X == 127
- // (X+ 2) <s X --> X >s (MAXSINT-2) --> X >s 125
- // (X+MAXSINT) <s X --> X >s (MAXSINT-MAXSINT) --> X >s 0
- // (X+MINSINT) <s X --> X >s (MAXSINT-MINSINT) --> X >s -1
- // (X+ -2) <s X --> X >s (MAXSINT- -2) --> X >s 126
- // (X+ -1) <s X --> X >s (MAXSINT- -1) --> X != 127
- if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE)
- return new ICmpInst(ICmpInst::ICMP_SGT, X, ConstantExpr::getSub(SMax, CI));
- // (X+ 1) >s X --> X <s (MAXSINT-(1-1)) --> X != 127
- // (X+ 2) >s X --> X <s (MAXSINT-(2-1)) --> X <s 126
- // (X+MAXSINT) >s X --> X <s (MAXSINT-(MAXSINT-1)) --> X <s 1
- // (X+MINSINT) >s X --> X <s (MAXSINT-(MINSINT-1)) --> X <s -2
- // (X+ -2) >s X --> X <s (MAXSINT-(-2-1)) --> X <s -126
- // (X+ -1) >s X --> X <s (MAXSINT-(-1-1)) --> X == -128
- assert(Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE);
- Constant *C = Builder->getInt(CI->getValue()-1);
- return new ICmpInst(ICmpInst::ICMP_SLT, X, ConstantExpr::getSub(SMax, C));
- }
- /// FoldICmpDivCst - Fold "icmp pred, ([su]div X, DivRHS), CmpRHS" where DivRHS
- /// and CmpRHS are both known to be integer constants.
- Instruction *InstCombiner::FoldICmpDivCst(ICmpInst &ICI, BinaryOperator *DivI,
- ConstantInt *DivRHS) {
- ConstantInt *CmpRHS = cast<ConstantInt>(ICI.getOperand(1));
- const APInt &CmpRHSV = CmpRHS->getValue();
- // FIXME: If the operand types don't match the type of the divide
- // then don't attempt this transform. The code below doesn't have the
- // logic to deal with a signed divide and an unsigned compare (and
- // vice versa). This is because (x /s C1) <s C2 produces different
- // results than (x /s C1) <u C2 or (x /u C1) <s C2 or even
- // (x /u C1) <u C2. Simply casting the operands and result won't
- // work. :( The if statement below tests that condition and bails
- // if it finds it.
- bool DivIsSigned = DivI->getOpcode() == Instruction::SDiv;
- if (!ICI.isEquality() && DivIsSigned != ICI.isSigned())
- return nullptr;
- if (DivRHS->isZero())
- return nullptr; // The ProdOV computation fails on divide by zero.
- if (DivIsSigned && DivRHS->isAllOnesValue())
- return nullptr; // The overflow computation also screws up here
- if (DivRHS->isOne()) {
- // This eliminates some funny cases with INT_MIN.
- ICI.setOperand(0, DivI->getOperand(0)); // X/1 == X.
- return &ICI;
- }
- // Compute Prod = CI * DivRHS. We are essentially solving an equation
- // of form X/C1=C2. We solve for X by multiplying C1 (DivRHS) and
- // C2 (CI). By solving for X we can turn this into a range check
- // instead of computing a divide.
- Constant *Prod = ConstantExpr::getMul(CmpRHS, DivRHS);
- // Determine if the product overflows by seeing if the product is
- // not equal to the divide. Make sure we do the same kind of divide
- // as in the LHS instruction that we're folding.
- bool ProdOV = (DivIsSigned ? ConstantExpr::getSDiv(Prod, DivRHS) :
- ConstantExpr::getUDiv(Prod, DivRHS)) != CmpRHS;
- // Get the ICmp opcode
- ICmpInst::Predicate Pred = ICI.getPredicate();
- /// If the division is known to be exact, then there is no remainder from the
- /// divide, so the covered range size is unit, otherwise it is the divisor.
- ConstantInt *RangeSize = DivI->isExact() ? getOne(Prod) : DivRHS;
- // Figure out the interval that is being checked. For example, a comparison
- // like "X /u 5 == 0" is really checking that X is in the interval [0, 5).
- // Compute this interval based on the constants involved and the signedness of
- // the compare/divide. This computes a half-open interval, keeping track of
- // whether either value in the interval overflows. After analysis each
- // overflow variable is set to 0 if it's corresponding bound variable is valid
- // -1 if overflowed off the bottom end, or +1 if overflowed off the top end.
- int LoOverflow = 0, HiOverflow = 0;
- Constant *LoBound = nullptr, *HiBound = nullptr;
- if (!DivIsSigned) { // udiv
- // e.g. X/5 op 3 --> [15, 20)
- LoBound = Prod;
- HiOverflow = LoOverflow = ProdOV;
- if (!HiOverflow) {
- // If this is not an exact divide, then many values in the range collapse
- // to the same result value.
- HiOverflow = AddWithOverflow(HiBound, LoBound, RangeSize, false);
- }
- } else if (DivRHS->getValue().isStrictlyPositive()) { // Divisor is > 0.
- if (CmpRHSV == 0) { // (X / pos) op 0
- // Can't overflow. e.g. X/2 op 0 --> [-1, 2)
- LoBound = ConstantExpr::getNeg(SubOne(RangeSize));
- HiBound = RangeSize;
- } else if (CmpRHSV.isStrictlyPositive()) { // (X / pos) op pos
- LoBound = Prod; // e.g. X/5 op 3 --> [15, 20)
- HiOverflow = LoOverflow = ProdOV;
- if (!HiOverflow)
- HiOverflow = AddWithOverflow(HiBound, Prod, RangeSize, true);
- } else { // (X / pos) op neg
- // e.g. X/5 op -3 --> [-15-4, -15+1) --> [-19, -14)
- HiBound = AddOne(Prod);
- LoOverflow = HiOverflow = ProdOV ? -1 : 0;
- if (!LoOverflow) {
- ConstantInt *DivNeg =cast<ConstantInt>(ConstantExpr::getNeg(RangeSize));
- LoOverflow = AddWithOverflow(LoBound, HiBound, DivNeg, true) ? -1 : 0;
- }
- }
- } else if (DivRHS->isNegative()) { // Divisor is < 0.
- if (DivI->isExact())
- RangeSize = cast<ConstantInt>(ConstantExpr::getNeg(RangeSize));
- if (CmpRHSV == 0) { // (X / neg) op 0
- // e.g. X/-5 op 0 --> [-4, 5)
- LoBound = AddOne(RangeSize);
- HiBound = cast<ConstantInt>(ConstantExpr::getNeg(RangeSize));
- if (HiBound == DivRHS) { // -INTMIN = INTMIN
- HiOverflow = 1; // [INTMIN+1, overflow)
- HiBound = nullptr; // e.g. X/INTMIN = 0 --> X > INTMIN
- }
- } else if (CmpRHSV.isStrictlyPositive()) { // (X / neg) op pos
- // e.g. X/-5 op 3 --> [-19, -14)
- HiBound = AddOne(Prod);
- HiOverflow = LoOverflow = ProdOV ? -1 : 0;
- if (!LoOverflow)
- LoOverflow = AddWithOverflow(LoBound, HiBound, RangeSize, true) ? -1:0;
- } else { // (X / neg) op neg
- LoBound = Prod; // e.g. X/-5 op -3 --> [15, 20)
- LoOverflow = HiOverflow = ProdOV;
- if (!HiOverflow)
- HiOverflow = SubWithOverflow(HiBound, Prod, RangeSize, true);
- }
- // Dividing by a negative swaps the condition. LT <-> GT
- Pred = ICmpInst::getSwappedPredicate(Pred);
- }
- Value *X = DivI->getOperand(0);
- switch (Pred) {
- default: llvm_unreachable("Unhandled icmp opcode!");
- case ICmpInst::ICMP_EQ:
- if (LoOverflow && HiOverflow)
- return ReplaceInstUsesWith(ICI, Builder->getFalse());
- if (HiOverflow)
- return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SGE :
- ICmpInst::ICMP_UGE, X, LoBound);
- if (LoOverflow)
- return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SLT :
- ICmpInst::ICMP_ULT, X, HiBound);
- return ReplaceInstUsesWith(ICI, InsertRangeTest(X, LoBound, HiBound,
- DivIsSigned, true));
- case ICmpInst::ICMP_NE:
- if (LoOverflow && HiOverflow)
- return ReplaceInstUsesWith(ICI, Builder->getTrue());
- if (HiOverflow)
- return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SLT :
- ICmpInst::ICMP_ULT, X, LoBound);
- if (LoOverflow)
- return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SGE :
- ICmpInst::ICMP_UGE, X, HiBound);
- return ReplaceInstUsesWith(ICI, InsertRangeTest(X, LoBound, HiBound,
- DivIsSigned, false));
- case ICmpInst::ICMP_ULT:
- case ICmpInst::ICMP_SLT:
- if (LoOverflow == +1) // Low bound is greater than input range.
- return ReplaceInstUsesWith(ICI, Builder->getTrue());
- if (LoOverflow == -1) // Low bound is less than input range.
- return ReplaceInstUsesWith(ICI, Builder->getFalse());
- return new ICmpInst(Pred, X, LoBound);
- case ICmpInst::ICMP_UGT:
- case ICmpInst::ICMP_SGT:
- if (HiOverflow == +1) // High bound greater than input range.
- return ReplaceInstUsesWith(ICI, Builder->getFalse());
- if (HiOverflow == -1) // High bound less than input range.
- return ReplaceInstUsesWith(ICI, Builder->getTrue());
- if (Pred == ICmpInst::ICMP_UGT)
- return new ICmpInst(ICmpInst::ICMP_UGE, X, HiBound);
- return new ICmpInst(ICmpInst::ICMP_SGE, X, HiBound);
- }
- }
- /// FoldICmpShrCst - Handle "icmp(([al]shr X, cst1), cst2)".
- Instruction *InstCombiner::FoldICmpShrCst(ICmpInst &ICI, BinaryOperator *Shr,
- ConstantInt *ShAmt) {
- const APInt &CmpRHSV = cast<ConstantInt>(ICI.getOperand(1))->getValue();
- // Check that the shift amount is in range. If not, don't perform
- // undefined shifts. When the shift is visited it will be
- // simplified.
- uint32_t TypeBits = CmpRHSV.getBitWidth();
- uint32_t ShAmtVal = (uint32_t)ShAmt->getLimitedValue(TypeBits);
- if (ShAmtVal >= TypeBits || ShAmtVal == 0)
- return nullptr;
- if (!ICI.isEquality()) {
- // If we have an unsigned comparison and an ashr, we can't simplify this.
- // Similarly for signed comparisons with lshr.
- if (ICI.isSigned() != (Shr->getOpcode() == Instruction::AShr))
- return nullptr;
- // Otherwise, all lshr and most exact ashr's are equivalent to a udiv/sdiv
- // by a power of 2. Since we already have logic to simplify these,
- // transform to div and then simplify the resultant comparison.
- if (Shr->getOpcode() == Instruction::AShr &&
- (!Shr->isExact() || ShAmtVal == TypeBits - 1))
- return nullptr;
- // Revisit the shift (to delete it).
- Worklist.Add(Shr);
- Constant *DivCst =
- ConstantInt::get(Shr->getType(), APInt::getOneBitSet(TypeBits, ShAmtVal));
- Value *Tmp =
- Shr->getOpcode() == Instruction::AShr ?
- Builder->CreateSDiv(Shr->getOperand(0), DivCst, "", Shr->isExact()) :
- Builder->CreateUDiv(Shr->getOperand(0), DivCst, "", Shr->isExact());
- ICI.setOperand(0, Tmp);
- // If the builder folded the binop, just return it.
- BinaryOperator *TheDiv = dyn_cast<BinaryOperator>(Tmp);
- if (!TheDiv)
- return &ICI;
- // Otherwise, fold this div/compare.
- assert(TheDiv->getOpcode() == Instruction::SDiv ||
- TheDiv->getOpcode() == Instruction::UDiv);
- Instruction *Res = FoldICmpDivCst(ICI, TheDiv, cast<ConstantInt>(DivCst));
- assert(Res && "This div/cst should have folded!");
- return Res;
- }
- // If we are comparing against bits always shifted out, the
- // comparison cannot succeed.
- APInt Comp = CmpRHSV << ShAmtVal;
- ConstantInt *ShiftedCmpRHS = Builder->getInt(Comp);
- if (Shr->getOpcode() == Instruction::LShr)
- Comp = Comp.lshr(ShAmtVal);
- else
- Comp = Comp.ashr(ShAmtVal);
- if (Comp != CmpRHSV) { // Comparing against a bit that we know is zero.
- bool IsICMP_NE = ICI.getPredicate() == ICmpInst::ICMP_NE;
- Constant *Cst = Builder->getInt1(IsICMP_NE);
- return ReplaceInstUsesWith(ICI, Cst);
- }
- // Otherwise, check to see if the bits shifted out are known to be zero.
- // If so, we can compare against the unshifted value:
- // (X & 4) >> 1 == 2 --> (X & 4) == 4.
- if (Shr->hasOneUse() && Shr->isExact())
- return new ICmpInst(ICI.getPredicate(), Shr->getOperand(0), ShiftedCmpRHS);
- if (Shr->hasOneUse()) {
- // Otherwise strength reduce the shift into an and.
- APInt Val(APInt::getHighBitsSet(TypeBits, TypeBits - ShAmtVal));
- Constant *Mask = Builder->getInt(Val);
- Value *And = Builder->CreateAnd(Shr->getOperand(0),
- Mask, Shr->getName()+".mask");
- return new ICmpInst(ICI.getPredicate(), And, ShiftedCmpRHS);
- }
- return nullptr;
- }
- /// FoldICmpCstShrCst - Handle "(icmp eq/ne (ashr/lshr const2, A), const1)" ->
- /// (icmp eq/ne A, Log2(const2/const1)) ->
- /// (icmp eq/ne A, Log2(const2) - Log2(const1)).
- Instruction *InstCombiner::FoldICmpCstShrCst(ICmpInst &I, Value *Op, Value *A,
- ConstantInt *CI1,
- ConstantInt *CI2) {
- assert(I.isEquality() && "Cannot fold icmp gt/lt");
- auto getConstant = [&I, this](bool IsTrue) {
- if (I.getPredicate() == I.ICMP_NE)
- IsTrue = !IsTrue;
- return ReplaceInstUsesWith(I, ConstantInt::get(I.getType(), IsTrue));
- };
- auto getICmp = [&I](CmpInst::Predicate Pred, Value *LHS, Value *RHS) {
- if (I.getPredicate() == I.ICMP_NE)
- Pred = CmpInst::getInversePredicate(Pred);
- return new ICmpInst(Pred, LHS, RHS);
- };
- APInt AP1 = CI1->getValue();
- APInt AP2 = CI2->getValue();
- // Don't bother doing any work for cases which InstSimplify handles.
- if (AP2 == 0)
- return nullptr;
- bool IsAShr = isa<AShrOperator>(Op);
- if (IsAShr) {
- if (AP2.isAllOnesValue())
- return nullptr;
- if (AP2.isNegative() != AP1.isNegative())
- return nullptr;
- if (AP2.sgt(AP1))
- return nullptr;
- }
- if (!AP1)
- // 'A' must be large enough to shift out the highest set bit.
- return getICmp(I.ICMP_UGT, A,
- ConstantInt::get(A->getType(), AP2.logBase2()));
- if (AP1 == AP2)
- return getICmp(I.ICMP_EQ, A, ConstantInt::getNullValue(A->getType()));
- // Get the distance between the highest bit that's set.
- int Shift;
- // Both the constants are negative, take their positive to calculate log.
- if (IsAShr && AP1.isNegative())
- // Get the ones' complement of AP2 and AP1 when computing the distance.
- Shift = (~AP2).logBase2() - (~AP1).logBase2();
- else
- Shift = AP2.logBase2() - AP1.logBase2();
- if (Shift > 0) {
- if (IsAShr ? AP1 == AP2.ashr(Shift) : AP1 == AP2.lshr(Shift))
- return getICmp(I.ICMP_EQ, A, ConstantInt::get(A->getType(), Shift));
- }
- // Shifting const2 will never be equal to const1.
- return getConstant(false);
- }
- /// FoldICmpCstShlCst - Handle "(icmp eq/ne (shl const2, A), const1)" ->
- /// (icmp eq/ne A, TrailingZeros(const1) - TrailingZeros(const2)).
- Instruction *InstCombiner::FoldICmpCstShlCst(ICmpInst &I, Value *Op, Value *A,
- ConstantInt *CI1,
- ConstantInt *CI2) {
- assert(I.isEquality() && "Cannot fold icmp gt/lt");
- auto getConstant = [&I, this](bool IsTrue) {
- if (I.getPredicate() == I.ICMP_NE)
- IsTrue = !IsTrue;
- return ReplaceInstUsesWith(I, ConstantInt::get(I.getType(), IsTrue));
- };
- auto getICmp = [&I](CmpInst::Predicate Pred, Value *LHS, Value *RHS) {
- if (I.getPredicate() == I.ICMP_NE)
- Pred = CmpInst::getInversePredicate(Pred);
- return new ICmpInst(Pred, LHS, RHS);
- };
- APInt AP1 = CI1->getValue();
- APInt AP2 = CI2->getValue();
- // Don't bother doing any work for cases which InstSimplify handles.
- if (AP2 == 0)
- return nullptr;
- unsigned AP2TrailingZeros = AP2.countTrailingZeros();
- if (!AP1 && AP2TrailingZeros != 0)
- return getICmp(I.ICMP_UGE, A,
- ConstantInt::get(A->getType(), AP2.getBitWidth() - AP2TrailingZeros));
- if (AP1 == AP2)
- return getICmp(I.ICMP_EQ, A, ConstantInt::getNullValue(A->getType()));
- // Get the distance between the lowest bits that are set.
- int Shift = AP1.countTrailingZeros() - AP2TrailingZeros;
- if (Shift > 0 && AP2.shl(Shift) == AP1)
- return getICmp(I.ICMP_EQ, A, ConstantInt::get(A->getType(), Shift));
- // Shifting const2 will never be equal to const1.
- return getConstant(false);
- }
- /// visitICmpInstWithInstAndIntCst - Handle "icmp (instr, intcst)".
- ///
- Instruction *InstCombiner::visitICmpInstWithInstAndIntCst(ICmpInst &ICI,
- Instruction *LHSI,
- ConstantInt *RHS) {
- const APInt &RHSV = RHS->getValue();
- switch (LHSI->getOpcode()) {
- case Instruction::Trunc:
- if (ICI.isEquality() && LHSI->hasOneUse()) {
- // Simplify icmp eq (trunc x to i8), 42 -> icmp eq x, 42|highbits if all
- // of the high bits truncated out of x are known.
- unsigned DstBits = LHSI->getType()->getPrimitiveSizeInBits(),
- SrcBits = LHSI->getOperand(0)->getType()->getPrimitiveSizeInBits();
- APInt KnownZero(SrcBits, 0), KnownOne(SrcBits, 0);
- computeKnownBits(LHSI->getOperand(0), KnownZero, KnownOne, 0, &ICI);
- // If all the high bits are known, we can do this xform.
