123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568 |
- //===- InstCombineInternal.h - InstCombine pass internals -------*- C++ -*-===//
- //
- // The LLVM Compiler Infrastructure
- //
- // This file is distributed under the University of Illinois Open Source
- // License. See LICENSE.TXT for details.
- //
- //===----------------------------------------------------------------------===//
- /// \file
- ///
- /// This file provides internal interfaces used to implement the InstCombine.
- ///
- //===----------------------------------------------------------------------===//
- #ifndef LLVM_LIB_TRANSFORMS_INSTCOMBINE_INSTCOMBINEINTERNAL_H
- #define LLVM_LIB_TRANSFORMS_INSTCOMBINE_INSTCOMBINEINTERNAL_H
- #include "llvm/Analysis/AliasAnalysis.h"
- #include "llvm/Analysis/AssumptionCache.h"
- #include "llvm/Analysis/LoopInfo.h"
- #include "llvm/Analysis/TargetFolder.h"
- #include "llvm/Analysis/ValueTracking.h"
- #include "llvm/IR/Dominators.h"
- #include "llvm/IR/IRBuilder.h"
- #include "llvm/IR/InstVisitor.h"
- #include "llvm/IR/IntrinsicInst.h"
- #include "llvm/IR/Operator.h"
- #include "llvm/IR/PatternMatch.h"
- #include "llvm/Pass.h"
- #include "llvm/Transforms/InstCombine/InstCombineWorklist.h"
- #define DEBUG_TYPE "instcombine"
- namespace llvm {
- class CallSite;
- class DataLayout;
- class DominatorTree;
- class TargetLibraryInfo;
- class DbgDeclareInst;
- class MemIntrinsic;
- class MemSetInst;
- /// \brief Assign a complexity or rank value to LLVM Values.
- ///
- /// This routine maps IR values to various complexity ranks:
- /// 0 -> undef
- /// 1 -> Constants
- /// 2 -> Other non-instructions
- /// 3 -> Arguments
- /// 3 -> Unary operations
- /// 4 -> Other instructions
- static inline unsigned getComplexity(Value *V) {
- if (isa<Instruction>(V)) {
- if (BinaryOperator::isNeg(V) || BinaryOperator::isFNeg(V) ||
- BinaryOperator::isNot(V))
- return 3;
- return 4;
- }
- if (isa<Argument>(V))
- return 3;
- return isa<Constant>(V) ? (isa<UndefValue>(V) ? 0 : 1) : 2;
- }
- /// \brief Add one to a Constant
- static inline Constant *AddOne(Constant *C) {
- return ConstantExpr::getAdd(C, ConstantInt::get(C->getType(), 1));
- }
- /// \brief Subtract one from a Constant
- static inline Constant *SubOne(Constant *C) {
- return ConstantExpr::getSub(C, ConstantInt::get(C->getType(), 1));
- }
- /// \brief Return true if the specified value is free to invert (apply ~ to).
- /// This happens in cases where the ~ can be eliminated. If WillInvertAllUses
- /// is true, work under the assumption that the caller intends to remove all
- /// uses of V and only keep uses of ~V.
- ///
- static inline bool IsFreeToInvert(Value *V, bool WillInvertAllUses) {
- // ~(~(X)) -> X.
- if (BinaryOperator::isNot(V))
- return true;
- // Constants can be considered to be not'ed values.
- if (isa<ConstantInt>(V))
- return true;
- // Compares can be inverted if all of their uses are being modified to use the
- // ~V.
- if (isa<CmpInst>(V))
- return WillInvertAllUses;
- // If `V` is of the form `A + Constant` then `-1 - V` can be folded into `(-1
- // - Constant) - A` if we are willing to invert all of the uses.
- if (BinaryOperator *BO = dyn_cast<BinaryOperator>(V))
- if (BO->getOpcode() == Instruction::Add ||
- BO->getOpcode() == Instruction::Sub)
- if (isa<Constant>(BO->getOperand(0)) || isa<Constant>(BO->getOperand(1)))
- return WillInvertAllUses;
- return false;
- }
- /// \brief Specific patterns of overflow check idioms that we match.
- enum OverflowCheckFlavor {
- OCF_UNSIGNED_ADD,
- OCF_SIGNED_ADD,
- OCF_UNSIGNED_SUB,
- OCF_SIGNED_SUB,
- OCF_UNSIGNED_MUL,
- OCF_SIGNED_MUL,
- OCF_INVALID
- };
- /// \brief Returns the OverflowCheckFlavor corresponding to a overflow_with_op
- /// intrinsic.
- static inline OverflowCheckFlavor
- IntrinsicIDToOverflowCheckFlavor(unsigned ID) {
- switch (ID) {
- default:
- return OCF_INVALID;
- case Intrinsic::uadd_with_overflow:
- return OCF_UNSIGNED_ADD;
- case Intrinsic::sadd_with_overflow:
- return OCF_SIGNED_ADD;
- case Intrinsic::usub_with_overflow:
- return OCF_UNSIGNED_SUB;
- case Intrinsic::ssub_with_overflow:
- return OCF_SIGNED_SUB;
- case Intrinsic::umul_with_overflow:
- return OCF_UNSIGNED_MUL;
- case Intrinsic::smul_with_overflow:
- return OCF_SIGNED_MUL;
- }
- }
- /// \brief An IRBuilder inserter that adds new instructions to the instcombine
- /// worklist.
- class LLVM_LIBRARY_VISIBILITY InstCombineIRInserter
- : public IRBuilderDefaultInserter<true> {
- InstCombineWorklist &Worklist;
- AssumptionCache *AC;
- public:
- InstCombineIRInserter(InstCombineWorklist &WL, AssumptionCache *AC)
- : Worklist(WL), AC(AC) {}
- void InsertHelper(Instruction *I, const Twine &Name, BasicBlock *BB,
- BasicBlock::iterator InsertPt) const {
- IRBuilderDefaultInserter<true>::InsertHelper(I, Name, BB, InsertPt);
- Worklist.Add(I);
- using namespace llvm::PatternMatch;
- if (match(I, m_Intrinsic<Intrinsic::assume>()))
- AC->registerAssumption(cast<CallInst>(I));
- }
- };
- /// \brief The core instruction combiner logic.
- ///
- /// This class provides both the logic to recursively visit instructions and
- /// combine them, as well as the pass infrastructure for running this as part
- /// of the LLVM pass pipeline.
- class LLVM_LIBRARY_VISIBILITY InstCombiner
- : public InstVisitor<InstCombiner, Instruction *> {
- // FIXME: These members shouldn't be public.
- public:
- /// \brief A worklist of the instructions that need to be simplified.
- InstCombineWorklist &Worklist;
- /// \brief An IRBuilder that automatically inserts new instructions into the
- /// worklist.
- typedef IRBuilder<true, TargetFolder, InstCombineIRInserter> BuilderTy;
- BuilderTy *Builder;
- private:
- // Mode in which we are running the combiner.
- const bool MinimizeSize;
- AliasAnalysis *AA;
- // Required analyses.
- // FIXME: These can never be null and should be references.
- AssumptionCache *AC;
- TargetLibraryInfo *TLI;
- DominatorTree *DT;
- const DataLayout &DL;
- // Optional analyses. When non-null, these can both be used to do better
- // combining and will be updated to reflect any changes.
- LoopInfo *LI;
- bool MadeIRChange;
- public:
- InstCombiner(InstCombineWorklist &Worklist, BuilderTy *Builder,
- bool MinimizeSize, AliasAnalysis *AA,
- AssumptionCache *AC, TargetLibraryInfo *TLI,
- DominatorTree *DT, const DataLayout &DL, LoopInfo *LI)
- : Worklist(Worklist), Builder(Builder), MinimizeSize(MinimizeSize),
- AA(AA), AC(AC), TLI(TLI), DT(DT), DL(DL), LI(LI), MadeIRChange(false) {}
- /// \brief Run the combiner over the entire worklist until it is empty.