- if ((KnownZero|KnownOne).countLeadingOnes() >= SrcBits-DstBits) {
- // Pull in the high bits from known-ones set.
- APInt NewRHS = RHS->getValue().zext(SrcBits);
- NewRHS |= KnownOne & APInt::getHighBitsSet(SrcBits, SrcBits-DstBits);
- return new ICmpInst(ICI.getPredicate(), LHSI->getOperand(0),
- Builder->getInt(NewRHS));
- }
- }
- break;
- case Instruction::Xor: // (icmp pred (xor X, XorCst), CI)
- if (ConstantInt *XorCst = dyn_cast<ConstantInt>(LHSI->getOperand(1))) {
- // If this is a comparison that tests the signbit (X < 0) or (x > -1),
- // fold the xor.
- if ((ICI.getPredicate() == ICmpInst::ICMP_SLT && RHSV == 0) ||
- (ICI.getPredicate() == ICmpInst::ICMP_SGT && RHSV.isAllOnesValue())) {
- Value *CompareVal = LHSI->getOperand(0);
- // If the sign bit of the XorCst is not set, there is no change to
- // the operation, just stop using the Xor.
- if (!XorCst->isNegative()) {
- ICI.setOperand(0, CompareVal);
- Worklist.Add(LHSI);
- return &ICI;
- }
- // Was the old condition true if the operand is positive?
- bool isTrueIfPositive = ICI.getPredicate() == ICmpInst::ICMP_SGT;
- // If so, the new one isn't.
- isTrueIfPositive ^= true;
- if (isTrueIfPositive)
- return new ICmpInst(ICmpInst::ICMP_SGT, CompareVal,
- SubOne(RHS));
- else
- return new ICmpInst(ICmpInst::ICMP_SLT, CompareVal,
- AddOne(RHS));
- }
- if (LHSI->hasOneUse()) {
- // (icmp u/s (xor A SignBit), C) -> (icmp s/u A, (xor C SignBit))
- if (!ICI.isEquality() && XorCst->getValue().isSignBit()) {
- const APInt &SignBit = XorCst->getValue();
- ICmpInst::Predicate Pred = ICI.isSigned()
- ? ICI.getUnsignedPredicate()
- : ICI.getSignedPredicate();
- return new ICmpInst(Pred, LHSI->getOperand(0),
- Builder->getInt(RHSV ^ SignBit));
- }
- // (icmp u/s (xor A ~SignBit), C) -> (icmp s/u (xor C ~SignBit), A)
- if (!ICI.isEquality() && XorCst->isMaxValue(true)) {
- const APInt &NotSignBit = XorCst->getValue();
- ICmpInst::Predicate Pred = ICI.isSigned()
- ? ICI.getUnsignedPredicate()
- : ICI.getSignedPredicate();
- Pred = ICI.getSwappedPredicate(Pred);
- return new ICmpInst(Pred, LHSI->getOperand(0),
- Builder->getInt(RHSV ^ NotSignBit));
- }
- }
- // (icmp ugt (xor X, C), ~C) -> (icmp ult X, C)
- // iff -C is a power of 2
- if (ICI.getPredicate() == ICmpInst::ICMP_UGT &&
- XorCst->getValue() == ~RHSV && (RHSV + 1).isPowerOf2())
- return new ICmpInst(ICmpInst::ICMP_ULT, LHSI->getOperand(0), XorCst);
- // (icmp ult (xor X, C), -C) -> (icmp uge X, C)
- // iff -C is a power of 2
- if (ICI.getPredicate() == ICmpInst::ICMP_ULT &&
- XorCst->getValue() == -RHSV && RHSV.isPowerOf2())
- return new ICmpInst(ICmpInst::ICMP_UGE, LHSI->getOperand(0), XorCst);
- }
- break;
- case Instruction::And: // (icmp pred (and X, AndCst), RHS)
- if (LHSI->hasOneUse() && isa<ConstantInt>(LHSI->getOperand(1)) &&
- LHSI->getOperand(0)->hasOneUse()) {
- ConstantInt *AndCst = cast<ConstantInt>(LHSI->getOperand(1));
- // If the LHS is an AND of a truncating cast, we can widen the
- // and/compare to be the input width without changing the value
- // produced, eliminating a cast.
- if (TruncInst *Cast = dyn_cast<TruncInst>(LHSI->getOperand(0))) {
- // We can do this transformation if either the AND constant does not
- // have its sign bit set or if it is an equality comparison.
- // Extending a relational comparison when we're checking the sign
- // bit would not work.
- if (ICI.isEquality() ||
- (!AndCst->isNegative() && RHSV.isNonNegative())) {
- Value *NewAnd =
- Builder->CreateAnd(Cast->getOperand(0),
- ConstantExpr::getZExt(AndCst, Cast->getSrcTy()));
- NewAnd->takeName(LHSI);
- return new ICmpInst(ICI.getPredicate(), NewAnd,
- ConstantExpr::getZExt(RHS, Cast->getSrcTy()));
- }
- }
- // If the LHS is an AND of a zext, and we have an equality compare, we can
- // shrink the and/compare to the smaller type, eliminating the cast.
- if (ZExtInst *Cast = dyn_cast<ZExtInst>(LHSI->getOperand(0))) {
- IntegerType *Ty = cast<IntegerType>(Cast->getSrcTy());
- // Make sure we don't compare the upper bits, SimplifyDemandedBits
- // should fold the icmp to true/false in that case.
- if (ICI.isEquality() && RHSV.getActiveBits() <= Ty->getBitWidth()) {
- Value *NewAnd =
- Builder->CreateAnd(Cast->getOperand(0),
- ConstantExpr::getTrunc(AndCst, Ty));
- NewAnd->takeName(LHSI);
- return new ICmpInst(ICI.getPredicate(), NewAnd,
- ConstantExpr::getTrunc(RHS, Ty));
- }
- }
- // If this is: (X >> C1) & C2 != C3 (where any shift and any compare
- // could exist), turn it into (X & (C2 << C1)) != (C3 << C1). This
- // happens a LOT in code produced by the C front-end, for bitfield
- // access.
- BinaryOperator *Shift = dyn_cast<BinaryOperator>(LHSI->getOperand(0));
- if (Shift && !Shift->isShift())
- Shift = nullptr;
- ConstantInt *ShAmt;
- ShAmt = Shift ? dyn_cast<ConstantInt>(Shift->getOperand(1)) : nullptr;
- // This seemingly simple opportunity to fold away a shift turns out to
- // be rather complicated. See PR17827
- // ( http://llvm.org/bugs/show_bug.cgi?id=17827 ) for details.
- if (ShAmt) {
- bool CanFold = false;
- unsigned ShiftOpcode = Shift->getOpcode();
- if (ShiftOpcode == Instruction::AShr) {
- // There may be some constraints that make this possible,
- // but nothing simple has been discovered yet.
- CanFold = false;
- } else if (ShiftOpcode == Instruction::Shl) {
- // For a left shift, we can fold if the comparison is not signed.
- // We can also fold a signed comparison if the mask value and
- // comparison value are not negative. These constraints may not be
- // obvious, but we can prove that they are correct using an SMT
- // solver.
- if (!ICI.isSigned() || (!AndCst->isNegative() && !RHS->isNegative()))
- CanFold = true;
- } else if (ShiftOpcode == Instruction::LShr) {
- // For a logical right shift, we can fold if the comparison is not
- // signed. We can also fold a signed comparison if the shifted mask
- // value and the shifted comparison value are not negative.
- // These constraints may not be obvious, but we can prove that they
- // are correct using an SMT solver.
- if (!ICI.isSigned())
- CanFold = true;
- else {
- ConstantInt *ShiftedAndCst =
- cast<ConstantInt>(ConstantExpr::getShl(AndCst, ShAmt));
- ConstantInt *ShiftedRHSCst =
- cast<ConstantInt>(ConstantExpr::getShl(RHS, ShAmt));
-
- if (!ShiftedAndCst->isNegative() && !ShiftedRHSCst->isNegative())
- CanFold = true;
- }
- }
- if (CanFold) {
- Constant *NewCst;
- if (ShiftOpcode == Instruction::Shl)
- NewCst = ConstantExpr::getLShr(RHS, ShAmt);
- else
- NewCst = ConstantExpr::getShl(RHS, ShAmt);
- // Check to see if we are shifting out any of the bits being
- // compared.
- if (ConstantExpr::get(ShiftOpcode, NewCst, ShAmt) != RHS) {
- // If we shifted bits out, the fold is not going to work out.
- // As a special case, check to see if this means that the
- // result is always true or false now.
- if (ICI.getPredicate() == ICmpInst::ICMP_EQ)
- return ReplaceInstUsesWith(ICI, Builder->getFalse());
- if (ICI.getPredicate() == ICmpInst::ICMP_NE)
- return ReplaceInstUsesWith(ICI, Builder->getTrue());
- } else {
- ICI.setOperand(1, NewCst);
- Constant *NewAndCst;
- if (ShiftOpcode == Instruction::Shl)
- NewAndCst = ConstantExpr::getLShr(AndCst, ShAmt);
- else
- NewAndCst = ConstantExpr::getShl(AndCst, ShAmt);
- LHSI->setOperand(1, NewAndCst);
- LHSI->setOperand(0, Shift->getOperand(0));
- Worklist.Add(Shift); // Shift is dead.
- return &ICI;
- }
- }
- }
- // Turn ((X >> Y) & C) == 0 into (X & (C << Y)) == 0. The later is
- // preferable because it allows the C<<Y expression to be hoisted out
- // of a loop if Y is invariant and X is not.
- if (Shift && Shift->hasOneUse() && RHSV == 0 &&
- ICI.isEquality() && !Shift->isArithmeticShift() &&
- !isa<Constant>(Shift->getOperand(0))) {
- // Compute C << Y.
- Value *NS;
- if (Shift->getOpcode() == Instruction::LShr) {
- NS = Builder->CreateShl(AndCst, Shift->getOperand(1));
- } else {
- // Insert a logical shift.
- NS = Builder->CreateLShr(AndCst, Shift->getOperand(1));
- }
- // Compute X & (C << Y).
- Value *NewAnd =
- Builder->CreateAnd(Shift->getOperand(0), NS, LHSI->getName());
- ICI.setOperand(0, NewAnd);
- return &ICI;
- }
- // (icmp pred (and (or (lshr X, Y), X), 1), 0) -->
- // (icmp pred (and X, (or (shl 1, Y), 1), 0))
- //
- // iff pred isn't signed
- {
- Value *X, *Y, *LShr;
- if (!ICI.isSigned() && RHSV == 0) {
- if (match(LHSI->getOperand(1), m_One())) {
- Constant *One = cast<Constant>(LHSI->getOperand(1));
- Value *Or = LHSI->getOperand(0);
- if (match(Or, m_Or(m_Value(LShr), m_Value(X))) &&
- match(LShr, m_LShr(m_Specific(X), m_Value(Y)))) {
- unsigned UsesRemoved = 0;
- if (LHSI->hasOneUse())
- ++UsesRemoved;
- if (Or->hasOneUse())
- ++UsesRemoved;
- if (LShr->hasOneUse())
- ++UsesRemoved;
- Value *NewOr = nullptr;
- // Compute X & ((1 << Y) | 1)
- if (auto *C = dyn_cast<Constant>(Y)) {
- if (UsesRemoved >= 1)
- NewOr =
- ConstantExpr::getOr(ConstantExpr::getNUWShl(One, C), One);
- } else {
- if (UsesRemoved >= 3)
- NewOr = Builder->CreateOr(Builder->CreateShl(One, Y,
- LShr->getName(),
- /*HasNUW=*/true),
- One, Or->getName());
- }
- if (NewOr) {
- Value *NewAnd = Builder->CreateAnd(X, NewOr, LHSI->getName());
- ICI.setOperand(0, NewAnd);
- return &ICI;
- }
- }
- }
- }
- }
- // Replace ((X & AndCst) > RHSV) with ((X & AndCst) != 0), if any
- // bit set in (X & AndCst) will produce a result greater than RHSV.
- if (ICI.getPredicate() == ICmpInst::ICMP_UGT) {
- unsigned NTZ = AndCst->getValue().countTrailingZeros();
- if ((NTZ < AndCst->getBitWidth()) &&
- APInt::getOneBitSet(AndCst->getBitWidth(), NTZ).ugt(RHSV))
- return new ICmpInst(ICmpInst::ICMP_NE, LHSI,
- Constant::getNullValue(RHS->getType()));
- }
- }
- // Try to optimize things like "A[i]&42 == 0" to index computations.
- if (LoadInst *LI = dyn_cast<LoadInst>(LHSI->getOperand(0))) {
- if (GetElementPtrInst *GEP =
- dyn_cast<GetElementPtrInst>(LI->getOperand(0)))
- if (GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)))
- if (GV->isConstant() && GV->hasDefinitiveInitializer() &&
- !LI->isVolatile() && isa<ConstantInt>(LHSI->getOperand(1))) {
- ConstantInt *C = cast<ConstantInt>(LHSI->getOperand(1));
- if (Instruction *Res = FoldCmpLoadFromIndexedGlobal(GEP, GV,ICI, C))
- return Res;
- }
- }
- // X & -C == -C -> X > u ~C
- // X & -C != -C -> X <= u ~C
- // iff C is a power of 2
- if (ICI.isEquality() && RHS == LHSI->getOperand(1) && (-RHSV).isPowerOf2())
- return new ICmpInst(
- ICI.getPredicate() == ICmpInst::ICMP_EQ ? ICmpInst::ICMP_UGT
- : ICmpInst::ICMP_ULE,
- LHSI->getOperand(0), SubOne(RHS));
- break;
- case Instruction::Or: {
- if (!ICI.isEquality() || !RHS->isNullValue() || !LHSI->hasOneUse())
- break;
- Value *P, *Q;
- if (match(LHSI, m_Or(m_PtrToInt(m_Value(P)), m_PtrToInt(m_Value(Q))))) {
- // Simplify icmp eq (or (ptrtoint P), (ptrtoint Q)), 0
- // -> and (icmp eq P, null), (icmp eq Q, null).
- Value *ICIP = Builder->CreateICmp(ICI.getPredicate(), P,
- Constant::getNullValue(P->getType()));
- Value *ICIQ = Builder->CreateICmp(ICI.getPredicate(), Q,
- Constant::getNullValue(Q->getType()));
- Instruction *Op;
- if (ICI.getPredicate() == ICmpInst::ICMP_EQ)
- Op = BinaryOperator::CreateAnd(ICIP, ICIQ);
- else
- Op = BinaryOperator::CreateOr(ICIP, ICIQ);
- return Op;
- }
- break;
- }
- case Instruction::Mul: { // (icmp pred (mul X, Val), CI)
- ConstantInt *Val = dyn_cast<ConstantInt>(LHSI->getOperand(1));
- if (!Val) break;
- // If this is a signed comparison to 0 and the mul is sign preserving,
- // use the mul LHS operand instead.
- ICmpInst::Predicate pred = ICI.getPredicate();
- if (isSignTest(pred, RHS) && !Val->isZero() &&
- cast<BinaryOperator>(LHSI)->hasNoSignedWrap())
- return new ICmpInst(Val->isNegative() ?
- ICmpInst::getSwappedPredicate(pred) : pred,
- LHSI->getOperand(0),
- Constant::getNullValue(RHS->getType()));
- break;
- }
- case Instruction::Shl: { // (icmp pred (shl X, ShAmt), CI)
- uint32_t TypeBits = RHSV.getBitWidth();
- ConstantInt *ShAmt = dyn_cast<ConstantInt>(LHSI->getOperand(1));
- if (!ShAmt) {
- Value *X;
- // (1 << X) pred P2 -> X pred Log2(P2)
- if (match(LHSI, m_Shl(m_One(), m_Value(X)))) {
- bool RHSVIsPowerOf2 = RHSV.isPowerOf2();
- ICmpInst::Predicate Pred = ICI.getPredicate();
- if (ICI.isUnsigned()) {
- if (!RHSVIsPowerOf2) {
- // (1 << X) < 30 -> X <= 4
- // (1 << X) <= 30 -> X <= 4
- // (1 << X) >= 30 -> X > 4
- // (1 << X) > 30 -> X > 4
- if (Pred == ICmpInst::ICMP_ULT)
- Pred = ICmpInst::ICMP_ULE;
- else if (Pred == ICmpInst::ICMP_UGE)
- Pred = ICmpInst::ICMP_UGT;
- }
- unsigned RHSLog2 = RHSV.logBase2();
- // (1 << X) >= 2147483648 -> X >= 31 -> X == 31
- // (1 << X) < 2147483648 -> X < 31 -> X != 31
- if (RHSLog2 == TypeBits-1) {
- if (Pred == ICmpInst::ICMP_UGE)
- Pred = ICmpInst::ICMP_EQ;
- else if (Pred == ICmpInst::ICMP_ULT)
- Pred = ICmpInst::ICMP_NE;
- }
- return new ICmpInst(Pred, X,
- ConstantInt::get(RHS->getType(), RHSLog2));
- } else if (ICI.isSigned()) {
- if (RHSV.isAllOnesValue()) {
- // (1 << X) <= -1 -> X == 31
- if (Pred == ICmpInst::ICMP_SLE)
- return new ICmpInst(ICmpInst::ICMP_EQ, X,
- ConstantInt::get(RHS->getType(), TypeBits-1));
- // (1 << X) > -1 -> X != 31
- if (Pred == ICmpInst::ICMP_SGT)
- return new ICmpInst(ICmpInst::ICMP_NE, X,
- ConstantInt::get(RHS->getType(), TypeBits-1));
- } else if (!RHSV) {
- // (1 << X) < 0 -> X == 31
- // (1 << X) <= 0 -> X == 31
- if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE)
- return new ICmpInst(ICmpInst::ICMP_EQ, X,
- ConstantInt::get(RHS->getType(), TypeBits-1));
- // (1 << X) >= 0 -> X != 31
- // (1 << X) > 0 -> X != 31
- if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE)
- return new ICmpInst(ICmpInst::ICMP_NE, X,
- ConstantInt::get(RHS->getType(), TypeBits-1));
- }
- } else if (ICI.isEquality()) {
- if (RHSVIsPowerOf2)
- return new ICmpInst(
- Pred, X, ConstantInt::get(RHS->getType(), RHSV.logBase2()));
- }
- }
- break;
- }
- // Check that the shift amount is in range. If not, don't perform
- // undefined shifts. When the shift is visited it will be
- // simplified.
- if (ShAmt->uge(TypeBits))
- break;
- if (ICI.isEquality()) {
- // If we are comparing against bits always shifted out, the
- // comparison cannot succeed.
- Constant *Comp =
- ConstantExpr::getShl(ConstantExpr::getLShr(RHS, ShAmt),
- ShAmt);
- if (Comp != RHS) {// Comparing against a bit that we know is zero.
- bool IsICMP_NE = ICI.getPredicate() == ICmpInst::ICMP_NE;
- Constant *Cst = Builder->getInt1(IsICMP_NE);
- return ReplaceInstUsesWith(ICI, Cst);
- }
- // If the shift is NUW, then it is just shifting out zeros, no need for an
- // AND.