- ///
- /// \returns true if the IR is changed.
- bool run();
- AssumptionCache *getAssumptionCache() const { return AC; }
- const DataLayout &getDataLayout() const { return DL; }
- DominatorTree *getDominatorTree() const { return DT; }
- LoopInfo *getLoopInfo() const { return LI; }
- TargetLibraryInfo *getTargetLibraryInfo() const { return TLI; }
- // Visitation implementation - Implement instruction combining for different
- // instruction types. The semantics are as follows:
- // Return Value:
- // null - No change was made
- // I - Change was made, I is still valid, I may be dead though
- // otherwise - Change was made, replace I with returned instruction
- //
- Instruction *visitAdd(BinaryOperator &I);
- Instruction *visitFAdd(BinaryOperator &I);
- Value *OptimizePointerDifference(Value *LHS, Value *RHS, Type *Ty);
- Instruction *visitSub(BinaryOperator &I);
- Instruction *visitFSub(BinaryOperator &I);
- Instruction *visitMul(BinaryOperator &I);
- Value *foldFMulConst(Instruction *FMulOrDiv, Constant *C,
- Instruction *InsertBefore);
- Instruction *visitFMul(BinaryOperator &I);
- Instruction *visitURem(BinaryOperator &I);
- Instruction *visitSRem(BinaryOperator &I);
- Instruction *visitFRem(BinaryOperator &I);
- bool SimplifyDivRemOfSelect(BinaryOperator &I);
- Instruction *commonRemTransforms(BinaryOperator &I);
- Instruction *commonIRemTransforms(BinaryOperator &I);
- Instruction *commonDivTransforms(BinaryOperator &I);
- Instruction *commonIDivTransforms(BinaryOperator &I);
- Instruction *visitUDiv(BinaryOperator &I);
- Instruction *visitSDiv(BinaryOperator &I);
- Instruction *visitFDiv(BinaryOperator &I);
- Value *simplifyRangeCheck(ICmpInst *Cmp0, ICmpInst *Cmp1, bool Inverted);
- Value *FoldAndOfICmps(ICmpInst *LHS, ICmpInst *RHS);
- Value *FoldAndOfFCmps(FCmpInst *LHS, FCmpInst *RHS);
- Instruction *visitAnd(BinaryOperator &I);
- Value *FoldOrOfICmps(ICmpInst *LHS, ICmpInst *RHS, Instruction *CxtI);
- Value *FoldOrOfFCmps(FCmpInst *LHS, FCmpInst *RHS);
- Instruction *FoldOrWithConstants(BinaryOperator &I, Value *Op, Value *A,
- Value *B, Value *C);
- Instruction *FoldXorWithConstants(BinaryOperator &I, Value *Op, Value *A,
- Value *B, Value *C);
- Instruction *visitOr(BinaryOperator &I);
- Instruction *visitXor(BinaryOperator &I);
- Instruction *visitShl(BinaryOperator &I);
- Instruction *visitAShr(BinaryOperator &I);
- Instruction *visitLShr(BinaryOperator &I);
- Instruction *commonShiftTransforms(BinaryOperator &I);
- Instruction *FoldFCmp_IntToFP_Cst(FCmpInst &I, Instruction *LHSI,
- Constant *RHSC);
- Instruction *FoldCmpLoadFromIndexedGlobal(GetElementPtrInst *GEP,
- GlobalVariable *GV, CmpInst &ICI,
- ConstantInt *AndCst = nullptr);
- Instruction *visitFCmpInst(FCmpInst &I);
- Instruction *visitICmpInst(ICmpInst &I);
- Instruction *visitICmpInstWithCastAndCast(ICmpInst &ICI);
- Instruction *visitICmpInstWithInstAndIntCst(ICmpInst &ICI, Instruction *LHS,