- if (cast<BinaryOperator>(LHSI)->hasNoUnsignedWrap())
- return new ICmpInst(ICI.getPredicate(), LHSI->getOperand(0),
- ConstantExpr::getLShr(RHS, ShAmt));
- // If the shift is NSW and we compare to 0, then it is just shifting out
- // sign bits, no need for an AND either.
- if (cast<BinaryOperator>(LHSI)->hasNoSignedWrap() && RHSV == 0)
- return new ICmpInst(ICI.getPredicate(), LHSI->getOperand(0),
- ConstantExpr::getLShr(RHS, ShAmt));
- if (LHSI->hasOneUse()) {
- // Otherwise strength reduce the shift into an and.
- uint32_t ShAmtVal = (uint32_t)ShAmt->getLimitedValue(TypeBits);
- Constant *Mask = Builder->getInt(APInt::getLowBitsSet(TypeBits,
- TypeBits - ShAmtVal));
- Value *And =
- Builder->CreateAnd(LHSI->getOperand(0),Mask, LHSI->getName()+".mask");
- return new ICmpInst(ICI.getPredicate(), And,
- ConstantExpr::getLShr(RHS, ShAmt));
- }
- }
- // If this is a signed comparison to 0 and the shift is sign preserving,
- // use the shift LHS operand instead.
- ICmpInst::Predicate pred = ICI.getPredicate();
- if (isSignTest(pred, RHS) &&
- cast<BinaryOperator>(LHSI)->hasNoSignedWrap())
- return new ICmpInst(pred,
- LHSI->getOperand(0),
- Constant::getNullValue(RHS->getType()));
- // Otherwise, if this is a comparison of the sign bit, simplify to and/test.
- bool TrueIfSigned = false;
- if (LHSI->hasOneUse() &&
- isSignBitCheck(ICI.getPredicate(), RHS, TrueIfSigned)) {
- // (X << 31) <s 0 --> (X&1) != 0
- Constant *Mask = ConstantInt::get(LHSI->getOperand(0)->getType(),
- APInt::getOneBitSet(TypeBits,
- TypeBits-ShAmt->getZExtValue()-1));
- Value *And =
- Builder->CreateAnd(LHSI->getOperand(0), Mask, LHSI->getName()+".mask");
- return new ICmpInst(TrueIfSigned ? ICmpInst::ICMP_NE : ICmpInst::ICMP_EQ,
- And, Constant::getNullValue(And->getType()));
- }
- #if 0 // HLSL Change Begins: Disable optimization, it introduces new bitwidths
- // Transform (icmp pred iM (shl iM %v, N), CI)
- // -> (icmp pred i(M-N) (trunc %v iM to i(M-N)), (trunc (CI>>N))
- // Transform the shl to a trunc if (trunc (CI>>N)) has no loss and M-N.
- // This enables to get rid of the shift in favor of a trunc which can be
- // free on the target. It has the additional benefit of comparing to a
- // smaller constant, which will be target friendly.
- unsigned Amt = ShAmt->getLimitedValue(TypeBits-1);
- if (LHSI->hasOneUse() &&
- Amt != 0 && RHSV.countTrailingZeros() >= Amt) {
- Type *NTy = IntegerType::get(ICI.getContext(), TypeBits - Amt);
- Constant *NCI = ConstantExpr::getTrunc(
- ConstantExpr::getAShr(RHS,
- ConstantInt::get(RHS->getType(), Amt)),
- NTy);
- return new ICmpInst(ICI.getPredicate(),
- Builder->CreateTrunc(LHSI->getOperand(0), NTy),
- NCI);
- }
- #endif // HLSL Change Ends
- break;
- }
- case Instruction::LShr: // (icmp pred (shr X, ShAmt), CI)
- case Instruction::AShr: {
- // Handle equality comparisons of shift-by-constant.
- BinaryOperator *BO = cast<BinaryOperator>(LHSI);
- if (ConstantInt *ShAmt = dyn_cast<ConstantInt>(LHSI->getOperand(1))) {
- if (Instruction *Res = FoldICmpShrCst(ICI, BO, ShAmt))
- return Res;
- }
- // Handle exact shr's.
- if (ICI.isEquality() && BO->isExact() && BO->hasOneUse()) {
- if (RHSV.isMinValue())
- return new ICmpInst(ICI.getPredicate(), BO->getOperand(0), RHS);
- }
- break;
- }
- case Instruction::SDiv:
- case Instruction::UDiv:
- // Fold: icmp pred ([us]div X, C1), C2 -> range test
- // Fold this div into the comparison, producing a range check.
- // Determine, based on the divide type, what the range is being
- // checked. If there is an overflow on the low or high side, remember
- // it, otherwise compute the range [low, hi) bounding the new value.
- // See: InsertRangeTest above for the kinds of replacements possible.
- if (ConstantInt *DivRHS = dyn_cast<ConstantInt>(LHSI->getOperand(1)))
- if (Instruction *R = FoldICmpDivCst(ICI, cast<BinaryOperator>(LHSI),
- DivRHS))
- return R;
- break;
- case Instruction::Sub: {
- ConstantInt *LHSC = dyn_cast<ConstantInt>(LHSI->getOperand(0));
- if (!LHSC) break;
- const APInt &LHSV = LHSC->getValue();
- // C1-X <u C2 -> (X|(C2-1)) == C1
- // iff C1 & (C2-1) == C2-1
- // C2 is a power of 2
- if (ICI.getPredicate() == ICmpInst::ICMP_ULT && LHSI->hasOneUse() &&
- RHSV.isPowerOf2() && (LHSV & (RHSV - 1)) == (RHSV - 1))
- return new ICmpInst(ICmpInst::ICMP_EQ,
- Builder->CreateOr(LHSI->getOperand(1), RHSV - 1),
- LHSC);
- // C1-X >u C2 -> (X|C2) != C1
- // iff C1 & C2 == C2
- // C2+1 is a power of 2
- if (ICI.getPredicate() == ICmpInst::ICMP_UGT && LHSI->hasOneUse() &&
- (RHSV + 1).isPowerOf2() && (LHSV & RHSV) == RHSV)
- return new ICmpInst(ICmpInst::ICMP_NE,
- Builder->CreateOr(LHSI->getOperand(1), RHSV), LHSC);
- break;
- }
- case Instruction::Add:
- // Fold: icmp pred (add X, C1), C2
- if (!ICI.isEquality()) {
- ConstantInt *LHSC = dyn_cast<ConstantInt>(LHSI->getOperand(1));
- if (!LHSC) break;
- const APInt &LHSV = LHSC->getValue();
- ConstantRange CR = ICI.makeConstantRange(ICI.getPredicate(), RHSV)
- .subtract(LHSV);
- if (ICI.isSigned()) {
- if (CR.getLower().isSignBit()) {
- return new ICmpInst(ICmpInst::ICMP_SLT, LHSI->getOperand(0),
- Builder->getInt(CR.getUpper()));
- } else if (CR.getUpper().isSignBit()) {
- return new ICmpInst(ICmpInst::ICMP_SGE, LHSI->getOperand(0),
- Builder->getInt(CR.getLower()));
- }
- } else {
- if (CR.getLower().isMinValue()) {
- return new ICmpInst(ICmpInst::ICMP_ULT, LHSI->getOperand(0),
- Builder->getInt(CR.getUpper()));
- } else if (CR.getUpper().isMinValue()) {
- return new ICmpInst(ICmpInst::ICMP_UGE, LHSI->getOperand(0),
- Builder->getInt(CR.getLower()));
- }
- }
- // X-C1 <u C2 -> (X & -C2) == C1
- // iff C1 & (C2-1) == 0
- // C2 is a power of 2
- if (ICI.getPredicate() == ICmpInst::ICMP_ULT && LHSI->hasOneUse() &&
- RHSV.isPowerOf2() && (LHSV & (RHSV - 1)) == 0)
- return new ICmpInst(ICmpInst::ICMP_EQ,
- Builder->CreateAnd(LHSI->getOperand(0), -RHSV),
- ConstantExpr::getNeg(LHSC));
- // X-C1 >u C2 -> (X & ~C2) != C1
- // iff C1 & C2 == 0
- // C2+1 is a power of 2
- if (ICI.getPredicate() == ICmpInst::ICMP_UGT && LHSI->hasOneUse() &&
- (RHSV + 1).isPowerOf2() && (LHSV & RHSV) == 0)
- return new ICmpInst(ICmpInst::ICMP_NE,
- Builder->CreateAnd(LHSI->getOperand(0), ~RHSV),
- ConstantExpr::getNeg(LHSC));
- }
- break;
- }
- // Simplify icmp_eq and icmp_ne instructions with integer constant RHS.
- if (ICI.isEquality()) {
- bool isICMP_NE = ICI.getPredicate() == ICmpInst::ICMP_NE;
- // If the first operand is (add|sub|and|or|xor|rem) with a constant, and
- // the second operand is a constant, simplify a bit.
- if (BinaryOperator *BO = dyn_cast<BinaryOperator>(LHSI)) {
- switch (BO->getOpcode()) {
- case Instruction::SRem:
- // If we have a signed (X % (2^c)) == 0, turn it into an unsigned one.
- if (RHSV == 0 && isa<ConstantInt>(BO->getOperand(1)) &&BO->hasOneUse()){
- const APInt &V = cast<ConstantInt>(BO->getOperand(1))->getValue();
- if (V.sgt(1) && V.isPowerOf2()) {
- Value *NewRem =
- Builder->CreateURem(BO->getOperand(0), BO->getOperand(1),
- BO->getName());
- return new ICmpInst(ICI.getPredicate(), NewRem,
- Constant::getNullValue(BO->getType()));
- }
- }
- break;
- case Instruction::Add:
- // Replace ((add A, B) != C) with (A != C-B) if B & C are constants.
- if (ConstantInt *BOp1C = dyn_cast<ConstantInt>(BO->getOperand(1))) {
- if (BO->hasOneUse())
- return new ICmpInst(ICI.getPredicate(), BO->getOperand(0),
- ConstantExpr::getSub(RHS, BOp1C));
- } else if (RHSV == 0) {
- // Replace ((add A, B) != 0) with (A != -B) if A or B is
- // efficiently invertible, or if the add has just this one use.
- Value *BOp0 = BO->getOperand(0), *BOp1 = BO->getOperand(1);
- if (Value *NegVal = dyn_castNegVal(BOp1))
- return new ICmpInst(ICI.getPredicate(), BOp0, NegVal);
- if (Value *NegVal = dyn_castNegVal(BOp0))
- return new ICmpInst(ICI.getPredicate(), NegVal, BOp1);
- if (BO->hasOneUse()) {
- Value *Neg = Builder->CreateNeg(BOp1);
- Neg->takeName(BO);
- return new ICmpInst(ICI.getPredicate(), BOp0, Neg);
- }
- }
- break;
- case Instruction::Xor:
- // For the xor case, we can xor two constants together, eliminating
- // the explicit xor.
- if (Constant *BOC = dyn_cast<Constant>(BO->getOperand(1))) {
- return new ICmpInst(ICI.getPredicate(), BO->getOperand(0),
- ConstantExpr::getXor(RHS, BOC));
- } else if (RHSV == 0) {
- // Replace ((xor A, B) != 0) with (A != B)
- return new ICmpInst(ICI.getPredicate(), BO->getOperand(0),
- BO->getOperand(1));
- }
- break;
- case Instruction::Sub:
- // Replace ((sub A, B) != C) with (B != A-C) if A & C are constants.
- if (ConstantInt *BOp0C = dyn_cast<ConstantInt>(BO->getOperand(0))) {
- if (BO->hasOneUse())
- return new ICmpInst(ICI.getPredicate(), BO->getOperand(1),
- ConstantExpr::getSub(BOp0C, RHS));
- } else if (RHSV == 0) {
- // Replace ((sub A, B) != 0) with (A != B)
- return new ICmpInst(ICI.getPredicate(), BO->getOperand(0),
- BO->getOperand(1));
- }
- break;
- case Instruction::Or:
- // If bits are being or'd in that are not present in the constant we
- // are comparing against, then the comparison could never succeed!
- if (ConstantInt *BOC = dyn_cast<ConstantInt>(BO->getOperand(1))) {
- Constant *NotCI = ConstantExpr::getNot(RHS);
- if (!ConstantExpr::getAnd(BOC, NotCI)->isNullValue())
- return ReplaceInstUsesWith(ICI, Builder->getInt1(isICMP_NE));
- }
- break;
- case Instruction::And:
- if (ConstantInt *BOC = dyn_cast<ConstantInt>(BO->getOperand(1))) {
- // If bits are being compared against that are and'd out, then the
- // comparison can never succeed!
- if ((RHSV & ~BOC->getValue()) != 0)
- return ReplaceInstUsesWith(ICI, Builder->getInt1(isICMP_NE));
- // If we have ((X & C) == C), turn it into ((X & C) != 0).
- if (RHS == BOC && RHSV.isPowerOf2())
- return new ICmpInst(isICMP_NE ? ICmpInst::ICMP_EQ :
- ICmpInst::ICMP_NE, LHSI,
- Constant::getNullValue(RHS->getType()));
- // Don't perform the following transforms if the AND has multiple uses
- if (!BO->hasOneUse())
- break;
- // Replace (and X, (1 << size(X)-1) != 0) with x s< 0
- if (BOC->getValue().isSignBit()) {
- Value *X = BO->getOperand(0);
- Constant *Zero = Constant::getNullValue(X->getType());
- ICmpInst::Predicate pred = isICMP_NE ?
- ICmpInst::ICMP_SLT : ICmpInst::ICMP_SGE;
- return new ICmpInst(pred, X, Zero);
- }
- // ((X & ~7) == 0) --> X < 8
- if (RHSV == 0 && isHighOnes(BOC)) {
- Value *X = BO->getOperand(0);
- Constant *NegX = ConstantExpr::getNeg(BOC);
- ICmpInst::Predicate pred = isICMP_NE ?
- ICmpInst::ICMP_UGE : ICmpInst::ICMP_ULT;
- return new ICmpInst(pred, X, NegX);
- }
- }
- break;
- case Instruction::Mul:
- if (RHSV == 0 && BO->hasNoSignedWrap()) {
- if (ConstantInt *BOC = dyn_cast<ConstantInt>(BO->getOperand(1))) {
- // The trivial case (mul X, 0) is handled by InstSimplify
- // General case : (mul X, C) != 0 iff X != 0
- // (mul X, C) == 0 iff X == 0
- if (!BOC->isZero())
- return new ICmpInst(ICI.getPredicate(), BO->getOperand(0),
- Constant::getNullValue(RHS->getType()));
- }
- }
- break;
- default: break;
- }
- } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(LHSI)) {
- // Handle icmp {eq|ne} <intrinsic>, intcst.
- switch (II->getIntrinsicID()) {
- case Intrinsic::bswap:
- Worklist.Add(II);
- ICI.setOperand(0, II->getArgOperand(0));
- ICI.setOperand(1, Builder->getInt(RHSV.byteSwap()));
- return &ICI;
- case Intrinsic::ctlz:
- case Intrinsic::cttz:
- // ctz(A) == bitwidth(a) -> A == 0 and likewise for !=
- if (RHSV == RHS->getType()->getBitWidth()) {
- Worklist.Add(II);
- ICI.setOperand(0, II->getArgOperand(0));
- ICI.setOperand(1, ConstantInt::get(RHS->getType(), 0));
- return &ICI;
- }
- break;
- case Intrinsic::ctpop:
- // popcount(A) == 0 -> A == 0 and likewise for !=
- if (RHS->isZero()) {
- Worklist.Add(II);
- ICI.setOperand(0, II->getArgOperand(0));
- ICI.setOperand(1, RHS);
- return &ICI;
- }
- break;
- default:
- break;
- }
- }
- }
- return nullptr;
- }
- /// visitICmpInstWithCastAndCast - Handle icmp (cast x to y), (cast/cst).
- /// We only handle extending casts so far.
- ///
- Instruction *InstCombiner::visitICmpInstWithCastAndCast(ICmpInst &ICI) {
- const CastInst *LHSCI = cast<CastInst>(ICI.getOperand(0));
- Value *LHSCIOp = LHSCI->getOperand(0);
- Type *SrcTy = LHSCIOp->getType();
- Type *DestTy = LHSCI->getType();
- Value *RHSCIOp;
- // Turn icmp (ptrtoint x), (ptrtoint/c) into a compare of the input if the
- // integer type is the same size as the pointer type.
- if (LHSCI->getOpcode() == Instruction::PtrToInt &&
- DL.getPointerTypeSizeInBits(SrcTy) == DestTy->getIntegerBitWidth()) {
- Value *RHSOp = nullptr;
- if (PtrToIntOperator *RHSC = dyn_cast<PtrToIntOperator>(ICI.getOperand(1))) {
- Value *RHSCIOp = RHSC->getOperand(0);
- if (RHSCIOp->getType()->getPointerAddressSpace() ==
- LHSCIOp->getType()->getPointerAddressSpace()) {
- RHSOp = RHSC->getOperand(0);
- // If the pointer types don't match, insert a bitcast.
- if (LHSCIOp->getType() != RHSOp->getType())
- RHSOp = Builder->CreateBitCast(RHSOp, LHSCIOp->getType());
- }
- } else if (Constant *RHSC = dyn_cast<Constant>(ICI.getOperand(1)))
- RHSOp = ConstantExpr::getIntToPtr(RHSC, SrcTy);
- if (RHSOp)
- return new ICmpInst(ICI.getPredicate(), LHSCIOp, RHSOp);
- }
- // The code below only handles extension cast instructions, so far.
- // Enforce this.
- if (LHSCI->getOpcode() != Instruction::ZExt &&
- LHSCI->getOpcode() != Instruction::SExt)
- return nullptr;
- bool isSignedExt = LHSCI->getOpcode() == Instruction::SExt;
- bool isSignedCmp = ICI.isSigned();
- if (CastInst *CI = dyn_cast<CastInst>(ICI.getOperand(1))) {
- // Not an extension from the same type?
- RHSCIOp = CI->getOperand(0);
- if (RHSCIOp->getType() != LHSCIOp->getType())
- return nullptr;
- // If the signedness of the two casts doesn't agree (i.e. one is a sext
- // and the other is a zext), then we can't handle this.
- if (CI->getOpcode() != LHSCI->getOpcode())
- return nullptr;
- // Deal with equality cases early.
- if (ICI.isEquality())
- return new ICmpInst(ICI.getPredicate(), LHSCIOp, RHSCIOp);
- // A signed comparison of sign extended values simplifies into a
- // signed comparison.
- if (isSignedCmp && isSignedExt)
- return new ICmpInst(ICI.getPredicate(), LHSCIOp, RHSCIOp);
- // The other three cases all fold into an unsigned comparison.
- return new ICmpInst(ICI.getUnsignedPredicate(), LHSCIOp, RHSCIOp);
- }
- // If we aren't dealing with a constant on the RHS, exit early
- ConstantInt *CI = dyn_cast<ConstantInt>(ICI.getOperand(1));
- if (!CI)
- return nullptr;
- // Compute the constant that would happen if we truncated to SrcTy then
- // reextended to DestTy.
- Constant *Res1 = ConstantExpr::getTrunc(CI, SrcTy);
- Constant *Res2 = ConstantExpr::getCast(LHSCI->getOpcode(),
- Res1, DestTy);
- // If the re-extended constant didn't change...
- if (Res2 == CI) {
- // Deal with equality cases early.
- if (ICI.isEquality())
- return new ICmpInst(ICI.getPredicate(), LHSCIOp, Res1);
- // A signed comparison of sign extended values simplifies into a
- // signed comparison.
- if (isSignedExt && isSignedCmp)
- return new ICmpInst(ICI.getPredicate(), LHSCIOp, Res1);
- // The other three cases all fold into an unsigned comparison.
- return new ICmpInst(ICI.getUnsignedPredicate(), LHSCIOp, Res1);
- }
- // The re-extended constant changed so the constant cannot be represented
- // in the shorter type. Consequently, we cannot emit a simple comparison.
- // All the cases that fold to true or false will have already been handled
- // by SimplifyICmpInst, so only deal with the tricky case.
- if (isSignedCmp || !isSignedExt)
- return nullptr;
- // Evaluate the comparison for LT (we invert for GT below). LE and GE cases
- // should have been folded away previously and not enter in here.
- // We're performing an unsigned comp with a sign extended value.
- // This is true if the input is >= 0. [aka >s -1]
- Constant *NegOne = Constant::getAllOnesValue(SrcTy);
- Value *Result = Builder->CreateICmpSGT(LHSCIOp, NegOne, ICI.getName());
- // Finally, return the value computed.
- if (ICI.getPredicate() == ICmpInst::ICMP_ULT)
- return ReplaceInstUsesWith(ICI, Result);
- assert(ICI.getPredicate() == ICmpInst::ICMP_UGT && "ICmp should be folded!");
- return BinaryOperator::CreateNot(Result);
- }
- /// ProcessUGT_ADDCST_ADD - The caller has matched a pattern of the form:
- /// I = icmp ugt (add (add A, B), CI2), CI1
- /// If this is of the form:
- /// sum = a + b
- /// if (sum+128 >u 255)
- /// Then replace it with llvm.sadd.with.overflow.i8.
- ///
- static Instruction *ProcessUGT_ADDCST_ADD(ICmpInst &I, Value *A, Value *B,
- ConstantInt *CI2, ConstantInt *CI1,
- InstCombiner &IC) {
- // The transformation we're trying to do here is to transform this into an
- // llvm.sadd.with.overflow. To do this, we have to replace the original add
- // with a narrower add, and discard the add-with-constant that is part of the
- // range check (if we can't eliminate it, this isn't profitable).
- // In order to eliminate the add-with-constant, the compare can be its only
- // use.
- Instruction *AddWithCst = cast<Instruction>(I.getOperand(0));
- if (!AddWithCst->hasOneUse()) return nullptr;
- // If CI2 is 2^7, 2^15, 2^31, then it might be an sadd.with.overflow.
- if (!CI2->getValue().isPowerOf2()) return nullptr;
- unsigned NewWidth = CI2->getValue().countTrailingZeros();
- if (NewWidth != 7 && NewWidth != 15 && NewWidth != 31) return nullptr;
- // The width of the new add formed is 1 more than the bias.
- ++NewWidth;
- // Check to see that CI1 is an all-ones value with NewWidth bits.
- if (CI1->getBitWidth() == NewWidth ||
- CI1->getValue() != APInt::getLowBitsSet(CI1->getBitWidth(), NewWidth))
- return nullptr;
- // This is only really a signed overflow check if the inputs have been
- // sign-extended; check for that condition. For example, if CI2 is 2^31 and
- // the operands of the add are 64 bits wide, we need at least 33 sign bits.
- unsigned NeededSignBits = CI1->getBitWidth() - NewWidth + 1;
- if (IC.ComputeNumSignBits(A, 0, &I) < NeededSignBits ||
- IC.ComputeNumSignBits(B, 0, &I) < NeededSignBits)
- return nullptr;
- // In order to replace the original add with a narrower
- // llvm.sadd.with.overflow, the only uses allowed are the add-with-constant
- // and truncates that discard the high bits of the add. Verify that this is
- // the case.
- Instruction *OrigAdd = cast<Instruction>(AddWithCst->getOperand(0));
- for (User *U : OrigAdd->users()) {
- if (U == AddWithCst) continue;
- // Only accept truncates for now. We would really like a nice recursive
- // predicate like SimplifyDemandedBits, but which goes downwards the use-def
- // chain to see which bits of a value are actually demanded. If the
- // original add had another add which was then immediately truncated, we
- // could still do the transformation.
- TruncInst *TI = dyn_cast<TruncInst>(U);
- if (!TI || TI->getType()->getPrimitiveSizeInBits() > NewWidth)
- return nullptr;
- }
- // If the pattern matches, truncate the inputs to the narrower type and
- // use the sadd_with_overflow intrinsic to efficiently compute both the
- // result and the overflow bit.
- Module *M = I.getParent()->getParent()->getParent();
- Type *NewType = IntegerType::get(OrigAdd->getContext(), NewWidth);
- Value *F = Intrinsic::getDeclaration(M, Intrinsic::sadd_with_overflow,
- NewType);
- InstCombiner::BuilderTy *Builder = IC.Builder;
- // Put the new code above the original add, in case there are any uses of the
- // add between the add and the compare.
- Builder->SetInsertPoint(OrigAdd);
- Value *TruncA = Builder->CreateTrunc(A, NewType, A->getName()+".trunc");
- Value *TruncB = Builder->CreateTrunc(B, NewType, B->getName()+".trunc");
- CallInst *Call = Builder->CreateCall(F, {TruncA, TruncB}, "sadd");
- Value *Add = Builder->CreateExtractValue(Call, 0, "sadd.result");
- Value *ZExt = Builder->CreateZExt(Add, OrigAdd->getType());
- // The inner add was the result of the narrow add, zero extended to the
- // wider type. Replace it with the result computed by the intrinsic.
- IC.ReplaceInstUsesWith(*OrigAdd, ZExt);
- // The original icmp gets replaced with the overflow value.
- return ExtractValueInst::Create(Call, 1, "sadd.overflow");
- }
- bool InstCombiner::OptimizeOverflowCheck(OverflowCheckFlavor OCF, Value *LHS,
- Value *RHS, Instruction &OrigI,
- Value *&Result, Constant *&Overflow) {
- if (OrigI.isCommutative() && isa<Constant>(LHS) && !isa<Constant>(RHS))
- std::swap(LHS, RHS);
- auto SetResult = [&](Value *OpResult, Constant *OverflowVal, bool ReuseName) {
- Result = OpResult;
- Overflow = OverflowVal;
- if (ReuseName)
- Result->takeName(&OrigI);
- return true;
- };
- switch (OCF) {
- case OCF_INVALID:
- llvm_unreachable("bad overflow check kind!");
- case OCF_UNSIGNED_ADD: {
- OverflowResult OR = computeOverflowForUnsignedAdd(LHS, RHS, &OrigI);
- if (OR == OverflowResult::NeverOverflows)
- return SetResult(Builder->CreateNUWAdd(LHS, RHS), Builder->getFalse(),
- true);
- if (OR == OverflowResult::AlwaysOverflows)
- return SetResult(Builder->CreateAdd(LHS, RHS), Builder->getTrue(), true);
- }
- // FALL THROUGH uadd into sadd
- case OCF_SIGNED_ADD: {
- // X + 0 -> {X, false}
- if (match(RHS, m_Zero()))
- return SetResult(LHS, Builder->getFalse(), false);
- // We can strength reduce this signed add into a regular add if we can prove
- // that it will never overflow.
- if (OCF == OCF_SIGNED_ADD)
- if (WillNotOverflowSignedAdd(LHS, RHS, OrigI))
- return SetResult(Builder->CreateNSWAdd(LHS, RHS), Builder->getFalse(),
- true);
- break;
- }
- case OCF_UNSIGNED_SUB:
- case OCF_SIGNED_SUB: {
- // X - 0 -> {X, false}
- if (match(RHS, m_Zero()))
- return SetResult(LHS, Builder->getFalse(), false);
- if (OCF == OCF_SIGNED_SUB) {
- if (WillNotOverflowSignedSub(LHS, RHS, OrigI))
- return SetResult(Builder->CreateNSWSub(LHS, RHS), Builder->getFalse(),
- true);
- } else {
- if (WillNotOverflowUnsignedSub(LHS, RHS, OrigI))
- return SetResult(Builder->CreateNUWSub(LHS, RHS), Builder->getFalse(),
- true);
- }
- break;
- }
- case OCF_UNSIGNED_MUL: {
- OverflowResult OR = computeOverflowForUnsignedMul(LHS, RHS, &OrigI);
- if (OR == OverflowResult::NeverOverflows)
- return SetResult(Builder->CreateNUWMul(LHS, RHS), Builder->getFalse(),
- true);
- if (OR == OverflowResult::AlwaysOverflows)
- return SetResult(Builder->CreateMul(LHS, RHS), Builder->getTrue(), true);
- } // FALL THROUGH
- case OCF_SIGNED_MUL:
- // X * undef -> undef
- if (isa<UndefValue>(RHS))
- return SetResult(RHS, UndefValue::get(Builder->getInt1Ty()), false);
- // X * 0 -> {0, false}
- if (match(RHS, m_Zero()))
- return SetResult(RHS, Builder->getFalse(), false);
- // X * 1 -> {X, false}
- if (match(RHS, m_One()))
- return SetResult(LHS, Builder->getFalse(), false);
- if (OCF == OCF_SIGNED_MUL)
- if (WillNotOverflowSignedMul(LHS, RHS, OrigI))
- return SetResult(Builder->CreateNSWMul(LHS, RHS), Builder->getFalse(),
- true);
- break;
- }
- return false;
- }
- /// \brief Recognize and process idiom involving test for multiplication
- /// overflow.
- ///
- /// The caller has matched a pattern of the form:
- /// I = cmp u (mul(zext A, zext B), V
- /// The function checks if this is a test for overflow and if so replaces
- /// multiplication with call to 'mul.with.overflow' intrinsic.
- ///
- /// \param I Compare instruction.
- /// \param MulVal Result of 'mult' instruction. It is one of the arguments of
- /// the compare instruction. Must be of integer type.
- /// \param OtherVal The other argument of compare instruction.
- /// \returns Instruction which must replace the compare instruction, NULL if no
- /// replacement required.
- static Instruction *ProcessUMulZExtIdiom(ICmpInst &I, Value *MulVal,
- Value *OtherVal, InstCombiner &IC) {
- // Don't bother doing this transformation for pointers, don't do it for
- // vectors.
- if (!isa<IntegerType>(MulVal->getType()))
- return nullptr;
- assert(I.getOperand(0) == MulVal || I.getOperand(1) == MulVal);
- assert(I.getOperand(0) == OtherVal || I.getOperand(1) == OtherVal);
- Instruction *MulInstr = cast<Instruction>(MulVal);
- assert(MulInstr->getOpcode() == Instruction::Mul);
- auto *LHS = cast<ZExtOperator>(MulInstr->getOperand(0)),
- *RHS = cast<ZExtOperator>(MulInstr->getOperand(1));
- assert(LHS->getOpcode() == Instruction::ZExt);
- assert(RHS->getOpcode() == Instruction::ZExt);
- Value *A = LHS->getOperand(0), *B = RHS->getOperand(0);
- // Calculate type and width of the result produced by mul.with.overflow.
- Type *TyA = A->getType(), *TyB = B->getType();
- unsigned WidthA = TyA->getPrimitiveSizeInBits(),
- WidthB = TyB->getPrimitiveSizeInBits();
- unsigned MulWidth;
- Type *MulType;
- if (WidthB > WidthA) {
- MulWidth = WidthB;
- MulType = TyB;
- } else {
- MulWidth = WidthA;
- MulType = TyA;
- }
- // In order to replace the original mul with a narrower mul.with.overflow,
- // all uses must ignore upper bits of the product. The number of used low
- // bits must be not greater than the width of mul.with.overflow.
- if (MulVal->hasNUsesOrMore(2))
- for (User *U : MulVal->users()) {
- if (U == &I)
- continue;
- if (TruncInst *TI = dyn_cast<TruncInst>(U)) {
- // Check if truncation ignores bits above MulWidth.
- unsigned TruncWidth = TI->getType()->getPrimitiveSizeInBits();
- if (TruncWidth > MulWidth)
- return nullptr;
- } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U)) {
- // Check if AND ignores bits above MulWidth.
- if (BO->getOpcode() != Instruction::And)
- return nullptr;
- if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->getOperand(1))) {
- const APInt &CVal = CI->getValue();
- if (CVal.getBitWidth() - CVal.countLeadingZeros() > MulWidth)
- return nullptr;
- }
- } else {
- // Other uses prohibit this transformation.
- return nullptr;
- }
- }
- // Recognize patterns
- switch (I.getPredicate()) {
- case ICmpInst::ICMP_EQ:
- case ICmpInst::ICMP_NE:
- // Recognize pattern:
- // mulval = mul(zext A, zext B)
- // cmp eq/neq mulval, zext trunc mulval
- if (ZExtInst *Zext = dyn_cast<ZExtInst>(OtherVal))
- if (Zext->hasOneUse()) {
- Value *ZextArg = Zext->getOperand(0);
- if (TruncInst *Trunc = dyn_cast<TruncInst>(ZextArg))
- if (Trunc->getType()->getPrimitiveSizeInBits() == MulWidth)
- break; //Recognized
- }
- // Recognize pattern:
- // mulval = mul(zext A, zext B)
- // cmp eq/neq mulval, and(mulval, mask), mask selects low MulWidth bits.
- ConstantInt *CI;
- Value *ValToMask;
- if (match(OtherVal, m_And(m_Value(ValToMask), m_ConstantInt(CI)))) {
- if (ValToMask != MulVal)
- return nullptr;
- const APInt &CVal = CI->getValue() + 1;
- if (CVal.isPowerOf2()) {
- unsigned MaskWidth = CVal.logBase2();
- if (MaskWidth == MulWidth)
- break; // Recognized
- }
- }
- return nullptr;
- case ICmpInst::ICMP_UGT:
- // Recognize pattern:
- // mulval = mul(zext A, zext B)
- // cmp ugt mulval, max
- if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) {
- APInt MaxVal = APInt::getMaxValue(MulWidth);
- MaxVal = MaxVal.zext(CI->getBitWidth());
- if (MaxVal.eq(CI->getValue()))
- break; // Recognized
- }
- return nullptr;
- case ICmpInst::ICMP_UGE:
- // Recognize pattern:
- // mulval = mul(zext A, zext B)
- // cmp uge mulval, max+1
- if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) {
- APInt MaxVal = APInt::getOneBitSet(CI->getBitWidth(), MulWidth);
- if (MaxVal.eq(CI->getValue()))
- break; // Recognized
- }
- return nullptr;
- case ICmpInst::ICMP_ULE:
- // Recognize pattern:
- // mulval = mul(zext A, zext B)
- // cmp ule mulval, max
- if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) {
- APInt MaxVal = APInt::getMaxValue(MulWidth);
- MaxVal = MaxVal.zext(CI->getBitWidth());
- if (MaxVal.eq(CI->getValue()))
- break; // Recognized
- }
- return nullptr;
- case ICmpInst::ICMP_ULT:
- // Recognize pattern:
- // mulval = mul(zext A, zext B)
- // cmp ule mulval, max + 1
- if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) {
- APInt MaxVal = APInt::getOneBitSet(CI->getBitWidth(), MulWidth);
- if (MaxVal.eq(CI->getValue()))
- break; // Recognized
- }
- return nullptr;
- default:
- return nullptr;
- }
- InstCombiner::BuilderTy *Builder = IC.Builder;
- Builder->SetInsertPoint(MulInstr);
- Module *M = I.getParent()->getParent()->getParent();
- // Replace: mul(zext A, zext B) --> mul.with.overflow(A, B)
- Value *MulA = A, *MulB = B;
- if (WidthA < MulWidth)
- MulA = Builder->CreateZExt(A, MulType);
- if (WidthB < MulWidth)
- MulB = Builder->CreateZExt(B, MulType);
- Value *F =
- Intrinsic::getDeclaration(M, Intrinsic::umul_with_overflow, MulType);
- CallInst *Call = Builder->CreateCall(F, {MulA, MulB}, "umul");
- IC.Worklist.Add(MulInstr);
- // If there are uses of mul result other than the comparison, we know that
- // they are truncation or binary AND. Change them to use result of
- // mul.with.overflow and adjust properly mask/size.
- if (MulVal->hasNUsesOrMore(2)) {
- Value *Mul = Builder->CreateExtractValue(Call, 0, "umul.value");
- for (User *U : MulVal->users()) {
- if (U == &I || U == OtherVal)
- continue;
- if (TruncInst *TI = dyn_cast<TruncInst>(U)) {
- if (TI->getType()->getPrimitiveSizeInBits() == MulWidth)
- IC.ReplaceInstUsesWith(*TI, Mul);
- else
- TI->setOperand(0, Mul);
- } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U)) {
- assert(BO->getOpcode() == Instruction::And);
- // Replace (mul & mask) --> zext (mul.with.overflow & short_mask)
- ConstantInt *CI = cast<ConstantInt>(BO->getOperand(1));
- APInt ShortMask = CI->getValue().trunc(MulWidth);
- Value *ShortAnd = Builder->CreateAnd(Mul, ShortMask);
- Instruction *Zext =
- cast<Instruction>(Builder->CreateZExt(ShortAnd, BO->getType()));
- IC.Worklist.Add(Zext);
- IC.ReplaceInstUsesWith(*BO, Zext);
- } else {
- llvm_unreachable("Unexpected Binary operation");
- }
- IC.Worklist.Add(cast<Instruction>(U));
- }
- }
- if (isa<Instruction>(OtherVal))
- IC.Worklist.Add(cast<Instruction>(OtherVal));
- // The original icmp gets replaced with the overflow value, maybe inverted
- // depending on predicate.
- bool Inverse = false;
- switch (I.getPredicate()) {
- case ICmpInst::ICMP_NE:
- break;
- case ICmpInst::ICMP_EQ:
- Inverse = true;
- break;
- case ICmpInst::ICMP_UGT:
- case ICmpInst::ICMP_UGE:
- if (I.getOperand(0) == MulVal)
- break;
- Inverse = true;
- break;
- case ICmpInst::ICMP_ULT:
- case ICmpInst::ICMP_ULE:
- if (I.getOperand(1) == MulVal)
- break;
- Inverse = true;
- break;
- default:
- llvm_unreachable("Unexpected predicate");
- }
- if (Inverse) {
- Value *Res = Builder->CreateExtractValue(Call, 1);
- return BinaryOperator::CreateNot(Res);
- }
- return ExtractValueInst::Create(Call, 1);
- }
- // DemandedBitsLHSMask - When performing a comparison against a constant,
- // it is possible that not all the bits in the LHS are demanded. This helper
- // method computes the mask that IS demanded.