- ConstantInt *RHS);
- Instruction *FoldICmpDivCst(ICmpInst &ICI, BinaryOperator *DivI,
- ConstantInt *DivRHS);
- Instruction *FoldICmpShrCst(ICmpInst &ICI, BinaryOperator *DivI,
- ConstantInt *DivRHS);
- Instruction *FoldICmpCstShrCst(ICmpInst &I, Value *Op, Value *A,
- ConstantInt *CI1, ConstantInt *CI2);
- Instruction *FoldICmpCstShlCst(ICmpInst &I, Value *Op, Value *A,
- ConstantInt *CI1, ConstantInt *CI2);
- Instruction *FoldICmpAddOpCst(Instruction &ICI, Value *X, ConstantInt *CI,
- ICmpInst::Predicate Pred);
- Instruction *FoldGEPICmp(GEPOperator *GEPLHS, Value *RHS,
- ICmpInst::Predicate Cond, Instruction &I);
- Instruction *FoldShiftByConstant(Value *Op0, Constant *Op1,
- BinaryOperator &I);
- Instruction *commonCastTransforms(CastInst &CI);
- Instruction *commonPointerCastTransforms(CastInst &CI);
- Instruction *visitTrunc(TruncInst &CI);
- Instruction *visitZExt(ZExtInst &CI);
- Instruction *visitSExt(SExtInst &CI);
- Instruction *visitFPTrunc(FPTruncInst &CI);
- Instruction *visitFPExt(CastInst &CI);
- Instruction *visitFPToUI(FPToUIInst &FI);
- Instruction *visitFPToSI(FPToSIInst &FI);
- Instruction *visitUIToFP(CastInst &CI);
- Instruction *visitSIToFP(CastInst &CI);
- Instruction *visitPtrToInt(PtrToIntInst &CI);
- Instruction *visitIntToPtr(IntToPtrInst &CI);
- Instruction *visitBitCast(BitCastInst &CI);
- Instruction *visitAddrSpaceCast(AddrSpaceCastInst &CI);
- Instruction *FoldSelectOpOp(SelectInst &SI, Instruction *TI, Instruction *FI);
- Instruction *FoldSelectIntoOp(SelectInst &SI, Value *, Value *);
- Instruction *FoldSPFofSPF(Instruction *Inner, SelectPatternFlavor SPF1,
- Value *A, Value *B, Instruction &Outer,
- SelectPatternFlavor SPF2, Value *C);
- Instruction *FoldItoFPtoI(Instruction &FI);
- Instruction *visitSelectInst(SelectInst &SI);
- Instruction *visitSelectInstWithICmp(SelectInst &SI, ICmpInst *ICI);
- Instruction *visitCallInst(CallInst &CI);
- Instruction *visitInvokeInst(InvokeInst &II);
- Instruction *SliceUpIllegalIntegerPHI(PHINode &PN);
- Instruction *visitPHINode(PHINode &PN);
- Instruction *visitGetElementPtrInst(GetElementPtrInst &GEP);
- Instruction *visitAllocaInst(AllocaInst &AI);
- Instruction *visitAllocSite(Instruction &FI);
- Instruction *visitFree(CallInst &FI);
- Instruction *visitLoadInst(LoadInst &LI);
- Instruction *visitStoreInst(StoreInst &SI);
- Instruction *visitBranchInst(BranchInst &BI);
- Instruction *visitSwitchInst(SwitchInst &SI);
- Instruction *visitReturnInst(ReturnInst &RI);
- Instruction *visitInsertValueInst(InsertValueInst &IV);
- Instruction *visitInsertElementInst(InsertElementInst &IE);
- Instruction *visitExtractElementInst(ExtractElementInst &EI);
- Instruction *visitShuffleVectorInst(ShuffleVectorInst &SVI);
- Instruction *visitExtractValueInst(ExtractValueInst &EV);
- Instruction *visitLandingPadInst(LandingPadInst &LI);
- // visitInstruction - Specify what to return for unhandled instructions...