- static APInt DemandedBitsLHSMask(ICmpInst &I,
- unsigned BitWidth, bool isSignCheck) {
- if (isSignCheck)
- return APInt::getSignBit(BitWidth);
- ConstantInt *CI = dyn_cast<ConstantInt>(I.getOperand(1));
- if (!CI) return APInt::getAllOnesValue(BitWidth);
- const APInt &RHS = CI->getValue();
- switch (I.getPredicate()) {
- // For a UGT comparison, we don't care about any bits that
- // correspond to the trailing ones of the comparand. The value of these
- // bits doesn't impact the outcome of the comparison, because any value
- // greater than the RHS must differ in a bit higher than these due to carry.
- case ICmpInst::ICMP_UGT: {
- unsigned trailingOnes = RHS.countTrailingOnes();
- APInt lowBitsSet = APInt::getLowBitsSet(BitWidth, trailingOnes);
- return ~lowBitsSet;
- }
- // Similarly, for a ULT comparison, we don't care about the trailing zeros.
- // Any value less than the RHS must differ in a higher bit because of carries.
- case ICmpInst::ICMP_ULT: {
- unsigned trailingZeros = RHS.countTrailingZeros();
- APInt lowBitsSet = APInt::getLowBitsSet(BitWidth, trailingZeros);
- return ~lowBitsSet;
- }
- default:
- return APInt::getAllOnesValue(BitWidth);
- }
- }
- /// \brief Check if the order of \p Op0 and \p Op1 as operand in an ICmpInst
- /// should be swapped.
- /// The decision is based on how many times these two operands are reused
- /// as subtract operands and their positions in those instructions.
- /// The rational is that several architectures use the same instruction for
- /// both subtract and cmp, thus it is better if the order of those operands
- /// match.
- /// \return true if Op0 and Op1 should be swapped.
- static bool swapMayExposeCSEOpportunities(const Value * Op0,
- const Value * Op1) {
- // Filter out pointer value as those cannot appears directly in subtract.
- // FIXME: we may want to go through inttoptrs or bitcasts.
- if (Op0->getType()->isPointerTy())
- return false;
- // Count every uses of both Op0 and Op1 in a subtract.
- // Each time Op0 is the first operand, count -1: swapping is bad, the
- // subtract has already the same layout as the compare.
- // Each time Op0 is the second operand, count +1: swapping is good, the
- // subtract has a different layout as the compare.
- // At the end, if the benefit is greater than 0, Op0 should come second to
- // expose more CSE opportunities.
- int GlobalSwapBenefits = 0;
- for (const User *U : Op0->users()) {
- const BinaryOperator *BinOp = dyn_cast<BinaryOperator>(U);
- if (!BinOp || BinOp->getOpcode() != Instruction::Sub)
- continue;
- // If Op0 is the first argument, this is not beneficial to swap the
- // arguments.
- int LocalSwapBenefits = -1;
- unsigned Op1Idx = 1;
- if (BinOp->getOperand(Op1Idx) == Op0) {
- Op1Idx = 0;
- LocalSwapBenefits = 1;
- }
- if (BinOp->getOperand(Op1Idx) != Op1)
- continue;
- GlobalSwapBenefits += LocalSwapBenefits;
- }
- return GlobalSwapBenefits > 0;
- }
- /// \brief Check that one use is in the same block as the definition and all
- /// other uses are in blocks dominated by a given block
- ///
- /// \param DI Definition
- /// \param UI Use
- /// \param DB Block that must dominate all uses of \p DI outside
- /// the parent block
- /// \return true when \p UI is the only use of \p DI in the parent block
- /// and all other uses of \p DI are in blocks dominated by \p DB.
- ///
- bool InstCombiner::dominatesAllUses(const Instruction *DI,
- const Instruction *UI,
- const BasicBlock *DB) const {
- assert(DI && UI && "Instruction not defined\n");
- // ignore incomplete definitions
- if (!DI->getParent())
- return false;
- // DI and UI must be in the same block
- if (DI->getParent() != UI->getParent())
- return false;
- // Protect from self-referencing blocks
- if (DI->getParent() == DB)
- return false;
- // DominatorTree available?
- if (!DT)
- return false;
- for (const User *U : DI->users()) {
- auto *Usr = cast<Instruction>(U);
- if (Usr != UI && !DT->dominates(DB, Usr->getParent()))
- return false;
- }
- return true;
- }
- ///
- /// true when the instruction sequence within a block is select-cmp-br.
- ///
- static bool isChainSelectCmpBranch(const SelectInst *SI) {
- const BasicBlock *BB = SI->getParent();
- if (!BB)
- return false;
- auto *BI = dyn_cast_or_null<BranchInst>(BB->getTerminator());
- if (!BI || BI->getNumSuccessors() != 2)
- return false;
- auto *IC = dyn_cast<ICmpInst>(BI->getCondition());
- if (!IC || (IC->getOperand(0) != SI && IC->getOperand(1) != SI))
- return false;
- return true;
- }
- ///
- /// \brief True when a select result is replaced by one of its operands
- /// in select-icmp sequence. This will eventually result in the elimination
- /// of the select.
- ///
- /// \param SI Select instruction
- /// \param Icmp Compare instruction
- /// \param SIOpd Operand that replaces the select
- ///
- /// Notes:
- /// - The replacement is global and requires dominator information
- /// - The caller is responsible for the actual replacement
- ///
- /// Example:
- ///
- /// entry:
- /// %4 = select i1 %3, %C* %0, %C* null
- /// %5 = icmp eq %C* %4, null
- /// br i1 %5, label %9, label %7
- /// ...
- /// ; <label>:7 ; preds = %entry
- /// %8 = getelementptr inbounds %C* %4, i64 0, i32 0
- /// ...
- ///
- /// can be transformed to
- ///
- /// %5 = icmp eq %C* %0, null
- /// %6 = select i1 %3, i1 %5, i1 true
- /// br i1 %6, label %9, label %7
- /// ...
- /// ; <label>:7 ; preds = %entry
- /// %8 = getelementptr inbounds %C* %0, i64 0, i32 0 // replace by %0!
- ///
- /// Similar when the first operand of the select is a constant or/and
- /// the compare is for not equal rather than equal.
- ///
- /// NOTE: The function is only called when the select and compare constants
- /// are equal, the optimization can work only for EQ predicates. This is not a
- /// major restriction since a NE compare should be 'normalized' to an equal
- /// compare, which usually happens in the combiner and test case
- /// select-cmp-br.ll
- /// checks for it.
- bool InstCombiner::replacedSelectWithOperand(SelectInst *SI,
- const ICmpInst *Icmp,
- const unsigned SIOpd) {
- assert((SIOpd == 1 || SIOpd == 2) && "Invalid select operand!");
- if (isChainSelectCmpBranch(SI) && Icmp->getPredicate() == ICmpInst::ICMP_EQ) {
- BasicBlock *Succ = SI->getParent()->getTerminator()->getSuccessor(1);
- // The check for the unique predecessor is not the best that can be
- // done. But it protects efficiently against cases like when SI's
- // home block has two successors, Succ and Succ1, and Succ1 predecessor
- // of Succ. Then SI can't be replaced by SIOpd because the use that gets
- // replaced can be reached on either path. So the uniqueness check
- // guarantees that the path all uses of SI (outside SI's parent) are on
- // is disjoint from all other paths out of SI. But that information
- // is more expensive to compute, and the trade-off here is in favor
- // of compile-time.
- if (Succ->getUniquePredecessor() && dominatesAllUses(SI, Icmp, Succ)) {
- NumSel++;
- SI->replaceUsesOutsideBlock(SI->getOperand(SIOpd), SI->getParent());
- return true;
- }
- }
- return false;
- }
- Instruction *InstCombiner::visitICmpInst(ICmpInst &I) {
- bool Changed = false;
- Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
- unsigned Op0Cplxity = getComplexity(Op0);
- unsigned Op1Cplxity = getComplexity(Op1);
- /// Orders the operands of the compare so that they are listed from most
- /// complex to least complex. This puts constants before unary operators,
- /// before binary operators.
- if (Op0Cplxity < Op1Cplxity ||
- (Op0Cplxity == Op1Cplxity &&
- swapMayExposeCSEOpportunities(Op0, Op1))) {
- I.swapOperands();
- std::swap(Op0, Op1);
- Changed = true;
- }
- if (Value *V =
- SimplifyICmpInst(I.getPredicate(), Op0, Op1, DL, TLI, DT, AC, &I))
- return ReplaceInstUsesWith(I, V);
- // comparing -val or val with non-zero is the same as just comparing val
- // ie, abs(val) != 0 -> val != 0
- if (I.getPredicate() == ICmpInst::ICMP_NE && match(Op1, m_Zero()))
- {
- Value *Cond, *SelectTrue, *SelectFalse;
- if (match(Op0, m_Select(m_Value(Cond), m_Value(SelectTrue),
- m_Value(SelectFalse)))) {
- if (Value *V = dyn_castNegVal(SelectTrue)) {
- if (V == SelectFalse)
- return CmpInst::Create(Instruction::ICmp, I.getPredicate(), V, Op1);
- }
- else if (Value *V = dyn_castNegVal(SelectFalse)) {
- if (V == SelectTrue)
- return CmpInst::Create(Instruction::ICmp, I.getPredicate(), V, Op1);
- }
- }
- }
- Type *Ty = Op0->getType();
- // icmp's with boolean values can always be turned into bitwise operations
- if (Ty->isIntegerTy(1)) {
- switch (I.getPredicate()) {
- default: llvm_unreachable("Invalid icmp instruction!");
- case ICmpInst::ICMP_EQ: { // icmp eq i1 A, B -> ~(A^B)
- Value *Xor = Builder->CreateXor(Op0, Op1, I.getName()+"tmp");
- return BinaryOperator::CreateNot(Xor);
- }
- case ICmpInst::ICMP_NE: // icmp eq i1 A, B -> A^B
- return BinaryOperator::CreateXor(Op0, Op1);
- case ICmpInst::ICMP_UGT:
- std::swap(Op0, Op1); // Change icmp ugt -> icmp ult
- // FALL THROUGH
- case ICmpInst::ICMP_ULT:{ // icmp ult i1 A, B -> ~A & B
- Value *Not = Builder->CreateNot(Op0, I.getName()+"tmp");
- return BinaryOperator::CreateAnd(Not, Op1);
- }
- case ICmpInst::ICMP_SGT:
- std::swap(Op0, Op1); // Change icmp sgt -> icmp slt
- // FALL THROUGH
- case ICmpInst::ICMP_SLT: { // icmp slt i1 A, B -> A & ~B
- Value *Not = Builder->CreateNot(Op1, I.getName()+"tmp");
- return BinaryOperator::CreateAnd(Not, Op0);
- }
- case ICmpInst::ICMP_UGE:
- std::swap(Op0, Op1); // Change icmp uge -> icmp ule
- // FALL THROUGH
- case ICmpInst::ICMP_ULE: { // icmp ule i1 A, B -> ~A | B
- Value *Not = Builder->CreateNot(Op0, I.getName()+"tmp");
- return BinaryOperator::CreateOr(Not, Op1);
- }
- case ICmpInst::ICMP_SGE:
- std::swap(Op0, Op1); // Change icmp sge -> icmp sle
- // FALL THROUGH
- case ICmpInst::ICMP_SLE: { // icmp sle i1 A, B -> A | ~B
- Value *Not = Builder->CreateNot(Op1, I.getName()+"tmp");
- return BinaryOperator::CreateOr(Not, Op0);
- }
- }
- }
- unsigned BitWidth = 0;
- if (Ty->isIntOrIntVectorTy())
- BitWidth = Ty->getScalarSizeInBits();
- else // Get pointer size.
- BitWidth = DL.getTypeSizeInBits(Ty->getScalarType());
- bool isSignBit = false;
- // See if we are doing a comparison with a constant.
- if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
- Value *A = nullptr, *B = nullptr;
- // Match the following pattern, which is a common idiom when writing
- // overflow-safe integer arithmetic function. The source performs an
- // addition in wider type, and explicitly checks for overflow using
- // comparisons against INT_MIN and INT_MAX. Simplify this by using the
- // sadd_with_overflow intrinsic.
- //
- // TODO: This could probably be generalized to handle other overflow-safe
- // operations if we worked out the formulas to compute the appropriate
- // magic constants.
- //
- // sum = a + b
- // if (sum+128 >u 255) ... -> llvm.sadd.with.overflow.i8
- {
- ConstantInt *CI2; // I = icmp ugt (add (add A, B), CI2), CI
- if (I.getPredicate() == ICmpInst::ICMP_UGT &&
- match(Op0, m_Add(m_Add(m_Value(A), m_Value(B)), m_ConstantInt(CI2))))
- if (Instruction *Res = ProcessUGT_ADDCST_ADD(I, A, B, CI2, CI, *this))
- return Res;
- }
- // The following transforms are only 'worth it' if the only user of the
- // subtraction is the icmp.
- if (Op0->hasOneUse()) {
- // (icmp ne/eq (sub A B) 0) -> (icmp ne/eq A, B)
- if (I.isEquality() && CI->isZero() &&
- match(Op0, m_Sub(m_Value(A), m_Value(B))))
- return new ICmpInst(I.getPredicate(), A, B);
- // (icmp sgt (sub nsw A B), -1) -> (icmp sge A, B)
- if (I.getPredicate() == ICmpInst::ICMP_SGT && CI->isAllOnesValue() &&
- match(Op0, m_NSWSub(m_Value(A), m_Value(B))))
- return new ICmpInst(ICmpInst::ICMP_SGE, A, B);
- // (icmp sgt (sub nsw A B), 0) -> (icmp sgt A, B)
- if (I.getPredicate() == ICmpInst::ICMP_SGT && CI->isZero() &&
- match(Op0, m_NSWSub(m_Value(A), m_Value(B))))
- return new ICmpInst(ICmpInst::ICMP_SGT, A, B);
- // (icmp slt (sub nsw A B), 0) -> (icmp slt A, B)
- if (I.getPredicate() == ICmpInst::ICMP_SLT && CI->isZero() &&
- match(Op0, m_NSWSub(m_Value(A), m_Value(B))))
- return new ICmpInst(ICmpInst::ICMP_SLT, A, B);
- // (icmp slt (sub nsw A B), 1) -> (icmp sle A, B)
- if (I.getPredicate() == ICmpInst::ICMP_SLT && CI->isOne() &&
- match(Op0, m_NSWSub(m_Value(A), m_Value(B))))
- return new ICmpInst(ICmpInst::ICMP_SLE, A, B);
- }
- // If we have an icmp le or icmp ge instruction, turn it into the
- // appropriate icmp lt or icmp gt instruction. This allows us to rely on
- // them being folded in the code below. The SimplifyICmpInst code has
- // already handled the edge cases for us, so we just assert on them.
- switch (I.getPredicate()) {
- default: break;
- case ICmpInst::ICMP_ULE:
- assert(!CI->isMaxValue(false)); // A <=u MAX -> TRUE
- return new ICmpInst(ICmpInst::ICMP_ULT, Op0,
- Builder->getInt(CI->getValue()+1));
- case ICmpInst::ICMP_SLE:
- assert(!CI->isMaxValue(true)); // A <=s MAX -> TRUE
- return new ICmpInst(ICmpInst::ICMP_SLT, Op0,
- Builder->getInt(CI->getValue()+1));
- case ICmpInst::ICMP_UGE:
- assert(!CI->isMinValue(false)); // A >=u MIN -> TRUE
- return new ICmpInst(ICmpInst::ICMP_UGT, Op0,
- Builder->getInt(CI->getValue()-1));
- case ICmpInst::ICMP_SGE:
- assert(!CI->isMinValue(true)); // A >=s MIN -> TRUE
- return new ICmpInst(ICmpInst::ICMP_SGT, Op0,
- Builder->getInt(CI->getValue()-1));
- }
- if (I.isEquality()) {
- ConstantInt *CI2;
- if (match(Op0, m_AShr(m_ConstantInt(CI2), m_Value(A))) ||
- match(Op0, m_LShr(m_ConstantInt(CI2), m_Value(A)))) {
- // (icmp eq/ne (ashr/lshr const2, A), const1)
- if (Instruction *Inst = FoldICmpCstShrCst(I, Op0, A, CI, CI2))
- return Inst;
- }
- if (match(Op0, m_Shl(m_ConstantInt(CI2), m_Value(A)))) {
- // (icmp eq/ne (shl const2, A), const1)
- if (Instruction *Inst = FoldICmpCstShlCst(I, Op0, A, CI, CI2))
- return Inst;
- }
- }
- // If this comparison is a normal comparison, it demands all
- // bits, if it is a sign bit comparison, it only demands the sign bit.
- bool UnusedBit;
- isSignBit = isSignBitCheck(I.getPredicate(), CI, UnusedBit);
- }
- // See if we can fold the comparison based on range information we can get
- // by checking whether bits are known to be zero or one in the input.
- if (BitWidth != 0) {
- APInt Op0KnownZero(BitWidth, 0), Op0KnownOne(BitWidth, 0);
- APInt Op1KnownZero(BitWidth, 0), Op1KnownOne(BitWidth, 0);
- if (SimplifyDemandedBits(I.getOperandUse(0),
- DemandedBitsLHSMask(I, BitWidth, isSignBit),
- Op0KnownZero, Op0KnownOne, 0))
- return &I;
- if (SimplifyDemandedBits(I.getOperandUse(1),
- APInt::getAllOnesValue(BitWidth), Op1KnownZero,
- Op1KnownOne, 0))
- return &I;
- // Given the known and unknown bits, compute a range that the LHS could be
- // in. Compute the Min, Max and RHS values based on the known bits. For the
- // EQ and NE we use unsigned values.
- APInt Op0Min(BitWidth, 0), Op0Max(BitWidth, 0);
- APInt Op1Min(BitWidth, 0), Op1Max(BitWidth, 0);
- if (I.isSigned()) {
- ComputeSignedMinMaxValuesFromKnownBits(Op0KnownZero, Op0KnownOne,
- Op0Min, Op0Max);
- ComputeSignedMinMaxValuesFromKnownBits(Op1KnownZero, Op1KnownOne,
- Op1Min, Op1Max);
- } else {
- ComputeUnsignedMinMaxValuesFromKnownBits(Op0KnownZero, Op0KnownOne,
- Op0Min, Op0Max);
- ComputeUnsignedMinMaxValuesFromKnownBits(Op1KnownZero, Op1KnownOne,
- Op1Min, Op1Max);
- }
- // If Min and Max are known to be the same, then SimplifyDemandedBits
- // figured out that the LHS is a constant. Just constant fold this now so
- // that code below can assume that Min != Max.
- if (!isa<Constant>(Op0) && Op0Min == Op0Max)
- return new ICmpInst(I.getPredicate(),
- ConstantInt::get(Op0->getType(), Op0Min), Op1);
- if (!isa<Constant>(Op1) && Op1Min == Op1Max)
- return new ICmpInst(I.getPredicate(), Op0,
- ConstantInt::get(Op1->getType(), Op1Min));
- // Based on the range information we know about the LHS, see if we can
- // simplify this comparison. For example, (x&4) < 8 is always true.
- switch (I.getPredicate()) {
- default: llvm_unreachable("Unknown icmp opcode!");
- case ICmpInst::ICMP_EQ: {
- if (Op0Max.ult(Op1Min) || Op0Min.ugt(Op1Max))
- return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
- // If all bits are known zero except for one, then we know at most one
- // bit is set. If the comparison is against zero, then this is a check
- // to see if *that* bit is set.
- APInt Op0KnownZeroInverted = ~Op0KnownZero;
- if (~Op1KnownZero == 0) {
- // If the LHS is an AND with the same constant, look through it.
- Value *LHS = nullptr;
- ConstantInt *LHSC = nullptr;
- if (!match(Op0, m_And(m_Value(LHS), m_ConstantInt(LHSC))) ||
- LHSC->getValue() != Op0KnownZeroInverted)
- LHS = Op0;
- // If the LHS is 1 << x, and we know the result is a power of 2 like 8,
- // then turn "((1 << x)&8) == 0" into "x != 3".
- // or turn "((1 << x)&7) == 0" into "x > 2".
- Value *X = nullptr;
- if (match(LHS, m_Shl(m_One(), m_Value(X)))) {
- APInt ValToCheck = Op0KnownZeroInverted;
- if (ValToCheck.isPowerOf2()) {
- unsigned CmpVal = ValToCheck.countTrailingZeros();
- return new ICmpInst(ICmpInst::ICMP_NE, X,
- ConstantInt::get(X->getType(), CmpVal));
- } else if ((++ValToCheck).isPowerOf2()) {
- unsigned CmpVal = ValToCheck.countTrailingZeros() - 1;
- return new ICmpInst(ICmpInst::ICMP_UGT, X,
- ConstantInt::get(X->getType(), CmpVal));
- }
- }
- // If the LHS is 8 >>u x, and we know the result is a power of 2 like 1,
- // then turn "((8 >>u x)&1) == 0" into "x != 3".
- const APInt *CI;
- if (Op0KnownZeroInverted == 1 &&
- match(LHS, m_LShr(m_Power2(CI), m_Value(X))))
- return new ICmpInst(ICmpInst::ICMP_NE, X,
- ConstantInt::get(X->getType(),
- CI->countTrailingZeros()));
- }
- break;
- }
- case ICmpInst::ICMP_NE: {
- if (Op0Max.ult(Op1Min) || Op0Min.ugt(Op1Max))
- return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
- // If all bits are known zero except for one, then we know at most one
- // bit is set. If the comparison is against zero, then this is a check
- // to see if *that* bit is set.
- APInt Op0KnownZeroInverted = ~Op0KnownZero;
- if (~Op1KnownZero == 0) {
- // If the LHS is an AND with the same constant, look through it.
- Value *LHS = nullptr;
- ConstantInt *LHSC = nullptr;
- if (!match(Op0, m_And(m_Value(LHS), m_ConstantInt(LHSC))) ||
- LHSC->getValue() != Op0KnownZeroInverted)
- LHS = Op0;
- // If the LHS is 1 << x, and we know the result is a power of 2 like 8,
- // then turn "((1 << x)&8) != 0" into "x == 3".
- // or turn "((1 << x)&7) != 0" into "x < 3".
- Value *X = nullptr;
- if (match(LHS, m_Shl(m_One(), m_Value(X)))) {
- APInt ValToCheck = Op0KnownZeroInverted;
- if (ValToCheck.isPowerOf2()) {
- unsigned CmpVal = ValToCheck.countTrailingZeros();
- return new ICmpInst(ICmpInst::ICMP_EQ, X,
- ConstantInt::get(X->getType(), CmpVal));
- } else if ((++ValToCheck).isPowerOf2()) {
- unsigned CmpVal = ValToCheck.countTrailingZeros();
- return new ICmpInst(ICmpInst::ICMP_ULT, X,
- ConstantInt::get(X->getType(), CmpVal));
- }
- }
- // If the LHS is 8 >>u x, and we know the result is a power of 2 like 1,
- // then turn "((8 >>u x)&1) != 0" into "x == 3".
- const APInt *CI;
- if (Op0KnownZeroInverted == 1 &&
- match(LHS, m_LShr(m_Power2(CI), m_Value(X))))
- return new ICmpInst(ICmpInst::ICMP_EQ, X,
- ConstantInt::get(X->getType(),
- CI->countTrailingZeros()));
- }
- break;
- }
- case ICmpInst::ICMP_ULT:
- if (Op0Max.ult(Op1Min)) // A <u B -> true if max(A) < min(B)
- return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
- if (Op0Min.uge(Op1Max)) // A <u B -> false if min(A) >= max(B)
- return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
- if (Op1Min == Op0Max) // A <u B -> A != B if max(A) == min(B)
- return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
- if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
- if (Op1Max == Op0Min+1) // A <u C -> A == C-1 if min(A)+1 == C
- return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
- Builder->getInt(CI->getValue()-1));
- // (x <u 2147483648) -> (x >s -1) -> true if sign bit clear
- if (CI->isMinValue(true))
- return new ICmpInst(ICmpInst::ICMP_SGT, Op0,
- Constant::getAllOnesValue(Op0->getType()));
- }
- break;
- case ICmpInst::ICMP_UGT:
- if (Op0Min.ugt(Op1Max)) // A >u B -> true if min(A) > max(B)
- return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
- if (Op0Max.ule(Op1Min)) // A >u B -> false if max(A) <= max(B)
- return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
- if (Op1Max == Op0Min) // A >u B -> A != B if min(A) == max(B)
- return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
- if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
- if (Op1Min == Op0Max-1) // A >u C -> A == C+1 if max(a)-1 == C
- return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
- Builder->getInt(CI->getValue()+1));
- // (x >u 2147483647) -> (x <s 0) -> true if sign bit set
- if (CI->isMaxValue(true))
- return new ICmpInst(ICmpInst::ICMP_SLT, Op0,
- Constant::getNullValue(Op0->getType()));
- }
- break;
- case ICmpInst::ICMP_SLT:
- if (Op0Max.slt(Op1Min)) // A <s B -> true if max(A) < min(C)
- return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
- if (Op0Min.sge(Op1Max)) // A <s B -> false if min(A) >= max(C)
- return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
- if (Op1Min == Op0Max) // A <s B -> A != B if max(A) == min(B)
- return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
- if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
- if (Op1Max == Op0Min+1) // A <s C -> A == C-1 if min(A)+1 == C
- return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
- Builder->getInt(CI->getValue()-1));
- }
- break;
- case ICmpInst::ICMP_SGT:
- if (Op0Min.sgt(Op1Max)) // A >s B -> true if min(A) > max(B)
- return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
- if (Op0Max.sle(Op1Min)) // A >s B -> false if max(A) <= min(B)
- return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
- if (Op1Max == Op0Min) // A >s B -> A != B if min(A) == max(B)
- return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
- if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
- if (Op1Min == Op0Max-1) // A >s C -> A == C+1 if max(A)-1 == C
- return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
- Builder->getInt(CI->getValue()+1));
- }
- break;
- case ICmpInst::ICMP_SGE:
- assert(!isa<ConstantInt>(Op1) && "ICMP_SGE with ConstantInt not folded!");
- if (Op0Min.sge(Op1Max)) // A >=s B -> true if min(A) >= max(B)
- return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
- if (Op0Max.slt(Op1Min)) // A >=s B -> false if max(A) < min(B)
- return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
- break;
- case ICmpInst::ICMP_SLE:
- assert(!isa<ConstantInt>(Op1) && "ICMP_SLE with ConstantInt not folded!");
- if (Op0Max.sle(Op1Min)) // A <=s B -> true if max(A) <= min(B)
- return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
- if (Op0Min.sgt(Op1Max)) // A <=s B -> false if min(A) > max(B)
- return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
- break;
- case ICmpInst::ICMP_UGE:
- assert(!isa<ConstantInt>(Op1) && "ICMP_UGE with ConstantInt not folded!");
- if (Op0Min.uge(Op1Max)) // A >=u B -> true if min(A) >= max(B)
- return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
- if (Op0Max.ult(Op1Min)) // A >=u B -> false if max(A) < min(B)
- return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
- break;
- case ICmpInst::ICMP_ULE:
- assert(!isa<ConstantInt>(Op1) && "ICMP_ULE with ConstantInt not folded!");
- if (Op0Max.ule(Op1Min)) // A <=u B -> true if max(A) <= min(B)
- return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
- if (Op0Min.ugt(Op1Max)) // A <=u B -> false if min(A) > max(B)
- return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
- break;
- }
- // Turn a signed comparison into an unsigned one if both operands
- // are known to have the same sign.
- if (I.isSigned() &&
- ((Op0KnownZero.isNegative() && Op1KnownZero.isNegative()) ||
- (Op0KnownOne.isNegative() && Op1KnownOne.isNegative())))
- return new ICmpInst(I.getUnsignedPredicate(), Op0, Op1);
- }
- // Test if the ICmpInst instruction is used exclusively by a select as
- // part of a minimum or maximum operation. If so, refrain from doing
- // any other folding. This helps out other analyses which understand
- // non-obfuscated minimum and maximum idioms, such as ScalarEvolution
- // and CodeGen. And in this case, at least one of the comparison
- // operands has at least one user besides the compare (the select),
- // which would often largely negate the benefit of folding anyway.
- if (I.hasOneUse())
- if (SelectInst *SI = dyn_cast<SelectInst>(*I.user_begin()))
- if ((SI->getOperand(1) == Op0 && SI->getOperand(2) == Op1) ||
- (SI->getOperand(2) == Op0 && SI->getOperand(1) == Op1))
- return nullptr;
- // See if we are doing a comparison between a constant and an instruction that
- // can be folded into the comparison.
- if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
- // Since the RHS is a ConstantInt (CI), if the left hand side is an
- // instruction, see if that instruction also has constants so that the
- // instruction can be folded into the icmp
- if (Instruction *LHSI = dyn_cast<Instruction>(Op0))
- if (Instruction *Res = visitICmpInstWithInstAndIntCst(I, LHSI, CI))
- return Res;
- }
- // Handle icmp with constant (but not simple integer constant) RHS
- if (Constant *RHSC = dyn_cast<Constant>(Op1)) {
- if (Instruction *LHSI = dyn_cast<Instruction>(Op0))
- switch (LHSI->getOpcode()) {
- case Instruction::GetElementPtr:
- // icmp pred GEP (P, int 0, int 0, int 0), null -> icmp pred P, null
- if (RHSC->isNullValue() &&
- cast<GetElementPtrInst>(LHSI)->hasAllZeroIndices())
- return new ICmpInst(I.getPredicate(), LHSI->getOperand(0),
- Constant::getNullValue(LHSI->getOperand(0)->getType()));
- break;
- case Instruction::PHI:
- // Only fold icmp into the PHI if the phi and icmp are in the same
- // block. If in the same block, we're encouraging jump threading. If
- // not, we are just pessimizing the code by making an i1 phi.
- if (LHSI->getParent() == I.getParent())
- if (Instruction *NV = FoldOpIntoPhi(I))
- return NV;
- break;
- case Instruction::Select: {
- // If either operand of the select is a constant, we can fold the
- // comparison into the select arms, which will cause one to be
- // constant folded and the select turned into a bitwise or.
- Value *Op1 = nullptr, *Op2 = nullptr;
- ConstantInt *CI = 0;
- if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(1))) {
- Op1 = ConstantExpr::getICmp(I.getPredicate(), C, RHSC);
- CI = dyn_cast<ConstantInt>(Op1);
- }
- if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(2))) {
- Op2 = ConstantExpr::getICmp(I.getPredicate(), C, RHSC);
- CI = dyn_cast<ConstantInt>(Op2);
- }
- // We only want to perform this transformation if it will not lead to
- // additional code. This is true if either both sides of the select
- // fold to a constant (in which case the icmp is replaced with a select
- // which will usually simplify) or this is the only user of the
- // select (in which case we are trading a select+icmp for a simpler
- // select+icmp) or all uses of the select can be replaced based on
- // dominance information ("Global cases").
- bool Transform = false;
- if (Op1 && Op2)
- Transform = true;
- else if (Op1 || Op2) {
- // Local case
- if (LHSI->hasOneUse())
- Transform = true;
- // Global cases
- else if (CI && !CI->isZero())
- // When Op1 is constant try replacing select with second operand.
- // Otherwise Op2 is constant and try replacing select with first
- // operand.
- Transform = replacedSelectWithOperand(cast<SelectInst>(LHSI), &I,
- Op1 ? 2 : 1);
- }
- if (Transform) {
- if (!Op1)
- Op1 = Builder->CreateICmp(I.getPredicate(), LHSI->getOperand(1),
- RHSC, I.getName());
- if (!Op2)
- Op2 = Builder->CreateICmp(I.getPredicate(), LHSI->getOperand(2),
- RHSC, I.getName());
- return SelectInst::Create(LHSI->getOperand(0), Op1, Op2);
- }
- break;
- }
- case Instruction::IntToPtr:
- // icmp pred inttoptr(X), null -> icmp pred X, 0
- if (RHSC->isNullValue() &&
- DL.getIntPtrType(RHSC->getType()) == LHSI->getOperand(0)->getType())
- return new ICmpInst(I.getPredicate(), LHSI->getOperand(0),
- Constant::getNullValue(LHSI->getOperand(0)->getType()));
- break;
- case Instruction::Load:
- // Try to optimize things like "A[i] > 4" to index computations.
- if (GetElementPtrInst *GEP =
- dyn_cast<GetElementPtrInst>(LHSI->getOperand(0))) {
- if (GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)))
- if (GV->isConstant() && GV->hasDefinitiveInitializer() &&
- !cast<LoadInst>(LHSI)->isVolatile())
- if (Instruction *Res = FoldCmpLoadFromIndexedGlobal(GEP, GV, I))
- return Res;
- }
- break;
- }
- }
- // If we can optimize a 'icmp GEP, P' or 'icmp P, GEP', do so now.
- if (GEPOperator *GEP = dyn_cast<GEPOperator>(Op0))
- if (Instruction *NI = FoldGEPICmp(GEP, Op1, I.getPredicate(), I))
- return NI;
- if (GEPOperator *GEP = dyn_cast<GEPOperator>(Op1))
- if (Instruction *NI = FoldGEPICmp(GEP, Op0,
- ICmpInst::getSwappedPredicate(I.getPredicate()), I))
- return NI;
- // Test to see if the operands of the icmp are casted versions of other
- // values. If the ptr->ptr cast can be stripped off both arguments, we do so
- // now.
- if (BitCastInst *CI = dyn_cast<BitCastInst>(Op0)) {
- if (Op0->getType()->isPointerTy() &&
- (isa<Constant>(Op1) || isa<BitCastInst>(Op1))) {
- // We keep moving the cast from the left operand over to the right
- // operand, where it can often be eliminated completely.
- Op0 = CI->getOperand(0);
- // If operand #1 is a bitcast instruction, it must also be a ptr->ptr cast
- // so eliminate it as well.
- if (BitCastInst *CI2 = dyn_cast<BitCastInst>(Op1))
- Op1 = CI2->getOperand(0);
- // If Op1 is a constant, we can fold the cast into the constant.
- if (Op0->getType() != Op1->getType()) {
- if (Constant *Op1C = dyn_cast<Constant>(Op1)) {
- Op1 = ConstantExpr::getBitCast(Op1C, Op0->getType());
- } else {
- // Otherwise, cast the RHS right before the icmp
- Op1 = Builder->CreateBitCast(Op1, Op0->getType());
- }
- }
- return new ICmpInst(I.getPredicate(), Op0, Op1);
- }
- }
- if (isa<CastInst>(Op0)) {
- // Handle the special case of: icmp (cast bool to X), <cst>
- // This comes up when you have code like
- // int X = A < B;
- // if (X) ...
- // For generality, we handle any zero-extension of any operand comparison
- // with a constant or another cast from the same type.
- if (isa<Constant>(Op1) || isa<CastInst>(Op1))
- if (Instruction *R = visitICmpInstWithCastAndCast(I))
- return R;
- }
- // Special logic for binary operators.
- BinaryOperator *BO0 = dyn_cast<BinaryOperator>(Op0);
- BinaryOperator *BO1 = dyn_cast<BinaryOperator>(Op1);
- if (BO0 || BO1) {
- CmpInst::Predicate Pred = I.getPredicate();
- bool NoOp0WrapProblem = false, NoOp1WrapProblem = false;
- if (BO0 && isa<OverflowingBinaryOperator>(BO0))
- NoOp0WrapProblem = ICmpInst::isEquality(Pred) ||
- (CmpInst::isUnsigned(Pred) && BO0->hasNoUnsignedWrap()) ||
- (CmpInst::isSigned(Pred) && BO0->hasNoSignedWrap());
- if (BO1 && isa<OverflowingBinaryOperator>(BO1))
- NoOp1WrapProblem = ICmpInst::isEquality(Pred) ||
- (CmpInst::isUnsigned(Pred) && BO1->hasNoUnsignedWrap()) ||
- (CmpInst::isSigned(Pred) && BO1->hasNoSignedWrap());
- // Analyze the case when either Op0 or Op1 is an add instruction.
- // Op0 = A + B (or A and B are null); Op1 = C + D (or C and D are null).
- Value *A = nullptr, *B = nullptr, *C = nullptr, *D = nullptr;
- if (BO0 && BO0->getOpcode() == Instruction::Add)
- A = BO0->getOperand(0), B = BO0->getOperand(1);
- if (BO1 && BO1->getOpcode() == Instruction::Add)
- C = BO1->getOperand(0), D = BO1->getOperand(1);
- // icmp (X+cst) < 0 --> X < -cst
- if (NoOp0WrapProblem && ICmpInst::isSigned(Pred) && match(Op1, m_Zero()))
- if (ConstantInt *RHSC = dyn_cast_or_null<ConstantInt>(B))
- if (!RHSC->isMinValue(/*isSigned=*/true))
- return new ICmpInst(Pred, A, ConstantExpr::getNeg(RHSC));
- // icmp (X+Y), X -> icmp Y, 0 for equalities or if there is no overflow.
- if ((A == Op1 || B == Op1) && NoOp0WrapProblem)
- return new ICmpInst(Pred, A == Op1 ? B : A,
- Constant::getNullValue(Op1->getType()));
- // icmp X, (X+Y) -> icmp 0, Y for equalities or if there is no overflow.
- if ((C == Op0 || D == Op0) && NoOp1WrapProblem)
- return new ICmpInst(Pred, Constant::getNullValue(Op0->getType()),
- C == Op0 ? D : C);
- // icmp (X+Y), (X+Z) -> icmp Y, Z for equalities or if there is no overflow.
- if (A && C && (A == C || A == D || B == C || B == D) &&
- NoOp0WrapProblem && NoOp1WrapProblem &&
- // Try not to increase register pressure.
- BO0->hasOneUse() && BO1->hasOneUse()) {
- // Determine Y and Z in the form icmp (X+Y), (X+Z).