- Instruction *visitInstruction(Instruction &I) { return nullptr; }
- // True when DB dominates all uses of DI execpt UI.
- // UI must be in the same block as DI.
- // The routine checks that the DI parent and DB are different.
- bool dominatesAllUses(const Instruction *DI, const Instruction *UI,
- const BasicBlock *DB) const;
- // Replace select with select operand SIOpd in SI-ICmp sequence when possible
- bool replacedSelectWithOperand(SelectInst *SI, const ICmpInst *Icmp,
- const unsigned SIOpd);
- private:
- bool ShouldChangeType(Type *From, Type *To) const;
- Value *dyn_castNegVal(Value *V) const;
- Value *dyn_castFNegVal(Value *V, bool NoSignedZero = false) const;
- Type *FindElementAtOffset(PointerType *PtrTy, int64_t Offset,
- SmallVectorImpl<Value *> &NewIndices);
- Instruction *FoldOpIntoSelect(Instruction &Op, SelectInst *SI);
- /// \brief Classify whether a cast is worth optimizing.
- ///
- /// Returns true if the cast from "V to Ty" actually results in any code
- /// being generated and is interesting to optimize out. If the cast can be
- /// eliminated by some other simple transformation, we prefer to do the
- /// simplification first.
- bool ShouldOptimizeCast(Instruction::CastOps opcode, const Value *V,
- Type *Ty);
- /// \brief Try to optimize a sequence of instructions checking if an operation
- /// on LHS and RHS overflows.
- ///
- /// If a simplification is possible, stores the simplified result of the
- /// operation in OperationResult and result of the overflow check in
- /// OverflowResult, and return true. If no simplification is possible,
- /// returns false.
- bool OptimizeOverflowCheck(OverflowCheckFlavor OCF, Value *LHS, Value *RHS,
- Instruction &CtxI, Value *&OperationResult,
- Constant *&OverflowResult);
- Instruction *visitCallSite(CallSite CS);
- Instruction *tryOptimizeCall(CallInst *CI);
- bool transformConstExprCastCall(CallSite CS);
- Instruction *transformCallThroughTrampoline(CallSite CS,
- IntrinsicInst *Tramp);
- Instruction *transformZExtICmp(ICmpInst *ICI, Instruction &CI,
- bool DoXform = true);
- Instruction *transformSExtICmp(ICmpInst *ICI, Instruction &CI);
- bool WillNotOverflowSignedAdd(Value *LHS, Value *RHS, Instruction &CxtI);
- bool WillNotOverflowSignedSub(Value *LHS, Value *RHS, Instruction &CxtI);
- bool WillNotOverflowUnsignedSub(Value *LHS, Value *RHS, Instruction &CxtI);
- bool WillNotOverflowSignedMul(Value *LHS, Value *RHS, Instruction &CxtI);
- Value *EmitGEPOffset(User *GEP);
- Instruction *scalarizePHI(ExtractElementInst &EI, PHINode *PN);
- Value *EvaluateInDifferentElementOrder(Value *V, ArrayRef<int> Mask);
- public:
- /// \brief Inserts an instruction \p New before instruction \p Old
- ///
- /// Also adds the new instruction to the worklist and returns \p New so that
- /// it is suitable for use as the return from the visitation patterns.
- Instruction *InsertNewInstBefore(Instruction *New, Instruction &Old) {
- assert(New && !New->getParent() &&
- "New instruction already inserted into a basic block!");
- BasicBlock *BB = Old.getParent();
- BB->getInstList().insert(&Old, New); // Insert inst
- Worklist.Add(New);
- return New;
- }
- /// \brief Same as InsertNewInstBefore, but also sets the debug loc.
- Instruction *InsertNewInstWith(Instruction *New, Instruction &Old) {
- New->setDebugLoc(Old.getDebugLoc());
- return InsertNewInstBefore(New, Old);
- }
- /// \brief A combiner-aware RAUW-like routine.