- Value *Y, *Z;
- if (A == C) {
- // C + B == C + D -> B == D
- Y = B;
- Z = D;
- } else if (A == D) {
- // D + B == C + D -> B == C
- Y = B;
- Z = C;
- } else if (B == C) {
- // A + C == C + D -> A == D
- Y = A;
- Z = D;
- } else {
- assert(B == D);
- // A + D == C + D -> A == C
- Y = A;
- Z = C;
- }
- return new ICmpInst(Pred, Y, Z);
- }
- // icmp slt (X + -1), Y -> icmp sle X, Y
- if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SLT &&
- match(B, m_AllOnes()))
- return new ICmpInst(CmpInst::ICMP_SLE, A, Op1);
- // icmp sge (X + -1), Y -> icmp sgt X, Y
- if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SGE &&
- match(B, m_AllOnes()))
- return new ICmpInst(CmpInst::ICMP_SGT, A, Op1);
- // icmp sle (X + 1), Y -> icmp slt X, Y
- if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SLE &&
- match(B, m_One()))
- return new ICmpInst(CmpInst::ICMP_SLT, A, Op1);
- // icmp sgt (X + 1), Y -> icmp sge X, Y
- if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SGT &&
- match(B, m_One()))
- return new ICmpInst(CmpInst::ICMP_SGE, A, Op1);
- // if C1 has greater magnitude than C2:
- // icmp (X + C1), (Y + C2) -> icmp (X + C3), Y
- // s.t. C3 = C1 - C2
- //
- // if C2 has greater magnitude than C1:
- // icmp (X + C1), (Y + C2) -> icmp X, (Y + C3)
- // s.t. C3 = C2 - C1
- if (A && C && NoOp0WrapProblem && NoOp1WrapProblem &&
- (BO0->hasOneUse() || BO1->hasOneUse()) && !I.isUnsigned())
- if (ConstantInt *C1 = dyn_cast<ConstantInt>(B))
- if (ConstantInt *C2 = dyn_cast<ConstantInt>(D)) {
- const APInt &AP1 = C1->getValue();
- const APInt &AP2 = C2->getValue();
- if (AP1.isNegative() == AP2.isNegative()) {
- APInt AP1Abs = C1->getValue().abs();
- APInt AP2Abs = C2->getValue().abs();
- if (AP1Abs.uge(AP2Abs)) {
- ConstantInt *C3 = Builder->getInt(AP1 - AP2);
- Value *NewAdd = Builder->CreateNSWAdd(A, C3);
- return new ICmpInst(Pred, NewAdd, C);
- } else {
- ConstantInt *C3 = Builder->getInt(AP2 - AP1);
- Value *NewAdd = Builder->CreateNSWAdd(C, C3);
- return new ICmpInst(Pred, A, NewAdd);
- }
- }
- }
- // Analyze the case when either Op0 or Op1 is a sub instruction.
- // Op0 = A - B (or A and B are null); Op1 = C - D (or C and D are null).
- A = nullptr; B = nullptr; C = nullptr; D = nullptr;
- if (BO0 && BO0->getOpcode() == Instruction::Sub)
- A = BO0->getOperand(0), B = BO0->getOperand(1);
- if (BO1 && BO1->getOpcode() == Instruction::Sub)
- C = BO1->getOperand(0), D = BO1->getOperand(1);
- // icmp (X-Y), X -> icmp 0, Y for equalities or if there is no overflow.
- if (A == Op1 && NoOp0WrapProblem)
- return new ICmpInst(Pred, Constant::getNullValue(Op1->getType()), B);
- // icmp X, (X-Y) -> icmp Y, 0 for equalities or if there is no overflow.
- if (C == Op0 && NoOp1WrapProblem)
- return new ICmpInst(Pred, D, Constant::getNullValue(Op0->getType()));
- // icmp (Y-X), (Z-X) -> icmp Y, Z for equalities or if there is no overflow.
- if (B && D && B == D && NoOp0WrapProblem && NoOp1WrapProblem &&
- // Try not to increase register pressure.
- BO0->hasOneUse() && BO1->hasOneUse())
- return new ICmpInst(Pred, A, C);
- // icmp (X-Y), (X-Z) -> icmp Z, Y for equalities or if there is no overflow.
- if (A && C && A == C && NoOp0WrapProblem && NoOp1WrapProblem &&
- // Try not to increase register pressure.
- BO0->hasOneUse() && BO1->hasOneUse())
- return new ICmpInst(Pred, D, B);
- // icmp (0-X) < cst --> x > -cst
- if (NoOp0WrapProblem && ICmpInst::isSigned(Pred)) {
- Value *X;
- if (match(BO0, m_Neg(m_Value(X))))
- if (ConstantInt *RHSC = dyn_cast<ConstantInt>(Op1))
- if (!RHSC->isMinValue(/*isSigned=*/true))
- return new ICmpInst(I.getSwappedPredicate(), X,
- ConstantExpr::getNeg(RHSC));
- }
- BinaryOperator *SRem = nullptr;
- // icmp (srem X, Y), Y
- if (BO0 && BO0->getOpcode() == Instruction::SRem &&
- Op1 == BO0->getOperand(1))
- SRem = BO0;
- // icmp Y, (srem X, Y)
- else if (BO1 && BO1->getOpcode() == Instruction::SRem &&
- Op0 == BO1->getOperand(1))
- SRem = BO1;
- if (SRem) {
- // We don't check hasOneUse to avoid increasing register pressure because
- // the value we use is the same value this instruction was already using.
- switch (SRem == BO0 ? ICmpInst::getSwappedPredicate(Pred) : Pred) {
- default: break;
- case ICmpInst::ICMP_EQ:
- return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
- case ICmpInst::ICMP_NE:
- return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
- case ICmpInst::ICMP_SGT:
- case ICmpInst::ICMP_SGE:
- return new ICmpInst(ICmpInst::ICMP_SGT, SRem->getOperand(1),
- Constant::getAllOnesValue(SRem->getType()));
- case ICmpInst::ICMP_SLT:
- case ICmpInst::ICMP_SLE:
- return new ICmpInst(ICmpInst::ICMP_SLT, SRem->getOperand(1),
- Constant::getNullValue(SRem->getType()));
- }
- }
- if (BO0 && BO1 && BO0->getOpcode() == BO1->getOpcode() &&
- BO0->hasOneUse() && BO1->hasOneUse() &&
- BO0->getOperand(1) == BO1->getOperand(1)) {
- switch (BO0->getOpcode()) {
- default: break;
- case Instruction::Add:
- case Instruction::Sub:
- case Instruction::Xor:
- if (I.isEquality()) // a+x icmp eq/ne b+x --> a icmp b
- return new ICmpInst(I.getPredicate(), BO0->getOperand(0),
- BO1->getOperand(0));
- // icmp u/s (a ^ signbit), (b ^ signbit) --> icmp s/u a, b
- if (ConstantInt *CI = dyn_cast<ConstantInt>(BO0->getOperand(1))) {
- if (CI->getValue().isSignBit()) {
- ICmpInst::Predicate Pred = I.isSigned()
- ? I.getUnsignedPredicate()
- : I.getSignedPredicate();
- return new ICmpInst(Pred, BO0->getOperand(0),
- BO1->getOperand(0));
- }
- if (CI->isMaxValue(true)) {
- ICmpInst::Predicate Pred = I.isSigned()
- ? I.getUnsignedPredicate()
- : I.getSignedPredicate();
- Pred = I.getSwappedPredicate(Pred);
- return new ICmpInst(Pred, BO0->getOperand(0),
- BO1->getOperand(0));
- }
- }
- break;
- case Instruction::Mul:
- if (!I.isEquality())
- break;
- if (ConstantInt *CI = dyn_cast<ConstantInt>(BO0->getOperand(1))) {
- // a * Cst icmp eq/ne b * Cst --> a & Mask icmp b & Mask
- // Mask = -1 >> count-trailing-zeros(Cst).
- if (!CI->isZero() && !CI->isOne()) {
- const APInt &AP = CI->getValue();
- ConstantInt *Mask = ConstantInt::get(I.getContext(),
- APInt::getLowBitsSet(AP.getBitWidth(),
- AP.getBitWidth() -
- AP.countTrailingZeros()));
- Value *And1 = Builder->CreateAnd(BO0->getOperand(0), Mask);
- Value *And2 = Builder->CreateAnd(BO1->getOperand(0), Mask);
- return new ICmpInst(I.getPredicate(), And1, And2);
- }
- }
- break;
- case Instruction::UDiv:
- case Instruction::LShr:
- if (I.isSigned())
- break;
- // fall-through
- case Instruction::SDiv:
- case Instruction::AShr:
- if (!BO0->isExact() || !BO1->isExact())
- break;
- return new ICmpInst(I.getPredicate(), BO0->getOperand(0),
- BO1->getOperand(0));
- case Instruction::Shl: {
- bool NUW = BO0->hasNoUnsignedWrap() && BO1->hasNoUnsignedWrap();
- bool NSW = BO0->hasNoSignedWrap() && BO1->hasNoSignedWrap();
- if (!NUW && !NSW)
- break;
- if (!NSW && I.isSigned())
- break;
- return new ICmpInst(I.getPredicate(), BO0->getOperand(0),
- BO1->getOperand(0));
- }
- }
- }
- }
- { Value *A, *B;
- // Transform (A & ~B) == 0 --> (A & B) != 0
- // and (A & ~B) != 0 --> (A & B) == 0
- // if A is a power of 2.
- if (match(Op0, m_And(m_Value(A), m_Not(m_Value(B)))) &&
- match(Op1, m_Zero()) &&
- isKnownToBeAPowerOfTwo(A, DL, false, 0, AC, &I, DT) && I.isEquality())
- return new ICmpInst(I.getInversePredicate(),
- Builder->CreateAnd(A, B),
- Op1);
- // ~x < ~y --> y < x
- // ~x < cst --> ~cst < x
- if (match(Op0, m_Not(m_Value(A)))) {
- if (match(Op1, m_Not(m_Value(B))))
- return new ICmpInst(I.getPredicate(), B, A);
- if (ConstantInt *RHSC = dyn_cast<ConstantInt>(Op1))
- return new ICmpInst(I.getPredicate(), ConstantExpr::getNot(RHSC), A);
- }
- Instruction *AddI = nullptr;
- if (match(&I, m_UAddWithOverflow(m_Value(A), m_Value(B),
- m_Instruction(AddI))) &&
- isa<IntegerType>(A->getType())) {
- Value *Result;
- Constant *Overflow;
- if (OptimizeOverflowCheck(OCF_UNSIGNED_ADD, A, B, *AddI, Result,
- Overflow)) {
- ReplaceInstUsesWith(*AddI, Result);
- return ReplaceInstUsesWith(I, Overflow);
- }
- }
- // (zext a) * (zext b) --> llvm.umul.with.overflow.
- if (match(Op0, m_Mul(m_ZExt(m_Value(A)), m_ZExt(m_Value(B))))) {
- if (Instruction *R = ProcessUMulZExtIdiom(I, Op0, Op1, *this))
- return R;
- }
- if (match(Op1, m_Mul(m_ZExt(m_Value(A)), m_ZExt(m_Value(B))))) {
- if (Instruction *R = ProcessUMulZExtIdiom(I, Op1, Op0, *this))
- return R;
- }
- }
- if (I.isEquality()) {
- Value *A, *B, *C, *D;
- if (match(Op0, m_Xor(m_Value(A), m_Value(B)))) {
- if (A == Op1 || B == Op1) { // (A^B) == A -> B == 0
- Value *OtherVal = A == Op1 ? B : A;
- return new ICmpInst(I.getPredicate(), OtherVal,
- Constant::getNullValue(A->getType()));
- }
- if (match(Op1, m_Xor(m_Value(C), m_Value(D)))) {
- // A^c1 == C^c2 --> A == C^(c1^c2)
- ConstantInt *C1, *C2;
- if (match(B, m_ConstantInt(C1)) &&
- match(D, m_ConstantInt(C2)) && Op1->hasOneUse()) {
- Constant *NC = Builder->getInt(C1->getValue() ^ C2->getValue());
- Value *Xor = Builder->CreateXor(C, NC);
- return new ICmpInst(I.getPredicate(), A, Xor);
- }
- // A^B == A^D -> B == D
- if (A == C) return new ICmpInst(I.getPredicate(), B, D);
- if (A == D) return new ICmpInst(I.getPredicate(), B, C);
- if (B == C) return new ICmpInst(I.getPredicate(), A, D);
- if (B == D) return new ICmpInst(I.getPredicate(), A, C);
- }
- }
- if (match(Op1, m_Xor(m_Value(A), m_Value(B))) &&
- (A == Op0 || B == Op0)) {
- // A == (A^B) -> B == 0
- Value *OtherVal = A == Op0 ? B : A;
- return new ICmpInst(I.getPredicate(), OtherVal,
- Constant::getNullValue(A->getType()));
- }
- // (X&Z) == (Y&Z) -> (X^Y) & Z == 0
- if (match(Op0, m_OneUse(m_And(m_Value(A), m_Value(B)))) &&
- match(Op1, m_OneUse(m_And(m_Value(C), m_Value(D))))) {
- Value *X = nullptr, *Y = nullptr, *Z = nullptr;
- if (A == C) {
- X = B; Y = D; Z = A;
- } else if (A == D) {
- X = B; Y = C; Z = A;
- } else if (B == C) {
- X = A; Y = D; Z = B;
- } else if (B == D) {
- X = A; Y = C; Z = B;
- }
- if (X) { // Build (X^Y) & Z
- Op1 = Builder->CreateXor(X, Y);
- Op1 = Builder->CreateAnd(Op1, Z);
- I.setOperand(0, Op1);
- I.setOperand(1, Constant::getNullValue(Op1->getType()));
- return &I;
- }
- }
- // Transform (zext A) == (B & (1<<X)-1) --> A == (trunc B)
- // and (B & (1<<X)-1) == (zext A) --> A == (trunc B)
- ConstantInt *Cst1;
- if ((Op0->hasOneUse() &&
- match(Op0, m_ZExt(m_Value(A))) &&
- match(Op1, m_And(m_Value(B), m_ConstantInt(Cst1)))) ||
- (Op1->hasOneUse() &&
- match(Op0, m_And(m_Value(B), m_ConstantInt(Cst1))) &&
- match(Op1, m_ZExt(m_Value(A))))) {
- APInt Pow2 = Cst1->getValue() + 1;
- if (Pow2.isPowerOf2() && isa<IntegerType>(A->getType()) &&
- Pow2.logBase2() == cast<IntegerType>(A->getType())->getBitWidth())
- return new ICmpInst(I.getPredicate(), A,
- Builder->CreateTrunc(B, A->getType()));
- }
- // (A >> C) == (B >> C) --> (A^B) u< (1 << C)
- // For lshr and ashr pairs.
- if ((match(Op0, m_OneUse(m_LShr(m_Value(A), m_ConstantInt(Cst1)))) &&
- match(Op1, m_OneUse(m_LShr(m_Value(B), m_Specific(Cst1))))) ||
- (match(Op0, m_OneUse(m_AShr(m_Value(A), m_ConstantInt(Cst1)))) &&
- match(Op1, m_OneUse(m_AShr(m_Value(B), m_Specific(Cst1)))))) {
- unsigned TypeBits = Cst1->getBitWidth();
- unsigned ShAmt = (unsigned)Cst1->getLimitedValue(TypeBits);
- if (ShAmt < TypeBits && ShAmt != 0) {
- ICmpInst::Predicate Pred = I.getPredicate() == ICmpInst::ICMP_NE
- ? ICmpInst::ICMP_UGE
- : ICmpInst::ICMP_ULT;
- Value *Xor = Builder->CreateXor(A, B, I.getName() + ".unshifted");
- APInt CmpVal = APInt::getOneBitSet(TypeBits, ShAmt);
- return new ICmpInst(Pred, Xor, Builder->getInt(CmpVal));
- }
- }
- // (A << C) == (B << C) --> ((A^B) & (~0U >> C)) == 0
- if (match(Op0, m_OneUse(m_Shl(m_Value(A), m_ConstantInt(Cst1)))) &&
- match(Op1, m_OneUse(m_Shl(m_Value(B), m_Specific(Cst1))))) {
- unsigned TypeBits = Cst1->getBitWidth();
- unsigned ShAmt = (unsigned)Cst1->getLimitedValue(TypeBits);
- if (ShAmt < TypeBits && ShAmt != 0) {
- Value *Xor = Builder->CreateXor(A, B, I.getName() + ".unshifted");
- APInt AndVal = APInt::getLowBitsSet(TypeBits, TypeBits - ShAmt);
- Value *And = Builder->CreateAnd(Xor, Builder->getInt(AndVal),
- I.getName() + ".mask");
- return new ICmpInst(I.getPredicate(), And,
- Constant::getNullValue(Cst1->getType()));
- }
- }
- // Transform "icmp eq (trunc (lshr(X, cst1)), cst" to
- // "icmp (and X, mask), cst"
- uint64_t ShAmt = 0;
- if (Op0->hasOneUse() &&
- match(Op0, m_Trunc(m_OneUse(m_LShr(m_Value(A),
- m_ConstantInt(ShAmt))))) &&
- match(Op1, m_ConstantInt(Cst1)) &&
- // Only do this when A has multiple uses. This is most important to do
- // when it exposes other optimizations.
- !A->hasOneUse()) {
- unsigned ASize =cast<IntegerType>(A->getType())->getPrimitiveSizeInBits();
- if (ShAmt < ASize) {
- APInt MaskV =
- APInt::getLowBitsSet(ASize, Op0->getType()->getPrimitiveSizeInBits());
- MaskV <<= ShAmt;
- APInt CmpV = Cst1->getValue().zext(ASize);
- CmpV <<= ShAmt;
- Value *Mask = Builder->CreateAnd(A, Builder->getInt(MaskV));
- return new ICmpInst(I.getPredicate(), Mask, Builder->getInt(CmpV));
- }
- }
- }
- // The 'cmpxchg' instruction returns an aggregate containing the old value and
- // an i1 which indicates whether or not we successfully did the swap.
- //
- // Replace comparisons between the old value and the expected value with the
- // indicator that 'cmpxchg' returns.
- //
- // N.B. This transform is only valid when the 'cmpxchg' is not permitted to
- // spuriously fail. In those cases, the old value may equal the expected
- // value but it is possible for the swap to not occur.
- if (I.getPredicate() == ICmpInst::ICMP_EQ)
- if (auto *EVI = dyn_cast<ExtractValueInst>(Op0))
- if (auto *ACXI = dyn_cast<AtomicCmpXchgInst>(EVI->getAggregateOperand()))
- if (EVI->getIndices()[0] == 0 && ACXI->getCompareOperand() == Op1 &&
- !ACXI->isWeak())
- return ExtractValueInst::Create(ACXI, 1);
- {
- Value *X; ConstantInt *Cst;
- // icmp X+Cst, X
- if (match(Op0, m_Add(m_Value(X), m_ConstantInt(Cst))) && Op1 == X)
- return FoldICmpAddOpCst(I, X, Cst, I.getPredicate());
- // icmp X, X+Cst
- if (match(Op1, m_Add(m_Value(X), m_ConstantInt(Cst))) && Op0 == X)
- return FoldICmpAddOpCst(I, X, Cst, I.getSwappedPredicate());
- }
- return Changed ? &I : nullptr;
- }
- /// FoldFCmp_IntToFP_Cst - Fold fcmp ([us]itofp x, cst) if possible.