- ///
- /// This method is to be used when an instruction is found to be dead,
- /// replacable with another preexisting expression. Here we add all uses of
- /// I to the worklist, replace all uses of I with the new value, then return
- /// I, so that the inst combiner will know that I was modified.
- Instruction *ReplaceInstUsesWith(Instruction &I, Value *V) {
- // If there are no uses to replace, then we return nullptr to indicate that
- // no changes were made to the program.
- if (I.use_empty()) return nullptr;
- Worklist.AddUsersToWorkList(I); // Add all modified instrs to worklist.
- // If we are replacing the instruction with itself, this must be in a
- // segment of unreachable code, so just clobber the instruction.
- if (&I == V)
- V = UndefValue::get(I.getType());
- DEBUG(dbgs() << "IC: Replacing " << I << "\n"
- << " with " << *V << '\n');
- I.replaceAllUsesWith(V);
- return &I;
- }
- /// Creates a result tuple for an overflow intrinsic \p II with a given
- /// \p Result and a constant \p Overflow value.
- Instruction *CreateOverflowTuple(IntrinsicInst *II, Value *Result,
- Constant *Overflow) {
- Constant *V[] = {UndefValue::get(Result->getType()), Overflow};
- StructType *ST = cast<StructType>(II->getType());
- Constant *Struct = ConstantStruct::get(ST, V);
- return InsertValueInst::Create(Struct, Result, 0);
- }
- /// \brief Combiner aware instruction erasure.
- ///
- /// When dealing with an instruction that has side effects or produces a void
- /// value, we can't rely on DCE to delete the instruction. Instead, visit
- /// methods should return the value returned by this function.
- Instruction *EraseInstFromFunction(Instruction &I) {
- DEBUG(dbgs() << "IC: ERASE " << I << '\n');
- assert(I.use_empty() && "Cannot erase instruction that is used!");
- // Make sure that we reprocess all operands now that we reduced their
- // use counts.
- if (I.getNumOperands() < 8) {
- for (User::op_iterator i = I.op_begin(), e = I.op_end(); i != e; ++i)
- if (Instruction *Op = dyn_cast<Instruction>(*i))
- Worklist.Add(Op);
- }
- Worklist.Remove(&I);
- I.eraseFromParent();
- MadeIRChange = true;
- return nullptr; // Don't do anything with FI
- }
- void computeKnownBits(Value *V, APInt &KnownZero, APInt &KnownOne,
- unsigned Depth, Instruction *CxtI) const {
- return llvm::computeKnownBits(V, KnownZero, KnownOne, DL, Depth, AC, CxtI,
- DT);
- }
- bool MaskedValueIsZero(Value *V, const APInt &Mask, unsigned Depth = 0,
- Instruction *CxtI = nullptr) const {
- return llvm::MaskedValueIsZero(V, Mask, DL, Depth, AC, CxtI, DT);
- }
- unsigned ComputeNumSignBits(Value *Op, unsigned Depth = 0,
- Instruction *CxtI = nullptr) const {
- return llvm::ComputeNumSignBits(Op, DL, Depth, AC, CxtI, DT);
- }
- void ComputeSignBit(Value *V, bool &KnownZero, bool &KnownOne,
- unsigned Depth = 0, Instruction *CxtI = nullptr) const {
- return llvm::ComputeSignBit(V, KnownZero, KnownOne, DL, Depth, AC, CxtI,
- DT);
- }
- OverflowResult computeOverflowForUnsignedMul(Value *LHS, Value *RHS,
- const Instruction *CxtI) {
- return llvm::computeOverflowForUnsignedMul(LHS, RHS, DL, AC, CxtI, DT);
- }
- OverflowResult computeOverflowForUnsignedAdd(Value *LHS, Value *RHS,
- const Instruction *CxtI) {
- return llvm::computeOverflowForUnsignedAdd(LHS, RHS, DL, AC, CxtI, DT);
- }
- private:
- /// \brief Performs a few simplifications for operators which are associative
- /// or commutative.
- bool SimplifyAssociativeOrCommutative(BinaryOperator &I);
- /// \brief Tries to simplify binary operations which some other binary
- /// operation distributes over.
- ///
- /// It does this by either by factorizing out common terms (eg "(A*B)+(A*C)"
- /// -> "A*(B+C)") or expanding out if this results in simplifications (eg: "A
- /// & (B | C) -> (A&B) | (A&C)" if this is a win). Returns the simplified
- /// value, or null if it didn't simplify.
- Value *SimplifyUsingDistributiveLaws(BinaryOperator &I);
- /// \brief Attempts to replace V with a simpler value based on the demanded
- /// bits.
- Value *SimplifyDemandedUseBits(Value *V, APInt DemandedMask, APInt &KnownZero,
- APInt &KnownOne, unsigned Depth,
- Instruction *CxtI);
- bool SimplifyDemandedBits(Use &U, APInt DemandedMask, APInt &KnownZero,
- APInt &KnownOne, unsigned Depth = 0);
- /// Helper routine of SimplifyDemandedUseBits. It tries to simplify demanded
- /// bit for "r1 = shr x, c1; r2 = shl r1, c2" instruction sequence.
- Value *SimplifyShrShlDemandedBits(Instruction *Lsr, Instruction *Sftl,
- APInt DemandedMask, APInt &KnownZero,
- APInt &KnownOne);
- /// \brief Tries to simplify operands to an integer instruction based on its
- /// demanded bits.
- bool SimplifyDemandedInstructionBits(Instruction &Inst);
- Value *SimplifyDemandedVectorElts(Value *V, APInt DemandedElts,
- APInt &UndefElts, unsigned Depth = 0);
- Value *SimplifyVectorOp(BinaryOperator &Inst);
- Value *SimplifyBSwap(BinaryOperator &Inst);
- // FoldOpIntoPhi - Given a binary operator, cast instruction, or select
- // which has a PHI node as operand #0, see if we can fold the instruction
- // into the PHI (which is only possible if all operands to the PHI are
- // constants).
- //
- Instruction *FoldOpIntoPhi(Instruction &I);
- /// \brief Try to rotate an operation below a PHI node, using PHI nodes for
- /// its operands.
- Instruction *FoldPHIArgOpIntoPHI(PHINode &PN);
- Instruction *FoldPHIArgBinOpIntoPHI(PHINode &PN);
- Instruction *FoldPHIArgGEPIntoPHI(PHINode &PN);
- Instruction *FoldPHIArgLoadIntoPHI(PHINode &PN);
- Instruction *OptAndOp(Instruction *Op, ConstantInt *OpRHS,
- ConstantInt *AndRHS, BinaryOperator &TheAnd);
- Value *FoldLogicalPlusAnd(Value *LHS, Value *RHS, ConstantInt *Mask,
- bool isSub, Instruction &I);
- Value *InsertRangeTest(Value *V, Constant *Lo, Constant *Hi, bool isSigned,
- bool Inside);
- Instruction *PromoteCastOfAllocation(BitCastInst &CI, AllocaInst &AI);
- Instruction *MatchBSwap(BinaryOperator &I);
- bool SimplifyStoreAtEndOfBlock(StoreInst &SI);
- Instruction *SimplifyMemTransfer(MemIntrinsic *MI);
- Instruction *SimplifyMemSet(MemSetInst *MI);
- Value *EvaluateInDifferentType(Value *V, Type *Ty, bool isSigned);
- /// \brief Returns a value X such that Val = X * Scale, or null if none.
- ///
- /// If the multiplication is known not to overflow then NoSignedWrap is set.
- Value *Descale(Value *Val, APInt Scale, bool &NoSignedWrap);
- };
- } // end namespace llvm.
- #undef DEBUG_TYPE
- #endif
|