- Instruction *InstCombiner::FoldFCmp_IntToFP_Cst(FCmpInst &I,
- Instruction *LHSI,
- Constant *RHSC) {
- if (!isa<ConstantFP>(RHSC)) return nullptr;
- const APFloat &RHS = cast<ConstantFP>(RHSC)->getValueAPF();
- // Get the width of the mantissa. We don't want to hack on conversions that
- // might lose information from the integer, e.g. "i64 -> float"
- int MantissaWidth = LHSI->getType()->getFPMantissaWidth();
- if (MantissaWidth == -1) return nullptr; // Unknown.
- IntegerType *IntTy = cast<IntegerType>(LHSI->getOperand(0)->getType());
- // Check to see that the input is converted from an integer type that is small
- // enough that preserves all bits. TODO: check here for "known" sign bits.
- // This would allow us to handle (fptosi (x >>s 62) to float) if x is i64 f.e.
- unsigned InputSize = IntTy->getScalarSizeInBits();
- // If this is a uitofp instruction, we need an extra bit to hold the sign.
- bool LHSUnsigned = isa<UIToFPInst>(LHSI);
- if (LHSUnsigned)
- ++InputSize;
- if (I.isEquality()) {
- FCmpInst::Predicate P = I.getPredicate();
- bool IsExact = false;
- APSInt RHSCvt(IntTy->getBitWidth(), LHSUnsigned);
- RHS.convertToInteger(RHSCvt, APFloat::rmNearestTiesToEven, &IsExact);
- // If the floating point constant isn't an integer value, we know if we will
- // ever compare equal / not equal to it.
- if (!IsExact) {
- // TODO: Can never be -0.0 and other non-representable values
- APFloat RHSRoundInt(RHS);
- RHSRoundInt.roundToIntegral(APFloat::rmNearestTiesToEven);
- if (RHS.compare(RHSRoundInt) != APFloat::cmpEqual) {
- if (P == FCmpInst::FCMP_OEQ || P == FCmpInst::FCMP_UEQ)
- return ReplaceInstUsesWith(I, Builder->getFalse());
- assert(P == FCmpInst::FCMP_ONE || P == FCmpInst::FCMP_UNE);
- return ReplaceInstUsesWith(I, Builder->getTrue());
- }
- }
- // TODO: If the constant is exactly representable, is it always OK to do
- // equality compares as integer?
- }
- // Comparisons with zero are a special case where we know we won't lose
- // information.
- bool IsCmpZero = RHS.isPosZero();
- // If the conversion would lose info, don't hack on this.
- if ((int)InputSize > MantissaWidth && !IsCmpZero)
- return nullptr;
- // Otherwise, we can potentially simplify the comparison. We know that it
- // will always come through as an integer value and we know the constant is
- // not a NAN (it would have been previously simplified).
- assert(!RHS.isNaN() && "NaN comparison not already folded!");
- ICmpInst::Predicate Pred;
- switch (I.getPredicate()) {
- default: llvm_unreachable("Unexpected predicate!");
- case FCmpInst::FCMP_UEQ:
- case FCmpInst::FCMP_OEQ:
- Pred = ICmpInst::ICMP_EQ;
- break;
- case FCmpInst::FCMP_UGT:
- case FCmpInst::FCMP_OGT:
- Pred = LHSUnsigned ? ICmpInst::ICMP_UGT : ICmpInst::ICMP_SGT;
- break;
- case FCmpInst::FCMP_UGE:
- case FCmpInst::FCMP_OGE:
- Pred = LHSUnsigned ? ICmpInst::ICMP_UGE : ICmpInst::ICMP_SGE;
- break;
- case FCmpInst::FCMP_ULT:
- case FCmpInst::FCMP_OLT:
- Pred = LHSUnsigned ? ICmpInst::ICMP_ULT : ICmpInst::ICMP_SLT;
- break;
- case FCmpInst::FCMP_ULE:
- case FCmpInst::FCMP_OLE:
- Pred = LHSUnsigned ? ICmpInst::ICMP_ULE : ICmpInst::ICMP_SLE;
- break;
- case FCmpInst::FCMP_UNE:
- case FCmpInst::FCMP_ONE:
- Pred = ICmpInst::ICMP_NE;
- break;
- case FCmpInst::FCMP_ORD:
- return ReplaceInstUsesWith(I, Builder->getTrue());
- case FCmpInst::FCMP_UNO:
- return ReplaceInstUsesWith(I, Builder->getFalse());
- }
- // Now we know that the APFloat is a normal number, zero or inf.
- // See if the FP constant is too large for the integer. For example,
- // comparing an i8 to 300.0.
- unsigned IntWidth = IntTy->getScalarSizeInBits();
- if (!LHSUnsigned) {
- // If the RHS value is > SignedMax, fold the comparison. This handles +INF
- // and large values.
- APFloat SMax(RHS.getSemantics());
- SMax.convertFromAPInt(APInt::getSignedMaxValue(IntWidth), true,
- APFloat::rmNearestTiesToEven);
- if (SMax.compare(RHS) == APFloat::cmpLessThan) { // smax < 13123.0
- if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_SLT ||
- Pred == ICmpInst::ICMP_SLE)
- return ReplaceInstUsesWith(I, Builder->getTrue());
- return ReplaceInstUsesWith(I, Builder->getFalse());
- }
- } else {
- // If the RHS value is > UnsignedMax, fold the comparison. This handles
- // +INF and large values.
- APFloat UMax(RHS.getSemantics());
- UMax.convertFromAPInt(APInt::getMaxValue(IntWidth), false,
- APFloat::rmNearestTiesToEven);
- if (UMax.compare(RHS) == APFloat::cmpLessThan) { // umax < 13123.0
- if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_ULT ||
- Pred == ICmpInst::ICMP_ULE)
- return ReplaceInstUsesWith(I, Builder->getTrue());
- return ReplaceInstUsesWith(I, Builder->getFalse());
- }
- }
- if (!LHSUnsigned) {
- // See if the RHS value is < SignedMin.
- APFloat SMin(RHS.getSemantics());
- SMin.convertFromAPInt(APInt::getSignedMinValue(IntWidth), true,
- APFloat::rmNearestTiesToEven);
- if (SMin.compare(RHS) == APFloat::cmpGreaterThan) { // smin > 12312.0
- if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_SGT ||
- Pred == ICmpInst::ICMP_SGE)
- return ReplaceInstUsesWith(I, Builder->getTrue());
- return ReplaceInstUsesWith(I, Builder->getFalse());
- }
- } else {
- // See if the RHS value is < UnsignedMin.
- APFloat SMin(RHS.getSemantics());
- SMin.convertFromAPInt(APInt::getMinValue(IntWidth), true,
- APFloat::rmNearestTiesToEven);
- if (SMin.compare(RHS) == APFloat::cmpGreaterThan) { // umin > 12312.0
- if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_UGT ||
- Pred == ICmpInst::ICMP_UGE)
- return ReplaceInstUsesWith(I, Builder->getTrue());
- return ReplaceInstUsesWith(I, Builder->getFalse());
- }
- }
- // Okay, now we know that the FP constant fits in the range [SMIN, SMAX] or
- // [0, UMAX], but it may still be fractional. See if it is fractional by
- // casting the FP value to the integer value and back, checking for equality.
- // Don't do this for zero, because -0.0 is not fractional.
- Constant *RHSInt = LHSUnsigned
- ? ConstantExpr::getFPToUI(RHSC, IntTy)
- : ConstantExpr::getFPToSI(RHSC, IntTy);
- if (!RHS.isZero()) {
- bool Equal = LHSUnsigned
- ? ConstantExpr::getUIToFP(RHSInt, RHSC->getType()) == RHSC
- : ConstantExpr::getSIToFP(RHSInt, RHSC->getType()) == RHSC;
- if (!Equal) {
- // If we had a comparison against a fractional value, we have to adjust
- // the compare predicate and sometimes the value. RHSC is rounded towards
- // zero at this point.
- switch (Pred) {
- default: llvm_unreachable("Unexpected integer comparison!");
- case ICmpInst::ICMP_NE: // (float)int != 4.4 --> true
- return ReplaceInstUsesWith(I, Builder->getTrue());
- case ICmpInst::ICMP_EQ: // (float)int == 4.4 --> false
- return ReplaceInstUsesWith(I, Builder->getFalse());
- case ICmpInst::ICMP_ULE:
- // (float)int <= 4.4 --> int <= 4
- // (float)int <= -4.4 --> false
- if (RHS.isNegative())
- return ReplaceInstUsesWith(I, Builder->getFalse());
- break;
- case ICmpInst::ICMP_SLE:
- // (float)int <= 4.4 --> int <= 4
- // (float)int <= -4.4 --> int < -4
- if (RHS.isNegative())
- Pred = ICmpInst::ICMP_SLT;
- break;
- case ICmpInst::ICMP_ULT:
- // (float)int < -4.4 --> false
- // (float)int < 4.4 --> int <= 4
- if (RHS.isNegative())
- return ReplaceInstUsesWith(I, Builder->getFalse());
- Pred = ICmpInst::ICMP_ULE;
- break;
- case ICmpInst::ICMP_SLT:
- // (float)int < -4.4 --> int < -4
- // (float)int < 4.4 --> int <= 4
- if (!RHS.isNegative())
- Pred = ICmpInst::ICMP_SLE;
- break;
- case ICmpInst::ICMP_UGT:
- // (float)int > 4.4 --> int > 4
- // (float)int > -4.4 --> true
- if (RHS.isNegative())
- return ReplaceInstUsesWith(I, Builder->getTrue());
- break;
- case ICmpInst::ICMP_SGT:
- // (float)int > 4.4 --> int > 4
- // (float)int > -4.4 --> int >= -4
- if (RHS.isNegative())
- Pred = ICmpInst::ICMP_SGE;
- break;
- case ICmpInst::ICMP_UGE:
- // (float)int >= -4.4 --> true
- // (float)int >= 4.4 --> int > 4
- if (RHS.isNegative())
- return ReplaceInstUsesWith(I, Builder->getTrue());
- Pred = ICmpInst::ICMP_UGT;
- break;
- case ICmpInst::ICMP_SGE:
- // (float)int >= -4.4 --> int >= -4
- // (float)int >= 4.4 --> int > 4
- if (!RHS.isNegative())
- Pred = ICmpInst::ICMP_SGT;
- break;
- }
- }
- }
- // Lower this FP comparison into an appropriate integer version of the
- // comparison.
- return new ICmpInst(Pred, LHSI->getOperand(0), RHSInt);
- }
- Instruction *InstCombiner::visitFCmpInst(FCmpInst &I) {
- bool Changed = false;
- /// Orders the operands of the compare so that they are listed from most
- /// complex to least complex. This puts constants before unary operators,
- /// before binary operators.
- if (getComplexity(I.getOperand(0)) < getComplexity(I.getOperand(1))) {
- I.swapOperands();
- Changed = true;
- }
- Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
- if (Value *V = SimplifyFCmpInst(I.getPredicate(), Op0, Op1,
- I.getFastMathFlags(), DL, TLI, DT, AC, &I))
- return ReplaceInstUsesWith(I, V);
- // Simplify 'fcmp pred X, X'
- if (Op0 == Op1) {
- switch (I.getPredicate()) {
- default: llvm_unreachable("Unknown predicate!");
- case FCmpInst::FCMP_UNO: // True if unordered: isnan(X) | isnan(Y)
- case FCmpInst::FCMP_ULT: // True if unordered or less than
- case FCmpInst::FCMP_UGT: // True if unordered or greater than
- case FCmpInst::FCMP_UNE: // True if unordered or not equal
- // Canonicalize these to be 'fcmp uno %X, 0.0'.
- I.setPredicate(FCmpInst::FCMP_UNO);
- I.setOperand(1, Constant::getNullValue(Op0->getType()));
- return &I;
- case FCmpInst::FCMP_ORD: // True if ordered (no nans)
- case FCmpInst::FCMP_OEQ: // True if ordered and equal
- case FCmpInst::FCMP_OGE: // True if ordered and greater than or equal
- case FCmpInst::FCMP_OLE: // True if ordered and less than or equal
- // Canonicalize these to be 'fcmp ord %X, 0.0'.
- I.setPredicate(FCmpInst::FCMP_ORD);
- I.setOperand(1, Constant::getNullValue(Op0->getType()));
- return &I;
- }
- }
- // Test if the FCmpInst instruction is used exclusively by a select as
- // part of a minimum or maximum operation. If so, refrain from doing
- // any other folding. This helps out other analyses which understand
- // non-obfuscated minimum and maximum idioms, such as ScalarEvolution
- // and CodeGen. And in this case, at least one of the comparison
- // operands has at least one user besides the compare (the select),
- // which would often largely negate the benefit of folding anyway.
- if (I.hasOneUse())
- if (SelectInst *SI = dyn_cast<SelectInst>(*I.user_begin()))
- if ((SI->getOperand(1) == Op0 && SI->getOperand(2) == Op1) ||
- (SI->getOperand(2) == Op0 && SI->getOperand(1) == Op1))
- return nullptr;
- // Handle fcmp with constant RHS
- if (Constant *RHSC = dyn_cast<Constant>(Op1)) {
- if (Instruction *LHSI = dyn_cast<Instruction>(Op0))
- switch (LHSI->getOpcode()) {
- case Instruction::FPExt: {
- // fcmp (fpext x), C -> fcmp x, (fptrunc C) if fptrunc is lossless
- FPExtInst *LHSExt = cast<FPExtInst>(LHSI);
- ConstantFP *RHSF = dyn_cast<ConstantFP>(RHSC);
- if (!RHSF)
- break;
- const fltSemantics *Sem;
- // FIXME: This shouldn't be here.
- if (LHSExt->getSrcTy()->isHalfTy())
- Sem = &APFloat::IEEEhalf;
- else if (LHSExt->getSrcTy()->isFloatTy())
- Sem = &APFloat::IEEEsingle;
- else if (LHSExt->getSrcTy()->isDoubleTy())
- Sem = &APFloat::IEEEdouble;
- else if (LHSExt->getSrcTy()->isFP128Ty())
- Sem = &APFloat::IEEEquad;
- else if (LHSExt->getSrcTy()->isX86_FP80Ty())
- Sem = &APFloat::x87DoubleExtended;
- else if (LHSExt->getSrcTy()->isPPC_FP128Ty())
- Sem = &APFloat::PPCDoubleDouble;
- else
- break;
- bool Lossy;
- APFloat F = RHSF->getValueAPF();
- F.convert(*Sem, APFloat::rmNearestTiesToEven, &Lossy);
- // Avoid lossy conversions and denormals. Zero is a special case
- // that's OK to convert.
- APFloat Fabs = F;
- Fabs.clearSign();
- if (!Lossy &&
- ((Fabs.compare(APFloat::getSmallestNormalized(*Sem)) !=
- APFloat::cmpLessThan) || Fabs.isZero()))
- return new FCmpInst(I.getPredicate(), LHSExt->getOperand(0),
- ConstantFP::get(RHSC->getContext(), F));
- break;
- }
- case Instruction::PHI:
- // Only fold fcmp into the PHI if the phi and fcmp are in the same
- // block. If in the same block, we're encouraging jump threading. If
- // not, we are just pessimizing the code by making an i1 phi.
- if (LHSI->getParent() == I.getParent())
- if (Instruction *NV = FoldOpIntoPhi(I))
- return NV;
- break;
- case Instruction::SIToFP:
- case Instruction::UIToFP:
- if (Instruction *NV = FoldFCmp_IntToFP_Cst(I, LHSI, RHSC))
- return NV;
- break;
- case Instruction::FSub: {
- // fcmp pred (fneg x), C -> fcmp swap(pred) x, -C
- Value *Op;
- if (match(LHSI, m_FNeg(m_Value(Op))))
- return new FCmpInst(I.getSwappedPredicate(), Op,
- ConstantExpr::getFNeg(RHSC));
- break;
- }
- case Instruction::Load:
- if (GetElementPtrInst *GEP =
- dyn_cast<GetElementPtrInst>(LHSI->getOperand(0))) {
- if (GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)))
- if (GV->isConstant() && GV->hasDefinitiveInitializer() &&
- !cast<LoadInst>(LHSI)->isVolatile())
- if (Instruction *Res = FoldCmpLoadFromIndexedGlobal(GEP, GV, I))
- return Res;
- }
- break;
- case Instruction::Call: {
- if (!RHSC->isNullValue())
- break;
- CallInst *CI = cast<CallInst>(LHSI);
- const Function *F = CI->getCalledFunction();
- if (!F)
- break;
- // Various optimization for fabs compared with zero.
- LibFunc::Func Func;
- if (F->getIntrinsicID() == Intrinsic::fabs ||
- (TLI->getLibFunc(F->getName(), Func) && TLI->has(Func) &&
- (Func == LibFunc::fabs || Func == LibFunc::fabsf ||
- Func == LibFunc::fabsl))) {
- switch (I.getPredicate()) {
- default:
- break;
- // fabs(x) < 0 --> false
- case FCmpInst::FCMP_OLT:
- return ReplaceInstUsesWith(I, Builder->getFalse());
- // fabs(x) > 0 --> x != 0
- case FCmpInst::FCMP_OGT:
- return new FCmpInst(FCmpInst::FCMP_ONE, CI->getArgOperand(0), RHSC);
- // fabs(x) <= 0 --> x == 0
- case FCmpInst::FCMP_OLE:
- return new FCmpInst(FCmpInst::FCMP_OEQ, CI->getArgOperand(0), RHSC);
- // fabs(x) >= 0 --> !isnan(x)
- case FCmpInst::FCMP_OGE:
- return new FCmpInst(FCmpInst::FCMP_ORD, CI->getArgOperand(0), RHSC);
- // fabs(x) == 0 --> x == 0
- // fabs(x) != 0 --> x != 0
- case FCmpInst::FCMP_OEQ:
- case FCmpInst::FCMP_UEQ:
- case FCmpInst::FCMP_ONE:
- case FCmpInst::FCMP_UNE:
- return new FCmpInst(I.getPredicate(), CI->getArgOperand(0), RHSC);
- }
- }
- }
- }
- }
- // fcmp pred (fneg x), (fneg y) -> fcmp swap(pred) x, y
- Value *X, *Y;
- if (match(Op0, m_FNeg(m_Value(X))) && match(Op1, m_FNeg(m_Value(Y))))
- return new FCmpInst(I.getSwappedPredicate(), X, Y);
- // fcmp (fpext x), (fpext y) -> fcmp x, y
- if (FPExtInst *LHSExt = dyn_cast<FPExtInst>(Op0))
- if (FPExtInst *RHSExt = dyn_cast<FPExtInst>(Op1))
- if (LHSExt->getSrcTy() == RHSExt->getSrcTy())
- return new FCmpInst(I.getPredicate(), LHSExt->getOperand(0),
- RHSExt->getOperand(0));
- return Changed ? &I : nullptr;
- }
|